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Abstract: In analytic descriptions of quantum quenches, the overlaps between the initial
pre-quench state and the eigenstates of the time evolving Hamiltonian are crucial ingre-
dients. We construct perturbative expansions of these overlaps in quantum field theories
where either the pre-quench or the post-quench Hamiltonian is integrable. Using the E8

Ising field theory for concrete computations, we give explicit expressions for the overlaps up
to second order in the quench size, and verify our results against numerical results obtained
using the Truncated Conformal Space Approach. We demonstrate that the expansion using
the post-quench basis is very effective, but find some serious limitations for the alternative
approach using the pre-quench basis.
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1 Introduction

The current interest in the dynamics of quantum many-body systems out of equilibrium
drives intensive research, both on the experimental and the theoretical side. The former
have witnessed a rapid expansion due to the realisation of isolated quantum many-body
dynamics in cold atom systems [1–11]. These experiments shed light on fundamental issues
regarding closed quantum systems out of equilibrium while providing fresh viewpoint on
well-known theoretical models of quantum many body systems [12–14].

A paradigmatic protocol to realise out-of-equilibrium dynamics is the quantum quench
[15, 16] which has become the cornerstone of recent research in the field. The quantum
quench is a sudden change in the parameters of the Hamiltonian operator determining
the dynamics of the system. Here we focus on so-called global quenches when both the
pre-quench and the post-quench systems are translationally invariant. On the basis of the
Eigenstate Thermalisation Hypothesis [17, 18], it is expected that generic systems show
relaxation to a thermal equilibrium [19]. Thermalisation is absent for integrable systems
and they are expected to reach a steady state described by a Generalised Gibbs Ensemble
(GGE) [20]. However, it was discovered by studying quenches in the XXZ spin chain that
the identification of the set of conserved charges necessary to build GGE is a non-trivial
task [21–24] requiring the construction of new ‘quasi-local’ conserved quantities [25–28],
with similar issues found in quantum field theories [29].

Besides the eventual asymptotic steady states, the details of the relaxation process
are also of considerable interest both from theoretical and experimental point of view.
However, a solution for the whole time evolution after the quench is a very challenging
task. A complete exact description of the post-quench dynamics is so far only available for
models that can be mapped to free particles [30–45] and in conformal field theory [15, 16].

An important input for many approaches to the post-quench dynamics are the overlaps
of the initial state with the post-quench eigenstates, including the Quench Action approach
[46, 47] or form factor expansions [48, 49]. For quenches in free theories these are easily
obtained using a Bogoliubov transformation, and they are also known for a number of
quenches in interacting Bose gases and integrable spin chains [21, 50–59], including results
in the context of the AdS/CFT correspondence [60–63].

In all of these cases multi-particle overlaps are factorised in terms of zero-momentum
pairs, and recently the notion of integrable quenches was introduced to classify those
quenches which admit such a structure [64, 65]. In the case of quenches in integrable quan-
tum field theories, this factorisation would correspond to an initial state which can be
written as a squeezed state in terms of the post-quench eigenstates. In certain models there
are analytic methods to determine these overlaps approximately [66–68], or alternatively,
they can be obtained numerically using truncated Hamiltonian methods [69, 70]. When the
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post-quench dynamics is integrable, the knowledge of the overlaps opens the way for an
analytic treatment of the dynamics [33, 49, 66, 67, 71–77].

Unfortunately, analytic knowledge of these overlaps is rather restricted. However, suf-
ficiently “small” quenches can be addressed using perturbation theory which also has the
promise to be able to study the effects of integrability breaking, as suggested recently
[78, 79]. In this work we follow this route and work out two different perturbative expansions
of post-quench overlaps. In our recent work [70], comparison with truncated Hamiltonian
methods suggested that such an approach is indeed promising, but it also revealed some
limitations, which we hope to clarify and address by a more thorough investigation.

The overlaps are defined as the scalar product of the initial state with post-quench
eigenstates which eventually suggests two different approaches depending on whether one
uses perturbation expansion in the post-quench or pre-quench basis. In principle, the latter
approach does not require integrability of the time evolving Hamiltonian and thus has
the potential to capture overlaps for quenches breaking integrability. To benchmark these
methods, we choose a specific interacting integrable model, the scaling Ising Field Theory
in a magnetic field. The spectrum of the model consists of eight particle species [80] so it
is sufficiently rich to test our approach in detail. It has the additional advantage that its
quench dynamics can be accurately captured using truncated Hamiltonian methods [70, 81]
that provide a numerical verification of our analytic results.

The paper is organised in the following way. Sec. 2 defines the overlap functions and
constructs them using perturbation theory on the post-quench basis. Sec. 3 provides a short
description of the Ising Field Theory in a magnetic field, describing its spectrum and form
factors. Regarding the latter, we go beyond existing results and construct a few more form
factors that are necessary for our subsequent calculations. Sec. 4 briefly summarises the
Hamiltonian truncation method and compares the perturbatively constructed overlaps to
the numerical results. Sec. 5 discusses the perturbative expansion in the pre-quench basis
and compares the results to numerics. Our conclusions and a brief outlook are presented
in Sec. 6. Some technical details regarding the form factor bootstrap, the perturbative
expansions, and the numerics can be found in the Appendices.

2 Perturbation theory for the overlaps

2.1 Quench overlaps

Quantum quenches correspond to a sudden change of parameters in the Hamiltonian of a
quantum system at a given time instant t = 0 changing it from the pre-quench (t < 0) to
the post-quench ( t > 0) Hamiltonian. Here we are interested in global quantum quenches
from the ground state, in which case both systems are translationally invariant, and the
initial state at t = 0 is the ground state of the pre-quench Hamiltonian. The initial state is
an excited state of the post-quench Hamiltonian of finite energy density containing particle
excitations. This can be formalised by expanding the pre-quench vacuum |Ω〉 on the basis
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of asymptotic multi-particle states of the post-quench Hamiltonian:

|Ω〉 = N

{
|0〉+

∞∑
N=1

∑
a1,...aN

(
s∏

a=1

1

k
(N)
a !

)(
N∏
i=1

∫
dϑi
2π

)
Ka1...aN (ϑ1, . . . , ϑN ) |ϑ1 . . . ϑN 〉a1...aN

}
,

(2.1)
where s denotes the number of particle species of the post-quench system, k(N)

a is the number
of particles of species a in the state consisting of N particles, and the particle momenta are
parameterised by the usual relativistic rapidity ϑ. In terms of the rapidity, the energy and
momentum of a multi-particle state is given by

Ĥpost |ϑ1 . . . ϑN 〉a1...aN =

N∑
i=1

mai cosh(ϑi) |ϑ1 . . . ϑN 〉a1...aN , (2.2)

P̂ |ϑ1 . . . ϑN 〉a1...aN =
N∑
i=1

mai sinh(ϑi) |ϑ1 . . . ϑN 〉a1...aN . (2.3)

The Ka1...aN (ϑ1, . . . , ϑN ) are the overlap functions, i.e. the scalar products of the post-
quench eigenstates with the initial state. Our goal is to give a perturbative expansion for
these functions for small quenches.

It is also possible to express the state using the cumulants K̄ of the overlap functions:

|Ω〉 = N exp

{ ∞∑
N=1

∑
a1,...aN

(
s∏

a=1

1

k
(N)
a !

)(
N∏
i=1

∫
dϑi
2π

)
K̄a1...aN (ϑ1, . . . , ϑN )

A†a1(ϑ1) . . . A
†
aN

(ϑN )

}
|0〉 , (2.4)

where the A†a(ϑ) are the asymptotic particle creation operators. When the post-quench
dynamics is integrable, there exists a notion of an integrable initial state [64] which parallels
the concept of integrable boundary states introduced by Ghoshal and Zamolodchikov [82].
For such a state all cumulants N > 2 vanish, and the two-particle cumulant is diagonal in
the mass

K̄a1a2(ϑ1, ϑ2) = 0 if ma1 6= ma2 . (2.5)

In this case the quench is a source of independently created particle pairs (and zero-
momentum particles, whenever the one-particle overlap is finite), i.e. multi-particle overlaps
factorise in terms of the one- and the two-particle overlap functions. This structure is im-
portant since the one- and two-particle overlaps completely characterise the finite density
state resulting after the quench.

For quenches with small enough post-quench density, i.e. when the average density of
particles is smaller than the inverse of the interaction range, one expects on physical grounds
that a similar factorisation holds with a very good approximation. Such a factorisation is
important since the form factor based approaches to time evolution developed in [48, 49, 83]
use a resummation technique to obtain predictions for relaxation times which uses the
vanishing of cumulants with N > 2. Note that since the form factor approach itself assumes
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a suitably small post-quench density, it is self-consistent to assume factorisation and neglect
the N > 2 cumulants even when the more stringent condition of integrability does not hold
for the initial state. Therefore despite the fact that the post-quench state itself has a finite
density, small quenches can be described in terms of one- and two-particle overlaps.

2.2 Perturbation theory for the overlaps

The overlaps can be computed by expanding the pre-quench vacuum |Ω〉 in the basis of
post-quench eigenstates. Assuming that the pre- and post-quench Hamiltonians are related
by

Hpre = Hpost + λ

∫
dxφ(x) (2.6)

where φ is a local field, one can use ordinary Rayleigh–Schrödinger perturbation theory to
express the overlaps in terms of matrix elements of φ:

|Ω〉 = |0〉 − λ
∞∑
N=1

∑
a1,...aN

2π

k
(N)
a !

(
N∏
i=1

∫ ∞
−∞

dϑi
2π

)
δ

(
N∑
i=1

pa,i

)
×

× F φ∗a1,...aN (ϑ1, . . . , ϑN )∑N
i=1Epa,i

|ϑ1, . . . , ϑN 〉a1,...aN +O(λ2) ,

(2.7)

where pa,i = mai sinhϑi and Epa,i = mai coshϑi, and mai is the mass of particle i that is
of type ai. The first order correction includes the following matrix element:

〈k|
∫

dxφ(x) |0〉 = 2πF φ∗a1,...aN (ϑ1, . . . , ϑN )δ

(
N∑
i=1

pa,i

)
, (2.8)

where |k〉 = |ϑ1, . . . , ϑN 〉a1,...aN and

F φa1,...aN (ϑ1, . . . , ϑN ) = 〈0|φ(0) |ϑ1, . . . , ϑN 〉a1,...aN (2.9)

is the N -particle form factor of the operator φ, while the Dirac-delta corresponds to mo-
mentum conservation.

The second order contribution can be written, using Eq. (B.4) of Appendix B, as

|Ω(2)〉 =

∞∑
N,M=1

∑
a1,...aN
b1,...bM

(2π)2

k
(N)
a !k

(M)
b !

(
N∏
i=1

∫ ∞
−∞

dϑi
2π

) M∏
j=1

∫ ∞
−∞

dϑ′j
2π

 δ

 M∑
j=1

p′b,j

×
×δ

 N∑
i=1

pa,i −
M∑
j=1

p′b,j

 F φ{ai},{bj}({ϑi − ıπ}, {ϑ
′
j})F

φ∗
{bj}({ϑ

′
j})∑n

i=1Epa,i
∑m

j=1Ep′b,j
|ϑ1, . . . , ϑN 〉{ai} − (2.10)

−
∞∑
N=1

∑
a1,...aN

2π

k
(N)
a !

(
N∏
i=1

∫ ∞
−∞

dϑi
2π

)
2πδ(0)δ

(
N∑
i=1

pa,i

)
〈φ〉F φ∗{ai}(ϑ1, . . . , ϑN )(∑N

i=1Epa,i

)2 |ϑ1, . . . , ϑN 〉{ai} ,

where a and b indices refer to particle species, while {ai} and {ϑi} denote a set of species
indices and rapidity variables, respectively. Note that this expression contains an explicit
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divergence δ(0) and the first form factor in the first term also has poles whenever ϑ′j = ϑi
for some i and j with ai = bj . The perturbed state is not normalised in this convention so
all quantities have to be divided by N = 1 +O(λ2). However, since we perform overlap cal-
culations up to O(λ2), the normalisation can be neglected as the leading order contribution
to any overlap is of O(λ). Consequently, the divergences can not be removed by dividing
with N . Instead, as shown in the following sections, they can be regularised by switching
to finite volume.

