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ON HARDY TYPE INEQUALITIES FOR WEIGHTED MEANS

ZSOLT PÁLES AND PAWEŁ PASTECZKA

Abstract. The aim of this paper is to establish weighted Hardy type inequality in a broad
family of means. In other words, for a fixed vector of weights (λn)

∞

n=1 and a weighted mean
M, we search for the smallest number C such that

∞∑

n=1

λnM
(
(x1, . . . , xn), (λ1, . . . , λn)

)
≤ C

∞∑

n=1

λnxn for all admissible x.

The main results provide a definite answer in the case when M is monotone and satisfies
the weighted counterpart of the Kedlaya inequality. In particular, if M is symmetric, Jensen-
concave, and the sequence

(
λn

λ1+···+λn

)
is nonincreasing. In addition, it is proved that if M

is a symmetric and monotone mean, then the biggest possible weighted Hardy constant is
achieved if λ is the constant vector.

1. Introduction

In twenties of the last century several authors, motivated by a conjecture by Hilbert,
proved that

(1.1)

∞∑

n=1

Pp(x1, . . . , xn) ≤ C(p)
∞∑

n=1

xn,

for every sequences (xn)
∞
n=1 with positive terms, where Pp denotes the p-th power mean

(extended to the limiting cases p = ±∞) and

C(p) :=





1 p = −∞,

(1− p)−1/p p ∈ (−∞, 0) ∪ (0, 1),

e p = 0,

∞ p ∈ [1,∞],

and this constant is sharp, i.e., it cannot be diminished.
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First result of this type with nonoptimal constant was established by Hardy in the seminal
paper [12]. Later it was improved and extended by Landau [20], Knopp [17], and Carleman [3]
whose results are summarized in inequality (1.1). Meanwhile Copson [4] adopted Elliott’s [11]
proof of the Hardy inequality to show (in an equivalent form) that if Pp(x, λ) denotes the
p-th λ-weighted power mean of a vector x, then

(1.2)

∞∑

n=1

λnPp

(
(x1, . . . , xn), (λ1, . . . , λn)

)
≤ C(p)

∞∑

n=1

λnxn

for all p ∈ (0, 1), and sequences (xn)
∞
n=1 and (λn)

∞
n=1 with positive terms. More about

the history of the developments related to Hardy type inequalities is sketched in catching
surveys by Pečarić–Stolarsky [28], Duncan–McGregor [10], and in a recent book of Kufner–
Maligranda–Persson [19].

In a more general setting, for a given mean M :
⋃∞

n=1 I
n → I (where I is a real interval

with inf I = 0), let H(M) denote the smallest nonnegative extended real number, called the
Hardy constant of M, such that

∞∑

n=1

M(x1, . . . , xn) ≤ H(M)
∞∑

n=1

xn

for all sequences (xn)
∞
n=1 belonging to I. If H(M) is finite, then we say that M is a Hardy

mean. In this setup, a p-th power mean is a Hardy mean if and only if p ∈ [−∞, 1) and
H(Pp) = C(p) for all p ∈ [−∞,∞].

For investigating the Hardy property of means, we recall several notions that have been
partly introduced and used in the paper [36].

Let I ⊆ R be an interval and let M :
⋃∞

n=1 I
n → I be an arbitrary mean. We say

that M is symmetric, (strictly) increasing, and Jensen convex (concave) if, for all n ∈ N,
the n variable restriction M|In is a symmetric, (strictly) increasing in each of its variables,
and Jensen convex (concave) on In, respectively. It is worth mentioning that means are
locally bounded functions, therefore, the so-called Bernstein–Doetsch theorem [1] implies
that Jensen convexity (concavity) is equivalent to ordinary convexity (concavity). If I = R+,
we can analogously define the notion of homogeneity of M. Finally, the mean M is called
repetition invariant if, for all n,m ∈ N and (x1, . . . , xn) ∈ In, the following identity is
satisfied

M(x1, . . . , x1︸ ︷︷ ︸
m-times

, . . . , xn, . . . , xn︸ ︷︷ ︸
m-times

) = M(x1, . . . , xn).

