
Berezinskii-Kosterlitz-Thouless transition and criticality of an elliptic deformation of
the sine-Gordon model
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We introduce and study the properties of a periodic model interpolating between the sine– and
the sinh–Gordon theories in 1 + 1 dimensions. This model shows the peculiarities, due to the
preservation of the functional form of their potential across RG flows, of the two limiting cases:
the sine-Gordon, not having conventional order/magnetization at finite temperature, but exhibiting
Berezinskii-Kosterlitz-Thouless (BKT) transition; and the sinh-Gordon, not having a phase tran-
sition, but being integrable. The considered interpolation, which we term as sn-Gordon model, is
performed with potentials written in terms of Jacobi functions. The critical properties of the sn-
Gordon theory are discussed by a renormalization-group approach. The critical points, except the
sinh-Gordon one, are found to be of BKT type. Explicit expressions for the critical coupling as a
function of the elliptic modulus are given.

PACS numbers: 11.10.Hi, 05.70.Fh, 64.60.-i, 05.10.Cc

I. INTRODUCTION

Symmetries and dimensionality play a crucial role in
the determination of critical properties and phase dia-
grams. As an example, in quantum field theory one of
the most studied model is the Ising one with interac-
tion terms ϕ4 which is known to have two phases in
d = 1+1 dimensions in one of which the Z2 symmetry has
been broken spontaneously [1]. Another paradigmatic
and well studied instance of phase transition in d = 2
dimensions is provided by the sine-Gordon (sG) scalar
theory where the interaction Lagrangian contains a pe-
riodic self-interaction cos (βϕ). The sG model has been
widely studied for the properties of its soliton solutions
[2, 3] and it is known to exhibit a Berezinskii-Kosterlitz-
Thouless (BKT) phase transition [4, 5]. Replacing the
real valued frequency β of the sG model by an imaginary
one, β → iβ, one arrives at the sinh-Gordon (shG) model
with a self-interaction term cos (iβϕ) = cosh (βϕ) which
is in turn a well studied scalar field theory [1].

For the shG model the periodicity is lost and no BKT
type transition is expected. One could argue that, due
to its non-periodic nature, the interaction potential can
be expanded in Taylor series which generates ϕ2N terms,
so that one could very naively expect an Ising type phase
structure. However, this is not the case. The shG model
is known to possess a single phase, and the explanation
of this fact is related to the preservation of the functional
form of its potential [6], which is connected with the spe-
cial properties of the exponentials entering the hyperbolic
functions.

Another way to relate the Ising, sG and shG models
is based on their conformal properties. It is known that
systems at criticality, where they are scale-invariant, may
give rise to invariance under the larger group of conformal

transformations [7] locally acting as scale transforma-
tions [8]. The conformal symmetry in d = 2 dimensions
encloses infinitely many local transformations [8] and its
occurrence and consequences for 2-dimensional field the-
ories have been deeply investigated and exploited to ob-
tain a variety of exact results [1, 8]. As a consequence of
conformal invariance the central charge c is well defined
at any fixed point in the phase structure of the model
and its difference ∆c between the one at the Gaussian
and the non-trivial fixed point characterizes the theory.
In case of the Ising model, ∆c ≡ cUV − cIR = 1/2 where
the high-energy (UV) value cUV is taken at the Gaus-
sian while the low-energy (IR) value cIR is chosen at the
Wilson-Fisher fixed points. It is known that ∆c = 1/2,
1, 1 for the Ising, sG and shG models respectively. It
is clear that the peculiarities of the sG and shG models
based on the preservation of the functional form of its
potential along renormalization group (RG) flows are at
the basis of the fact that in both cases ∆c = 1, with the
result for the shG model differing from that of the Ising
although it is not periodic.

The goal of the present work is to introduce and dis-
cuss a class of models interpolating between the sG and
the shG models. The critical properties of the proposed
models can be studied by functional RG, which allows
as well to clarify from the point of view of the interpola-
tion the characteristics of the shG model discussed above.
The used RG technique is well suited to undercover the
critical properties, at least at qualitative level, of field
theoretical models, since it maintains the full functional
form of the effective potential under study. This property
has proven necessary in order to achieve accurate results
for O(N) field theories in any real dimension and with
generic non analytic kinetic terms in the effective action
[9–11].
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The interpolation considered in this paper, that we
term sn-Gordon (snG) model, is based on Jacobi func-
tions [12]. We remind that the definition of the Jacobi
functions follows the same line as the sin and cos func-
tions, but considering the unit ellipse, rather than the
unit circle as the geometrical object to be described.
Denoting x, y the two coordinates in the R2 space, all
the points of an ellipse with eccentricity m can be
parametrised by

x = r cos(θ), y = r sin(θ), r =
1√

1−m2 sin(θ)2
(1)

where θ is the angle in the x − y plane. Starting from
this definition one can define the Jacopi amplitude, i.e.
the angular arc length of the ellipse

u(θ,m) =

∫ θ

0

dω

1−m2 sin2(ω)
. (2)

