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LIGHT DUAL MULTINETS OF ORDER SIX IN THE PROJECTIVE

PLANE

NORBERT BOGYA AND GÁBOR P. NAGY

Abstract. The aim of this paper is twofold: First we classify all abstract light dual
multinets of order 6 which have a unique line of length at least two. Then we classify
the weak projective embeddings of these objects in projective planes over fields of
characteristic zero. For the latter we present a computational algebraic method for
the study of weak projective embeddings of finite point-line incidence structures.

1. Introduction

In recent years, nets realizing a finite group have been investigated in connection with
complex line arrangements and resonance theory; see [11, 13, 14, 15, 17, 22, 23]. The
concept of a multinet was introduced by Falk and Yuzvinsky [11] as multi-arrangements
of lines in the complex projective plane, with a partition into three or more equinu-
merous classes which have equal multiplicities at each inter-class intersection point,
and satisfy a connectivity condition. Korchmáros and Nagy [12] gave a more formal
definition for a dual multinet of the projective plane, labeled by a quasigroup Q. Let
K be a field, Q a quasigroup and for i = 1, 2, 3, let αi : Q → PG(2,K) be maps such
that the points α1(x), α2(y) and α3(x · y) are collinear for all x, y ∈ Q. Define the
multisets Λi = αi(Q), i = 1, 2, 3. Then (Λ1,Λ2,Λ3) is a dual multinet, labeled by Q.
If the maps αi are injective and their images Λi are disjoint, then the dual multinet is
called light. This terminology is in accordance with the one introduced by Bartz and
Yuzvinsky [2, 3].
Let (Λ1,Λ2,Λ3) be a light dual multinet in PG(2,K) labeled by the quasigroup Q.

As we show later in the abstract setting, if the line ℓ intersects two components Λi,Λj

then there is a integer r such that r = |ℓ ∩ Λ1| = |ℓ ∩ Λ2| = |ℓ ∩ Λ3|; this integer r is
called the length of ℓ w.r.t. (Λ1,Λ2,Λ3). Examples of group-labeled light dual multinets
were given by Bartz and Yuzvinsky [2, 3] and by Korchmáros and Nagy [12]. In [3],
the examples of light dual multinets are constructed from a three dimensional multinet.
They are labeled by the dihedral group of order n and the long lines have order 2 or
n/2. In [12] the authors define triangular light dual multinets of order n which are
contained in the union of three lines of length n/3, and tetrahedron and conic-line type
light dual multinets, which have a unique line of length n/2.
The motivation of the present paper is the following observation. The known con-

structions of light dual multinets and the results of [12] suggest that the length r > 1
of lines of the light dual multinet makes a big difference in their geometric structure.
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2 NORBERT BOGYA AND GÁBOR P. NAGY

While for r ≥ 9, the light dual multinet is well structured in geometric and algebraic
sense, the case of small r, especially r = 2 shows many irregularities. In this paper, we
classify all abstract light dual multinets of order 6 with a unique line of length r > 1.
Moreover, we compute all possible realizations of these abstract light dual multinets in
projective planes over fields of characteristic 0. For this purpose, we present an algebraic
framework to handle the occurring system of polynomial equations. The computation
was done using computer algebra systems GAP [24], Singular [6] and SageMath [18].
The paper is organized as follows. In section 2, we give the basic definitions and

terminology and present some simple results which are known and more or less folklore.
In Section 3, we introduce the concept of an abstract light dual multinet Σ, labeled by
a quasigroup Q and explain the relation between long lines of Σ and subsquares of Q.
In Section 4, we classify all abstract light dual multinets of order 6 having a unique
line of length r > 1. Section 5 presents the algebraic machinery for the study of weak
embeddings of point-line incidence structures in the projective plane PG(2,K), where
K is a field. In Sections 6 and 7 we apply this machinery to classify the weak projective
embeddings of abstract light dual multinets of order 6. In the appendices we give the
SageMath [18] codes which compute the results.

2. Preliminaries

2.1. Quasigroups, isotopes, parastrophes. A quasigroup (Q, ·) is a set endowed
with a binary operation x · y such that the equation x · y = z can be uniquely solved if
any two of the three values x, y, z ∈ Q are given. One denotes the solutions with left
and right division: y = x \ z, x = z/y. The maps La : x 7→ a · x, Ra : x 7→ x · a are the
left and right multiplication maps of Q.
Let (Q, ·) and (R, ◦) be quasigroups. An isostrophism from Q to R is a quadruple

(σ, γ1, γ2, γ3), where γ1, γ2, γ3 are bijective maps from Q to R and σ ∈ S3 such that for
all elements x1, x2, x3 ∈ Q the following holds:

xσ(1) · xσ(2) = xσ(3) ⇐⇒ γ1(x1) ◦ γ2(x2) = γ3(x2).

It is straightforward to see that being isostrophic is an equivalence relation. If σ is the
identity then we speak of the isotopism (γ1, γ2, γ3); for all x, y ∈ Q

γ1(x) ◦ γ2(y) = γ3(x · y).
If the underlying sets Q,R are equal and γ1, γ2, γ3 are the identical maps than we
say that the quasigroups (Q, ·) and (Q, ◦) are σ-conjugate. We speak of a principal
isotopism if the underlying sets Q,R are equal, σ = id, α1 = Rv, α2 = Lu and α3 = id
for some fixed elements u, v ∈ Q. Then for all x, y ∈ Q

x ◦ y = x/u · v\y.
In this case, (Q, ◦) is a loop with unit element v · u.
We remark that some authors use the term parastrophe for isostrophe. In the language

of Latin squares, one says that isostrophic quasigroups Q and R belong to the same
main class.
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2.2. Subsquares in quasigroups. While subquasigroups are defined in the obvious
way, quasigroups have another important substructure which we call subsquares. In
[10], subsquares of order 2 are called intercalates.

Definition 2.1. Let (Q, ·) be a quasigroup and S1, S2, S3 ⊆ Q such that

S1 · S2 ⊆ S3, S1 \ S3 ⊆ S2, S3/S2 ⊆ S1.

Then we say that the triple (S1, S2, S3) is a subsquare of Q. For a subsquare one has
|S1| = |S2| = |S3|; this cardinality is the order of the subsquare. Subsquares of order 1,
and the subsquare (Q,Q,Q) are called trivial. Nontrivial subsquares are proper.

