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We derive a new formula for the longitudinal HBT-radius of the two
particle Bose-Einstein correlation function from a new family of finite and
exact, accelerating solution of relativistic perfect fluid hydrodynamics for
a temperature independent speed of sound. The new result generalizes
the Makhlin-Sinyukov and Herrmann-Bertsch formulae and leads to an
advanced life-time estimate of high energy heavy ion and proton-proton
collisions.

1. Introduction

This manuscript is the third part of a manuscript series. This series
presents various applications of a new, accelerating, finite and exact family
of solutions of perfect fluid hydrodynamics, the recently found Csörgő -
Kasza - Csanád - Jiang (CKCJ) family of solution of ref. [1]. The first part of
this series [2] fixes the notation, summarizes this class of exact solutions and
evaluates the rapidity and pseudorapidity density distributions. The second
part [3] evaluates the initial energy densities in high energy collisions [1],
and provides a fundamental correction to the renowned Bjorken estimate of
initial energy density [7].

In this manuscript, we evaluate the Bose-Einstein correlation functions
in a Gaussian approximation from the CKCJ solutions [1]. Given that the
considered dynamics is a 1+1 dimensional expansion, we evaluate RL, the
Hanbury Brown - Twiss (HBT) radii in the longitudinal (beam) direction.
This longitudinal HBT radius parameter is proportional to the mean freeze-
out time of the fireball, thus the advanced evaluation of its transverse mass
dependence and its constant of proportionality for finite, longitudinally non-
boost-invariant fireballs may have important physics implications on life-
time determinations.

(1)
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2. Bose-Einstein correlations and the longitudinal HBT radii

In high energy heavy ion collisions, Bose-Einstein correlation functions
(BECF) measure characteristic sizes of the particle emitting source, corre-
sponding to lengths of homogeneity [11]. In high energy heavy ion collisions,
the particle emitting source can be approximated as a locally thermalized
fireball, surrounded by a halo of long-lived resonances, this is the so-called
core-halo picture The momentum dependent intercept parameter λ∗ of the
two-particle Bose-Einstein correlation function can be interpreted in the
core-halo picture of ref. [13] as follows:

λ∗ =

(
Nc

N

)2

=

(
Nc

Nc +Nh

)2

(1)

where N = Nc+Nh is the total number of the emitted particles with a given
momentum, adding the contributions from both the core Nc and the halo,
Nh. The fireball that undergoes a hydrodynamical evolution corresponds
to core [13]. For locally thermalized sources, the lengths of homogeneity
are expressible in terms of the derivatives of the fugacity, exp (µ(x)/T (x))
and the locally thermalized momentum distribution, exp (−kµuµ(x)/T (x)),
corresponding to the so called geometrical and thermal length scales [13].
Assuming an effective Gaussian source for the core particles, the BECF can
be expressed in terms of the Bertsch-Pratt variables as follows:

C(∆k,K) = 1+λ∗ exp
(
−R2

sideQ
2
side −R2

outQ
2
out −R2

LQ
2
L − 2R2

out,LQoutQL
)
.

(2)
All the fit parameters (λ∗, Rside, Rout, RL and R2

out,L) depend on the mean

momentum of the particle pair, Kµ = 0.5(kµ1 + kµ2 ). The four-momentum
of a given particle is denoted by k = (Ek,k) = (Ek, kx, ky, kz). The three-
components of the relative and mean momenta are denoted as

∆k = k1 − k2, (3)

K = 0.5 (k1 + k2) . (4)

In the Bertsch-Pratt decomposition of the relative momentum [5, 6], the
principal directions are defined as follows: The out direction is perpendicular
to the beam axis and parallel to the mean transverse momentum of the boson
pair; the longitudinal direction (indicated by subscript L) is parallel to the
beam axis (rz), and the side direction is orthogonal to the previous two
directions. This Bertsch-Pratt decomposition of the relative momentum is
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defined as follows:

Qside =
|∆k×K|
|K|

(5)

Qout =
∆k ·K
|K|

(6)

QL = k1,z − k2,z, (7)

If the Bose-Einstein correlation function is an approximately Gaussian in
terms of the relative momenta, the Gaussian HBT radii R2

i,j can be in-

troduced, with {i, j} ε {side, out, long}. These Gaussian Bertsch-Pratt-radii
can be related to the variances of the hydrodynamically evolving core, while
the halo of the long-lived resonances is responsible for the effective reduction
of the strength of the correlation function:

R2
i,j = 〈x̃ix̃j〉c − 〈x̃i〉c〈x̃j〉c. (8)

Here the 〈A〉c stands for the average of quantity A in the core, i, j stand for
directions (side, out or long) and

x̃i = xi − βit, (9)

βi =
ki,1 + ki,2
E1 + E2

. (10)

In this manuscript, we focus on the longitudinal radius, so the radii of the
side and out direction are not discussed, see e.g. ref. [13] for more details
on this point. As discussed in [12], for a 1+1 dimensional relativistic source,
the longitudinal radius in an arbitrary frame reads as