Rephrasing the relations in Eq. (1) in terms of the
two variables u,m and proceeding in analogy with the
trigonometric case one gets to the following definitions

x =
cn(u,m)

dn(u,m)
, y =

sn(u,m)

dn(u,m)
, r =

1

dn(u,m)
(3)

for the fundamental Jacobi functions.
In order to introduce the considered interpolation we

preliminarly observe that the Jacobi functions sn(βϕ,m),
cn(βϕ,m) reduces respectively to sin(βϕ), cos(βϕ) for
vanishing elliptic modulus (m = 0) and to tanh(βϕ),
1/ cosh(βϕ) for m = 1. Indeed, in the m → 1 limit, the
eccentricity is unity and the ellipse, described by Eqs. (1),
becomes a parabola. As a consequence the functions in
Eq. (3) cannot be periodic, since they do not represent
a closed curve. Therefore, a simple interpolating model
with a potential expressed in terms of Jacobi functions
can be constructed as

VsnG(ϕ) = u cn(βϕ,m) = u cd(βϕ,m) nd(βϕ,m). (4)

where nd(βϕ,m) = 1/dn(βϕ,m) and cd(u,m) =
cn(u,m)/dn(u,m). The snG potential (4) for m = 0
reads u cos(βϕ), while for m = 1 it is u cosh(βϕ) re-
ducing to the shG potential VshG. We observe that the
interpolating potential is periodic (except for m = 1) and
we therefore do expect a BKT transition for 0 ≤ m < 1.

An important comment is that, while the sG and the
shG models are integrable both at classical and quantum
level, models interpolating between them are in general
not integrable (we refer to [13, 14] for a discussion of 1+1
classical and quantum integrable models). In the case
considered in the present paper, (4) provides an elliptic
interpolation between the sG and the shG model, de-
forming/generalizing the sG potential with m being the
deformation parameter. We observe that suitable elliptic
deformations can be integrable, as one can see in one-
dimensional non-relativistic systems of classical particles
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FIG. 1: The snG potential VsnG(ϕ) as a function of ϕ for u =
1 with m = (0, 0.85, 0.99, 1) from bottom to top respectively
while we set β ≡ 1. Note that the m = 0 case (lightest grey
curve) is equivalent to the sine-Gordon potential VsG(ϕ) =
u cos(ϕ), while the darkest curve for m = 1 becomes non-
periodic and represents the sinh-Gordon potential VshG(ϕ) =
u cosh(ϕ)

interacting via a potential given by a Weierstrass func-
tion which reduces to potentials of the form 1/ sin2(x)
and 1/ sinh2(x), where x is the distance between the two
particles [13]. Another example is provided by integrable
elliptic generalizations of the Calogero model [15]. In this
paper we will not deal with the, actually very interesting,
problem of constructing integrable elliptic deformations
of the sG model and to study their soliton-like solutions,
but we are primarily interested in introducing a gener-
alization of the sG model interpolating between the sG
itself and the shG to study the BKT transition across
the interpolation between these two paradigmatic mod-
els. From this point of view the parametrization (4) rep-
resents one of the simplest one can think of and suitable
to study critical BKT transitions in elliptically deformed
models.

The approach followed here, with the interpolation in-
serted via the potential (4) in the Lagrangian, is different
from the models in which the interpolation is done di-
rectly in the S-matrix, as the staircase model in which an
analytic continuation of the shG S-matrix is performed to
describe interpolating flows between minimal models in
2D [16]. These interpolating models, studied in relation
to the so-called “roaming”, are integrable by construc-
tion. In the staircase model a real parameter θ0 encodes
the distance of the continued S-matrix from the shG self-
dual point: in the limit of large θ0, the ground-state en-
ergy found by thermodynamic Bethe ansatz exhibits a
sequence of scaling behaviours approximating those of
the minimal conformal field theories. Several aspects
of staircase and related models were studied [17–23], in-
cluding a study of the form factors of the shG field [24]
when the real parameter θ0 is sent to infinity [19] (see
more references in [23]). In these models one typically
does not work with the Lagrangian (and to reconstruct
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the Lagrangian corresponding to their S-matrices is not
straightforward) – at variance the model with the snG
potential (4) defines a bare Lagrangian, but anyway one
can ask the fate of RG flow in the interpolation between
sG and shG models.

