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ATOMS IN INFINITE DIMENSIONAL FREE SEQUENCE-SET ALGEBRAS

MOHAMED KHALED AND ISTVÁN NÉMETI

Abstract. A. Tarski proved that the m-generated free algebra of CAα, the class of cylindric
algebras of dimension α, contains exactly 2m zero-dimensional atoms, when m ≥ 1 is a finite
cardinal and α is an arbitrary ordinal. He conjectured that, when α is infinite, there are no
more atoms. This conjecture has not been confirmed or denied yet. In this article, we show that
Tarski’s conjecture is true if CAα is replaced by Dα, Gα, but the m-generated free Crsα algebra
is atomless.

1. Introduction

Free algebras play an important role in universal algebra, and especially in the theory of Boolean
algebras with operators (BAO’s), see, e.g., [5], [3], [2, §5.6] and [11]. One of the first things to
investigate about these free algebras is whether they are atomic or not, i.e., whether their Boolean
reducts are atomic or not. An atomic Boolean algebra is an algebra in which below every non-zero
element there is an atom, i.e., a minimal non-zero element. Let K be a class of similar algebras.
For each cardinal m, let FrmK stand for the m-generated free K algebra.

Cylindric algebras are special BAO’s that were introduced by A. Tarski around 1947. These are
Boolean algebras equipped with unary operations, called cylindrifications, and constant symbols,
called diagonals. These algebras capture the intrinsic algebraic side of first order logic (FOL), see
[1, section 4.3]. Let α be any ordinal.

Definition 1.1. A cylindric algebra of dimension α is an algebra of the form

A = 〈A,+, ·,−, 0, 1, ci, dij〉i,j∈α,

where A is a non-empty set, +, · are binary operations, −, ci are unary operations, 0, 1, dij are
constant symbols, and A satisfies the following postulates for every x, y ∈ A and every i, j, k ∈ α:

(CA 0) 〈A,+, ·,−, 0, 1〉 is Boolean algebra,
(CA 1) ci0 = 0,
(CA 2) x+ cix = cix,
(CA 3) ci(x · ciy) = cix · ciy,
(CA 4) cicjx = cjcix,
(CA 5) dii = 1,
(CA 6) If k 6= i, j, then dij = ck(dik · dkj),
(CA 7) If i 6= j, then ci(dij · x) · ci(dij · −x) = 0.

The class of all cylindric algebras of dimension α is denoted by CAα. Atoms in the free cylindric
algebras correspond to finitely axiomatizable complete and consistent theories of FOL. In the present
paper, we are interested in the case when α is infinite, so α ≥ ω is assumed throughout the paper.
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We will prove some results connected to a conjecture of A. Tarski [1, Remark 2.5.12 and Problem
2.6]. This conjecture is concerned with atoms and zero-dimensional elements in the finitely gen-
erated free cylindric algebras of dimension α. An element a of a cylindric algebra A is said to be
zero-dimensional if it is a fixed-point of all the cylindrifications, i.e., if cia = a for each i ∈ α.

In this section, we outline the background for this conjecture and we state our main theorems. Let
m be any cardinal. Let K ⊆ CAα be a class of cylindric algebras containing at least one non-trivial
algebra (i.e., having more than one-element). The following are true:

(Fact 1) If m is infinite, then FrmK is atomless. This is due to D. Pigozzi [1, Theorem 2.5.13], and
the proof can be easily generalized for any class of Boolean algebras with operators.

(Fact 2) Assume that m is finite. In [1, Theorem 2.5.11], it is proved that FrmK contains exactly

2m zero-dimensional atoms (i).
(Fact 3) The 0-generated free algebra Fr0K contains exactly one atom, namely c0 − d01, by [1,

Theorem 2.5.11]. We show that it contains no other atom. Indeed, let a ∈ Fr0K be such
that a · c0−d01 6= 0. It is not hard to see that, for every x ∈ Fr0K, the set {i ∈ α : cix 6= x}
is finite (which means Fr0K is locally finite dimensional, see [1, Definition 1.11.1 (i)]). This
is true because Fr0K is 0-generated. So, we can find i, j ∈ α such that i 6= j, cia = a and
cja = a. By [1, Theorem 1.3.19], it follows that a · ci − dij 6= 0. Now, by the cylindric
equations (CA 0) - (CA 7), we have

ci(a · dij) = ci(cia · dij) = cia · cidij = a · 1 = a 6= 0,

ci(a · −dij) = ci(cia · −dij) = cia · ci − dij = a · ci − dij 6= 0.