Clearly, subsquares of Q form a poset and the intersection of subsquares is a sub-
square, as well. Moreover, for U1, U2, U3 ⊆ Q, the subsquare generated by (U1, U2, U3)
is the smallest subsquare (S1, S2, S3) such that Ui ⊆ Si, i = 1, 2, 3. For any fixed sub-
square (S1, S2, S3) of Q, there is a principal loop isotope (Q,⊕) of (Q, ·) in which S3 is
a subloop. Indeed, take arbitrary elements u ∈ S1, v ∈ S2 and put

x⊕ y = x/v · u\y.
Then (Q,⊕) is a loop with unit element u · v, and

S3 ⊕ S3 = S3/v · u\S3 = S1 · S2 = S3.

For a general loop of order n, the order of a subloop does not divide n. However,
proper subloops have order at most n/2 and subloops of order n/2 are normal.

2.3. Point-line incidence structures. We quote the basic definitions on (point-line)
incidence structures from [4, Chapter I]. A point-line incidence structure is a triple
(P,B, I), where P,B are sets and I ⊆ P ×B. The elements of P are called points, the
elements of B are blocks or lines. Instead of (p, B) ∈ I we will simply write pIB and use
such geometric language as “the point p lies on the block B”, “B passes through p”, “p
and B are incident”, etc. The trace of the block B is the set T (B) of points, incident
with B. An incidence structure is called simple, if T (B) = T (C) implies B = C for
all blocks B,C. For a simple incidence structure, we can identify each block B with
the corresponding point set T (B) and the incidence relation I with the membership
relation ∈. In this case, we write (P,B) for (P,B,∈).
Let (P,B, I) be an incidence structure. We say that the points p1, p2, . . . , pk ∈ P are

collinear if there is a block B ∈ B such that piIB for all i = 1, . . . , k. By a collinear
triple we mean three different collinear points. It is easy to see that in a simple incidence
structure, all blocks of size at least three can be reconstructed from the set of collinear
triples.
An isomorphism between the incidence structures (P1,B1, I1) and (P2,B2, I2) is a

bijective map ϕ : P1 ∪B1 → P2 ∪B2 preserving points, lines and the incidence relation.
If both incidence structures are simple and blocks are identified with subsets of points,
then an isomorphism is a bijective map P1 → P2, which induces a bijection from B1

to B2. If the incidence structures are simple and all blocks have size at least 3, then
an isomorphism is a bijective map P1 → P2, which induces a bijection on the sets of
collinear triples. Finally, we mention that the dual of the incidence structure (P,B, I)
is the incidence structure (B,P, I ′), where pIB holds if and only if BI ′p.
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2.4. Abstract dual 3-nets, well-indexing. An abstract dual 3-net is a simple point-
line incidence structure Σ = (P,L), where P is the disjoint union of the three subsets
P1, P2 and P3 and L consists of subsets of P of size 3 such that for any pi ∈ Pi, pj ∈ Pj

(1 ≤ i < j ≤ 3) there is exactly one element of L, which contains pi and pj. Given a
quasigroup (Q, ·), one constructs an abstract dual 3-net in the following way. One takes
three disjoint sets P1,P2,P3 with cardinality |Q|, bijections αi : Q → Pi, and defines
P = P1 ∪ P2 ∪ P3,

L = {{α1(x), α2(y), α3(x · y)} | x, y ∈ Q}.
Moreover, any abstract dual 3-net Σ can be obtained in this way. We say that Σ is
labeled by the quasigroup Q.
The labeling quasigroup of the abstract dual 3-net Σ is not uniquely determined.

Assume that Σ is labeled by (Q, ·) w.r.t. the labeling maps (α1, α2, α3). Let (σ, γ1, γ2, γ3)
be an isostrophism fromQ to (R, ◦). Then we define the maps α̂i : R → P, i = 1, 2, 3, by
α̂σ(i) = αiγ

−1
σ(i). The triple (α̂1, α̂2, α̂3) turns out to be a labeling of Σ by R. Conversely,

if Σ can be labeled by the quasigroups (Q, ·) and (R,⊕) via the labeling maps α1, α2, α3

and α̂1, α̂2, α̂3, then Q and R are isostrophes. If Q is a group (associative multiplication)
and Q and R are isostrophes, then R is a group isomorphic to Q.
We say that the abstract dual 3-net Σ = (P,L) of order n is well-indexed, if the

following hold:

(W1) P is the disjoint union of P1 = {1, . . . , n}, P2 = {n + 1, . . . , 2n}, and P3 =
{2n+ 1, . . . , 3n}.

(W2) For each j ∈ {1, . . . , n}, the triples {1, n+ j, 2n+ j}, {j, n+ 1, 2n+ j} are in L.
For any finite Σ, (W1) can be assumed without loss of generality. Moreover, (W2)
can be achieved by rearranging first P3 and then P1. Also notice that a well-indexed
dual 3-net has a canonical labeling by a loop (L, ∗), where the underlying set of L is
{1, . . . , n} and the unit element is 1. Indeed, we take the labeling maps

α1(x) = x, α2(y) = n+ y, α3(z) = 2n+ z.

Lemma 2.2. Let Σ = (P,L) be an arbitrary finite abstract dual 3-net, labeled by the
quasigroup (Q, ·). Then there is an isomorphic well-indexed finite dual 3-net Σ∗ =
(P∗,L∗).

Proof. Let us first relabel Σ with a loop isotope (Q, ◦, e) of (Q, ·). Write Q = {q1 =
e, q2, . . . , qn} and define the binary operation i∗ j by qi ◦ qj = qi∗j . Then, ({1, . . . , n}, ∗)
is a loop, isomorphic to (Q, ◦) and we can relabel Σ with ({1, . . . , n}, ∗). Define the
abstract dual 3-net Σ′ of ({1, . . . , n}, ∗) with labeling maps

α1(x) = x, α2(y) = n+ y, α3(z) = 2n+ z.