2.3 Finite volume regularisation

Divergences involving δ(0) originate from the volume integral in Eq. (2.6) and can be
handled by switching to finite volume L:∫ ∞

−∞
dxφ(x) −→

∫ L

0
dxφ(x) , (2.11)

where for simplicity we impose periodic boundary conditions. Using this prescription (2.8)
is modified as

〈k|
∫

dxφ(x) |0〉 = L 〈k|φ(0) |0〉L |pk=0 , (2.12)

where the L subscript signals that the matrix element is understood in finite volume and
pk = 0 makes it explicit that the eigenstate 〈k| has zero overall momentum.

When L is sufficiently large, the finite volume eigenstates can still be described as
multi-particle states with rapidities {ϑi} that are quantised according to the Bethe–Yang
equations:

Qi = mL sinhϑi +
∑
j 6=i

δ(ϑi − ϑj) = 2πIi , (2.13)

where the quantum numbers Ii are integers and

δ(ϑ) = −ı logS(ϑ) (2.14)

is the two-particle scattering phase-shift. As a result, the momentum integrals are replaced
by discrete sums running over the quantum numbers or, equivalently, the rapidities labelling
different states in finite volume. Matrix elements can be expressed by the finite volume form
factor formula [84]:

〈{ϑi}|φ |{ϑ′j}〉L =
F φ{ai},{aj}({ϑi − ıπ}, {ϑ

′
j})√

ρ{ai}({ϑi})
√
ρ{aj}({ϑ′j})

, (2.15)

where the ρ density factors are defined by the following determinant:

ρa1,...aN (ϑ1, . . . ϑN ) = det

(
∂Qk
∂ϑl

)
, k, l = 1, . . . N . (2.16)

Note that the N-particle density factor scales as O(LN ) with respect to the volume. Putting
everything together one obtains for the perturbative expansion up to second order in finite
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volume

|Ω〉L = |0〉L − λL
∞∑
N=1

(
s∏

a=1

1

k
(N)
a !

) ∑
{ϑ1,...ϑN}

δ∑N
i=1mai sinhϑi,0

×

× F φ∗a1,...aN ({ϑ1, . . . ϑN})√
ρa1,...aN (ϑ1, . . . ϑN )

∑N
i=1mai coshϑi

|{ϑ1, . . . ϑN}〉{ai},L +

+ λ2 |Ω(2)〉L +O(λ3) .

(2.17)

Although the first order correction seems to be proportional to L, the volume factor is
cancelled by the density factor of the finite volume states so the correction to the overlaps
is finite after taking the L→∞ limit. The second order correction has the explicit form

|Ω(2)〉L = L2
∞∑

N,M=1

∑
a1,...aN
b1,...bM

(
s∏

a=1

1

k
(N)
a !k

(M)
b !

) ∑
{ϑ1,...ϑN}

∑
{ϑ′1,...ϑ′M}

δ∑M
i=1mbj sinhϑ

′
j ,0
×

× δ∑N
i=1mai sinhϑi,

∑M
j=1mbj sinhϑ

′
j

〈{ϑ′j}|φ |0〉L 〈{ϑi}|φ |{ϑ′j}〉L∑N
i=1mai coshϑi

∑M
j=1mbj coshϑ′j

|{ϑi}〉{ai},L−

− L2
∞∑
N=1

∑
a1,...aN

(
s∏

a=1

1

k
(N)
a !

) ∑
{ϑ1,...ϑN}

δ∑N
i=1mai sinhϑi,0

〈φ〉L 〈{ϑi}|φ |0〉L(∑N
i=1mai coshϑi

)2 |{ϑi}〉{ai},L .
(2.18)

The divergence appears in the last term, since the density factor coming from the finite
volume matrix element is insufficient to suppress the L2 factor. However, the divergence is
cancelled by the disconnected part of the finite volume form factor, as shown below.

2.4 Results for one- and two-particle overlaps

2.4.1 One-particle overlaps

One-particle overlaps are obtained by taking the scalar product of the pre-quench vacuum
with a post-quench eigenstate containing a single stationary particle:

gi
2

= i 〈{0}|Ω〉 , (2.19)

where i 〈{0}| denotes a single-particle state of species i with zero rapidity. From Eq. (2.1)
the single-particle overlap can be expressed as

gi
2

= Ki(0) . (2.20)

For simplicity we suppress the species index here, the generalisation to the case of multiple
species is presented later. The amplitude g is connected to the finite volume scalar product
as [85]:

g

2
=
〈{0}|Ω〉L√

mL
, (2.21)
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where the factor of 1/
√
mL results from the relation between the normalisation of the

infinite and finite volume states. Using (2.17) we can read off the result of perturbation
theory up to the second order:

g

2
=

1√
mL

[
−λL F φ1

m
√
mL

+ λ2L2

(
− 〈φ〉F

φ
1

m2
√
mL

+ (2.22)

+
F φ1 F

φ
2 (ıπ, 0)

m2
√
mL
√
mL
√
mL

+
〈φ〉F φ1
m2
√
mL

+ . . .

)
+O

(
λ3
)]

,

where the ellipsis denote the contribution of higher multi-particle form factors and we used
the results for finite volume form factors derived in [84, 86]:

〈{0}|φ|0〉L =
F φ1√
mL

, 〈{0}|φ|{0}〉L =
F φ2 (ıπ, 0)√
mL
√
mL

+ 〈φ〉 . (2.23)

Note that the diagonal form factor includes a disconnected contribution, which exactly
cancels the divergent term appearing in the second order of perturbation theory. Eq. (2.22)
can be simplified in the form:

g

2
= −λF

φ
1

m2
+ λ2

(
F φ1 F

φ
2 (ıπ, 0)

m4
+ . . .

)
+O

(
λ3
)
, (2.24)

where the ellipses denote contributions from higher form factors, which can also be eval-
uated. The first such term corresponds to the {ϑ′j} = {−ϑ1, ϑ1} term in Eq. (2.18) and
reads

λ2L2

2

∑
ϑ1

F φ3 (ıπ,−ϑ1, ϑ1)F φ∗2 (−ϑ1, ϑ1)
mLρ2(ϑ1,−ϑ1)2m2 coshϑ1

, (2.25)

where ρ2 is the density factor defined in (2.16) and overall momentum conservation was used
to eliminate one of the rapidity summations. In the infinite volume limit the summation is
transformed into an integral ∑

ϑ1

→
∫

dϑ

2π
ρ̃(ϑ) , (2.26)

where ρ̃(ϑ) is the density of zero-momentum states, which can be obtained by enforcing
zero overall momentum on the Bethe–Yang equations (2.13):

ρ̃1(ϑ1) =
∂Q1(ϑ1, ϑ2)

∂ϑ1

∣∣∣∣
m sinhϑ1+m sinhϑ2=0

. (2.27)

The quotient of these two density factors yields

ρ̃(ϑ)

ρ2(ϑ,−ϑ)
=

1

mL coshϑ
. (2.28)

and so the powers of L cancel, leading to the infinite volume limit

λ2

2

∫
dϑ

2π

F φ3 (ıπ,−ϑ, ϑ)F φ∗2 (−ϑ, ϑ)

2m4 cosh2 ϑ
. (2.29)
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This expression contains another possible source of divergence due to kinematic poles of
the form factors (3.9) since F3(ıπ,−ϑ, ϑ) has a simple pole for ϑ → 0. However, F2 ∝ ϑ

for ϑ � 1 due to the two-particle S-matrix satisfying S(0) = −1 (this reflects an effective
exclusion statistics satisfied by these particles, see Eq. (3.7) below). So the product is regular
and the integral is well-defined. Adding this term to Eq. (2.24) results in:

g

2
= −λF

φ
1

m2
+ λ2

(
F φ1 F

φ
2 (ıπ, 0)

m4
+

1

2

∫
dϑ

2π

F φ3 (ıπ,−ϑ, ϑ)F φ∗2 (−ϑ, ϑ)

2m4 cosh2 ϑ
+ . . .

)
+O

(
λ3
)
.

(2.30)
The above considerations can easily be generalised to a theory with multiple particle species,
resulting in the following expression for the overlap of a particle of species a

ga
2

= −λF
φ
a

m2
a

+ λ2

(
s∑
b=1

F φb F
φ
ab(ıπ, 0)

m2
am

2
b

+

∑
b≤c

1

(2δbc)!

∫
dϑ

2π

F φabc(ıπ, ϑ, ϑbc)F
φ∗
bc (ϑ, ϑbc)

m2
a

(
mb cosh(ϑ) +

√
m2
c + (mb sinhϑ)2

)√
m2
c + (mb sinhϑ)2

+ conributions from higher form factors

)
+O

(
λ3
)
,

(2.31)

with

ϑbc = −arcsinh
(
mb sinhϑ

mc

)
, (2.32)

which is a straightforward generalisation of Eq. (2.30). Note that this expression is regular,
since Faac does not have a kinematic pole in the case a 6= c for ϑ → 0 due to Sac(0) = +1

for two different species a and c.

2.4.2 Two-particle overlaps

The next term in the expansion (2.1) corresponds to two-particle states with zero total
momentum. In the case of a single particle species, their contribution is characterised by a
single rapidity-dependent overlap function K(−ϑ, ϑ):

K(−ϑ, ϑ) = 〈{ϑ,−ϑ}|Ω〉 , (2.33)

which is related to the corresponding finite volume inner product by the relation [85]:

K(−ϑ, ϑ) =
ρ̃(ϑ) 〈{ϑ,−ϑ}|Ω〉L√

ρ2(ϑ,−ϑ)
. (2.34)
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The perturbative contributions to K(−ϑ, ϑ) can be easily read off from the n = 2 terms in
Eq. (2.17):

K(−ϑ, ϑ) =
ρ̃(ϑ)√
ρ2(ϑ,−ϑ)

[
− λL F φ∗2 (−ϑ, ϑ)

2m coshϑ
√
ρ2(ϑ,−ϑ)

+

+ λ2L2

(
−〈φ〉F φ∗2 (−ϑ, ϑ)

(2m coshϑ)2
√
ρ2(ϑ,−ϑ)

+
F φ1 F

φ∗
3 (ıπ,−ϑ, ϑ)

2m2 coshϑ
√
mL
√
mL
√
ρ2(ϑ,−ϑ)

+ . . .

)

+O
(
λ3
) ]

,

(2.35)

where the ellipses again correspond to higher multi-particle form factor contributions. Using

ρ̃(ϑ)

ρ2(ϑ,−ϑ)
=

1

mL coshϑ
(2.36)

we obtain

K(−ϑ, ϑ) = −λ F
φ∗
2 (−ϑ, ϑ)

2m2 cosh2 ϑ
+ λ2L

(
−〈φ〉F

φ∗
2 (−ϑ, ϑ)

4(m coshϑ)3
+
F φ1 F

φ∗
3 (ıπ,−ϑ, ϑ)

2m3 cosh2 ϑmL
+ . . .

)
+O

(
λ3
)
,

(2.37)
The above expression contains an apparent infinite-volume divergence; similarly to the one-
particle case, it is expected to cancel with the disconnected piece of the next term in the
form factor expansion. To verify this we consider the next term in the form factor expansion:∑

ϑ′>0

〈{ϑ,−ϑ}|φ|{−ϑ′, ϑ′}〉L 〈{ϑ′,−ϑ′}|φ|0〉L
4m2 coshϑ coshϑ′

, (2.38)

where a disconnected term appears for ϑ = ϑ′. In this case the relation between the finite
volume matrix element and the infinite volume form factors reads as [86]:

〈{ϑ,−ϑ}|φ|{−ϑ, ϑ}〉L =
1

ρ2(ϑ,−ϑ)

(
F φ,s4 (ıπ + ϑ, ıπ − ϑ,−ϑ, ϑ)+ (2.39)

+2mL coshϑF φ2 (ıπ, 0) + ρ2(ϑ,−ϑ) 〈φ〉
)
,

where the superscript s denotes that the form factor is evaluated symmetrically at ϑ = ϑ′,
i.e.