Hence, a · dij 6= 0 and a · −dij 6= 0. Thus, a is not an atom as desired.
(Fact 4) Suppose that m ≥ 1. Tarski conjectured that all the atoms in the free algebra FrmCAα are

zero-dimensional. See [1, Remark 2.5.12 and Problem 2.6]. To the best of our knowledge,
this conjecture remains open.

Gsα denotes the class of α-dimensional representable cylindric algebras, it will be defined in the
next section. First, we show that Tarski’s conjecture is true when CAα is replaced by Gsα.

Theorem 1.2. For each finite cardinal m, there are exactly 2m many atoms in FrmGsα, each of
these atoms is zero-dimensional.

Proof. Recall from (Fact 2) that the free algebra FrmGsα contains exactly 2m many zero-dimensional
atoms. These atoms are listed in Lemma 3.2 herein (and also in [1, Theorem 2.5.11]), and it is
apparent that their sum is −c0−d01. It remains to prove that there is no atom below c0−d01 in the
algebra FrmGsα. We use the fact that Gsα is generated as a variety by its locally finite dimensional
algebras, see [2, Theorem 3.1.123]. Assume that a ∈ FrmGsα is such that a · c0 − d01 6= 0. We
show that a is not an atom. We may assume that a is a term, so it has a value in any algebra and
evaluation pair. By a 6= 0 in FrmGsα we have that a 6= 0 in some locally finite dimensional algebra
A ∈ Gsα (with an appropriate evaluation of the variables occurring in a). In the algebra A, we can
find i, j ∈ α such that i 6= j, cia = a and cja = a. Recall a · c0 − d01 6= 0, so [1, Theorem 1.3.18
(iii)] implies that a · ci − dij 6= 0 is also true in A. Again, similarly to our argument in (Fact 3),

A |= ci(a · dij) = ci(cia · dij) = cia · cidij = a · 1 = a 6= 0,

A |= ci(a · −dij) = ci(cia · −dij) = cia · ci − dij = a · ci − dij 6= 0.

(i)Tarski’s proof is only about CAα, but it works verbatim for the class K.
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Hence, a ·dij 6= 0 and a ·−dij 6= 0 are true in A. Thus, the same is true in the free algebra FrmGsα,
so a is not an atom, as desired. �

In this article, we investigate whether the above theorem remains true if Gsα is replaced by any
of the relativized classes of cylindric algebras Crsα, Dα, Gα. These classes will be defined in the
next section. The notion of a relativized algebra was introduced in algebraic logic by L. Henkin.
Relativization was proved potent in obtaining positive results in logic, see, e.g., [12], [8] and [6].
For some properties of these classes, see, e.g., [10], [4] and [7]. For instance, in contrary to Gsα,
the equational theories of the classes Crsα and Gα are decidable [3, 6]. The decidability of the
equational theory of the class Dα remains open.

Theorem 1.3 (Main Result 1). Let α ≥ ω be an infinite ordinal and let m ≥ 1 be a finite cardinal.
The following are true:

(1) The free algebra Frm−1Crsα is atomless.
(2) The free algebra FrmK is not atomic, but it contains exactly 2m-many atoms each of which

is zero-dimensional, when K is any of Dα, Gα or Gsα.

The proof of Theorem 1.2 depends essentially on the fact that Gsα is generated by locally finite
dimensional algebras. The same is not true for the relativized classes of cylindric algebras, therefore
the same argument cannot be used to prove Theorem 1.3. We will prove a stronger theorem,
Theorem 2.4 in the next section, which will imply Theorem 1.3.

The proofs of Theorem 1.3 and Theorem 2.4 go by showing that there are no elements in the free
algebras that are disjoint from all the diagonals dij . Theorem 1.4 below shows that the same is not
true for CAα, therefore for settling the conjecture for CAα, one has to use other techniques, too.

Theorem 1.4 (Main Result 2). Let α ≥ 2 be any ordinal and let m ≥ 1 be a finite cardinal. Then,
there is x ∈ FrmCAα such that x 6= 0 and x ≤ −dij for every i, j ∈ α ∼ 2 with i 6= j.