Clearly, Σ′ is well-indexed and Σ and Σ′ are isomorphic. �

2.5. Projective realizations of finite quasigroups. In the form we are interested in,
projective realizations of quasigroups have been introduced by Yuzvisnky [22]. However,
the idea goes back to the study of the additive and multiplicative loops of ternary rings
and their geometrical interpretation in non Desarguesian projective planes, see [1, 4, 10].
Let K be an algebraically closed field and Q a finite quasigroup of order n. We say that
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the disjoint point sets Λ1,Λ2,Λ3 of PG(2,K) realize Q if there are bijections αi : Q → Λi,
i = 1, 2, 3, such that for x, y, z ∈ Q, the points α1(x), α2(y), α3(z) are collinear if and
only if x · y = z holds. It is clear that (Λ1,Λ2,Λ3) can be seen as an abstract dual
3-net, embedded in PG(2,K) and labeled by Q. Important examples of quasigroup
realizations were given by Yuzvinsky [22] when Q is an abelian group, by Stipins [20]
when Q is a nonassociative loop of order 5, by Korchmáros, Nagy and Pace when Q is
a finite dihedral group, and by Urzúa [21] when Q is the quaternion group of order 8.
In fact, it turns out that these are essentially all projective realizations of finite groups.
Let Λ = (Λ1,Λ2,Λ3) be a projective realization of the finite group G. Λ is called

algebraic, if Λ1 ∪Λ2 ∪Λ3 is contained in a cubic curve C. If C is the union of a line and
an irreducible conic then Λ is of conic-line type. If C is the union of three lines ℓ1, ℓ2, ℓ3
then Λ is of triangular or of pencil type, depending on if ℓ1, ℓ2, ℓ3 form a triangle or
have a point in common. Finally, we say that Λ is of tetrahedron type, if Λ1 ∪ Λ2 ∪ Λ3

is contained in the union of the six lines of a complete quadrilateral. In this case, each
component Λi is contained in the union of two lines.
The following almost complete classification of such 3-nets is proven in [13].

Theorem 2.3. In the projective plane PG(2,K) defined over an algebraically closed
field K of characteristic p ≥ 0, let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 which
realizes a group G. If either p = 0 or p > n then one of the following holds.

(I) G is either cyclic or the direct product of two cyclic groups, and (Λ1,Λ2,Λ3) is
algebraic.

(II) G is dihedral and (Λ1,Λ2,Λ3) is of tetrahedron type.
(III) G is the quaternion group of order 8.
(IV) G has order 12 and is isomorphic to Alt4.
(V) G has order 24 and is isomorphic to Sym4.
(VI) G has order 60 and is isomorphic to Alt5.

A computer aided exhaustive search shows that if p = 0 then (IV) (and hence (V),
(VI)) does not occur; see [16]. It has been conjectured that this holds true in any
characteristic.
Not much is known about projective realizations of nonassociative quasigroups. Nonas-

sociative quasigroups of order 5 are all isostrophes, their projective realization was given
by Stipins [20]. Up to isostrophy there are 12 quasigroups of order 6, Urzúa [21] com-
puted their realizations for K = C, or showed that no such realization exists.

3. Abstract light dual multinets

We define a generalization of the concept of an abstract dual 3-net.

Definition 3.1. An abstract light dual multinet labeled by the quasigroup Q is a pair
(P,M) with the following properties:

(1) P is the disjoint union of the three subsets P1, P2 and P3.
(2) M consists of subsets of P such that for any p, q ∈ P there is at most one element

of M, which contains p and q.
(3) There are bijections αi : Q → Pi (i = 1, 2, 3), such that for any x, y ∈ Q there is

an element S ∈ M containing α1(x), α2(y) and α3(x · y).
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(4) |M| > 1.

In the sequel, (P,M) denotes an abstract light dual multinet, labeled by the finite
quasigroup Q of order n. The labeling maps are α1, α2, α3. We usually denote the
multinet just by M. We call the elements of P points, and the elements of M lines or
blocks. Property (4) prohibits a light dual multinet to be degenerate, that is, no block
can contain all points.

Lemma 3.2. Let B ∈ M be a block of the abstract light dual multinet (P,M). Let
Si = {x ∈ Q | αi(x) ∈ B} be the subsets of Q corresponding to the intersections of B
and Pi (i = 1, 2, 3). Then, (S1, S2, S3) is a subsquare of Q; its order is called the length
of B with respect to (P,M).

Proof. For any x ∈ S1, y ∈ S2, we have α3(x · y) ∈ B, hence S1 · S2 ⊆ S3. In a similar
way one shows S1 \ S3 ⊆ S2 and S3/S2 ⊆ S1. �

This lemma enables us to define a special class of abstract light dual multinets. Let
(Q, ·) be a quasigroup and (S1, S2, S3) be a subsquare of Q. Let (P,N ) be the abstract
dual 3-net of Q. Define the ”superline”

B′ = α1(S1) ∪ α2(S2) ∪ α3(S3)

as the union of r2 lines of N , where r = |S1| = |S2| = |S3|. Put
M = {B ∈ N | 1 ≥ |B ∩ αi(Si)|} ∪ {B′}.

Then M is a Q-labeled abstract light dual multinet with n2 − r2 lines of length 1 and
one line of length r. We denote this abstract light dual multinet by MS1,S2,S3

. In the
special case when S1 = S2 = S3 = S is a subquasigroup of Q, we write MS.
The labeling quasigroup of M is not uniquely determined. In the same way as we

showed for dual 3-nets, one can show that if the light dual multinet M is labeled by
the quasigroup Q and R is an isostrophic quasigroup with Q then M can be labeled
by R as well. Conversely, assume that M can be labeled by the quasigroup (Q, ·) and
(R,⊕). Then we call the quasigroups Q and R are M-isostrophes.

Lemma 3.3. Let Σ = (P,M) be a finite abstract light dual multinet of order n, labeled
by the quasigroup (Q, ·). Let ℓ be a superline of length r. Then Σ is isomorphic to an
abstract light dual multinet Σ′ = (P ′,M′) such that the following hold:

(WM1) P ′ is the disjoint union of P ′
1 = {1, . . . , n}, P ′

2 = {n + 1, . . . , 2n}, and P ′
3 =

{2n+ 1, . . . , 3n}.
(WM2) ℓ′ = {1, . . . , r, n+ 1, . . . , n+ r, 2n + 1, . . . , 2n+ r} is a superline of length r of

Σ′.
(WM3) For each j ∈ {r + 1, . . . , n}, the triples 1, n+ j, 2n+ j and j, n+ 1, 2n+ j are

collinear in M′.

Proof. The proof is similar to the proof of Lemma 2.2, with two additional consid-
erations. First, the loop isotope (Q, ◦, e) must be chosen such that the superline ℓ
corresponds to a subloop S. Second, the elements q1, . . . , qn of Q must be chosen such
that q1 = e and S = {q1, . . . , qr}. �

Definition 3.4. An abstract light dual multinet Σ′ is said to be well-indexed w.r.t. a
superline of length r, if conditions (WM1)-(WM3) of Lemma 3.3 hold.
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Table 1. Isomorphism classes of abstract light dual multinets with one superline

id (A) (B) Aut(MS1,S2,S3
)

M1 3 6.1, 6.9 ((C3 × C3 × C3) : C3) : (C2 × C2)
M2 3 6.2, 6.3, 6.9 ((C3 × C3 × C3) : C3) : (C2 × C2)
M3 2 6.1, 6.4 C2 × S4

M4 2 6.2, 6.5 C2 × S4

M5 2 6.4 C2 × S4

M6 2 6.7 C2 × S4

M7 2 6.5 C2 ×D8

M8 2 6.8, 6.11 C2 ×D8

M9 2 6.10 C2 ×D8

M10 2 6.11 C2 ×D8

M11 2 6.9, 6.12 C2 × C2 × C2

M12 2 6.12 C2 × C2 × C2

M13 2 6.6, 6.7 S3

M14 2 6.5, 6.10 C2 × C2

M15 2 6.7, 6.10 C2 × C2

M16 2 6.11, 6.12 C2 × C2

4. Classification of abstract light dual multinets of order 6

We start with an obvious lemma.