Finally let us mention an example of interpolation done
at the Lagrangian level by considering the coupling con-
stant β = β1 + iβ2 as a complex quantity, where β1 and
β2 are real value frequencies. We note that the resulting
class of theories can be treated for each non-zero β2 as
a scalar polynomial field theory and denoted as as the
Shine-Gordon model. Since we are interested mainly in
the study of BKT universality class we stick to model
(4), while model with β = β1 + iβ2 could be studied in
relation to the roaming phenomena. Finally, we observe
that a (2+1) integrable interpolation between the sG and
the shG models has been already proposed in [25], while
in brane-world gravity context a modification of the shG
model has been considered [26].

A disclaimer here, before going in medias res, is cer-
tainly due. As mentioned in [3], the convention of de-
noting the generalization of the Klein-Gordon model to
sinusoidal potential as “sine-Gordon” generated a certain
amount of controversy. If from this point of view the
proliferation of similar abbreviations should be avoided,
from the other the use of sine-Gordon and sinh-Gordon
models has become so widespread both in physics and
mathematics literature that in this paper devoted to La-
grangian interpolation between these two limits we de-
cided for the purpose of compactness to refer to the model
(4) as sn-Gordon.

The paper is organized as follows. Section II is devoted
to introduce the functional RG formalism for the study of
the snG model. We also discuss there the linearized RG
equations. In Section III we discuss in detail the limiting
cases of the snG corresponding to shG and sG. We use
functional RG to discuss also how the standard results
are retrieved in these two cases, including the point that
the shG model does not have a phase transition and the
subtleties of the m → 1 limit. The discussion of Section
III provides the basis for our main results exposed in Sec-
tion IV where we give the functional RG treatment of the
snG and we discuss the critical properties and the critical
values of the coupling β as a function of the deformation
parameter, the elliptic modulus m. Section V is devoted
to our conclusions.

II. LINEARIZED RG EQUATIONS FOR THE
SN-GORDON MODEL

In this section we briefly summarize the functional RG
approach for scalar models, and its application to the
shG and the snG models.

The functional RG equation has the following form

[27–31]

k∂kΓk[ϕ] =
1

2
Tr

[
k∂kRk

Γ
(2)
k [ϕ] +Rk

]
(5)

for the effective action Γk[ϕ]. Γ
(2)
k [ϕ] denotes the second

functional derivative of the effective action and the trace
Tr stands for the integration over all momenta. The RG
equation (5) is a functional equation, that should be han-
dled by truncations. Truncated RG flows depend on the
choice of the regulator function Rk, i.e. on the renormal-
ization scheme. Regulator functions have already been
discussed in the literature by introducing its dimension-
less form

Rk(p) = p2r(y), y = p2/k2,

where r(y) is dimensionless. Various types of regulator
functions can be chosen, but a general choice is the so
called CSS regulator [32, 33] which recovers all major
types of regulators in appropriate limits: the Litim [34],
the power-law [35] and the exponential [27] ones. The
mass cutoff is the power-law regulator r(y) = y−b with
b = 1.

We observe that we do not include the wavefunction
renormalization in the definition of the regulator when
using truncations beyond the leading order of the deriva-
tive expansion (see below). In this case, in order to ensure
scale-invariance one has to use the power-law regulator.
While this is certainly a restriction we take this choice in
order to be able to rely on previous results, see e.g., [36].

One of the commonly used systematic approximation
is the truncated derivative expansion where the action is
expanded in powers of the derivative of the field,

Γk[ϕ] =

∫
x

[
Vk(ϕ) + Zk(ϕ)

1

2
(∂µϕ)2 + ...

]
.