F φ,s4 (ıπ + ϑ, ıπ − ϑ,−ϑ, ϑ) = lim
ε→0

F φ4 (ıπ + ϑ+ ε, ıπ − ϑ+ ε,−ϑ, ϑ) , (2.40)

which is a regular expression [86, 87]. Note that the last term exactly cancels term propor-
tional to L in (2.37). The final result for the two-particle overlap is

K(−ϑ, ϑ) = −λ F
φ∗
2 (ϑ,−ϑ)

2m2 cosh2 ϑ
+ λ2

(
F φ1 F

φ∗
3 (ıπ,−ϑ, ϑ)

2m4 cosh2 ϑ
+
F φ∗2 (−ϑ, ϑ)F φ2 (ıπ, 0)

2m4 cosh4 ϑ
+

+
1

2

∫ ∞
−∞

dϑ′

2π

F φ,s4 (ıπ + ϑ, ıπ − ϑ,−ϑ′, ϑ′)F φ∗2 (−ϑ′, ϑ′)
4m4 cosh2 ϑ cosh2 ϑ′

+ . . .

)
+O

(
λ3
)
,

(2.41)
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The generalisation to multiple particle species is not as straightforward as in the case of one-
particle overlaps. The new feature is that in infinite volume divergent disconnected pieces
appear even when there is only one particle that appears with the same rapidity on both
sides. However, this cannot happen in finite volume, due to the quantisation of rapidities
according to Eq. (2.13) [86]. Consequently, it is necessary to be more careful when taking
the limit L→∞, cf. Appendix B.2.

The final result is

Kaa(−ϑ, ϑ) = −λ F
φ∗
aa (−ϑ, ϑ)

2m2
a cosh2 ϑ

+ λ2

(Nspec∑
b=1

F φb F
φ∗
baa(ıπ,−ϑ, ϑ)

2m2
a cosh2 ϑm2

b

+

+
F φ∗aa (−ϑ, ϑ)F φaa(ıπ, 0)

2m4
a cosh4 ϑ

+

Nspec∑
b=1

Dab(ϑ,−ϑ)+

+
∑

(c,d)6=(a,b)

1

(2δcd)!

∫ ∞
−∞

dϑ′

2π

F φ,saacd(ıπ + ϑ, ıπ − ϑ, ϑ′, ϑ′cd)F
φ∗
cd (ϑ′, ϑ′cd)

2m2
a cosh2 ϑ(mc coshϑ′ +md coshϑ′cd)mdcoshϑ′cd

+ . . .

)
+O

(
λ3
)
, (2.42)

for a pair composed of two particles in the same species a, and

Kab(ϑ, ϑab) = −λ
F φ∗ab (ϑ, ϑab)

Cab(ϑ, ϑab)
+ λ2

[Nspec∑
c=1

F φc F
φ∗
cab(ıπ, ϑ, ϑab)

m2
cCab(ϑ, ϑab)

+

+
F φ∗ab (ϑ, ϑab)

Cab(ϑ, ϑab)(ma coshϑ+mb coshϑab)

(
F φaa(ıπ, 0)

mb coshϑab
+
F φbb(ıπ, 0)

ma coshϑ

)
+

+Gaab(ϑ, ϑab) +Gbab(ϑ, ϑab)+

+
∑
c 6=a,b
d 6=a,b

1

(2δcd)!

∫ ∞
−∞

dϑ′

2π

F φ,sabcd(ıπ + ϑ, ıπ + ϑab, ϑ
′, ϑ′cd)F

φ∗
cd (ϑ′, ϑ′cd)

Cab(ϑ, ϑab)(mc coshϑ′ +md coshϑ′cd)md coshϑ′cd
+ . . .

]

+O
(
λ3
)
, (2.43)

for a pair composed of two particles in different species a 6= b, with the functions C, D, G
defined in Appendix B.2.

3 Testing ground: the E8 Ising field theory

Now we turn to putting our approach to quench overlaps to the test, for which we need a
model which satisfies the following important criteria. First, it must be rich enough to test
all aspects of our results; second, there must be enough information about its spectrum
and form factors for the evaluation of the analytic expressions for the overlaps and third,
it must be amenable to an effective alternative treatment.
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3.1 Action and particle spectrum

The model we consider is the scaling limit of critical Ising quantum spin chain in an ex-
ternal magnetic field, which can also be obtained as a relevant perturbation of the c = 1/2

Conformal Field Theory a.k.a. the massless free Majorana fermion:

A = ACFT, c=1/2 + h

∫
σ(x)d2x , (3.1)

where σ is the magnetisation field, which is a primary field of conformal weight (1/16, 1/16).
This model is integrable and its spectrum consists of eight stable particles [80] (labelled as
Ai, i = 1, .., 8), with the following masses [88]

m2 = 2m1 cos
π

5
, m3 = 2m1 cos

π

30
, m4 = 2m2 cos

7π

30
, m5 = 2m2 cos

2π

15
,

m6 = 2m2 cos
π

30
, m7 = 4m2 cos

π

5
cos

7π

30
, m8 = 4m2 cos

π

5
cos

2π

15
, (3.2)

where all masses are expressed in terms of the mass gapm1 (the mass of the lightest particle
A1) which is related to the coupling h as

m1 = (4.40490857 . . . )|h|8/15. (3.3)

The fundamental two-particle S-matrix describing the scattering process A1A1 → A1A1 is
given by

S11(ϑ) =

(
2

3

)
ϑ

(
2

5

)
ϑ

(
1

15

)
ϑ

(x)ϑ =
sinhϑ+ i sinπx

sinhϑ− i sinπx
, (3.4)

while those involving higher ones can be computed using the S-matrix bootstrap [87, 89].
The above spectrum is rich enough to test our results in detail, thus satisfying our first
condition stated above.

Another consequence of integrability is that the elementary form factors

FOi1...in(ϑ1, . . . , ϑn) = 〈0| O(0, 0) |ϑ1, . . . , ϑn〉i1...in , (3.5)

can be determined using the form factor bootstrap, for a review of which the interested
reader is referred to [90]. Matrix elements of the local operator between two general multi-
particle states can be obtained by crossing symmetry from the elementary ones. This pro-
vides enough information to evaluate our expressions for the overlaps, satisfying our second
condition.

The third condition is fulfilled by the fact that the quench dynamics of the model is
captured to a high precision by the Truncated Conformal Space Approach [70, 81].

3.2 Digression: form factor bootstrap in the E8 field theory

Due to integrability, the form factors of local operators of the E8 field theory satisfy the
so-called form factor bootstrap equations [90] which use the exact S-matrix as an input.
For completeness we give a list of these equations for the case of a non-degenerate mass
spectrum (corresponding to a scattering theory diagonal in species space):
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1. Lorentz invariance

F φn (ϑ1 + λ, . . . ϑn + λ) = esφλF φn (ϑ1, . . . ϑn) , (3.6)

where sφ is the Lorentz spin of the local field φ, which is zero for Lorentz scalars.

2. Exchange property

F φn (ϑ1, . . . ϑj , ϑj+1, . . . ϑn) = S(ϑj − ϑj+1)F
φ
n (ϑ1, . . . ϑj+1, ϑj , . . . ϑn) . (3.7)

3. Cyclic property

F φn (ϑ1, . . . ϑj , ϑn−1, ϑn + 2πi) = F φn (ϑn, ϑ1, . . . ϑn−1) . (3.8)

4. Kinematical singularities

− ı lim
ϑ̃→ϑ

(ϑ̃−ϑ)F φn+2(ϑ̃+ ıπ, ϑ, ϑ1, ϑ2, . . . ϑn) =

(
1−

n∏
i=1

S(ϑ− ϑi)

)
F φn (ϑ1, ϑ2, . . . ϑn) .

(3.9)

5. Bound state singularities

− ı lim
ϑab→ıucab

(ϑab − ıucab)F
φ
n+2(ϑa, ϑb, ϑ1, ϑ2, . . . ϑn) = ΓcabF

φ
n+1(ϑc, ϑ1, ϑ2, . . . ϑn) ,

(3.10)
with ϑab = ϑa − ϑb and ϑc = ϑa − ı(π − uabc) = ϑb + ı(π − ubac), where ucab is the
position of the bound state pole corresponding to the occurrence of particle Ac in the
scattering of Aa and Ab:

Sab(ϑ ∼ ıucab) ∼
ı(Γcab)

2

ϑ− ıucab
. (3.11)

In the above equations we suppressed the species indices which can easily be restored when
needed.

For the form factors containing only the lightest species A1, the first three conditions
can be satisfied by considering an Ansatz

F φn (ϑ1, ϑ2, . . . ϑn) = Hn
Λn(x1, . . . , xn)

(x1 . . . xn)n

n∏
i<j

Fmin
11 (ϑi − ϑj)

D11(ϑi − ϑj)(xi + xj)
(3.12)

with xi ≡ eϑj . Hn is a constant factor, Λn is a symmetric polynomial, the D11 factors ensure
the correct positions of the bound state poles, while kinematic poles are included in (xi+xj)

factors. The function Fmin
11 is the so-called minimal form factor that have no poles in the

strip Imϑ ∈ [0, 2π] and satisfies

Fmin
11 (ıπ − ϑ) = Fmin

11 (ıπ + ϑ) Fmin
11 (ϑ) = S11(ϑ) = Fmin

11 (−ϑ) . (3.13)

The kinematical and bound state equations then yield recurrence relations for the polyno-
mials Λn which can be solved inductively in particle number n. For the E8 model, solutions
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of these equations were previously constructed in [87] and later in [91]; the latter article
is accompanied with an explicit set of form factors at [92]. The available functions have
been used in a number of works [70, 84], providing strong evidence that they are correct.
Form factors involving higher species can be constructed by repeated use of the bound state
singularity equation.

However, for our purposes we need to construct more form factors than available in
the above sources. Unfortunately, the bound state recursive equation appearing in [87] has
some misprints. Therefore for the sake of clarity we present a detailed re-derivation of the
bound state recursion formula in Appendix A.1 using the Ansatz (3.12). The result is

Λn+2(xe
ıπ/3, xe−ıπ/3, x1, . . . , xn)

x4
∏n
i=1(x− e−11ıπ/15xj)(x− e11ıπ/15xj)(x+ xj)

= (−1)nΛn+1(x, x1, . . . , xn) (3.14)

with
Hn+2

Hn+1
=

Γ1
11

2 cos2(π/3) cos2(π/5) cos2(π/30)G11(2πı/3)

[
sin2(11π/30)γ

4 cos2(π/3) cos2(π/5) cos2(π/30)

]n
.

(3.15)
Once the constants Hn are fixed, a similar equation can be derived from the kinematic
singularity equation (3.9). The final expression is [87]

(−1)nΛn+2(−x, x, x1, . . . , xn) = AnU(x, x1, . . . , xn)Λn(x1, . . . , xn) (3.16)

with

U(x, x1, . . . , xn) =
1

2
x5

n∑
k1,k2,...,k6=0

(−1)k1+k3+k5x6n−(k1+···+k6) (3.17)

sin
( π

15
(10(k1 − k2) + 6(k3 − k4) + (k5 − k6))

)
ωk1 . . . ωk6 , (3.18)

and

An =
4γ sin2

(
11π
30

) (
cos
(
π
3

)
cos
(
π
5

)
cos
(
π
30

))2 (
G11

(
2πı
3

))2(
Γ1
11 sin

(
2π
15

)
sin
(
11π
30

)
sin
(
8π
15

)
sin
(
3π
10

))2
(

sin
(
2π
3

)
sin
(
2π
5

)
sin
(
π
15

)
8 sin4

(
11π
30

)
G11(0)γ2

)n
.