Lemma 4.1. Let Q be a quasigroup of order 6. Then all proper subsquares of Q
have order 1, 2 or 3. A subsquare of order 3 cannot contain a subsquare of order 2.
Any proper subsquare can be generated by a triple of the form ({x, y}, {z}, ∅), where
x, y, z ∈ Q, x 6= y. �

Lemma 3.2 and Lemma 4.1 imply that a nontrivial abstract light dual multinet of
order 6 can only have lines of length 1, 2 or 3. Moreover, Lemma 4.1 provides us an
effective method to generate all proper subsquares of a quasigroup of order 6. The
number of subsquares of order 2 and 3 of quasigroups of order 6 are given in [10, Figure
4.2.2].

Theorem 4.2. There are 16 isomorphism classes of abstract light dual multinets with
a unique superline. In Table 1 we listed (A) the length of the superlines, (B) the Dénes-
Keedwell numbers of the labeling quasigroups, and the structure of the automorphism
group.

Proof. Using the GAP4 [24] computer algebra system and the GAP package DESIGN
[19], we can construct all abstract light dual multinets of order 6 with one superline.
The commands can be accessed using the SageMath [18] interface. All computations
are done with well-indexed abstract light dual multinets. �

Proposition 4.3. Let (P,M) be an abstract light dual multinet of order 6, which
contains a superline of length 3. Then M can be labeled either by the cyclic group or
by the dihedral group of order 6.
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Proof. The claim follows from Theorem 4.2. �

5. Weak projective embeddings of incidence structures

In this section, Σ = (P,L) denotes a simple incidence structure and K a field.
Moreover, we assume that all lines of Σ are incident with at least 3 points.

5.1. Weak projective embeddings.

Definition 5.1. A map β : P → PG(2,L) is a weak projective K-embedding of Σ if the
following hold:

(1) L/K is a field extension.
(2) β is injective and β(P) spans PG(2,L).
(3) For any collinear triple p1, p2, p3 ∈ P, the points β(p1), β(p2), β(p3) are collinear.

The extension field L is called the coordinate field of β.

The definition implies that for a weak projective K-embedding β, noncollinear points
of Σ can have collinear images in the projective plane. This is formalized in the following
definition.

Definition 5.2. Let β : P → PG(2,L) be a weak projective K-embedding of the inci-
dence structure Σ = (P,L). We say that S ⊆ P is a merged block of β, if |S| > 1,
S 6∈ L and

S = β−1(ℓ)

for some line ℓ of PG(2,L).

We remark that β is a projective realization of a finite quasigroup if and only if each
merged block is contained in one of the component β(Pi), i = 1, 2, 3. For example, if β
is a projective realization of a dihedral group of order 2m, then the component β(Pi)
(i = 1, 2, 3) is contained in the union of two lines, cf. [13, Proposition 22]. In other
words, the projective realizations of finite dihedral groups are of tetrahedron type.

5.2. Pre-embeddings and ring homomorphisms. Let t1, . . . , tn be indeterminates
over K, R = K[t1, . . . , tn]. Let

ξ : P → PG(2,K(t1, . . . , tn))

be an injective map. Then for each p ∈ P, there are polynomials up, vp, wp ∈ R such that
ξ(p) can be given by the vector up = [up, vp, wp]. We can assume that gcd(up, vp, wp) = 1
for all p.
Let L be a field extension ofK and τ1, . . . , τn ∈ L. The substitution ti = τi determines

a map

ξ|(ti)=(τi) : P → PG(2,L).

This map may be not well-defined. Clearly, any such substitution corresponds to a ring
homomorphism σ : R → L such that σ(ti) = τi. In this notation, we write ξ|(ti)=(τi) = σ̄.
Obviously, σ̄ is a well-defined injective map if and only if for different points p, q ∈ P,
not all coordinates of up × uq belong to ker σ. Moreover, σ̄(P) spans the plane if there
are points p1, p2, p3 ∈ P such that det(up1,up2,up3) 6∈ ker σ.
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Definition 5.3. Let L/K be a field extension. The ring homomorphism σ : R → L
is ξ-admissible if σ̄ is a well-defined injective map which spans PG(2,L). The prime
ideal P of R is ξ-admissible if the natural homomorphism from R to the quotient field
Q(R/P ) of R/P is ξ-admissible.

For the map ξ we define the following ideals:

A′
ξ = ∩p,q∈P,p 6=q〈coordinates of up × uq〉,

A′′
ξ = 〈det(up1,up2,up3) | p1, p2, p3 different elements of P〉

Aξ = A′
ξ ∩ A′′

ξ

We call Aξ the admissibility ideal of ξ.

Lemma 5.4. The prime ideal P ⊳R is ξ-admissible if and only if the admissibility ideal
Aξ is not contained in P .

Proof. Since P is prime, Aξ ⊆ P if and only if A′′
ξ ⊆ P or for some p 6= q ∈ P, all

coordinates of up × uq are in P . Hence, for the ring homomorphism σ : R → Q(R/P ),
either σ̄(P) is contained in a line, or σ̄ is not injective. �

Definition 5.5. The map ξ : P → PG(2,K(t1, . . . , tn)) is a pre-embedding of Σ, if the
following hold:

(1) For collinear points ξ(p1), ξ(p2), ξ(p3), the points p1, p2, p3 are collinear in Σ.
(2) For any weak projective K-embedding β of Σ, there is a ring homomorphism σ from

R to the coordinate field L of β such that σ̄ is a weak projective K-embedding of Σ,
which is projectively equivalent with β.

It is obvious that Σ has pre-embeddings. For example, if each coordinates up, vp, wp

of up are different interminates ti. Moreover, since the projective coordinate frame can
be chosen such that the line at infinity contains no point β(p), we can set wp = 1 for all
p, and still have a pre-embedding. For the rest of this section, we fix a pre-embedding
ξ of Σ.