In the so called Local Potential Approximation (LPA),
higher derivative terms are neglected and the wave-
function renormalization is set equal to constant, i.e.
Zk ≡ 1. In this case (5) reduces to the partial differ-
ential equation for the dimensionless blocked potential
(Ṽk = k−2Vk) which has the following form for d = 2
dimensions

(2 + k∂k)Ṽk(ϕ) = − 1

4π

∫ ∞
0

dy
y2 dr

dy

(1 + r)y + Ṽ ′′k (ϕ)
, (6)

where Ṽ ′′k (ϕ) is the second derivative of the potential with
respect to the field.

Before going into the details of the solution of the ex-
act functional RG equation, in this section we take the
linearized form (around the Gaussian fixed point) of the
equation (6) obtained in the LPA level which reads as

(2 + k∂k)Ṽk(ϕ) = − 1

4π
Ṽ ′′k (ϕ) +O(Ṽ ′′2k ), (7)
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independently of the choice of the regulator functions
r(y) and apply it to the Ising, sG, shG and to the in-
terpolating snG models.

For periodic models which undergo a BKT type phase
transition the linearised RG equation at LPA can be used
to determine the exact value of the critical frequency β2

c

which separates the phases of the model. This is a unique
property of sG type models based on the fact that (i) the
”critical” fixed point where β2

c is calculated situates at
vanishing Fourier amplitude, (ii) the RG flow equation
obtained for the wavefunction renormalization beyond
the linearised and LPA levels (see e.g., Eq. (31)) has no
linear dependence on the Fourier amplitude, thus, for
small amplitudes it has no scale-dependence at all, hence
the exact critical frequency can be obtained by the LPA
linearised RG equation (7).

A. The Ising model

Although it is not the goal of the present work to con-
sider the functional RG study of the Ising model, since
it is useful in the following let us first apply (7) for the
Ising model by substituting

ṼIsing(ϕ) =

NCUT∑
n=1

g̃2n(k)

(2n)!
ϕ2n, (8)

into Eq. (7). One can then read the RG flow equations for
the scale dependent dimensionless couplings g̃2n(k). For
any finite NCUT, the linearized functional RG equation
does not preserve the functional form of the bare theory
(8), i.e., the l.h.s of (7) contains polynomial terms ϕ2n

of order n = NCUT. The r.h.s of (7) has terms of order
n < NCUT. Let us note that the same holds for the case
where the linearization of the functional RG equation
(6) is performed in terms of the field-dependent part of
V ′′k (ϕ) which results in a regulator-dependent linearized
functional RG equation.

B. The sG model

The situation is different for the sG model where the
bare potential is defined by (for the sake of simplicity
keeping only the fundamental Fourier mode)

ṼsG(ϕ) = ũk cos(βϕ), (9)

where the dimensionless Fourier amplitude carries the
scale-dependence since in LPA the frequency β does not
depend on the running momentum cutoff k. It is clear
that the linearized functional RG equation (7) preserve
the functional form of the bare potential (no higher har-
monics are generated):

(2 + k∂k)ũk cos(βϕ) =
1

4π
β2ũk cos(βϕ). (10)

The RG flow equation for the Fourier amplitude reads

k∂kũk = ũk

(
−2 +

1

4π
β2

)
, (11)

with a solution

ũk = ũΛ

(
k

Λ

)−2+ β2

4π

(12)

which determines the critical frequency β2
c = 8π, where

the model undergoes a BKT-type phase transition [37].
It is important to note that even if the bare theory of the
sG model contains higher harmonics, the linearized func-
tional RG equation (7) reduces to decoupled flow equa-
tions for the Fourier amplitudes of various modes.

C. The shG model

By using the replacement β → iβ in Eq. (9), one finds
the bare potential for the shG model

ṼshG(ϕ) = ũk cos(iβϕ) = ũk cosh(βϕ) (13)

which is inserted into (7) preserving again the functional
form of the bare potential:

(2 + k∂k)ũk cosh(βϕ) = − 1

4π
β2ũk cosh(βϕ). (14)

The RG flow equation for the Fourier amplitude reads

k∂kũk = ũk

(
−2− 1

4π
β2

)
, (15)

with a solution

ũk = ũΛ

(
k

Λ

)−2− β2

4π

, (16)

showing that in case of β2 = 8π the exponent does not
change sign, hence, the shG model has no BKT-type
phase transition. In other words, the linearized func-
tional RG of the shG model can be derived from the sG
model by using the replacement β → iβ which results in
a sign change of β2 and no BKT-type phase transition.