(3.19)
Following the procedure outlined in [87], these two equations can be used to obtain many-
particle form factors of the lightest particle, from which form factors containing heavier
species can be constructed. An example calculation is presented in Appendix A.2; in fact,
the computation process can be automated using a software capable of symbolic processing
such as e.g. Wolfram Mathematica. A useful shortcut is provided by including bound state
singularities involving two particles of either species A2 or A3. Using this approach we
constructed several new exact form factors which can be found in the following Mathematica
file;1 it is an extension of the results available in [92].

4 Comparison with TCSA

In this section we compare the results of the perturbation theory calculation performed in
the post-quench basis with the numerical overlaps extracted from the TCSA simulations.

1See the Supplementary Material; and also the ancillary file attached to the arXiv preprint.

– 14 –



4.1 Method and notations

The quenches considered in this section are governed by the following action:

A = ACFT, c=1/2 − hi
∫
σ(x)d2x− (hf − hi)

∫
σ(x)Θ(t)d2x , (4.1)

which corresponds to a sudden change of h from the initial hi to the final hf at t = 0,
expressed by the Heaviside function Θ(t). For t ≤ 0 the system is in the ground state of the
pre-quench Hamiltonian, which is the initial state of the out-of-equilibrium time evolution
which happens for t > 0.

To obtain a non-perturbative description of the quantum quench, we use the Truncated
Conformal Space Approach (TCSA) developed by Yurov and Zamolodchikov [94, 95], which
was shown to be an effective tool to describe the overlaps [69] and the time evolution [70, 81]
after a quantum quench in perturbed conformal (or free) field theories, including the Ising
Field Theory considered in the present work.

The method is based on the numerical diagonalisation of the finite volume Hamiltonian
matrix in the unperturbed basis, in our case in the conformal basis of the Ising CFT. In
the TCSA the finite volume matrix elements of the perturbing operator can be calculated
exactly using the conformal Ward identities [96], after mapping the space-time cylinder to
the conformal plane. For a detailed review of truncated space methods the interested reader
is referred to Ref. [97]. The Hamiltonian matrix corresponding to the action Eq. (3.1) for
t > 0 in finite volume R with periodic boundary conditions can be written on the plane in
the following dimensionless form

H/m1 = (HCFT +Hσ)/m1 =
2π

r

(
L0 + L̄0 − c/12 + h̃

r2−xσ

(2π)1−xσ
Mσ

)
. (4.2)

Here r = m1R is the dimensionless volume and h̃ = hmxσ−2
1 is the dimensionless magnetic

field [cf. Eq. (3.3)]. This means that all quantities are measured in the units of the gap
m1 of the above Hamiltonian. xσ = 1/8 is the scaling dimension of the field σ, L0 and
L̄0 are the standard Virasoro generators, c = 1/2 is the central charge of the Ising CFT,
and Mσ is the matrix of the perturbing operator. In finite volume the spectrum is discrete,
and the Hilbert space is truncated such that only states having energy lower than a given
cut-off Ecut are kept. The truncation is carried out on the level of the conformal field theory
spectrum where it is parameterised by the maximal conformal level,

Ncut =
R

2π
Ecut . (4.3)

Overlaps are computed by first determining the ground state of the pre-quench Hamiltonian
with h̃ = h̃i in (4.2), and then taking its scalar product with the eigenvectors of the post-
quench Hamiltonian with h̃f . This corresponds to the quench protocol described by Eq.
(4.1) which can be characterised by the dimensionless quench magnitude

ξ ≡
hf − hi
hf

. (4.4)
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We measure everything in appropriate powers of the post-quench mass gap m1, so the
perturbative parameter λ of Eqs. (2.31),(2.42),(2.43) is obtained by multiplying ξ with the
post-quench parameter hf . All the TCSA calculations are performed in finite volume, so in
order to compare the numerical results to the perturbative predictions it is convenient use
the finite volume normalisation of Eqs. (2.21) and (2.34).

The accuracy of the results obtained from TCSA can be improved by extrapolating in
the cut-off. The results have a power-law dependence in 1/Ncut with the leading and sub-
leading exponents determined by the conformal weights and the operator product algebra of
the perturbing operator(s) [70, 81, 98, 99]. For the E8 field theory, the leading dependence
of overlaps on the cut-off level can be expressed as

〈n|Ω〉TCSA = 〈n|Ω〉+AnN
−7/4
cut +BnN

−11/4
cut + . . . . (4.5)

The extrapolation was performed by first identifying the eigenstates at various cut-off levels
by comparing their energy and matrix elements obtained from TCSA with results following
from the Bethe–Yang equations (2.13), and the finite volume form factor formalism [84, 86].
For a state with some fixed multi-particle content and quantum numbers, the dependence
of its overlap with the pre-quench ground state was then fitted the with function in Eq.
(4.5), and the extrapolated result was identified as the constant term of the best fitting
function. This procedure worked remarkably well, however in some cases it was not possible
to eliminate the cut-off dependence of the overlaps, especially for two-particle states as
discussed later.

Let us remark that the overlap functions are defined up to a phase factor, since we can
freely choose the phase of any quantum state. The TCSA uses a basis in which all vectors
are real, consequently the overlaps obtained from this approach are also real. Thus the
comparison is performed such that we take the absolute value of Eqs. (2.31),(2.42),(2.43).

Before turning to the discussion of the comparison with TCSA calculations, let us
comment on the numerical evaluation of the perturbative formulae. We observe that the
contribution from the terms involving an integral over the momentum of a pair state is very
small in most of the cases. Consequently, we argue that the error we make by truncating
the form factor expansion at two-particle intermediate states is orders of magnitude smaller
than the main contributions in second order. This argument is supported by Appendix B.3.

4.2 Perturbative expansion against TCSA overlaps

Now we turn to the actual comparison of the perturbative results with the TCSA data for
the one-particle and two-particle overlaps.

4.2.1 One-particle overlaps

Let us start with the overlaps of the one-particle eigenstates. The result of the comparison
is presented in Fig. 4.1, where the numerical TCSA results are shown in dots and the first
and second order perturbative results are plotted in dashed and solid lines, respectively. It
is clear that the perturbative expression describes the overlaps very well for a quite wide
range of quench magnitudes. Note that Eq. (2.31) involves a sum over three-particle form
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Figure 4.1. Comparison between TCSA and perturbative overlaps of the lowest-lying four one-
particle states as functions of the quench magnitude ξ = (hf − hi)/hf for quenches along the E8

axis in volume m1R = 40. Dashed lines indicate the first-order predictions, and continuous lines
depict the sum of first two orders. TCSA data is shown by dots. The insets show the deviations of
the first and second order results from the numerical data.

factors which can only be evaluated in a truncated manner since the list of available form
factors is incomplete. The largest number of these form factors are accessible for the case
of the lightest particle A1, therefore the agreement is the best for this case and the domain
of validity almost covers the whole region of the plot. For heavier particles it is expected
that extending the set of available form factors would result in a better agreement with
TCSA data, although the domain of validity presumably remains smaller than for A1 (see
Table B.1). Note also that including the second order leads to a major improvement of the
agreement between the perturbative and TCSA results in almost all the parameter region
presented here.

4.2.2 Two-particle overlap functions

The multiple particle species present in the Ising Field Theory provide an opportunity to
observe both kinds of K functions calculated in Section 2. In this case we used the data
of quenches at a few different values of ξ and plotted the overlaps as functions of the
momentum parameterising the particle pair. Unfortunately, for most two-particle states
it was not possible to fit the overlaps obtained from TCSA with a cut-off dependence
resembling Eq. (4.5). As expected, for states with energy close to the cut-off and for overlaps

– 17 –



0.1 0.3 0.5 0.7

0.0006

0.0007

0.0008

First order

Second order

0.0 0.5 1.0 1.5 2.0 2.5

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

p/m1

|K11(p)|

r=30.
r=35.
r=40.
r=45.
r=50.
r=55.
r=60.
r=65.

Figure 4.2. Perturbative predictions against the TCSA data for the two-particle overlap K11 as
a function of the dimensionless momentum p1/m after a quench of size ξ = (hf − hi)/hf = 0.05.

The overlap was determined by TCSA using volumes m1R = 30 . . . 65, as the colours indicate.
Dashed lines correspond to the first-order predictions, and continuous lines depict the sum of first
two orders. The inset shows that adding the O(λ2) term improves the agreement considerably even
for this small quench.

obtained from TCSA in larger volume tended to produce less accurate fits than the others.
Consequently, we decided to present the two-particle data at the highest available cut-
off without extrapolation. Further comments and illustrations using some examples are
presented in Appendix C.

The comparison for the overlap function of a pair of the lightest particle is presented
in Fig. 4.2. which shows that the perturbative expansion performs well in matching the
numerical results of TCSA also for pair overlaps for a small quench with ξ = 0.05. The
change from first to second order is less spectacular as it was in the one-particle case,
but it still significantly improves the agreement. In addition, the second order correction
dramatically alters the qualitative behaviour of the overlap since it introduces a pole for zero
momentum. This is consistent with the results of the work [68] where it was demonstrated
that pair overlaps Kaa(p) have a pole whenever the one-particle overlap ga is non-vanishing,
and Eq. (2.42) correctly accounts for the expected residue of the pole in the leading order
of perturbation theory.

We can also explore the limitations of the perturbative description by increasing the
quench amplitude ξ, as illustrated in Fig. 4.3. Note that while the high-energy behaviour
is still captured correctly by the post-quench expansion, there is some observable devi-
ation at low momenta. Unfortunately, it was not possible to obtain TCSA data for low
enough momenta to investigate the presence of the pole, as that would require large volume
where TCSA becomes less accurate. Even so, the agreement shown in Fig. 4.3 is still quite
convincing.

It is also possible to compare the predictions for overlap functions of pair states of
heavier particles as well as that of pairs composed of different species. Fig. 4.4 illustrates
that, similar to the case of K11, the analytic prediction still agrees very well with the
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Figure 4.3. Numerical and analytical two-particle overlaps after quenches of size (a) ξ = 0.1

and (b) ξ = 0.2 along the E8 axis. The overlap was determined by TCSA using volumes in the
range m1R = 30 . . . 55. Conventions are as in Fig. 4.2. While at high energies TCSA results are
predicted correctly, the low-energy points tend to deviate further from the perturbative prediction
upon increasing the quench amplitude.
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Figure 4.4. Overlap functions of pairs of heavier particles after a quench of size ξ = 0.05 along the
E8 axis. Conventions are as in Fig. 4.2.

TCSA numerics, with the difference that the second order contribution plays a larger role
compared to that case shown in Fig. 4.2.

5 Perturbative expansion on the pre-quench basis

Instead of using the post-quench state as in Section 2.4, it is also possible to obtain a
perturbative expansion of the overlap functions by expanding the post-quench eigenstates
on the pre-quench basis. In contrast to the previous calculations where the task was to
obtain the correction to the pre-quench vacuum order by order, here it is necessary the
compute part of the perturbative correction to each eigenstate that is proportional to the
pre-quench ground state |Ω〉. However, the steps of the calculations are rather similar to the
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preceding ones so instead of a detailed calculation we focus on the results while commenting
on the differences.

5.1 One-particle overlaps

For the g amplitudes the major changes compared to Eq. (2.31) are in the denominators:
the energy differences appearing in the perturbative expansion are now with respect to the
one-particle mass instead of the vacuum. Cancellation of divergent parts is again due to
disconnected pieces. Apart from the energy denominators, the only difference appears in
the ordering of rapidities in the form factors. The final result is given by:

g
(0)
a

2
=− λF

φ
a

m2
a

− λ2
 Nspec∑
b=1,b 6=a

F φb F
φ
ab(ıπ, 0)

m2
amb(mb −ma)

+
F φaa(ıπ, 0)F φa

m4
a

+
∑
b≤c

1

(2δbc)!
× (5.1)

×
∫

dϑ

2π

F φbca(ıπ + ϑ, ıπ + ϑbc, 0)F φbc(ϑ, ϑbc)

m2
a

(
mb cosh(ϑ) +

√
m2
c + (mb sinhϑ)2 −ma

)√
m2
c + (mb sinhϑ)2

+ . . .