5.3. Minimal associated prime ideals of weak embeddings. We present a com-
putational method to determine weak embeddings of finite incidence structures. Define
the ideal

IΣ,ξ = 〈det(up1 ,up2,up3) | p1, p2, p3 collinear in Σ〉
of R.

Lemma 5.6. The following objects are essentially the same:

(i) Weak projective K-embeddings β of Σ with coordinate field L;
(ii) ξ-admissible ring homomorphisms σ : R → L with IΣ,ξ ≤ ker σ;
(iii) ξ-admissible prime ideals P containing IΣ,ξ.

Proof. We have already seen the equivalence of (ii) and (iii). The implication (ii)⇒(i)
is given by β = σ̄. (i)⇒(ii) follows from the fact that ξ is a pre-embedding. �
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Let

IΣ,ξ = Q1 ∩ · · · ∩Qm0

be the primary decomposition of IΣ,ξ, with associated prime ideals P1 =
√
Q1, . . . , Pm0

=
√

Qm0
. Choose the indexing such that P1, . . . , Pm are the minimal associated prime

ideals of IΣ,ξ, m ≤ m0. Then
√

IΣ,ξ = P1 ∩ · · · ∩ Pm. Notice that the prime ideals
P1, . . . , Pm correspond to the irreducible components of the variety v(IΣ,ξ) over the
algebraic closure of K. Any prime ideal P containing IΣ,ξ contains a Pk for some
k ∈ {1, . . . , m}.

Proposition 5.7. The following are equivalent:

(i) Σ has a weak projective K-embedding with coordinate field K̄.
(ii) Σ has a weak projective K-embedding with coordinate field L, where L is a finite

extension of K.
(iii) Σ has a weak projective K-embedding.
(iv) At least one minimal associated prime ideal of IΣ,ξ is ξ-admissible.

Proof. (i)⇒(ii): Let β be a weak projective K-embedding of Σ, with coordinate field K̄.
Let X be the set of coordinate values of β(p) for all p ∈ P. Then X is a finite subset of
K̄, hence the field extension L of K which is generated by X is finite. Since the image
of β is in PG(2,L), we get a weak projective K-embedding with coordinate field L.
(ii)⇒(iii) is trivial. (iii)⇒(iv): Let β be a weak projective K-embedding of Σ. By

Lemma 5.6, we have a ring homomorphism σ : R → L such that β is projectively
equivalent with σ̄. The prime ideal ker(σ) contains a minimal associated prime Pk.
Since Aξ � ker(σ), Aξ � Pk and Pk is ξ-admissible.
(iv)⇒(i): Let Pk be a ξ-admissible associated prime of IΣ,ξ. Since Aξ � Pk, the

admissibility ideal Aξ has a minimal associated prime P ′ such that P ′ � Pk. This
means for the affine varieties over K̄ that v(Pk) * v(P ′). Take an element (τ1, . . . , τn) ∈
v(Pk) \ v(P ′) and define the ring homomorphism σ : R → K̄ by ti 7→ τi. Then σ̄ is a
weak projective K-embedding of Σ with coordinate field K̄. �

Remark 5.8. (i) Let P be a prime ideal of R. If a reduced Groebner basis of P
is given then the ξ-admissibility of P can be decided efficiently using reduction
modulo the Groebner basis.

(ii) There are several mathematical softwares which implement the primary decom-
position of ideals of polynomial rings, cf. [7, 8]. The commands can be accessed
using the SageMath [18] interface. For the mathematical background and imple-
mentation of primary decompositions of polynomial ideal see [9, Chapter 4].

(iii) The explicit computation of the admissibility ideal Aξ is not advisable. It is more
efficient to check that neither the ideals generated by the coordinates of up × uq,
nor A′′

ξ are contained in P .

5.4. Example. We finish this section with an example. Let P = {1, . . . , 9},

L = {{1, 4, 7}, {1, 5, 8}, {1, 6, 9}, {2, 4, 8}, {2, 5, 9}, {2, 6, 7}, {3, 4, 9}, {3, 5, 7}, {3, 6, 8}}.
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Then Σ = (P,L) is the dual 3-net of the cyclic group of order 3. Define the projective
points

u1 = [1, 0, 0], u2 = [t1, t2, t13], u3 = [t3, t4, t13],
u4 = [0, 1, 0], u5 = [t5, t6, t13], u6 = [t7, t8, t13],
u7 = [1, 1, 0], u8 = [t9, t10, t13], u9 = [t11, t12, t13]

with indeterminates t1, . . . , t13. The map ξ : i → ui is a pre-embedding of Σ. Indeed, if
the last coordinate of any of u2,u3,u5,u6,u8,u9 is 0, then each ui is contained in the
line W = 0 by Lemma 3.2. If this is not the case then the last coordinates of u2, . . .
can be chosen to be 1. The ideal IΣ,ξ has associated minimal prime ideals

P1 = 〈t13〉,
P2 = 〈t8 − t12, t6 − t10, t4 + t5 − t10 − t11, t3 − t11, t2 + t7 − t9 − t12, t1 − t9,

t5t7 − t5t9 − t7t11 + t9t10 + t9t11 − t9t12 − t10t11 + t11t12〉.
While the ideal P2 is ξ-admissible, P1 is not, since all points of the corresponding weak
embedding P → PG(2, Q(R/P1)) are contained in a line.

6. Weak embeddings of multinets of order 6

In this section, M = Mi, i ∈ {1, . . . , 16}, is an abstract light dual multinet of order
6 with a unique superline of length 2 or 3. We assume that M is well-indexed w.r.t. ℓ.
Let K be a field and define the polynomial ring

R = K[t1, . . . , t17].

Lemma 6.1. The set

p1 = [1, 0, 0] p7 = [0, 1, 0] p13 = [1, 1, 0]
p2 = [1, t1, 0] p8 = [1, t2, 0] p14 = [1, t3, 0]
p3 = [t4, t5, 1] p9 = [1, 0, 1] p15 = [0, 0, 1]
p4 = [t6, t7, 1] p10 = [t12, t13, 1] p16 = [t6, t13, 1]
p5 = [t8, t9, 1] p11 = [t14, t15, 1] p17 = [t8, t15, 1]
p6 = [t10, t11, 1] p12 = [t16, t17, 1] p18 = [t10, t17, 1]

of points gives a pre-embedding of M = Mi, i ∈ {3, . . . , 16}.
Proof. The points p1,p2,p7,p8,p13,p14 are on the line at infinity W = 0. If any other
point lies on this line, then all do so by Lemma 3.2 and the image of ξ is contained
in a line. Hence, we may write 1 for the last coordinate of these points. For the same
reason, we can choose the system of projective coordinates such that p1,p7,p9,p13,p15

have the given form. The coordintes of p3, . . . ,p6,p10, . . . ,p12 are generic. Finally the
coordinates of p16,p17 and p18 have these forms since M is well-indexed. �

For M = Mi, i ∈ {3, . . . , 16} and for K = Q, the associated minimal prime ideals of
IM,ξ can be explicitly computed using [5, 6, 7, 8] and the SageMath [18] interface. We
summarize the computational results in the following lemma.