It is worth of note that atomicity of these free algebras correspond to the failure of a version of
Gödel’s incompleteness theorem for the corresponding logics. For more detail about this correspon-
dence, see [3], [13] and [15]. For results concerning the atomicity of free algebras of logics, one can
see [1, 2, 3, 5, 9, 11, 13, 14, 15, 16, 17, 18].

2. Algebras of sets of sequences

Throughout, fix an infinite ordinal α. A function with domain α is called a sequence of length α
(a sequence for short). For every i ∈ α and every two sequences f, g, we write f ≡i g if and only if
g = f(i/u) for some u, where f(i/u) is the sequence which agrees with f everywhere except that
it’s value at i equals u. Let V be a set of sequences of length α. Such set is called an α-dimensional
unit. The smallest set U that satisfies V ⊆ αU is called the base of the unit V .

Let i, j ∈ α. Define the ij-diagonal of the unit V as follows: D
[V ]
ij = {f ∈ V : f(i) = f(j)}. For

each X ⊆ V , define C
[V ]
i X = {f ∈ V : (∃g ∈ X) f ≡i g}. This is called the V -cylindrification

of X in the direction i. When no confusion is likely, we omit the superscript [V ] from the above
defined objects.
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Definition 2.1. The full cylindric-like algebra over the unit V is an algebra of the form

P(V )
def

= 〈P(V ),∪,∩,∼, ∅, V, Ci, Dij〉i,j∈α,

where P(V ) is the family of all subsets of V , ∪,∩,∼ are the Boolean set-theoretic operations, ∅ is
the empty set, and the Ci’s and the Dij ’s are as defined above.

Let K be a class of algebras of same signature. Then, IK, SK and HK are the classes that consist
of the isomorphic copies, subalgebras and homomorphic images, respectively, of the members of K.

Definition 2.2. We define the following classes of cylindric-like set algebras.

• The class of all relativized cylindric set algebras is given by

Crsα = IS{P(V ) : V is an α-dimensional unit}.

• The class of diagonalizable cylindric set algebras Dα is given by

Dα = IS{P(V ) : V is a diagonalizable α-dimensional unit},

where an α-dimensional unit V is diagonalizable if it satisfies f(i/f(j)) ∈ V , for each f ∈ V
and each i, j ∈ α.

• The class of locally square cylindric set algebras Gα is given by

Gα = IS{P(V ) : V is a union of α-dimensional squares},

where a union of α-dimensional squares is an α-dimensional unit of the form V =
⋃

i∈I
αUi

for some family of non-empty sets {Ui : i ∈ I}.
• The class of generalized cylindric set algebras Gsα is given by

Gsα = IS{P(V ) : V is a union of mutually disjoint α-dimensional squares},

where V is a union of mutually disjoint α-dimensional squares if there is a family of mutually
disjoint non-empty sets {Ui : i ∈ I} such that V =

⋃
i∈I

αUi.

We note that Crsα, Dα, Gsα and HGα are varieties, and it is still open whether Gα = HGα. Since
we are dealing with many classes, it is more convenient to prove a general theorem which implies
Theorem 1.3. We need to generalize our definitions, too.

Definition 2.3. Let U be a class of α-dimensional units.

• We say that U supports diagonalization iff V ∪ {f(i/f(j))} ∈ U for each V ∈ U , each
f ∈ V and each i, j ∈ α.

• We say that U requires diagonalization iff U contains a singleton, and f(i/f(j)) ∈ V
for each V ∈ U , each f ∈ V and each i, j ∈ α.

For any class U of α-dimensional units, if U requires diagonalization then U must also support
diagonalization, but the converse is not necessarily true. Let K be a class of similar algebras, then
V(K) stands for the smallest variety containing K. One can easily see that each of the classes Gsα,
Dα and HGα can be viewed as V({P(V ) : V ∈ U}) for some class of α-dimensional units U that
require diagonalization. The same is not true for the class Crsα. However, Crsα can be introduced
as the variety generated by the class of full algebras of all α-dimensional units.

Theorem 2.4. Let K be a class of cylindric-type algebras such that V(K) = V({P(V ) : V ∈ U})
for some class U of α-dimensional units. Let m ≥ 1 be a finite cardinal. The following are true:
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(1) If U supports diagonalization, then the free algebra FrmK is not atomic.
(2) If U requires diagonalization, then the following are true:

(a) FrmK contains exactly 2m-many atoms.
(b) All the atoms of FrmK are zero-dimensional.
(c) There is a decomposition FrmK ∼= A×B such that |A| = 22

m

, A is discrete and B is
atomless.