R2
L = (βL sinh(ηsx)− cosh(ηsx))2 τ2f∆η2x + (βL cosh(ηsx)− sinh(ηsx))2 ∆τ2,

(11)
where ηx is the space-time rapidity, and ηsx is the main emission region
of the source, which derived by the saddle-point calculation of the rapidity
density, ∆τ and ∆ηx are characteristic sizes around τf and ηsx. This formula
simplifies a lot in the LCMS (longitudinally co-moving system) frame of the
boson pair, where βL = 0:

R2
L = cosh2(ηsx)τ2f∆η2x + sinh2(ηsx)∆τ2. (12)

Our new family of solutions are finite, and limited to a narrow rapidity in-
terval around midrapidity [1]. At mid-rapidity, if ηsx ≈ 0, the above equation
can be simplied even further:

RL = τf∆ηx. (13)
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Fig. 1. Space-time picture of particle emission for longitudinally expanding fireballs.

3. Previous results on the longitudinal HBT-radius

For a Hwa-Bjorken type of accelerationless, longitudinal flow [7, 8]
Makhlin and Sinyukov determined the longitudinal length of homogeneity
in ref. [11] as

RL = τBj

√
Tf
mT

. (14)

In this equation, Tf stands for the freeze-out temperature, mT is the trans-
verse mass of the particle pair and τBj is the mean freeze-out time of the
Hwa-Bjorken solution. This result makes it possible to determine the life-
time, i.e. τBj of the reaction from the measurement of the longitudinal HBT
radius parameter, provided that Tf ≈ mπ ≈ 140 MeV can be estimated from
the analysis of the single particle spectra.

Evaluating the HBT radii from the same Hwa-Bjorken solution [7, 8],
Herrmann and Bertsch obtained a more accurate result in ref. [14], using a
Gaussain approximation for the longitudinal HBT radius at midrapidity, in
terms of Bessel functions K1(z) and K2(z), as follows:

RL = τf

√
Tf
mT

√
2K2(mT /Tf )

K1(mT /Tf )
. (15)

This formula improves the Sinyukov-Makhlin formula (14) for lower mT /Tf
values, and approaches it in the large mT /Tf limit.

If the flow is accelerating, the estimated origin of the trajectiories is
shifted back in proper-time, thus τBj is underestimating the life-time of the
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reaction. The correction was estimated, based on the modification of the
flow-profile, from the Csörgő-Nagy-Csanád (CNC) solution [10] as follows

RL =
τf
λ

√
Tf
mT

, (16)

where τf stands for the freeze-out time. In the λ→ 1 boost-invariant limit,
this formula also reproduces the Makhlin-Sinyukov formula, but for the
realistic λ > 1 parameter values it yields larger life-times as compared to
the Makhlin-Sinyukov formula.

4. The longitudinal HBT-radius parameter of the CKCJ solution

Let us evaluate the emission function for the CKCJ solution of refs. [1–3].
The integration of the Cooper-Frye formula is performed by the saddle-point
approximation. Near to mid-rapidity, the fluid rapidity is well approximated
by a linear function of the space-time rapidity: Ω ≈ ληx. Using a saddle-
point integration in ηx, we obtain the rapidity distribution:

dN

dy
≈
(
2π∆η2x

)1/2
2πh̄

[
kµu

µ τ(ηx)

cosh(Ω− ηx)
exp

(
− kµu

µ

Tf (ηx)

)]
ηx=ηsx

. (17)

Here ηsx stands for the saddle-point, which is found to be proportional to
the rapidity y: ηsx ≈

y
2λ−1 . At midrapidity, the saddle-point vanishes and

the emission function can be well approximated by a Gaussian centered on
zero. The width of this Gaussian is given by ∆ηx as

∆ηx ≈

√
Tf
mt

1√
λ(2λ− 1)

. (18)

At mid-rapidity, these considerations lead to the following longitudinal HBT-
radius parameter:

RL = τf∆ηx ≈
τf√

λ (2λ− 1)

√
Tf
mT

. (19)

Surprisingly, this result is independent of the equation of state, and it is
formally different from the CNC estimate.

Our result thus presents and important step forward: once the parameter
λ of the acceleration is determined from the fits to the (pseudo)rapidity
distributions [2], this parameter combined with the longitudinal HBT radius
measurement can be used to provide an advanced estimate of the life-time
of the reaction, solving eq. (19) for the life-time τf . The significance of our
advanced formula is illustrated on Figure 2.
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Fig. 2. The HBT radius RL(mT ) (left) and 1/R2
L(mT ) (right) of the CKCJ solution

are shown with solid red lines and compared to earlier estimations. The parameters

correspond to fit results of the CKCJ solution to p+p collisions at
√
s = 7 TeV [2].
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[1] T. Csörgő, G. Kasza, M. Csanád and Z. Jiang, Universe 4, 69 (2018)
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