+O

(
λ3
)
,

where now all masses and form factors are those of the pre-quench theory. The dots in the
parenthesis indicate contributions of intermediate states with more than two particles. Note
that if ma > mb +mc then the denominator of integrand has a zero and the integrand has
a pole. This will occur for all one-particle states with mass ma > 2m1 in one or more such
integral terms. This pole is the consequence of a disappearing energy difference between
a one-particle state and the two-particle continuum in infinite volume. We postpone the
discussion of this singularity after presenting the two-particle overlaps.

5.2 Two-particle overlaps

Let us start with the discussion of the Kaa function. The first order contribution is simply

− λ F φaa(−ϑ, ϑ)

2m2
a cosh2(ϑ)

. (5.2)

The second order contribution is given as a sum over eigenstates [c.f. the third term of Eq.
(B.4)]. Inserting the vacuum yields a divergent term which is cancelled by the disconnected
piece of the fourth term, analogously to the argument in Section 2.4. The connected part
of that term disappears in the infinite volume limit due to the corresponding density factor
and therefore the only remaining term resulting from inserting vacuum is

− λ2

2

F φaa(ıπ, 0)F φaa(−ϑ, ϑ)

m4
a cosh4(ϑ)

. (5.3)

Moving forward and inserting the one-particle states yields

λ2

2

s∑
b=1

F φb F
π
baa(ıπ,−ϑ, ϑ)

m2
amb cosh2(ϑ)(2ma cosh(ϑ)−mb)

, (5.4)
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where the aforementioned pole manifests itself as a divergence of the pair overlap function
Kaa(ϑ) whenever there is a particle with mb > 2ma.

Proceeding to the insertion of two-particle states, we can consider inserting a pair of
particles Ab with b 6= a, in which case the form factor has no pole. In finite volume, the
corresponding contribution reads

λ2L2

2

∑
ϑ′

F φbb(−ϑ
′, ϑ′)F φbbaa(ıπ + ϑ′, ıπ − ϑ′,−ϑ, ϑ)

ρbb(ϑ′,−ϑ′)2ma coshϑ(2ma coshϑ− 2mb coshϑ′)maL coshϑ
. (5.5)

Note that the pole is only present in infinite volume since for any finite L there are no
exact degeneracies in the spectrum due to the Bethe-Yang equations (2.13). Hence one
might expect that the finite volume regularisation technique detailed in Section 2.3 is able
to treat its effect properly. In the limit L→∞ limit the energy difference can be zero at

ϑ∗ = arccosh
(
ma coshϑ

mb

)
. (5.6)

Note that ϑ∗ is imaginary if ϑ < arccosh(mb/ma). However, for larger ϑ the pole is on the
real axis. Eq. (5.5) can be rewritten as

λ2

8

∑
ϑ′

F φbb(−ϑ
′, ϑ′)F φbbaa(ıπ + ϑ′, ıπ − ϑ′,−ϑ, ϑ)

ρ̃b(ϑ′)m2
amb coshϑ′ cosh2 ϑ(ma coshϑ−mb coshϑ′)

. (5.7)

The sum can be represented as a sum of contour integrals using (cf. Appendix B.2)∑
ϑ′

f(ϑ′)

ρ̃b(ϑ′)
=
∑
ϑ′

∮
ϑ′

dϑ

2π

−f(ϑ)

1 + eıQ̃b(ϑ)
, (5.8)

where f(ϑ) is assumed to be regular at ϑ′, the contours encircle the ϑ′ values on the real
axis that are given by the quantisation condition

Q̃b(ϑ
′) = mbL sinhϑ′ + δbb(2ϑ

′) = 2πJ , (5.9)

where J is a half-odd integer. The contours can be joined into two infinite lines below and
above the real axis. On the first the integrand vanishes in the infinite volume limit while
the second one yields

λ2

8

∫ ∞+ıε

−∞+ıε

dϑ′

2π

F φbb(−ϑ
′, ϑ′)F φbbaa(ıπ + ϑ′, ıπ − ϑ′,−ϑ, ϑ)

m2
amb cosh2 ϑ coshϑ′(ma coshϑ−mb coshϑ′)

. (5.10)

When joining the contours, it is necessary to subtract the residue of the pole at ϑ = ϑ∗,

λ2

8

ıF φbb(−ϑ∗, ϑ∗)F
φ
bbaa(ıπ + ϑ∗, ıπ − ϑ∗,−ϑ, ϑ)

m2
amb cosh2 ϑ coshϑ′mb sinhϑ∗(1 + eıQ̃b(ϑ∗))

. (5.11)

(for a detailed calculation, see Appendix B.2.) Even though the result is finite, it does not
have a L → ∞ limit due the factor eıQ̃b(ϑ∗) ∼ eımbL sinhϑ∗ Consequently, the sum in (5.7)
still fails to have a well-defined infinite volume limit.
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Therefore the singularities corresponding to vanishing energy denominators are in-
tractable by the method of finite volume regularisation. One may try other ways to cir-
cumvent this problem and arrive at a regular expression well defined in the L → ∞ limit,
however we failed in all our attempts so far. So the proper treatment of these singularities
remains an interesting open question.

Nevertheless, there exists particular quenches which are free of the complications dis-
cussed above. If the matrix elements of the operator φ are proportional to the energy of
the involved states, the divergence is cancelled and the sum can be readily transformed to
an integral. This is precisely what happens for quenches presented in Section 4 where the
perturbing operator is σ(x) which is proportional to the trace of the energy-momentum
tensor [87], and as a consequence all of its form factors are proportional to the total energy
of the appropriate states.

This can also be intuitively understood by noting that in general the pre-quench basis
is not an optimal choice to express the time evolution of the post-quench Hamiltonian. For
example, heavy particles whose kinematically allowed decays in the pre-quench system are
only prohibited by integrability become unstable. These particles are expected to acquire a
finite lifetime which is reflected by the divergent terms of the perturbative series and there-
fore requires a resummation which is expected to shift the singularity away from the real
axis. Similarly, two-particle states acquire a finite lifetime due to inelastic processes. The
situation is radically different for quenches in the direction of the original σ perturbation.
Such a protocol is simply equivalent to a rescaling of parameters describing the spectrum,
but its structure remains intact. Accordingly, one does not expect divergences in perturba-
tion theory and in fact, they are absent – apart from the ones tractable with the method
of finite volume regularisation.

Assuming such a quench protocol one obtains the following results for overlaps with
pair of two particles of the same species:

K(0)
aa (−ϑ, ϑ) = −λ F

φ
aa(−ϑ, ϑ)

2m2
a cosh2 ϑ

+ λ2

(Nspec∑
b=1

F φb F
φ
baa(ıπ,−ϑ, ϑ)

2m2
a cosh2 ϑmb(2ma coshϑ−mb)

+ (5.12)

+
F φaa(−ϑ, ϑ)F φaa(ıπ, 0)

2m4
a cosh4 ϑ

+

Nspec∑
b=1

D
(0)
ab (ϑ,−ϑ)+

+
∑

(c,d)6=(a,b)

1

(2δcd)!

∫ ∞
−∞

dϑ′

2π

F φ,s∗aacd(ıπ + ϑ, ıπ − ϑ, ϑ′, ϑ′cd)F
φ
cd(ϑ

′, ϑ′cd)

2m2
a cosh2 ϑ(2ma coshϑ− E(0)

cd (ϑ′))mdcoshϑ′cd

+ . . .

)
+O

(
λ3
)
,
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while for a pair composed of particles of different species the result is

K
(0)
ab (ϑ, ϑab) = −λ

F φab(ϑ, ϑab)

C
(0)
ab (ϑ, ϑab)

+ λ2

(Nspec∑
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F φc F
φ
cab(ıπ, ϑ, ϑab)

mc(E
(0)
ab (ϑ)−mc)C

(0)
ab (ϑ, ϑab)

− (5.13)

−
F φab(ϑ, ϑab)

C
(0)
ab (ϑ, ϑab)E

(0)
ab (ϑ)

(
F φaa(ıπ, 0)

mb coshϑab
+
F φbb(ıπ, 0)

ma coshϑ

)
+G

b(0)
ab (ϑ, ϑab) +G

a(0)
ab (ϑ, ϑab)+

+
∑
c 6=a,b
d6=a,b

1

(2δcd)!

∫ ∞
−∞

dϑ′

2π

F φ,s∗abcd (ıπ + ϑ, ıπ + ϑab, ϑ
′, ϑ′cd)F

φ
cd(ϑ

′, ϑ′cd)

C
(0)
ab (ϑ, ϑab)(E

(0)
ab (ϑ)− E(0)

cd (ϑ′))md coshϑ′cd

+ . . .

)
+O

(
λ3
)
,

where E(0)
ab (ϑ) = ma coshϑ+mb coshϑab is the (pre-quench) energy of an Aa −Ab particle

pair with zero overall momentum. The C, D, and G functions can be simply transformed to
the pre-quench basis by replacing the corresponding quantities in the definitions of Appendix
B.2.

5.3 Comparison with TCSA

Similarly to the pre-quench expansion, the results of the pre-quench expansion can be
compared to TCSA numerics. There are two main points of interest. First, for the quenches
considered in Section 4 one can compare both the pre- and post-quench expansions to TCSA
at the same time. Second, the pre-quench calculation only requires the knowledge of the
pre-quench spectrum and form factors and so it can also be used for the case when the
post-quench dynamics is governed by a non-integrable Hamiltonian. In the latter case, the
comparison is more limited since to avoid the unresolved singularities the states for which
the overlap is considered must be below the continuum, i.e. the two-particle threshold.
Nevertheless, it is still worthwhile to perform such an examination.

5.3.1 Integrable post-quench dynamics

We begin with the presentation of results for the case of integrable post-quench dynamics.
Overlaps for the first four one-particle states are presented in Fig. 5.1. The behaviour of
the pre-quench expansion is very similar the post-quench expansion with the exception of
a slightly narrower domain of validity. The insets show that for |ξ| < 0.2 the post-quench
result is very accurate, while for the heavier particle overlaps the pre-quench perturbative
expansion becomes less accurate in this region.

Fig. 5.2 shows the results for two-particle overlaps. Within the perturbative region
both expansions closely resemble each other and both provide an accurate description of
the TCSA data.

5.3.2 Non-integrable post-quench dynamics

Finally, let us turn to the discussion of quenches from an integrable pre-quench Hamiltonian
to a non-integrable post-quench one. They were implemented by adding the other Ising
primary ε(x) field with scaling dimension xε = 1 to the action (4.1).

A = ACFT, c=1/2 − h
∫
σ(x)d2x− M

2π

∫
ε(x)Θ(t)d2x , (5.14)
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Figure 5.1. Comparison between TCSA overlaps of the lightest four one-particle states and two
different perturbative expansions as functions of the quench magnitude ξ for quenches along the
E8 axis in volume m1R = 40. Dashed lines indicate the first-order predictions of the post-quench
expansion and continuous lines depict the sum of the first two orders. The pre-quench result up
to the first and second order is shown in dotted and dot-dashed lines, respectively. TCSA data is
shown by dots. Inset: second order results vs. TCSA for |ξ| < 0.2.

For h = 0 this action describes a free massive fermion of mass |M | [100, 101]. Positive M
corresponds to the ferromagnetic phase, while M < 0 is the paramagnetic direction. In
the vicinity of the h = 0 axis in the ferromagnetic phase M > 0 the spectrum is shaped
by the weak confinement of the free fermionic excitations as described by the McCoy–Wu
scenario [102]. The interpolation between the E8 spectrum corresponding to M = 0, h > 0

and the free fermionic excitations for h = 0 in both phases was the subject of a thorough
quantitative analysis in Refs. [103, 104].