(3) If U is the class of all α-dimensional units, then Frm−1K is atomless.

Theorem 2.3 implies Theorem 1.2 since the classes of Dα-units, Gα-units and Gsα-units require
diagonalization, while the class of Crsα-units supports diagonalization. We divide the proof of
Theorem 2.4 into some lemmas and propositions. Throughout the remaining part of this paper, fix
classes K and U , and a cardinal m ≥ 1 satisfying the assumptions of the Theorem 2.4.

3. The atomic part in FrmK

Let ctα be the algebraic type of cylindric-like algebras, it consists of binary operations +, ·, unary
operations −, ci (i ∈ α) and constant symbols 0, 1, dij (i, j ∈ α). Let Y be any set, the set of all

terms Tα(Y ) generated by Y in the signature ctα is defined to be the smallest set satisfying:

• Y ⊆ Tα(Y ) and 0, 1, dij ∈ Tα(Y ) for each i, j ∈ α,
• For each τ, σ ∈ Tα(Y ), we have τ + σ, τ · σ,−τ ∈ Tα(Y ),
• For each τ ∈ Tα(Y ) and each i ∈ α, we have ciτ ∈ Tα(Y ).

Note that the equational theory of K coincides with the equational theory of {P(V ) : V ∈ U}. So,
for example, whenever we say that K 6|= τ = 0, for some term τ ∈ Tα(Y ), we will assume that
there is a unit V ∈ U , f ∈ V and an evaluation ι : Y → P(V ) such that (V, f, ι) |= τ . The latter
means that f is a member of the interpretation of τ in the algebra P(V ) under the evaluation ι.
Examples of equations that are true in the class K (cf., [9, Theorem 9.4] and [1, Theorem 1.2.6 (ii)
and Theorem 1.2.11]): For i, j ∈ α with i 6= j,

(Eq 1) ci0 = 0.
(Eq 2) x · cix = x.
(Eq 3) ci(x · ciy) = cix · ciy.
(Eq 4) ci(x+ y) = cix+ ciy.
(Eq 5) ci(−cix) = −cix.
(Eq 6) dii = 1.
(Eq 7) ci(x · dij) · dij = x · dij .

Let X = {x0, . . . , xm−1} be the generating set of the free algebra FrmK. Let q ∈ X{−1, 1}, such
function is called a choice function for X . For each xk ∈ X , let xq

k = xk if q(xk) = 1 otherwise
let xq

k = −xk. Define Xq = xq
0 · · ·x

q
m−1.

Lemma 3.1. Suppose that U requires diagonalization. Let i, j ∈ α be such that i 6= j, and let
q ∈ X{−1, 1} be a choice function. Then,

K |= Xq · −c0 − d01 = Xq · −ci − dij .

Consequently, Xq · −c0 − d01 is a zero-dimensional element in the algebra FrmK.
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Proof. Suppose that U , i, j and q are as required above. Let V ∈ U , f ∈ V and ι : X → P(V )
be such that (V, f, ι) |= Xq · −ci − dij . Then f(i) = f(j). Suppose that f(0) 6= f(i). Since
U requires diagonalization then f(i/f(0)) ∈ V , and (V, f(i/f(0)), ι) |= −dij . This implies that
(V, f, ι) |= ci−dij which contradicts the assumptions. Hence, f(0) = f(i) and similarly f(1) = f(i).
Now, we show that (V, f, ι) |= −c0 − d01. Suppose towards a contradiction that (V, f, ι) |= c0 − d01.
Then there is u in the base of V and g = f(0/u) such that (V, g, ι) |= −d01. Hence, u 6= f(i).
By assumptions, we have g1 = g(i/g(0)) ∈ V and g2 = g1(0/g(j)) ∈ V . Then g2 = f(i/u), which
implies (V, f, ι) |= ci − dij . This contradicts the assumptions. Thus, (V, f, ι) |= −c0 − d01. We have
shown that K |= Xq · −ci − dij ≤ Xq · −c0 − d01. The desired follows by the symmetry of indices.