D. The snG model

In the snG model, the dimensionless bare potential
reads

ṼsnG(ϕ) = Ãk cd(βϕ,m) nd(βϕ,m), (17)

where the amplitude Ãk is scale-dependent. By us-
ing the properties of the Jacobi functions cd(u,m) =
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cn(u,m)/dn(u,m) and nd(u,m) = 1/dn(u,m) it can also
be written as

ṼsnG(ϕ) = Ãk cn(βϕ,m) [nd(βϕ,m)]2. (18)

Inserting Eq. (17) or Eq. (18) into the linearized func-
tional RG equation (7) one observes that the functional
form is not preserved since the second derivatives of the
potential has the following form

Ṽ ′′snG(ϕ) = β2Ãk
cn(βϕ,m)

dn(βϕ,m)4(
6(m− 1) + (5− 4m) dn(βϕ,m)2

)
.

However, it is important to note that the Jacobi function
(17) is a periodic function, so, it can be expanded in
Fourier series. One has

cn(u,m) =
2π

K
√
m

∞∑
n=0

qn+1/2

1 + q2n+1
cos
[
(2n+ 1)

πu

2K

]
,

nd(u,m) =
π

2K
√

1−m

+
2π

K
√

1−m

∞∑
n=1

(−1)nqn

1 + q2n
cos
[
2n

πu

2K

]
,

where q = exp[−πK(1 − m)/K(m)] and K(m) is the
quarter period which can be expressed by the hypergeo-
metric function

K =

∫ π/2

0

dθ√
1−m sin2(θ)

=
π

2
2F1

(
1

2
,

1

2
, 1,m

)
.

It follows then

ṼsnG(ϕ) =

∞∑
n=1

ũn(k) cos(n bϕ), b =
β

2F1

(
1
2 ,

1
2 , 1,m

) .(19)

Inserting (19) into the linearized functional RG equation
(7), one can derive a set of uncoupled differential equa-
tions for the Fourier modes

k∂kũn(k) = ũn(k)

(
−2 +

1

4π
n2b2

)
. (20)

Similarly to the sG model the critical frequency corre-
sponds to the fundamental mode, i.e., for n = 1 where
one finds b2c = 8π and the higher harmonics do not mod-
ify it [38, 39]. Thus, one can read the m-dependence of
the original frequency

β2
c (m) = 8π

[
2F1

(
1

2
,

1

2
, 1,m

)]2

(21)

which clearly signals the existence of a BKT-type phase
transition if m 6= 1. In the limit m → 0 one gets back
β2
c = 8π, while for m → 1 the original frequency blows

up and the model has a single phase. Thus, the m = 1
case the snG model undergoes no BKT phase transition.

However, at this stage we would like to pay the atten-
tion of the reader to the following important observation.
In the limit m → 1 the snG models reduces to the shG
theory, thus, it is important to study whether the in-
formation obtained from the snG model for m → 1 is
in agreement with the results on the shG model. The
grey area of Fig. 2 stands for the so called massive phase,
where the fundamental Fourier amplitude is increasing
in the IR limit, so it is expected that the shG model has
to have a single phase with the same properties. We will
show in the next section that indeed, the shG model does
not undergo any phase transitions. The question which
needs to be clarified is whether this single phase of the
shG model share all features of the massive phase of the
snG model and whether to what extent the limit m→ 1
is singular. We shall come back on the limit m → 1 in
the next section.

0.0
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0.4

0.6

0.8

1.0

m

0 20 40 60 80 100 120 140

2

FIG. 2: Phase structure of the snG model in the m,β2 plane
based on Eq. (21) indicating a BKT-type phase transition for
m 6= 1 where the grey area stands for the massive phase.

In summary, one can conclude that the sG and shG
models have a special structure such that their functional
forms are preserved by the linearized functional RG equa-
tion. A BKT-type phase transition is observed for the
sG and the snG models, for the latter with a condition
m 6= 1.

III. FUNCTIONAL RG EQUATIONS

Here we consider the study of the models introduced
in the previous section. The functional RG equations
are taken in LPA for the Ising model with NCUT = 2
and beyond LPA for the other models (keeping only the
fundamental mode).