The position in theM−h parameter space can be characterised with the dimensionless
combination

η =
M

|h|8/15
, (5.15)

which can be taken as the parameter describing the magnitude of the quench. In the fol-
lowing we work in units of m1 given by Eq. (3.3) using the coupling h in the integrable
pre-quench model, i.e. the mass gap of the pre-quench system. There is an additional mod-
ification to the earlier comparison: when we calculate the finite volume normalisation of
TCSA data given by Eqs. (2.21) we have to use the post-quench masses. These can be ob-
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Figure 5.2. Predictions of the two perturbative expansions against the TCSA data for the two-
particle overlaps K11 and K12 as functions of the dimensionless momentum p/m1 after a quench of
size ξ = 0.05 in volume (a) m1R = 30 . . . 65 and (b) m1R = 30 . . . 55. The two expansions almost
completely agree. The inset illustrates that the post-quench expansion is slightly closer to TCSA
data.

tained from TCSA using a cut-off extrapolation scheme similar to the case of the overlaps
(see Appendix C).

The overlaps of the first two one-particle states are excellently captured by the per-
turbative expansion. The third particle shows an asymmetry in terms of agreement with
TCSA data: we observe a small deviation from the perturbative result in the ferromagnetic
direction, but a sizeable difference in the paramagnetic region. This can be understood in
the light of the instability of the third particle in the paramagnetic regime. As η decreases,
it crosses a threshold value η3 = −0.138 where m3 becomes smaller than 2m1, so the cor-
responding particle state becomes unstable for η < η3 [104]. This is a non-perturbative
phenomenon which is reflected by the deviation of TCSA data from the perturbative pre-
diction, observable even for small negative η.

6 Conclusions

In this work we used perturbation theory to construct overlaps of post-quench eigenstates
with the ground state of the pre-quench Hamiltonian for quenches between integrable and
close to integrable Hamiltonians. As a testing ground for our approach, we used quenches
in the scaling Ising Field Theory (IFT).

The first approach we developed is based on a perturbative expansion of the initial
state in the basis of post-quench eigenstates. This approach is effective when the post-quench
dynamics is integrable, since then the required matrix elements can be expressed in terms of
form factors which can often be constructed exactly using the form factor bootstrap. Naive
application of ordinary non-degenerate perturbation theory leads to divergences which can
be handled by putting the system in finite volume using the formalism developed in [84, 86].
Separating the contributions of connected and disconnected parts yields a finite result for
the overlap functions. In practice, we performed this procedure for states consisting of at
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Figure 5.3. The overlaps of the three lowest-lying one-particle states for non-integrable quenches
as functions of η (5.15) compared with TCSA data for mpre

1 R = 40. Adding the second order yields
better agreement in all cases. We observe sizeable deviation only in the case of the third particle
in the paramagnetic direction due to the state becoming unstable, i.e. m3 > 2m1, as it is shown in
the bottom right panel. The stability threshold η3 = −0.138 is indicated by a blue grid line.

most two particles up to second order in perturbation theory. The second order contribution
is eventually expressed as an infinite sum of form factors which can however be truncated
due to its excellent convergence properties. To reduce the residual error from truncating the
sum over multi-particle intermediate states, we extended the construction of form factors
in the IFT beyond the results derived in Refs. [87, 91]. The numerical evaluation of the
perturbative formulae established that the second order contribution is nearly complete
using the available form factors (see Appendix B.3).

The validity of our perturbative calculation can be checked by comparison with numer-
ical simulations of quenches in the Ising Field Theory obtained by the Truncated Conformal
Space Approach. This method provides an accurate description of the dynamics for vari-
ous quenches [70, 81]. The post-quench perturbative expansion was shown to agree with
the TCSA results to a very high precision over a wide range of the parameter describing
the magnitude of the quench. This was also the case for overlaps with two-particle states
composed of particles of different species which violate the property (2.5) of integrable ini-
tial states. This provides further support for the claim that the quench is not necessarily
integrable even if both the pre-quench and post-quench dynamics are [78, 79]. The results
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for the pair overlap function also showed the appearance of the zero-momentum pole for
Kaa(p), which was proved to hold generally if there is non-zero overlap with one-particle
states [68].

The second approach we examined used perturbation theory in the pre-quench basis.
This approach is effective when the pre-quench dynamics is integrable, and is directly related
to a recently suggested perturbative approach to describe the post-quench dynamics [78, 79].
In principle, this allows for the post-quench system to be non-integrable and the study of
the effects of integrability breaking on the non-equilibrium dynamics. However, it turned
out that the approach ran into difficulties for overlaps of states lying in the multi-particle
continuum due to the presence of energy poles in the perturbative expansion, precluding
a well-defined infinite volume limit. This difficulty is only absent for quenches with inte-
grable post-quench dynamics, where the pre-quench expansion yields results very similar to
the post-quench one. However, for quenches to a non-integrable post-quench Hamiltonian,
only the overlaps for the lowest-lying states can be constructed using this approach. For
such overlaps we found good agreement with the numerical TCSA data, where the main
limitation is posed by the instability of the third lightest particle. It is desirable to extend
the applicability of this method as it would provide access to quenches where time evolu-
tion is governed by a non-integrable Hamiltonian; however, this requires a resolution of the
singularities appearing for states in the multi-particle continuum.
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A Some form factor computations

A.1 Derivation of the bound state recursive relation

To construct solutions to the form factor equations, one takes the following Ansatz for the
n-particle form factors containing only the lightest particle:

F φn (ϑ1, ϑ2, . . . ϑn) ≡ F φ1...1︸︷︷︸
n

(ϑ1, ϑ2, . . . ϑn)

= Hn
Λn(x1, . . . , xn)

(ωn(x1, . . . , xn))n

n∏
i<j

Fmin
11 (ϑi − ϑj)

D11(ϑi − ϑj)(xi + xj)
,

(A.1)
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where x ≡ exp(ϑ) and ωn denotes the elementary symmetric polynomials generated by

n∏
k=1

(x+ xk) =
n∑
j=0

xn−jωj(x1, . . . , xn) , (A.2)

and Hn is a constant factor. The operator-dependence is carried by Λn(x1, . . . , xn) that
is an n-variable symmetric polynomial that can be expressed in terms of the elementary
symmetric polynomials ω.

Using the above Ansatz, Eqs. (3.9) and (3.10) yield recurrence relations for the Λn.
Here we derive the recursion corresponding to the bound state pole equation (3.10) which
can be written as

− ı lim
ϑab→2ıπ/3

(ϑab − 2ıπ/3)Hn+2
Λn+2(xa, xb, x1, . . . , xn)

(ωn+2)n+2
×

×
n∏
i=1

Fmin
11 (ϑa − ϑj)Fmin

11 (ϑb − ϑj)
D11(ϑa − ϑj)D11(ϑb − ϑj)(xa + xj)(xb + xj)

Fmin
11 (ϑa − ϑb)

D11(ϑa − ϑb)(xa + xb)
= (A.3)

= Γ1
11Hn+1

Λn+1(xc, x1, . . . , xn)

(ωn+1)n+1

n∏
i=1

Fmin
11 (ϑc − ϑj)

D11(ϑc − ϑj)(xc + xj)
.

We can parameterise ϑa = ϑ+ ıπ/3, ϑb = ϑ− ıπ/3 and ϑc = ϑ. The bound state poles are
encoded in the factors D11 which can be expressed as

D11(ϑ) = P2/3(ϑ)P2/5(ϑ)P1/15(ϑ) , (A.4)

where
Pγ(ϑ) =

cos(πγ)− cosh(ϑ)

2 cos2
(πγ

2

) . (A.5)

The residue can be calculated using l’Hospital’s rule,

− ı lim
ϑab→2ıπ/3

(ϑab − 2ıπ/3)P2/3(ϑab) =
2 cos2(π/3)

sin(2π/3)
, (A.6)

resulting in

2 cos2(π/3)

sin(2π/3)

Hn+2

Hn+1

Λn+2(xe
ıπ/3, xe−ıπ/3, x1, . . . , xn)

(ωn+2)n+2
×

×
n∏
i=1

Fmin
11 (ϑ+ ıπ/3− ϑj)Fmin

11 (ϑ− ıπ/3− ϑj)
D11(ϑ+ ıπ/3− ϑj)D11(ϑ− ıπ/3− ϑj)(xeıπ/3 + xj)(xe−ıπ/3 + xj)

×

Fmin
11 (2πı/3)

P2/5(2πı/3)P1/15(2πı/3)(xeıπ/3 + xe−ıπ/3)
=

= Γ1
11

Λn+1(x, x1, . . . , xn)

(ωn+1)n+1

n∏
i=1

Fmin
11 (ϑ− ϑj)

D11(ϑ− ϑj)(x+ xj)
. (A.7)

The minimal form factor can be written in the form

Fmin
11 (ϑ) = −ı sinh(ϑ/2)G2/3(ϑ)G2/5(ϑ)G1/15(ϑ) . (A.8)
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where the functions

Gλ(ϑ) = exp

2

∞∫
0

dt

t

cosh (λ− 1/2) t

cosh t
2 sinh t

sin2 (ıπ − ϑ)t

2π

 (A.9)

satisfy several functional identities [87], of which the following two are especially important:

Gλ(ϑ+ ıπα)Gλ(ϑ− ıπα) =
Gλ(ıπα)Gλ(−ıπα)

Gλ+α(0)Gλ−α(0)
Gλ+α(ϑ)Gλ−α(ϑ) , (A.10)

G1−λ(ϑ)Gλ(ϑ) =
sinh(1/2(ϑ− ı(λ− 1)π)) sinh(1/2(ϑ+ ı(λ+ 1)π))

sin2(πλ/2)
. (A.11)

We can then compute

Fmin
11 (ϑ+ ıπ/3− ϑj)Fmin

11 (ϑ− ıπ/3− ϑj)
Fmin
11 (ϑ− ϑj)

=

1

γ

∏
σ1,σ2=±

sinh((ϑ− ϑj)/2 + ıπσ1/6)
sinh

(
1
2(ϑ− ϑj + 4ıπσ2/15)

)
sin2(11π/30)

, (A.12)

where we used the identity G1(ϑ) = −ı sinh(ϑ/2), and denoted

1

γ
≡
∏
σ1,σ2=±G1/15(σ1ıπ/3)G2/5(σ2ıπ/3)G2/3(2ıπ/3)G2/3(0)

G1(ıπ/3)G1/3(ıπ/3)G11/15(0)G1/15(0)G2/5(0)G−4/15(0)
. (A.13)

Introducing further the function

G11(ϑ) = G1/15(ϑ)G2/5(ϑ)G2/3(ϑ) , (A.14)

one obtains

Hn+2

Hn+1

Λn+2(xe
ıπ/3, xe−ıπ/3, x1, . . . , xn)

xn+4ωn

G11(2πı/3)

P2/5(2πı/3)P1/15(2πı/3)
×

×
n∏
i=1

∏
σ1,σ2=± sinh((ϑ− ϑj)/2 + ıπσ1/6) sinh

(
1
2(ϑ− ϑj + 4ıπσ2/15)

)
D11(ϑ+ ıπ/3− ϑj)D11(ϑ− ıπ/3− ϑj)(xeıπ/3 + xj)(xe−ıπ/3 + xj) sin2(11π/30)γ

=

=
1

2 cos2(π/3)
Γ1
11Λn+1(x, x1, . . . , xn)

n∏
i=1

1

D11(ϑ− ϑj)(x+ xj)
. (A.15)

Considering now the D factors

D11(ϑ+ ıπ/3− ϑj)D11(ϑ− ıπ/3− ϑj)
D11(ϑ− ϑj)

=

=

∏
σ1,σ2,σ3=± P2/3(ϑ+ ıπσ1/3− ϑj)P2/5(ϑ+ ıπσ2/3− ϑj)P1/15(ϑ+ ıπσ3/3− ϑj)

P2/3(ϑ− ϑj)P2/5(ϑ− ϑj)P1/15(ϑ− ϑj)
(A.16)

and using the identity

cos(πγ)− cosh(ϑ) = 2 sin((ıϑ− πγ) /2) sin((ıϑ+ πγ) /2) ≡
∏
σ=±

2 sin((ıϑ+ πγσ) /2) ,

(A.17)
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Eq. (A.16) can be simplified as

D11(ϑ+ ıπ/3− ϑj)D11(ϑ− ıπ/3− ϑj)
D11(ϑ− ϑj)