Let τ
def

= Xq · −c0 − d01. To show that τ is zero-dimensional, we need to prove that ciτ = τ . By the
first part, we have

ciτ = ci(X
q · −ci − dij) = ciX

q · −ci − dij ≤ −ci − dij ≤ dij .

Thus,

τ = dij · τ

= dij · ci(dij · τ) by (Eq 7)

= dij · ciτ

= ciτ.

Hence, τ = Xq · −c0 − d01 is zero-dimensional and we are done. �

Now, we will show that each of the zero-dimensional elements, given in the above lemma, is an
atom in the free algebra FrmK.

Lemma 3.2. Suppose that U requires diagonalization. Let i, j ∈ α be such that i 6= j, and let
q ∈ X{−1, 1} be a choice function. Then Xq · −c0 − d01 is an atom in the free algebra FrmK.

Proof. Suppose that U requires diagonalization. Let i, j ∈ α be such that i 6= j, and let q ∈ X{−1, 1}

be a choice function. Let τ
def

= Xq · −c0 − d01. Let {w} ∈ U , such unit is guaranteed to exist by the
assumption that U requires diagonalization. Define ν : X → {∅, {u}} as follows: For each xk ∈ X ,
let ν(xk) = {w} if q(xk) = 1 and ν(xk) = ∅ otherwise. Clearly, ({w}, w, ν) |= τ , i.e., τ is not zero
in FrmK. To prove that τ is an atom in FrmK, it is enough to prove the following: For any term
σ ∈ Tα(X),

(3.1) either K |= τ · σ = 0 or K |= τ · −σ = 0.

We prove (3.1) by induction on the complexity of the term σ. Obviously, (3.1) holds if σ = xk for
some xk ∈ X . Also, Lemma 3.1 guarantees that (3.1) is true if σ = dij for some i, j ∈ α. It is
not hard to see that the induction step holds for the Boolean connectives. We will show that the
induction step also holds for the cylindrification operations. To do that, we will use that fact that
cylinderifications are additive and complemented operators. Let σ = ckσ

′ for some σ′ ∈ Tα(X)
and k ∈ α. Remember that τ is zero-dimensional, so K |= ckτ = τ and K |= ck − τ = τ . By the
induction hypothesis, we have one of the following cases.

(a) Either, K |= τ · σ′ = 0. In this case, we have

K |= τ · σ = τ · ckσ
′ = ckτ · ckσ

′ = ck(τ · σ′) = 0.
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(b) Or, K |= τ · −σ′ = 0. Here,

K |= τ · −σ = −(−τ + σ) = −(ck − τ + ckσ
′) = −ck(−τ + σ′) ≤ −(−τ + σ′) = 0.

We have proved (3.1). Therefore, τ = Xq · −c0 − d01 is an atom in FrmK. �

We showed that FrmK contains at least 2m zero-dimensional atoms if U requires diagonalization.
Note that, in this case, the sum of all these atoms in FrmK is equal to −c0−d01 which can be shown
to be zero-dimensional element by the argument used in Lemma 3.1. In the following section, we
will prove that FrmK does not contain any extra atom.

4. The non-atomic part in FrmK

For each term σ ∈ Tα(X), we let index(σ) be the set of all indices i ∈ α that appear in σ. Let
Γ ⊆ α and let f, g be two sequences of length α. We write f ≡Γ g if and only if f(k) = g(k) for
each k ∈ α ∼ Γ. We start with the following proposition.

Proposition 4.1. Suppose that U supports diagonalization. Then there is no atom below c0 − d01
in the free algebra FrmK.

Proof. Suppose that U supports diagonalization. Let τ ∈ Tα(X) be a cylindric-term that satisfies
K 6|= τ · c0−d01 = 0. We prove that τ · c0−d01 is not an atom in FrmK. Let V ∈ U , f ∈ V and ι be
an evaluation such that (V, f, ι) |= τ · c0 − d01. We can find g ∈ V such that g = f(0/u), for some
u 6= f(1), and (V, g, ι) |= −d01. Let Γ = index(τ)∪ {0, 1}, since every term is built up from finitely
many symbols in the signature ctα then Γ must be finite. Let i, j ∈ α ∼ Γ be such that i 6= j.

Case 1: Suppose that g(i) = g(j). Recall that g(0) 6= g(1). So, without loss of generality, we may
assume that g(0) 6= g(j). Let

W = {h ∈ V : h(i) = h(j)} and V ′ = V ∪ {g(i/g(0))}.