A. Ising model

Here we repeat briefly the functional RG study of the
Ising model where apart from the trivial mass term, a
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ϕ4 self-interaction is taken into account (NCUT = 2).
The functional RG equations are taken in the LPA level,
reading in d = 2 dimensions as

∂tg2 = −2g2 −
1

4π

g4

(1 + g2)
(22)

∂tg4 = −2g4 +
3

4π

g2
4

(1 + g2)2
(23)

for the mass cutoff and

∂tg2 = −2g2 −
1

4π

g4

(1 + g2)2
(24)

∂tg4 = −2g4 +
6

4π

g2
4

(1 + g2)3
(25)

for the Litim cutoff. The above equations have a trivial
Gaussian and a non-trivial (cutoff-dependent) Wilson-
Fisher (WF) fixed point, where the latter indicates the
existence of two phases. The c-function along the trajec-
tory starting at the Gaussian and terminating at the WF
fixed points is known to decrease by ∆c = 1/2. However,
if one consider the massive deformation of the Gaussian
fixed point ∆c = 1 [40, 41].

B. sG model

If the sG model (9) is studied beyond LPA, the RG
equation has to be solved over the functional subspace
spanned by the following ansatz

Γk =

∫
d2x

[
1

2
zk(∂µϕ)2 + Vk(ϕ)

]
, (26)

where the local potential contains a single Fourier mode

Vk(ϕ) = −uk cos(ϕ), (27)

and the following notation is introduced

zk ≡ 1/β2 (28)

via the rescaling of the field ϕ→ ϕ/β in (9), with zk the
field-independent wave-function renormalization. Then
Eq. (5) leads to the evolution equations for the coupling
constants [36],

k∂kuk =
1

2π

∫
p

(k∂kRk)

uk

(
Pk√

P 2
k − u2

k

− 1

)
, (29)

k∂kzk =
1

2π

∫
p

(k∂kRk)

(
u2
kp

2(∂p2Pk)2(4P 2
k + u2

k)

4(P 2
k − u2

k)7/2

−
u2
kPk(∂p2Pk + p2∂2

p2Pk)

2(P 2
k − u2

k)5/2

)
(30)

with Pk = zkp
2 + Rk. In general, the momentum in-

tegrals have to be performed numerically, however, in
some cases analytical results are available. Indeed, by

using the mass cutoff, i.e. power-law type regulator with
b = 1, the momentum integrals can be performed and
the RG equations reads as,

(2 + k∂k)ũk =
1

2πzkũk

[
1−

√
1− ũ2

k

]
k∂kzk = − 1

24π

ũ2
k

[1− ũ2
k]

3
2

(31)

with the dimensionless coupling ũ = k−2u. The phase
structure of the sG model based on Eqs. (31) is plotted
on Fig. 3 which indicates two phases with a critical value
for the frequency β2

c = 8π.

0.0
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0.4

0.6

0.8

1.0

1.2

u

0 5 10 15 20 25 30 35 40

2

SG model, mass-cutoff

-

> > > > > >
>

<

<

< < < <

FIG. 3: Phase structure of the sG model based on Eqs. (31)
indicating a BKT-type phase transition with β2

c = 8π.

Let us note that the power-law regulator with b = 1,
i.e., the mass cutoff has poor convergence properties (RG
trajectories does not reach the IR fixed point in the weak
coupling phase), but its advantage that the momentum
integral can be calculated analytically. A better result
can be obtained by using for example b = 2, as shown in
[42].

C. shG model

It is important to note that (13) has a Z2 symmetry,
and that the shG model is not periodic. Therefore, in
order to study the RG flow of the shG model and to map
out its phase structure one can use the Taylor-expanded
form of Eq. (13)

Ṽk(ϕ) = ũk

[
1 +

1

2
β2ϕ2 +

1

4!
β4ϕ4 + ...

]
=

∞∑
n=0

1

(2n)!
g2nϕ

2n, g2n = ũkβ
2n. (32)

Thus, the shG model can be considered as an Ising-type
model but with restricted initial values for the couplings.
The key point is that with shG-type initial values the RG
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flow always starts from the symmetric phase, see Fig. 4.
Therefore, the shG model has a single phase, so, it does
not go through a BKT or other type of phase transitions.
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FIG. 4: Representation of the shG model in the g2, g4 plane
based on its Taylor expansion (32). The shaded area stands
for initial conditions for the shG model which indicates a sin-
gle phase.

The shG model has a special structure that no 2 →
2n particle production is allowed, i.e. the production
amplitudes of any 2 particles decay into 2n ones are zero
at tree-level (and also at 1-loop level) [1, 6]. This special
structure of the bare Lagrangian of the shG model results
in a single phase.