=

=
∏

σ1,σ2=±
sin
( ı

2
(ϑ− ϑj) + πσ1/2

)
sin
( ı

2
(ϑ− ϑj) + πσ2/6

)
×

×
∏
σ3,σ4=± sin

(
ı
2(ϑ− ϑj) + 2πσ3/15

)
sin
(
ı
2(ϑ− ϑj) + 11πσ4/30

)∏
σ=± cos2(π/3) cos2(π/5) cos2(π/30) sin

(
ı
2(ϑ− ϑj) + πσ/3

) . (A.18)

Using

P2/5(2πı/3)P1/15(2πı/3) =
sin 8π

15 sin 2π
15 sin 3π

10 sin 11π
30

cos2(π/5) cos2(π/30)
(A.19)

and the identity∏
σ=±

sin
( ı

2
(ϑ− ϑj) + σπγ/2

)
= − 1

4xxj
(x− e−ıπγxj)(x− eıπγxj) , (A.20)

the final form of the recurrence relation is:

Λn+2(xe
ıπ/3, xe−ıπ/3, x1, . . . , xn)

x4
∏n
i=1(x− e−11ıπ/15xj)(x− e11ıπ/15xj)(x+ xj)

= (−1)nΛn+1(x, x1, . . . , xn) , (A.21)

provided the Hn are chosen to satisfy

Hn+2

Hn+1
=

Γ1
11

2 cos2(π/3) cos2(π/5) cos2(π/30)G11(2πı/3)
×

×
[

sin2(11π/30)γ

4 cos2(π/3) cos2(π/5) cos2(π/30)

]n
. (A.22)

A.2 Form factors involving higher species from bound state equations

Form factors involving species other than A1 can be obtained using the bound state singu-
larity equation (3.10). Consider a particle Ac that is the bound state of two A1 particles,
then the relevant singularity takes the form

− ı lim
ϑab→ıuc11

(ϑab − ıuc11)F
φ
n+2(ϑa, ϑb, ϑ1, ϑ2, . . . ϑn) = Γc11F

φ
c,n(ϑc, ϑ1, ϑ2, . . . ϑn) , (A.23)

where the index n is a short-hand for n particles of type A1.
For form factors containing particles of different species, the Ansatz (A.1) must be

generalised to the form

F φa1,a2,...an(ϑ1, ϑ2, . . . ϑn) = Qφa1,a2,...an(x1, . . . , xn)
n∏
i<j

Fmin
ai,aj (ϑi − ϑj)

Dai,aj (ϑi − ϑj)(xi + xj)
δai,aj

,

(A.24)
where the Dab factors ensure the correct position of the bound state poles, the functions
Fmin
ab are minimal form factors that have no poles in the strip Imϑ ∈ [0, π] and satisfy

Fmin
ab (ıπ − ϑ) = Fmin

ab (ıπ + ϑ) Fmin
ab (ϑ) = S11(ϑ) = Fmin

ab (−ϑ) (A.25)
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δa,b is the Kronecker delta, and

Qa1,...,an(x1, . . . , xn) =

α′′1∑
α1=α′1

· · ·
α′′n∑

αn=α′n

dα1,...,αn
a1,...an x

α1
1 . . . xαnn (A.26)

is a polynomial symmetric under exchange of particles of the same species and its degree
is constrained by the asymptotic behaviour of the form factors [91]. Using this Ansatz Eq.
(A.23) can be written as

− ı lim
ϑab→ıuc11

(ϑab − ıuc11)Q
φ
n+2(xa, xb, x1, . . . , xn)×

×
n∏
i=1

Fmin
11 (ϑa − ϑj)Fmin

11 (ϑb − ϑj)
D11(ϑa − ϑj)D11(ϑb − ϑj)(xa + xj)(xb + xj)

Fmin
11 (ϑa − ϑb)

D11(ϑa − ϑb)(xa + xb)
= (A.27)

= Γc11Q
φ
c,n(xc, x1, . . . , xn)

n∏
i=1

Fmin
c1 (ϑc − ϑj)
Dc1(ϑc − ϑj)

.

For definiteness we choose the pole at 2ıπ/5 which corresponds to the particle A2 (the other
pole at ıπ/15 corresponding to A3 can be handled similarly). The residue can be computed
using

− ı lim
ϑab→2ıπ/5

(ϑab − 2ıπ/5)P2/5(ϑab) =
2 cos2(π/5)

sin(2π/5)
, (A.28)

which leads to

Qφn+2(xe
ıπ/5, xe−ıπ/5, x1, . . . , xn)

sin(π/5)G11(2ıπ/5) cos(π/5)

P2/3(2ıπ/5)P1/15(2ıπ/5)x sin(2π/5)
×

×
n∏
i=1

∏
σ=± F

min
11 (ϑ− ϑj + ıπσ/5)D12(ϑ− ϑj)∏

σ′=± F
min
12 (ϑ− ϑj)D11(ϑ− ϑj + ıπσ′/5)(xeıπ/5 + xj)(xe−ıπ/5 + xj)

= Γ2
11Q

φ
2,n(x, x1, . . . , xn) . (A.29)

Using the identities (A.11) the form factor product simplifies once again, leading to an
analogous calculation to that detailed above. The final result reads

Qφn+2(xe
ıπ/5, xe−ıπ/5, x1, . . . , xn)

∏n
i=1

∏
σ=±(x− e4ıπσ/5xj)

x
∏n
i=1

∏
σ1,σ2=±(x− e13ıπσ1/15xj)(x+ xjeıπσ2/5)

=

= −(C2)
−n sin(π/5) sin 8π

15 sin 7π
30 sin π

6 sin 2π
15

sin(2π/5) cos2(π/3) cos(π/5) cos2(π/30)G11(2ıπ/5)
Γ2
11Q

φ
2,n(x, x1, . . . , xn)

(A.30)

with

C2 =
(cos4(π/3) cos4(π/5) cos4(π/30))γ2

cos2(2π/15) cos2(7π/30) cos2(3π/10) cos2(2π/5) sin2(13π/30)
(A.31)

and

γ2 =

∏
σ1,σ2,σ3=±G1/15(σ1ıπ/5)G2/5(σ2ıπ/5)G2/3(σ3ıπ/5)

G13/15(0)G7/15(0)G3/5(0)G1/5(0)G−2/15(0)G4/15(0)
. (A.32)
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B Perturbative calculations

B.1 Rayleigh–Schrödinger expansion

Taking a Hamiltonian H = H0 + λV , its spectrum and the eigenstates can be found using
Rayleigh–Schrödinger perturbation theory based on the Hamiltonian H0 with eigenstates
|n(0)〉,

H0 |n(0)〉 = E(0)
n |n(0)〉 , (B.1)

expressed as a power series in λ:

En =E(0)
n + λE(1)

n + λ2E(2)
n + . . . , (B.2)

|n〉 = |n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ . . . , (B.3)

where the ellipses denote higher order contributions in λ. Here we only need the expansion
for the eigenstates which to second order takes the form

|n〉 = |n(0)〉+ λ
∑
k 6=n

〈k(0)|V |n(0)〉
E

(0)
n − E(0)

k

|k(0)〉+ λ2

[∑
k 6=n

∑
l 6=n

〈l(0)|V |k(0)〉 〈k(0)|V |n(0)〉
(E

(0)
n − E(0)

k )(E
(0)
n − E(0)

l )
|l(0)〉

−
∑
k 6=n

〈n(0)|V |n(0)〉 〈k(0)|V |n(0)〉
(E

(0)
n − E(0)

k )2
|k(0)〉

]
+O(λ3) . (B.4)

Note that the resulting expression for the states is not normalised. Quantities expressed
on this basis must be normalised by dividing with the norm of the ground state, which
is N = 1 + O(λ2). However, for our calculations up to O(λ2) this is irrelevant since the
leading order of the overlaps is always O(λ).

B.2 Dealing with disconnected pieces

B.2.1 The case Kaa(ϑ)

Disconnected contributions appear in the second order of perturbation theory, the rele-
vant contributions can be extracted from Eq. (2.35). Restoring particle labels the relevant
contribution to Kaa(ϑ,−ϑ) is given as

Dab(ϑ,−ϑ) ≡ ρ̃a(ϑ)√
ρaa(ϑ,−ϑ)

λ2L2
∑
ϑ′

ab 〈{ϑ′, ϑ′ab}|φ|0〉L aa 〈{ϑ,−ϑ}|φ|{ϑ′, ϑ′ab}〉ab,L
2ma coshϑ(ma coshϑ′ +mb coshϑ′ab)

(B.5)

which must be summed over the intermediate species label b, and where ϑ′ab is defined
similarly to (2.32):

ϑ′ab = −arcsinh
(
ma sinhϑ′

mb

)
, (B.6)

and the summation over ϑ′ runs over the solutions of the following Bethe–Yang equation:

Q̃(ϑ′) = ma sinhϑ′ + δab(ϑ
′ − ϑ′ab) = 2πI , (B.7)
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indexed by the quantum number I ∈ Z. Expressing the finite volume matrix elements with
the form factors yields

Dab(ϑ,−ϑ) =
λ2

2m2
a cosh2(ϑ)

∑
ϑ′

F φ∗ab (ϑ′, ϑ′ab)F
φ
aaab(ıπ + ϑ, ıπ − ϑ, ϑ′, ϑ′ab)

(ma coshϑ′ +mb coshϑ′ab)ma coshϑ′ρ̃a(ϑ′)
, (B.8)

where ρ̃a(ϑ′) is obtained by differentiating the function Q̃ defined in Eq. (B.7). Since the
four-particle form factor has poles for ϑ′ = ±ϑ it is not possible to replace the sum with a
simple integral. This problem can avoided by using contour integrals to express the sum.
Denoting

dab ≡
∑
ϑ′

f(ϑ′)

ρ̃a(ϑ′)
≡
∑
ϑ′

F φ∗ab (ϑ′, ϑ′ab)F
φ
aaab(ıπ + ϑ, ıπ − ϑ, ϑ′, ϑ′ab)

(ma coshϑ′ +mb coshϑ′ab)ma coshϑ′ρ̃a(ϑ′)
. (B.9)

one can write

dab = −
∑
ϑ′

∮
ϑ′

dθ

2π

f(θ)

1− eıQ̃(θ)
, (B.10)

where the contours go around each root ϑ′ counterclockwise. The contours can be deformed
to give

dab =

(∫ ∞+ıε

−∞+ıε
−
∫ ∞−ıε
−∞−ıε

+

∮
ϑ

+

∮
−ϑ

)
dθ

2π

f(θ)

1− eıQ̃(θ)
, (B.11)

where ε is a small shift. The second integral vanishes in the infinite volume limit due to

lim
L→∞

1

1− eıQ̃(θ+ıε)
= lim

L→∞

1

1− eımaL(sinh θ cos ε+ı cosh θ sin ε)+O(L0)
=

{
1 , ε > 0

0 , ε < 0
(B.12)

and in the first one only the numerator remains. Moreover, the integral contour can be
pulled back to the real axis using∫ ∞

−∞
dϑ′ coth

(
ϑ′ ± ϑ

)
= 0 , (B.13)

which can be proved by shifting the integration contour to Imϑ′ = π/2:∫ ∞+ıε

−∞+ıε

dθ

2π
f(θ) =

∫ ∞
−∞

dϑ′

2π

[
f(ϑ′)−R1(ϑ) coth

(
ϑ′ − ϑ

)
−R2(−ϑ) coth

(
ϑ′ + ϑ

)]
, (B.14)

where R1 and R2 are the residues of f(ϑ′) at ϑ′ = ϑ and ϑ′ = −ϑ, respectively, which also
appear in the contributions of the two isolated poles:∮

ϑ

dθ

2π

f(θ)

1− eıQ̃(θ)
=ı

R1(ϑ)

1− eıQ̃(ϑ)
,∮

−ϑ

dθ

2π

f(θ)

1− eıQ̃(θ)
=ı

R2(−ϑ)

1− eıQ̃(−ϑ)
. (B.15)
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The residues can be calculated using Eqs. (3.9) and (3.4):