Having all these definitions, let us recall the two main theorems of the paper [36]. The
first result provides a lower estimation of the Hardy constant.

Theorem 1.1. Let I ⊂ R+ be an interval with inf I = 0 and M :
⋃∞

n=1 I
n → I be a mean.

Then, for all non-summable sequences (xn)
∞
n=1 in I,

H(M) ≥ lim inf
n→∞

x−1
n ·M (x1, x2, . . . , xn) .
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In particular,

H(M) ≥ sup
y∈I

lim inf
n→∞

n

y
·M

(y
1
,
y

2
, . . . ,

y

n

)
=: C(M).

Under stronger assumptions for the mean M, the lower estimate obtained above becomes
an equality by the following result.

Theorem 1.2. For every increasing, symmetric, repetition invariant, and Jensen concave
mean M :

⋃∞
n=1R

n
+ → R+ the equality H(M) = C(M) holds.

If, in addition, M is also homogeneous, then

H(M) = lim
n→∞

n ·M
(
1, 1

2
, . . . , 1

n

)
,

in particular, this limit exists.

Upon taking M to be a power mean in the above theorem, the Hardy–Landau–Knopp–
Carleman inequality (1.1) can easily be deduced. For the details, see [36].

A deeper look into the paper [36] shows that Theorem 1.2 could be split into two parts
with an intermediate state of so-called Kedlaya mean.

Mean M :
⋃∞

n=1 I
n → I (I is an interval) is a Kedlaya mean if

(1.3) A
(
x1,M(x1, x2), . . . ,M(x1, x2, . . . , xn)

)
≤ M

(
x1,A(x1, x2), . . . ,A(x1, x2, . . . , xn)

)

for every n ∈ N and x ∈ In. Here and throughout this paper A will stand for the standard
(or weighted) arithmetic mean.

The motivation for the above terminology came from the paper [15] by Kedlaya, where
he proved that the geometric mean satisfies the inequality above, i.e., it is a Kedlaya mean.
This result provided an affirmative answer to a conjecture by Holland [14]. A more general
theorem has recently been established by the authors

Theorem 1.3 ( [36], Theorem 2.1). Every symmetric, Jensen concave and repetition invari-
ant mean is a Kedlaya mean.

Moreover, in the proof of Theorem 1.2 the main tool was the following (nowhere explicitly
formulated) statement

Proposition 1.4. For every monotone Kedlaya mean M :
⋃∞

n=1 I
n → I (where I is an

interval with inf I = 0), the equality H(M) = C(M) holds.

Obviously Theorem 1.3 jointly with Proposition 1.4 imply the first part of Theorem 1.2.
To prove the second part, we need to show that the mentioned limit exists.

Recently an approach to weighted Kedlaya inequalities has been presented by the authors
in [27]. In particular, a weighted counterpart of Theorem 1.3 has been established (see
notation of V (Q) and V (R) below). It motivated us to look for a weighted analogue of
Proposition 1.4. The result obtained in this direction will be presented in Theorem 4.1.
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2. Weighted means

At the moment weighted means will be introduced. First, let us underline that there is
no broad agreement about the definition of weighted means. The one presented below was
introduced in [27] in the process of reverse-engineering. The main idea was to cover most
of the known weighted means (i.e. power, quasi-arithmetic, deviation, and quasi-deviation
means) in the abstract setting. This consideration led us to introduce the following new
definition.

Definition 2.1 (Weighted means). Let I ⊂ R be an arbitrary interval, R ⊂ R be a ring
and, for n ∈ N, define the set of n-dimensional weight vectors Wn(R) by

Wn(R) := {(λ1, . . . , λn) ∈ Rn | λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn > 0}.

A weighted mean on I over R or, in other words, an R-weighted mean on I is a function

M :
∞⋃

n=1

In ×Wn(R) → I

satisfying the conditions (i)–(iv) presented below. Elements belonging to I will be called
entries ; elements from R – weights.