Lemma 6.2. Let ξ be the pre-embedding of Lemma 6.1. The number of associated prime
ideals and the number of ξ-admissible associated prime ideals of IMi,ξ, i ∈ {3, . . . , 16},
are given in Table 2. In particular, IMi,ξ has at most one ξ-admissible associated prime
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Table 2. Minimal associated prime ideals of IM,ξ

M nr of Pk’s nr of M-admissible Pk’s dim of M-admissible Pk

M3 6 1 2
M4 3 1 2
M5 5 0 -
M6 1 0 -
M7 5 0 -
M8 1 1 1
M9 2 1 1
M10 4 1 1
M11 2 0 -
M12 3 1 2
M13 2 1 1
M14 4 1 1
M15 1 1 1
M16 1 1 1

ideal. The Krull dimension of the ξ-admissible associated prime ideal is given in the
last column of the Table 2.

We state our main result now.

Theorem 6.3. (i) Any weak projective K-embedding of M1 and M2 is either conic-
line or tetrahedron type.

(ii) The abstract light dual multinets M3, M4, M8, M9, M10, M12, M13, M14, M15,
M16 have a weak projective embedding in PG(2,C).

(iii) The abstract light dual multinets M5, M6, M7, M11 have no weak projective em-
beddings in PG(2,C).

Proof. (i) follows from Proposition 4.3 and [12, Proposition 4.3]. Proposition 5.7 and
Lemma 6.2 imply (ii) and (iii). �

7. Merged blocks of weak embeddings

In this section, we compute the generic merged blocks of the weak projective Q-
embeddings of the abstract light dual multinets M3, M4, M8, M9, M10, M12, M13, M14,
M15, M16.
If β is given by a pre-embedding ξ in PG(2,Q(t1, . . . , tn)) and a prime ideal P of

R = Q[t1, . . . , tn], containing IΣ,ξ, then we can speak of the merged blocks of P . Indeed
in this case, the coordinate field L is the quotient field of R/P . The merged blocks can
be determined by the triples p1, p2, p3 ∈ P for which

det(up1 ,up2,up3) ∈ P.

This enables us to compute the merged blocks of the weak embeddings of light dual
multinets of order 6 with a unique superline of length 2.
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Table 3. Merged blocks for light multinets of order 6

M nr of new long lines sizes in P1 sizes in P2 sizes in P3

M3 2
M4 3, 3 3, 3 3, 3
M8 5
M9 3, 3
M10 3, 3, 3, 3
M12 3
M13

M14 1 3, 3 3, 3 3, 3 1
M15 3, 3
M16 1 3, 3

Lemma 7.1. If Σ is an abstract light dual multinet, β : P → PG(2,L) is a weak
projective embedding of Σ, then any merged block B ⊆ P is either contained in one of
the components P1, P2 or P3, or, it is a new line of length at least 2 in the sense of
Lemma 3.2.

Proof. Denote by Si the subsets of Q, whose elements correspond to the points in
B ∩Pi, i = 1, 2, 3. If two of S1, S2, S3 are not empty then S1 ·S2 ⊆ S3, S1 \S3 ⊆ S2 and
S3/S2 ⊆ S1 hold. This shows that (S1, S2, S3) is a subsquare and |S1| = |S2| = |S3|. �

Lemma 7.2. Let M be one of M3, M4, M8, M9, M10, M12, M13, M14, M15, M16 and
let ξ be the pre-embedding defined above. Then there is a unique ξ-admissible minimal
associated prime ideal P of IM,ξ. The merged blocks of P are given in Table 3.

Proof. The uniqeness of P follows from Table 2. For given P , the data of Table 3 can
be computed efficienty with the Singular [6] package [7]. �

Proposition 7.3. Let M be an abstract light dual multinet of order 6 with a unique
superline of length 2. Assume that M has a weak projective

Q

-embedding β. Then β has at least the merged blocks given in Table 3.

Proof. Let P be the unique minimal associated prime ideal of IM,ξ. Let β : P →
PG(2,L) be a weak projective Q-embedding of M. By Lemmas 5.6 and 6.1, there
is a ring homomorphism σ : R → L such that β = σ̄. The uniqueness of P implies
P ≤ ker(σ). Therefore, the merged blocks of P are merged blocks of β. �
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dn=des . b l o ck s ( )
s l =[d for d in dn i f len (d)==3∗r ] . pop ( )
a=[0 ]∗3∗n
a [ 0 : r ]=tuple ( s l [ 0 : r ] )
a [ n : n+r ]=tuple ( s l [ r : 2∗ r ] )
a [ 2∗n :2∗n+r ]=tuple ( s l [ 2∗ r : 3∗ r ] )
a [ n+r :2∗n ]=[x for x in range (n , 2∗n) i f not ( x in s l ) ]
a [ 2∗n+r : ] = [ [ d [ 2 ] for d in dn i f (d [ 0 ] , d [1])==( a [ 0 ] , a [ n+j ] ) ] . pop ( )

for j in range ( r , n ) ]
a [ r : n ]= [ [ d [ 0 ] for d in dn i f (d [ 1 ] , d [2])==( a [ n ] , a [ 2∗n+j ] ) ] . pop ( )

for j in range ( r , n ) ]
aa=[a . index ( i ) for i in range (3∗n ) ]
dnn=[tuple ( [ aa [ x ] for x in d ] ) for d in dn ]
dnn . s o r t ( )
return BlockDesign (3∗n , dnn )

Appendix B. SageMath code for the classification of abstract light

dual multinets of order 6

c t s =[
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 3 , 4 , 5 , 6 , 1 ] , [ 3 , 4 , 5 , 6 , 1 , 2 ] ,

[ 4 , 5 , 6 , 1 , 2 , 3 ] , [ 5 , 6 , 1 , 2 , 3 , 4 ] , [ 6 , 1 , 2 , 3 , 4 , 5 ] ] , ”#6 .1 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 5 , 6 , 3 , 4 ] , [ 3 , 6 , 1 , 5 , 4 , 2 ] ,

[ 4 , 5 , 6 , 1 , 2 , 3 ] , [ 5 , 4 , 2 , 3 , 6 , 1 ] , [ 6 , 3 , 4 , 2 , 1 , 5 ] ] , ”#6 .2 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 3 , 1 , 5 , 6 , 4 ] , [ 3 , 1 , 2 , 6 , 4 , 5 ] ,