The phase structure of the shG model can also be
mapped out by using analytic continuation. The sim-
plest way of doing that if one try the replacement of the
frequency by an imaginary one directly. For example, the
RG flow equations for the shG model can be constructed
from (31)

(2 + k∂k)ũk = − β2

2πũk

[
1−

√
1− ũ2

k

]
(33)

k∂kβ
2
k = − 1

24π

β4
kũ

2
k

[1− ũ2
k]

3
2

. (34)

The RG flow of the shG model based on (33) and (34)
is obtained numerically and shown in Fig. 5 which also
indicates a single phase for the shG model. We observe
that due to the poor convergence properties of the reg-
ulator (b = 1 power-law), similarly to the sG case, the
RG trajectories do not converge properly, specially in the
limit of vanishing β2.

Let us now turn to the study of the c-function for the
shG model. In our previous paper [42] we worked out
a proper treatment of the c-function for the sG scalar
theory in the framework of functional RG. In the limit
of vanishing frequency, the shG and sG models become
identical to each other, thus the method of [42] can
be applied here for the shG model using the following
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0.8

1.0

1.2

u
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2

ShG model, mass-cutoff

-

> > > > > > > > > > > > > >

FIG. 5: Phase structure of the shG model based on (33) and
(34) indicates a single phase.

parametrization

Ṽk(ϕ) =
m̃2
k

β2
(cos(iβϕ)− 1) , (35)

where the frequency β is assumed to be scale-dependent.
In the limit β → 0, the RG equations for the special form
of the shG model (35) reduce to

k∂km̃
2
k ≈

m̃2
k[−β2 − 8π(1 + m̃2

k)]

4π(1 + m̃2
k)

≈ −2m̃2
k (36)

k∂kβ
2 = 0. (37)

Following the method discussed in [42], the c-function
of the shG model can be determined in the framework
of functional RG based on the flow equations (36) and
(37) which is identical to that of the sG model in the
limit of β → 0. Thus, the flows for the c-function of
the shG and the sG models are identical in the limit of
vanishing frequency, consequently they give us the same
result which recovers the known value ∆c = 1 (∆c =
cUV − cIR) [42].

Finally, we briefly discuss on the issue of analytic con-
tinuation of the sG theory for imaginary frequencies. If
one replaces the real value frequency by an imaginary
one then the action of the sG model becomes that of the
shG theory. This means that one can apply the follow-
ing replacement β2 → −β2 in the flow equations of the
sG theory in order to obtain the flow equations for the
shG model. Indeed, the flow diagram of the shG model
is plotted in Fig. 5. This result can be visualised in a
different way, i.e., by extending the sG flow diagram for
negative value of the frequency β2, see Fig. 6, which can
be compared to figure 1 of Ref. [43]. There is a dis-
agreement between the two figures, namely in [43] the
RG trajectories of the negative β2 regime run into the
IR (convexity) fixed point of the sG model which signals
the presence of spontaneous symmetry breaking (SSB).
At variance, we argued in this paper that the shG model
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has no SSB, since it has a single phase which is the sym-
metric one. Moreover, the flow diagram plotted in figure
1 of [43] suggests that the negative and positive β2 re-
gions are basically reflected to each other, implying in
turn the reflection of the critical value of the frequency
(β2
c = 8π) too. However, it was also shown here that no

such critical frequency exists for the shG model i.e., the
negative β2 case of the sG theory. Therefore, we conclude
that figure 1 of [43] may be misleading and we refer to
Fig. 6 below.
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FIG. 6: Phase structure of the sG model for regions of pos-
itive and negative β2, i.e., the RG flow diagram of the sG
(Fig. 3) and shG (Fig. 5) models are merged into a single one.
Black circles denote the IR attractive fixed points.

IV. FUNCTIONAL RG STUDY OF THE SNG
MODEL

We are now in position to perform the functional RG
study of the snG model. According to the previous dis-
cussion, it is based on the Fourier decomposition (19)
where the frequency b2 of the fundamental mode plays
a crucial role in the determination of the phase struc-
ture. Thus, beyond LPA, the snG model can be treated
the way as the sG model, so the RG equation has to
be solved over the functional subspace spanned by the
following ansatz

Γk =

∫
d2x

[
1

2
zk(∂µϕx)2 + Vk(ϕx)

]
, (38)

where the local potential contains infinitely many Fourier
modes

Vk(ϕ) = −
∞∑
n=1

un(k) cos(nϕ), (39)

and the following notations are introduced

z ≡ 1

b2
=

[
2F1

(
1
2 ,

1
2 , 1,m

)]2
β2

(40)

via the rescaling of the field ϕ → ϕ/b in (19) and zk
again standing for the field-independent wave-function
renormalization. It is important to note that m remains
a non-scaling parameter even beyond LPA.