Note that V ′ ∈ U because U supports diagonalization. Define ι1, ι2 : X → P(V ′) as follows: For
each xk ∈ X ,

ι1(xk) = ι(xk) ∩W and ι2(xk) = ι1(xk) ∪ {g(i/g(0))}.

For each σ ∈ Tα(X) and each h ∈ V , if index(σ) ⊆ Γ and h ≡Γ g, then

(4.1) (V ′, h, ι1) |= σ ⇐⇒ (V, h, ι) |= σ ⇐⇒ (V ′, h, ι2) |= σ.

This can be shown by a simple induction argument on the complexity of the term σ as follows.
Obviously, (4.1) is true for the case when σ = xk ∈ X and when σ = dkλ, k, λ ∈ Γ. Also, it is not
hard to see that the induction step holds for the Boolean connectives. Now, suppose that σ = ckσ

′

and index(σ) ⊆ Γ. That means k ∈ Γ and index(σ′) ⊆ Γ, too. Let h ∈ V be such that h ≡Γ g.
Note that for any h′ ∈ V ′, if h ≡k h′ then h′ ≡Γ g and so h′ ∈ V . Now by the induction hypothesis,
we have

(V ′, h, ι1) |= σ ⇐⇒ (∃h′ ∈ V ′) [h ≡k h′ and (V ′, h′, ι1) |= σ′]

⇐⇒ (∃h′ ∈ V ) [h ≡k h′ and (V ′, h′, ι1) |= σ′]

⇐⇒ (∃h′ ∈ V ) [h ≡k h′ and (V, h′, ι) |= σ′]

⇐⇒ (V, h, ι) |= σ.
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Similarly, (V ′, h, ι2) |= σ ⇐⇒ (V, h, ι) |= σ. We have shown that (4.1) is true. Thus, in particular,
we have

(4.2) (V ′, f, ι1) |= τ · c0 − d01 and (V ′, f, ι2) |= τ · c0 − d01.

By the choice of ι1, we have (V ′, h, ι1) |= −x0 for each h 6∈ W . Hence,

(4.3) (V ′, f, ι1) |= −c0(−d01 · ci(x0 · −dij)).

On the other hand, (V ′, g(i/g(0)), ι2) |= x0 · −dij and (V ′, g, ι2) |= −d01 · ci(x0 · −dij). Whence, it
follows that

(4.4) (V ′, f, ι2) |= c0(−d01 · ci(x0 · −dij)).

Therefore, by (4.2), (4.3) and (4.4), τ · c0 − d01 is not an atom in FrmK.

Case 2: Suppose that g(i) 6= g(j). Let

W = {h ∈ V : h(i) 6= h(j)} and V ′ = V ∪ {g(i/g(j))}.

Again, the assumption on U guarantees that V ′ ∈ U . Define ι1, ι2 : X → P(V ′) as follows: For
each xk ∈ X ,

ι1(xk) = ι(xk) ∩W and ι2(xk) = ι1(xk) ∪ {g(i/g(j))}.

Similarly to the above case, cf. (4.1), one can easily show that

(4.5) (V ′, f, ι1) |= τ · c0 − d01 and (V ′, f, ι2) |= τ · c0 − d01.

Moreover, the choice of ι1 and ι2 implies

(4.6) (V ′, f, ι1) |= −c0(−d01 · ci(x0 · dij)) and (V ′, f, ι1) |= c0(−d01 · ci(x0 · dij)).

Therefore, again by (4.5) and (4.6), τ · −d01 is not an atom in FrmK. �

Now, we are ready to prove the main result of this paper.

Proof of Theorem 2.4. Let U be a class of α-dimensional units and let m ≥ 1 be a finite cardinal.

(1) If U supports diagonalization, then Proposition 4.1 implies that FrmK is not atomic.
(2) Suppose that U requires diagonalization. By Lemma 3.1, Lemma 3.2 and Proposition 4.1, we

have shown that FrmK contains exactly 2m-many atoms, each of which is zero-dimensional.
Let A ⊆ FrmK be the subalgebra generated by {a · −c0 − d01 : a ∈ FrmK}, and let
B ⊆ FrmK be the subalgebra generated by {a · c0 − d01 : a ∈ FrmK}. It is not hard to see
that a 7→ (a · −c0 − d01, a · c0 − d01) is an isomorphism from FrmK onto A×B. Clearly, A
and B satisfy the desired of item (c).