[ 4 , 6 , 5 , 2 , 1 , 3 ] , [ 5 , 4 , 6 , 3 , 2 , 1 ] , [ 6 , 5 , 4 , 1 , 3 , 2 ] ] , ”#6 .3 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 4 , 3 , 6 , 5 ] , [ 3 , 4 , 5 , 6 , 1 , 2 ] ,

[ 4 , 3 , 6 , 5 , 2 , 1 ] , [ 5 , 6 , 1 , 2 , 4 , 3 ] , [ 6 , 5 , 2 , 1 , 3 , 4 ] ] , ”#6 .4 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 5 , 6 , 3 , 4 ] , [ 3 , 6 , 2 , 5 , 4 , 1 ] ,

[ 4 , 5 , 6 , 2 , 1 , 3 ] , [ 5 , 4 , 1 , 3 , 6 , 2 ] , [ 6 , 3 , 4 , 1 , 2 , 5 ] ] , ”#6 .5 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 4 , 5 , 6 , 3 ] , [ 3 , 6 , 2 , 1 , 4 , 5 ] ,

[ 4 , 5 , 6 , 2 , 3 , 1 ] , [ 5 , 3 , 1 , 6 , 2 , 4 ] , [ 6 , 4 , 5 , 3 , 1 , 2 ] ] , ”#6 .6 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 4 , 3 , 6 , 5 ] , [ 3 , 5 , 1 , 6 , 4 , 2 ] ,

[ 4 , 6 , 5 , 1 , 2 , 3 ] , [ 5 , 3 , 6 , 2 , 1 , 4 ] , [ 6 , 4 , 2 , 5 , 3 , 1 ] ] , ”#6 .7 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 6 , 5 , 3 , 4 ] , [ 3 , 6 , 1 , 2 , 4 , 5 ] ,

[ 4 , 5 , 2 , 1 , 6 , 3 ] , [ 5 , 3 , 4 , 6 , 1 , 2 ] , [ 6 , 4 , 5 , 3 , 2 , 1 ] ] , ”#6 .8 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 3 , 1 , 6 , 4 , 5 ] , [ 3 , 1 , 2 , 5 , 6 , 4 ] ,

[ 4 , 6 , 5 , 1 , 2 , 3 ] , [ 5 , 4 , 6 , 2 , 3 , 1 ] , [ 6 , 5 , 4 , 3 , 1 , 2 ] ] , ”#6 .9 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 6 , 5 , 4 , 3 ] , [ 3 , 5 , 1 , 2 , 6 , 4 ] ,

[ 4 , 6 , 2 , 1 , 3 , 5 ] , [ 5 , 3 , 4 , 6 , 2 , 1 ] , [ 6 , 4 , 5 , 3 , 1 , 2 ] ] , ”#6 .10 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 4 , 5 , 6 , 3 ] , [ 3 , 4 , 2 , 6 , 1 , 5 ] ,

[ 4 , 5 , 6 , 2 , 3 , 1 ] , [ 5 , 6 , 1 , 3 , 2 , 4 ] , [ 6 , 3 , 5 , 1 , 4 , 2 ] ] , ”#6 .11 .1 .1 ” ) ,
( [ [ 1 , 2 , 3 , 4 , 5 , 6 ] , [ 2 , 1 , 5 , 6 , 4 , 3 ] , [ 3 , 5 , 4 , 2 , 6 , 1 ] ,

[ 4 , 6 , 2 , 3 , 1 , 5 ] , [ 5 , 4 , 6 , 1 , 3 , 2 ] , [ 6 , 3 , 1 , 5 , 2 , 4 ] ] , ”#6 .12 .1 .1 ” )
]

def t a b l e t o dua l n e t ( t ) :
n=len ( t )
r e t =[ ]
for y in range (n ) :

r e t . extend ( [ ( x , y+n , t [ x ] [ y]−1+2∗n) for x in range (n ) ] )
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return r e t

def generated subsquare (dn , gens ) :
while True :

b l s =[ ]
for a in Combinations ( gens , 2 ) :

a=set ( a )
b l s . extend ( [ d for d in dn i f len ( a . i n t e r s e c t i o n (d))>1])

pts=set ( )
for a in b l s :

pts=pts . union ( set ( a ) )
i f len ( pts )>len ( gens ) :

gens=pts
else :

gens=l i s t ( gens )
gens . s o r t ( )
return tuple ( gens ) , b l s

def a l l p r op e r s ub s qua r e s (dn ) :
n=sq r t ( len (dn ) )
r e t =[ ]
for x in Combinations ( range (n ) , 2 ) :

for y in range (n , 2∗n ) :
new=generated subsquare (dn ,{ x [ 0 ] , x [ 1 ] , y } ) [ 0 ]
i f ( len (new)<3∗n) and not (new in r e t ) : r e t . append (new)

r e t . s o r t ( )
return r e t

def s u p e r l i n e t o b l o c k s (dn , s l ) :
n=sq r t ( len (dn ) )
r e t =[d for d in dn i f not ( ( d [ 0 ] in s l ) and (d [ 1 ] in s l ) ) ]
r e t . append ( tuple ( s l ) )
return r e t #BlockDesign (3∗n , r e t )

##############

a l l a b s t r a c t l dms =[ ]
for ct in c t s :

dn=tab l e t o dua l n e t ( c t [ 0 ] )
sqs=a l l p r op e r s ub s qua r e s (dn)
for s l in sqs :

b l s=s up e r l i n e t o b l o c k s (dn , s l )
des=BlockDesign (18 , b l s )
des . qgname=ct [ 1 ]
a l l a b s t r a c t l dms . append ( des )

len ( a l l a b s t r a c t l dms )

c l a s s e s =[ ]
inds=range ( len ( a l l a b s t r a c t l dms ) )
while len ( inds )>0:

new c la s s=[ i for i in inds i f
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a l l a b s t r a c t l dms [ inds [ 0 ] ] . i s i s omo rph i c ( a l l a b s t r a c t l dms [ i ] ) ]
c l a s s e s . append ( new c la s s )
inds =[ i for i in inds i f not ( i in new c la s s ) ]

len ( c l a s s e s )

ldms id s=[
( ”#6.9 .1 .1 ” , ”#6.1 .1 .1 ” , ” ( ( (C3 x C3 x C3) : C3) : C2) : C2” ) ,
( ”#6.9 .1 .1 ” , ”#6.3 .1 .1 ” , ”#6.2 .1 .1 ” ,