In order to follow the strategy done for the sG model
one has to take the single-Fourier mode approximation of
the snG model (39). The higher harmonics do not change
the qualitative picture drawn by the single-Fourier mode
approximation (for m 6= 1) [38]. Indeed, by using the
mass cutoff, i.e., the power-law type regulator with b = 1,
the RG equations for the couplings of the snG reads as,

(2 + k∂k)ũk =
1

2πzkũk

[
1−

√
1− ũ2

k

]
k∂kzk = − 1

24π

ũ2
k

[1− ũ2
k]

3
2

(41)

with the dimensionless coupling ũ = k−2u which is iden-
tical to the flow equations (31) of the sG model but with
the different definition for z. In order to compare the flow
diagrams of the snG and sG models it is convenient to
use the squared frequency β2 instead of the wave func-
tion renormalization z. Then, the flow diagram of the
snG model obtained in the single-Fourier approximation
beyond LPA for the particular value m = 0.45 is shown
in Fig. 7. Fig. 8 is summarizing our results on the critical
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FIG. 7: Phase structure of the snG model for m = 0.45,
indicating a BKT-type phase transition with β2

c ≈ 33.3.

properties of snG obtained by RG.
We finally comment on the limit m → 1 of the snG

model. We showed that the snG model, being periodic,
has a BKT transition in all points but for m = 1 where
it reduces to the shG model. Therefore, let us discuss
whether the limit m → 1 is analytic or not. Two facts
that would support the analytic behaviour are following:
(i) the shG as well as the snG model with m = 1 show a
single phase; (ii) this phase is the high-temperture one,
where the Fourier amplitude is relevant. However, in
favour of the fact that the limit m → 1 is not analytic
one can argue that (i) the frequency is relevant in the
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FIG. 8: Phase structure of the snG model for m =
0, 0.35, 0.7. The dashed line indicates the critical frequency
β2
c (m) of the BKT phase transition, similarly to Fig. 2.

shG model, but irrelevant in the m → 1 limit; and (ii)
the single phase of the shG model is the symmetric one,
but the m → 1 limit suggests SSB. In order to clearly
make a conclusion on the subtleties of the m → 1 limit,
one has to show a physical quantity which has different
value at the two cases. To this purpose we propose to
the susceptibility of the topological charge

χ = 〈Q2〉 − 〈Q〉2 (42)

where Q is the winding number, see [38]. This serves as
a disorder parameter, since the topological susceptibil-
ity is vanishing whenever the Fourier amplitude is zero.
This quantity can be shown to be non-zero in the limit
m→ 1 of the snG model, but vanishing for the shG the-
ory. Therefore, we conclude that the limit m→ 1 is non
analytic.

V. SUMMARY

In the present work the renormalization group (RG)
study of a class of models interpolating between the sine-
Gordon (sG) and the sinh-Gordon (shG) theories has
been addressed. The study of the functional RG equa-
tions clearly show that only the sG and shG model has
a special structure such that their functional forms are

preserved by the linearized functional RG equations. It
was discussed that functional RG provides a tool to show
that while the sG theory undergoes a phase transition at
β2 = 8π, this is absent in the shG model. We argued that
the shG model has a single phase since it can be consid-
ered as an Ising-type model but with restricted initial
values for the coupling constants.

We also studied the proposed model, to which we re-
ferred as the sn-Gordon (snG) model, where the potential
is expressed in terms of a product of Jacobi functions.
We concluded that the snG model exhibits a BKT phase
transition for all m 6= 1, and we determined the phase
diagram and the critical value of β as a function of the
Jacobi parameter m. These results clearly shows the pe-
culiarities of the two limiting cases, the shG and the sG
models.

Finally we observe that other interpolations between
the sG and the shG models can be considered. In
this paper we focused on the critical properties of the
snG model, but it would be interesting to study also
the solitonic solutions of the snG model and of other
possible elliptic interpolations. In view of the connection
between the Ruijsenaars-Schneider models [44] and the
sG model [44, 45], a deserving investigation would be to
study the possiblity of integrable interpolations between
the sG and the shG models.
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