(i) Nullhomogeneity in the weights: For all n ∈ N, for all (x, λ) ∈ In×Wn(R), and t ∈ R+,

M(x, λ) = M(x, t · λ),

(ii) Reduction principle: For all n ∈ N and for all x ∈ In, λ, µ ∈ Wn(R),

M(x, λ+ µ) = M(x⊙ x, λ⊙ µ),

where ⊙ is a shuffle operator 1 defined as

(p1, . . . , pn)⊙ (q1, . . . , qn) := (p1, q1, . . . , pn, qn).

(iii) Mean value property : For all n ∈ N, for all (x, λ) ∈ In ×Wn(R)

min(x1, . . . , xn) ≤ M(x, λ) ≤ max(x1, . . . , xn),

(iv) Elimination principle: For all n ∈ N, for all (x, λ) ∈ In × Wn(R) and for all j ∈
{1, . . . , n} such that λj = 0,

M(x, λ) = M
(
(xi)i∈{1,...,n}\{j}, (λi)i∈{1,...,n}\{j}

)
,

i.e., entries with a zero weight can be omitted.

From now on I is an arbitrary interval, R stands for an arbitrary subring of R. Let us
introduce some natural properties of weighted means. A weighted mean M is said to be
symmetric, if for all n ∈ N, x ∈ In, λ ∈ Wn(R), and σ ∈ Sn,

M(x, λ) = M(x ◦ σ, λ ◦ σ).

1This definition comes from the theory of computation. Perhaps the most famous (folk) result states that
shuffling of two regular languages is again regular; see e.g. [2].
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We will call a weighted mean M Jensen concave if, for all n ∈ N, x, y ∈ In and λ ∈ Wn(R),

(2.1) M

(x+ y

2
, λ
)
≥

1

2

(
M(x, λ) +M(y, λ)

)
.

A weighted mean M is said to be continuous in the weights if, for all n ∈ N and x ∈ In,
the mapping λ 7→ M(x, λ) is continuous on Wn(R). Finally, a weighted mean M is monotone
if, for all n ∈ N, x ∈ In and λ ∈ Wn(R), the mapping xi 7→ M(x, λ) is increasing for all
i ∈ {1, . . . , n}.

For the sake of convenience, we will use the sum-type abbreviation. If M is an R-weighted
mean on I, n ∈ N and (x, λ) ∈ In ×Wn(R), then we denote

n

M
i=1

(xi, λi) := M
(
(x1, . . . , xn), (λ1, . . . , λn)

)
.

Let us recall some basic properties of weighted means defined in this way. First result
binds nonweighted, repetition invariant means and Z-weighted means.

Theorem 2.2 ( [27],Theorem 2.3). If M is a repetition invariant mean on I, then the
formula

(2.2)
M̃
(
(x1, . . . , xn), (λ1, . . . , λn)

)
:= M

(
x1, . . . , x1︸ ︷︷ ︸
λ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
λn entries

)

defines a weighted mean on I over Z.

Conversely, if M̃ is a Z-weighted mean on I, then

(2.3)
M(x1, . . . , xn) := M̃

(
(x1, . . . , xn), (1, . . . , 1︸ ︷︷ ︸

n entries

)
)

is a repetition invariant mean on I. Furthermore these transformations are inverses of each
other.

Furthermore the following two easy statements were explicitly worded.

Theorem 2.3. If M is a symmetric repetition invariant mean on I, then the function M̃

defined by the formula (2.2) is a symmetric weighted mean on I over Z.

Conversely, if M̃ is a symmetric Z-weighted mean on I, then the function M defined by
(2.3) is a symmetric repetition invariant mean on I.

Theorem 2.4. If M is a Jensen concave repetition invariant mean on I, then the function

M̃ defined by the formula (2.2) is a Jensen concave weighted mean on I over Z.

Conversely, if M̃ is a Jensen concave Z-weighted mean on I, then the function M defined
by (2.3) is a Jensen concave repetition invariant mean on I.