” ( ( (C3 x C3 x C3) : C3) : C2) : C2” ) ,
( ”#6.4 .1 .1 ” , ”#6.1 .1 .1 ” , ”C2 x S4” ) ,
( ”#6.5 .1 .1 ” , ”#6.2 .1 .1 ” , ”C2 x S4” ) ,
( ”#6.4 .1 .1 ” , ”C2 x S4” ) ,
( ”#6.7 .1 .1 ” , ”C2 x S4” ) ,
( ”#6.5 .1 .1 ” , ”C2 x D4” ) ,
( ”#6.11 .1 .1 ” , ”#6.8 .1 .1 ” , ”C2 x D4” ) ,
( ”#6.10 .1 .1 ” , ”C2 x D4” ) ,
( ”#6.11 .1 .1 ” , ”C2 x D4” ) ,
( ”#6.9 .1 .1 ” , ”#6.12 .1 .1 ” , ”C2 x C2 x C2” ) ,
( ”#6.12 .1 .1 ” , ”C2 x C2 x C2” ) ,
( ”#6.7 .1 .1 ” , ”#6.6 .1 .1 ” , ”S3” ) ,
( ”#6.5 .1 .1 ” , ”#6.10 .1 .1 ” , ”C2 x C2” ) ,
( ”#6.7 .1 .1 ” , ”#6.10 .1 .1 ” , ”C2 x C2” ) ,
( ”#6.11 .1 .1 ” , ”#6.12 .1 .1 ” , ”C2 x C2” ) ,

]
abs t r a c t ldms=dict ( )
for c l in c l a s s e s :

names=set ( a l l a b s t r a c t l dms [ i ] . qgname for i in c l )
des=b l o ckde s i g n we l l i nd ex i ng ( a l l a b s t r a c t l dms [ c l [ 0 ] ] )
des . qgr s=names
#abs t r a c t l dms . append ( des )
s t d e s c r=des . automorphism group ( ) . s t r u c t u r e d e s c r i p t i o n ( )
pos=l i s t ( names )
pos . append ( s td e s c r )
print pos
pos=ldms id s . index ( tuple ( pos ) )
abs t r a c t ldms [ pos ]=des

Appendix C. SageMath code for the weak embeddings of abstract

light dual multinets of order 6

P=PolynomialRing (QQ, ’ t ’ ,17 , o rder=’ l ex ’ )
t=P. gens ( )

def i d ea l o f p r e embedd ing ( xi , des ) :
eqs =[ ]
for bl in des . b l o ck s ( ) :

for t in Combinations ( bl , 3 ) :
eqs . append ( det (Matrix ( [ x i [ i ] for i in t ] ) ) )

eqs=[x for x in eqs i f not x . i s z e r o ( ) ]
I=P. i d e a l ( eqs )
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return I

def pa i rw i s e c r o s s p r oduc t s ( pts ) :
r e t =[ ]
for a in Combinations ( pts , 2 ) :

u=vec to r ( a [ 0 ] ) , v e c to r ( a [ 1 ] )
r e t . append (u [ 0 ] . c r o s s p roduc t (u [ 1 ] ) )

return r e t

def no t a l l z e r o mod I ( pts , I ) :
for p in pts :

i f ( [ I . reduce ( x∗P. one ( ) ) . i s z e r o ( ) for x in p]==[True ] ∗ 3 ) :
return False

return True

def merged blocks o f embedding ( xi , p i ) :
b l s =[ ]
for bl in Combinations ( range ( len ( x i ) ) , 3 ) :

d=det (Matrix ( [ x i [ i ] for i in bl ] ) )
d=pi . reduce (d∗P. one ( ) )
i f d . i s z e r o ( ) :

b l s . append ( set ( b l ) )
b l=0
while bl<len ( b l s ) :

d=[ i for i in range ( b l+1, len ( b l s ) )
i f len ( b l s [ b l ] . i n t e r s e c t i o n ( b l s [ i ] ) ) >1 ]

i f d==[]:
b l=bl+1

else :
d . r e v e r s e ( )
for i in d :

b l s [ b l ]= b l s [ b l ] . union ( b l s [ i ] )
b l s . remove ( b l s [ i ] )

b l s =[tuple ( sorted ( b l ) ) for bl in b l s ]
return b l s

x i=[
[ 1 , 0 , 0 ] , [ 1 , t [ 0 ] , 0 ] , [ t [ 3 ] , t [ 4 ] , 1 ] ,
[ t [ 5 ] , t [ 6 ] , 1 ] , [ t [ 7 ] , t [ 8 ] , 1 ] , [ t [ 9 ] , t [ 1 0 ] , 1 ] ,
[ 0 , 1 , 0 ] , [ 1 , t [ 1 ] , 0 ] , [ 1 , 0 , 1 ] ,
[ t [ 1 1 ] , t [ 1 2 ] , 1 ] , [ t [ 1 3 ] , t [ 1 4 ] , 1 ] , [ t [ 1 5 ] , t [ 1 6 ] , 1 ] ,
[ 1 , 1 , 0 ] , [ 1 , t [ 2 ] , 0 ] , [ 0 , 0 , 1 ] ,
[ t [ 5 ] , t [ 1 2 ] , 1 ] , [ t [ 7 ] , t [ 1 4 ] , 1 ] , [ t [ 9 ] , t [ 1 6 ] , 1 ]

]
x i c r o s s p r od s=pa i rw i s e c r o s s p r oduc t s ( x i )

##############

pds =[ ]
for i in [ 2 . . 1 5 ] :

I=idea l o f p r e embedd ing ( xi , abs t r a c t ldms [ i ] )
minprimes=I . min ima l a s so c i a t ed pr imes ( )
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dd=[ ]
for pi in minprimes :

dd . append ( no t a l l z e r o mod I ( x i c r o s s p r od s , p i ) )
i f dd [ −1 ] : pds . append ( [ i , p i ] )

print ”# ” , i , ”\ t ” ,dd

[ x [ 1 ] . dimension ( ) for x in pds ]

for a in pds :
a . append ( merged blocks o f embedding ( xi , a [ 1 ] ) )

for a in pds :
print ”# ” , a [ 0 ] , ”\tdim=” , a [ 1 ] . dimension ( ) , ”\ t ” ,
print [ len ( [ b for b in a [ 2 ] i f ( (6∗ i<=b [ 0 ] ) and (b[−1]<6∗( i +1 ) ) ) ] )

for i in range ( 3 ) ] , ”\ t ” ,
bb=[ len ( x ) for x in a [ 2 ] ]
print [ [ i , bb . count ( i ) ] for i in set ( bb ) ]
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