(3) Suppose that U is the class of all α-dimensional units. Let Y be the generating set of the
free algebra Frm−1K. Let τ ∈ Tα(Y ) be any term such that K 6|= τ = 0. We will show that
τ is not an atom in Frm−1K.

Let V ∈ U , f ∈ V and ι : Y → P(V ) be an evaluation such that (V, f, ι) |= τ . Let
Γ = index(τ) and let i, j ∈ α ∼ Γ be such that i 6= j. Pick brand new elements a, b that
are not in the base of V such that a = b ⇐⇒ f(i) 6= f(j). For every h ∈ V with h ≡Γ f ,
let h∗ be the sequence given as follows: h∗(i) = a, h∗(j) = b and h∗(k) = h(k), for every
k ∈ α ∼ {i, j}. Set V ∗ = {h∗ : h ∈ V and h ≡Γ f}. Define the evaluation ι∗ : Y → P(V )
as follows. For each y ∈ Y , let ι∗(y) = {h∗ ∈ V ∗ : h ∈ ι(y)}. We are going to show that for
every σ ∈ Tα(Y ) and every h ∈ V , if index(σ) ⊆ Γ and h ≡Γ f then

(4.7) (V, h, ι) |= σ ⇐⇒ (V ∗, h∗, ι∗) |= σ.
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This can be shown by an induction on the complexity of the term σ as follows. Obviously,
(4.7) is true for the case when σ = xk ∈ X and when σ = dkλ, k, λ ∈ Γ. Again, it is not
hard to see that the induction step holds for the Boolean connectives. Now, suppose that
σ = ckσ

′ and index(σ) ⊆ Γ. That means k ∈ Γ and index(σ′) ⊆ Γ, too. Let h ∈ V be such
that h ≡Γ f . By the induction hypothesis, we have

(V ∗, h∗, ι∗) |= σ ⇐⇒ (∃g∗ ∈ V ∗) [g∗ ≡k h∗ and (V ∗, g∗, ι∗) |= σ′]

⇐⇒ (∃g ∈ V ) [g ≡k h and (V, g, ι) |= σ′]

⇐⇒ (V, h, ι) |= σ.

We have shown that (4.7) is true. Thus, in particular, we have (V ∗, f∗, ι∗) |= τ . But, by
the choice of a and b, we have

(4.8) (V, f, ι) |= dij ⇐⇒ (V ∗, f∗, ι∗) |= −dij .

Therefore, both τ · dij and τ · −dij are non-zero in the free algebra Frm−1K, i.e., τ is not
an atom in Frm−1K, as desired. �

By the argument we used in (Fact 3), see page 2 herein, we know that each of the free algebras
Fr0CAα and Fr0Gsα contains exactly 20 = 1 atom which happens to be zero-dimensional. This
argument cannot be used to obtain similar results for the 0-generated free algebras of the classes Dα

and Gα because none of these is locally finite dimensional. Moreover, our method here to obtain the
results concerning these classes depends essentially on the assumption m ≥ 1, see Proposition 4.1.

Problem. Are there any non-zero-dimensional atoms in Fr0Dα or in Fr0Gα? Is any of Fr0Dα and
Fr0Gα atomic?

5. On Tarski’s conjecture

Now, we prove Theorem 1.4. This theorem shows a difference between FrmGsα and FrmCAα and
points to the direction that Tarski’s conjecture [1, Remark 2.5.12] might fail. We will use several
notions from the theory of cylindric algebras, e.g., generalized cylindrifications [1, Definition 1.7.1],
substitutions [1, Definition 1.5.1], reducts of CAα’s, [1, Definition 2.6.1] and neat reducts of CAα’s
[1, 2.6.28]. For instance, for each x, y ∈ FrmCAα and each i, j ∈ α with i 6= j, we let

x⊕ y
def

= (x · −y) + (−x · y), c(2)x
def

= c0c1x and sijx
def

= ci(x · dij).