R1(ϑ) =
−ıF φab(ıπ − ϑ, ϑab)F

φ∗
ab (ϑ, ϑab)Saa(2ϑ)(1− S∗aa(2ϑ)Sab(ϑ− ϑab))

(ma coshϑ+mb coshϑab)ma coshϑ

R2(−ϑ) =
R1(−ϑ)

Saa(−2ϑ)
. (B.16)

The denominators in (B.15) can be simplified using that ±ϑ are solutions to another Bethe–
Yang equation:

Q̃′(ϑ) = maL sinhϑ+ δaa(2ϑ) = 2πJ J ∈ Z +
1

2
, (B.17)

with

Saa(ϑ) = −eıδaa(ϑ) . (B.18)

Comparing with Eq. (B.7) yields

1− eıQ̃(ϑ) = 1− S∗aa(2ϑ)Sab(ϑ− ϑab) ≡ η−1(ϑ) . (B.19)

Putting everything together one obtains

Dab(ϑ,−ϑ) =
λ2

2m2
a cosh2(ϑ)

[ ∫ ∞
−∞

dϑ′

2π

(
f(ϑ′)−R1(ϑ) coth

(
ϑ′ − ϑ

)
−R2(−ϑ) coth

(
ϑ′ + ϑ

))
+

+ ıR1(ϑ)η(ϑ) + ıR2(−ϑ)η(−ϑ)
]
, (B.20)

with

f(ϑ′) =
F φ∗ab (ϑ′, ϑ′ab)F

φ
aaab(ıπ + ϑ, ıπ − ϑ, ϑ′, ϑ′ab)

(ma coshϑ′ +mb coshϑ′ab)ma coshϑ′
. (B.21)

Using the above results, one can easily write down the generalisation of Eq. (2.41) to
multiple particle species:

Kaa(−ϑ, ϑ) = −λ F
φ∗
aa (−ϑ, ϑ)

2m2
a cosh2 ϑ

+ λ2

(Nspec∑
b=1

F φb F
φ∗
baa(ıπ,−ϑ, ϑ)

2m2
a cosh2 ϑm2

b

+
F φ∗aa (−ϑ, ϑ)F φaa(ıπ, 0)

2m4
a cosh4 ϑ

+

+
∑

(c,d)6=(a,b)

1

(2δcd)!

∫ ∞
−∞

dϑ′

2π

F φ,saacd(ıπ + ϑ, ıπ − ϑ, ϑ′, ϑ′cd)F
φ∗
cd (ϑ′, ϑ′cd)

2m2
a cosh2 ϑ(mc coshϑ′ +md coshϑ′cd)mdcoshϑ′cd

+ ...

)
+

+

Nspec∑
b=1

Dab(ϑ,−ϑ) +O
(
λ3
)
, (B.22)

where (c, d) 6= (a, b) means that the sum excludes those pairs in which exactly one particle
is of species a.
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B.2.2 The case Kab(ϑ)

The above results can be extended to a pair with different particles. The overlap function
is then Kab(ϑ, ϑab), with ϑab as in Eq. (B.6). The terms involving to rapidity integrals are
given by

Kab(ϑ,ϑab) = −λ
F φ∗ab (ϑ, ϑab)

(ma coshϑ+mb coshϑab)mb coshϑab
+

+ λ2

Nspec∑
c=1

F φc F
φ∗
cab(ıπ, ϑ, ϑab)

m2
c(ma coshϑ+mb coshϑab)mb coshϑab

+ (B.23)

+
F φ∗ab (ϑ, ϑab)

(ma coshϑ+mb coshϑab)2mb coshϑab

(
F φaa(ıπ, 0)

mb coshϑab
+
F φbb(ıπ, 0)

ma coshϑ

)
+ ...

)
+O

(
λ3
)
.

Terms containing integrals are similar to the Dab contribution of Eq. (B.5), and the ones
with disconnected contributions have the form

Gcab(ϑ, ϑab) ≡
ρ̃a(ϑ)√
ρab(ϑ, ϑab)

λ2L2
∑
ϑ′

cc 〈{ϑ′,−ϑ′}|φ|0〉Lab 〈{ϑ, ϑab}|φ|{−ϑ′, ϑ′}〉cc,L
2mc coshϑ′(ma coshϑ+mb coshϑab)

,

(B.24)
with c = a or b. The computation required here is similar to the one above, so we only
present the results. The c = a term can be expressed as

Gaab(ϑ, ϑab) =
λ2

(ma coshϑ+mb coshϑab)mb coshϑab
× (B.25)

×
[ ∫ ∞
−∞

dϑ′

2π

(
g(ϑ′)−R3(ϑ) coth

(
ϑ′ − ϑ

)
−R4(−ϑ) coth

(
ϑ′ + ϑ

))
+ ıR3(ϑ)η2(ϑ) + ıR4(−ϑ)η2(−ϑ)

]
,

with

g(ϑ′) =
F φ∗aa (−ϑ′, ϑ′)F φabaa(ıπ + ϑ, ıπ + ϑab,−ϑ′, ϑ′)

2m2
a cosh2(ϑ′)

, (B.26)

and

R3(ϑ) =
−ıF φba(ıπ + ϑab,−ϑ)F φ∗aa (−ϑ, ϑ)S∗aa(2ϑ)Sab(ϑ− ϑab)(1− Saa(2ϑ)Sab(ϑab − ϑ))

2m2
a cosh2(ϑ)

,

R4(−ϑ) = R3(ϑ) ,

η2(ϑ) =
1

1− Saa(2ϑ)S∗ab(ϑ− ϑab)
, (B.27)

while Gbab is slightly different:

Gaab(ϑ, ϑab) =
λ2

(ma coshϑ+mb coshϑab)mb coshϑab
× (B.28)[ ∫ ∞

−∞

dϑ′

2π

(
h(ϑ′)−R5(ϑ) coth

(
ϑ′ − ϑ

)
−R6(ϑ) coth

(
ϑ′ + ϑ

))
+

ıR5(ϑ)η3(ϑ) + ıR6(ϑ)η3(−ϑ)
]
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with

h(ϑ′) =
F φ∗bb (−ϑ′, ϑ′)F φabbb(ıπ + ϑ, ıπ + ϑab,−ϑ′, ϑ′)

2m2
b cosh2(ϑ′)

(B.29)

and

R5(ϑ) =
−ıF φab(ıπ + ϑ,−ϑab)F φ∗bb (−ϑab, ϑab)S∗bb(2ϑab)(1− Sab(ϑ− ϑab)Sbb(2ϑab))

2m2
b cosh2(ϑab)

,

R6(ϑ) = R5(ϑ)Sab(ϑ− ϑab)Sab(−ϑ− ϑab) ,

η2(ϑ) =
1

1− Saa(2ϑ)S∗ab(ϑ− ϑab)
. (B.30)

There are additional terms corresponding to inserting a state with only one a or b particle;
however, terms including such multi-particle form factors are expected to give very small
contributions so we neglect them.

The final result for the Kab function is

Kab(ϑ, ϑab) = −λ
F φ∗ab (ϑ, ϑab)

Cab(ϑ, ϑab)
+ λ2

[Nspec∑
c=1

F φc F
φ∗
cab(ıπ, ϑ, ϑab)

m2
cCab(ϑ, ϑab)

+

+
F φ∗ab (ϑ, ϑab)

Cab(ϑ, ϑab)(ma coshϑ+mb coshϑab)

(
F φaa(ıπ, 0)

mb coshϑab
+
F φbb(ıπ, 0)

ma coshϑ

)
+

+
∑
c 6=a,b
d 6=a,b

1

(2δcd)!

∫ ∞
−∞

dϑ′

2π

F φ,sabcd(ıπ + ϑ, ıπ + ϑab, ϑ
′, ϑ′cd)F

φ∗
cd (ϑ′, ϑ′cd)

Cab(ϑ, ϑab)(mc coshϑ′ +md coshϑ′cd)md coshϑ′cd
+

+Gaab(ϑ, ϑab) +Gbab(ϑ, ϑab) + ...

]
+O

(
λ3
)

(B.31)

with

Cab(ϑ, ϑab) = (ma coshϑ+mb coshϑab)mb coshϑab . (B.32)

B.3 Numerical evaluation of the perturbative expressions

Although our final results Eqs. (2.31), (2.42) and (2.43) look quite complicated, numerical
evaluation reveals that not all contributions are equally important. First, let us examine
the second order contributions to the one-particle overlap (2.31). Table B.1. contains the
eight largest coefficients multiplying λ2 and shows that some of them are suppressed by
orders of magnitude, which reflects the fast convergence of the form factor expansions.

For the pair overlap functions, the second order contributions are collected in Table B.2.
Again, it is the lowest-lying states that contribute the most, but the coefficients decrease
less drastically with the energy of the state, which is the reason why it was important to
construct form factors beyond the ones available previously.
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g1
A1 A2 A1-A1 A3 A4 A1-A2 A1-A3 A5

5.84879 -0.94431 -0.38934 0.28140 0.03816 0.02552 0.01286 -0.01184

g2
A1 A2 A1-A1 A3 A4 A6 A1-A2 A5

1.78700 -1.18054 0.25376 0.14533 -0.05807 -0.00571 -0.00539 0.00449

g3
A1 A3 A2 A4 A1-A1 A1-A2 A5 A2 −A2

0.96636 0.43049 -0.26373 -0.09194 -0.06197 0.01725 -0.00891 -0.00161

Table B.1. Contributions to ga at order λ2 sorted by magnitude, with the particle content of the
inserted state shown in the top rows.

K11

A1 A1 −Adisc
1 A2 A3 A1 −Aconn

1 A5 A4

-0.2931 0.2232 -0.1541 -0.0154 -0.0106 -0.0079 -0.0072
+2.3520ı -1.7915ı +1.2366ı +0.1235ı +0.0850ı +0.0636ı +0.0575ı

K12

A1 A2 A1 −A1 A1 −Adisc
2 A1 −Aconn

2 A3 A5

-0.2135 0.0968 -0.1366 -0.1396 0.0130 -0.0365 0.0041
+0.0161ı -0.1739ı -0.0705ı +0.0105ı +0.0523ı -0.0085ı -0.0116ı

K22

A1 A2 −Adisc
2 A2 A1 −A1 A3

0.3187 -0.2242 0.1211 -0.0380 0.0200
-0.0497 ı +0.0350 ı -0.0189 ı -0.0897 ı -0.0031 ı

Table B.2. Most sizeable contributions in second order to Kab(ϑ) at ϑ = 0.45. Upper row for each
particle indicates the inserted state. The superscript “disc”, where present, indicates whether it is
the disconnected or the connected part of the diagonal form factor.

C TCSA extrapolation

In this Appendix we illustrate the efficiency of Eq. (4.5) in accounting for the cut-off depen-
dence of the numerical overlaps obtained from TCSA. For one-particle overlap functions
it gave very good fits to the cut-off dependence as shown in Fig. C.1. The fourth figure
shows that the sum of the squared residuals remains consistently small throughout the ex-
plored parameter region. To evaluate the K(p) function numerically at various values of the
momenta we performed quenches varying the dimensionless volume of the system between
m1R = 30 . . . 65. The cut-off dependence fitted to the data is the result of a second-order
perturbative calculation which breaks down for larger volumes or in the case of computing
the overlaps for states with higher energy. Unfortunately, as shown in Fig. C.2, the qual-
ity of the fits varies very much with the volume and the state under consideration, which
prevented a systematic extrapolation. As a result, for a comparison with the analytic pre-
dictions in the main text we used the data from the highest available cut-off Ncut = 18.
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Figure C.1. Illustration of the extrapolation scheme in the case of one-particle overlaps of the Ising
Field Theory. The first three subfigures show that the data can be fitted well with the function
(4.5). The fourth panel quantifies this observation by displaying the sum of the squared fit residuals
denoted by χ2 as functions of the quench parameter ξ.
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Figure C.2. Illustration of cut-off extrapolation in the case of two-particle overlaps K11(p) of the
Ising Field Theory. The first three panels show that problems with the fit can occur at various
volumes and energies. The fourth panel illustrates that a precise fit can also be obtained at large
volume.
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