Proof of Theorem 1.4. Remember that m ≥ 1. Let x be one of the free generators of FrmCAα. We

will define a CAα-term τ(x) with the desired property as follows: τ(x)
def

= x · χ(x), where

χ(x)
def

= −c(2)(c0x⊕ c0y)− c(2)(c1x⊕ c1y)− c(2)[c1(d01 · c0x) · c0x−d01]− c(2)[c0(d01 · c1x) · c1x−d01],

and y
def

= c0x · c1x− x. Clearly, τ(x) ∈ FrmCAα. Now we prove that τ(x) 6= 0 in FrmCAα
(ii).

Claim 1. τ(x) 6= 0 in FrmCAα.

(ii)We note that τ(x) = 0 in Gsα by Theorem 1.3.
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Proof. It suffices to construct an A ∈ CAα such that τA(a) 6= 0 for some a ∈ A. Let p ∈ αα be the
identity sequence defined by: p(i) = i for each i ∈ α. Let B = αα ∪ {p′} for some p′ 6∈ αα. Let
h : B → αα be defined by h(q) = q if q ∈ αα and h(p′) = p. Let i, j ∈ α be such that i 6= j and let
X ⊆ B. Define,

dii = B,
dij = {q ∈ αα : q(i) = q(j)},
ciX = {q ∈ B : (∃t ∈ X) h(q) ≡i h(t)}.

We construct A as follows: A = 〈P(B),∪,∩,∼, ∅, B, ci, dij〉i,j<α. It is easy to check that A satisfies
the postulates (CA 0)-(CA 7) of Definition 1.1. Therefore, A ∈ CAα.

Let a
def

= {p}. Then b
def

= c0a · c1a − a = {p′}. It can be checked that c0a = c0b, c1a = c1b,
c1(d01 · c0a) · c0a ≤ d01 and c0(d01 · c1a) · c1a ≤ d01, hence χA(a) = 1, and τA(a) = a 6= 0. �

Claim 2. Let i, j ∈ α ∼ 2 be such that i 6= j. Then τ(x) ≤ −dij in FrmCAα.

Proof. Consider the following system E(X,Y ) of equations:

X · y = 0, X 6= 0,
ciX = ciY for i ∈ 2,
ci(d01 · ckX) · ckX ≤ d01 for {i, k} = 2.

Let η
def

= η(x)
def

= y · χ(x), χ
def

= χ(x) and τ
def

= τ(x). First we show that E(τ, η) holds in FrmCAα.

(A) τ · η = 0 since τ ≤ x and η ≤ −x.
(B) τ 6= 0 by Claim 1.
(C) Let i ∈ 2. By c(2)χ = χ, we have ciτ = ci(x · c(2)χ) = cix · χ and similarly ciη = ciy · χ,

hence ciτ ⊕ ciη = (cix⊕ ciy) · χ = 0 since χ ≤ −c(2)(cix⊕ ciy). This implies ciτ = ciη.
(D) Let i, k ∈ α be such that {i, k} = 2. By c(2)χ = χ, we again have

ci(d01 · ckτ) · ckτ = [ci(d01 · ckx) · ckx] · χ ≤ d01

by χ ≤ −c(2)(ci(d01 · ckx) · ckx− d01).

Let i, j ∈ α ∼ 2 be such that i 6= j. Let sijτ
def

= ci(τ · dij) and sijη
def

= ci(η · dij). Assume that

τ · dij 6= 0. Then sijτ 6= 0. Now, by {i, j} ∩ 2 = ∅ and by [1, Section 1.5], we have that E(sijτ, s
i
jη)

also holds in FrmCAα. Let R
def

= Rd2∪{i}FrmCAα be the reduct of FrmCAα resulting by ignoring
the operations that contain indices in α ∼ (2 ∪ {i}). Consider the neat reduct C = Nr2R. Then,

C ∈ Gs2 by [2, Theorem 3.2.65]. Let τ ′
def

= sijτ and η′
def

= sijη. Then τ ′, η′ ∈ C and E(τ ′, η′) holds

in C. This is a contradiction since C ∈ Gs2 and it is not diificult to verify that E(X,Y ) fails in
C ∈ Gs2 for every X,Y ∈ C. That means our assumption τ ·dij 6= 0 cannot hold, i.e., τ ≤ −dij . �

Therefore, there is x ∈ FrmCAα such that x 6= 0 and x ≤ −dij for every i, j ∈ α ∼ 2 with i 6= j.
We note that this proof works to prove Theorem 1.4 if α is any arbitrary ordinal, but the theorem
is interesting only for the case α ≥ ω. �
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