We will also need some extension theorem from paper [27].
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Theorem 2.5. Let I be an interval, R ⊂ R be a ring, M be a weighted mean defined on I

over R. Then there exists a unique mean M̃ defined on I over R∗ (which denotes the quotient
field of R) such that

M̃|⋃∞

n=1
In×Wn(R) = M.

Moreover if M is symmetric/monotone then so is M̃.

Having this we can extend means defined in Theorem 2.2 to the field Q.
Let us recall that, for p ∈ R, the weighted power mean Pp :

⋃∞
n=1R

n
+ × Wn(R) → R+

which is defined by

Pp(x, λ) :=






(
λ1x

p
1
+λ2x

p
2
+···+λnx

p
n

λ1+λ2+···+λn

)1/p
if p 6= 0,

(
xλ1

1 x
λ2

2 · · ·xλn
n

)1/(λ1+λ2+···+λn)
if p = 0,

admits all properties (i)–(iv).
In a more general setting, in the spirit of book [13], we can define weighted quasi-arithmetic

means as follows. If I is an arbitrary interval and f : I → R is continuous and monotone,
then the weighted quasi-arithmetic mean Af :

⋃∞
n=1 I

n ×Wn(R) → I is a function such that
for all n ∈ N and a pair x ∈ In with weights λ ∈ Wn(R),

Af(x, λ) := f−1

(
λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn)

λ1 + λ2 + · · ·+ λn

)
.

This sequence of generalization could be continued to Bajraktarević means, to deviation
(Daróczy) means and to quasi-deviation means. Investigating these families however lies
outside the scope of this paper and we just refer the reader to a series of papers by Losonczi
[21–26] (for Bajraktarević means), Daróczy [5,6], Daróczy–Losonczi [7], Daróczy–Páles [8,9]
(for deviation means) and by Páles [29–35] (for deviation and quasi-deviation means).

2.1. Weighted Kedlaya property. Like in the paper [27], we are going to introduce the
notion of the weighted Kedlaya inequality.

To have a weighted counterpart of the Kedlaya inequality, we have to take weight sequences
λ from R with a positive first member. Therefore, for a given ring R, we define

W 0(R) := {λ ∈ RN | λ1 > 0, λ2, λ3, · · · ≥ 0}.

For a weight sequence λ ∈ W 0(R), we say that a weighted mean M :
⋃∞

n=1 I
n×Wn(R) → I

satisfies the λ-weighted Kedlaya inequality, or shortly, the λ-Kedlaya inequality if

n

A
k=1

(
k

M
i=1

(xi, λi), λk

)
≤

n

M
k=1

(
k

A
i=1

(xi, λi), λk

)
(n ∈ N, x ∈ In).

In fact the nonincreasingness of the ratio sequence
(

λi

λ1+···+λi

)
will be a key assumption for

Kedlaya type inequalities, therefore, we also set

V (R) :=
{
λ ∈ W 0(R) |

(
λi

λ1+···+λi

)∞
i=1

is nonincreasing
}
.
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In fact, in 1999 Kedlaya [16] proved that the geometric mean satisfies the λ-weighted Kedlaya
inequality for all λ ∈ V (R). This result has been generalized recently by the authors [27] to
the family of symmetric, Jensen concave means. More precisely, the following theorem has
been established.

Theorem 2.6. Every symmetric and Jensen concave Q-weighted mean (resp. R-weighted
mean which is continuous in the weights) satisfies the λ-weighted Kedlaya inequality for all
λ ∈ V (Q) (resp. λ ∈ V (R)).

In fact, we will sometimes assume that a mean is a λ-Kedlaya mean and the above theorem
delivers us a sufficient condition (compare Theorem 4.1 and related Corollaries 4.2, 4.3).

2.2. Weighted Hardy property. Similarly as in [36], Kedlaya inequality lead us to the
Hardy property (with an optimal constant). Nevertheless, to make advantage of weighted
Kedlaya inequality in struggling with the Hardy property, we need to define its weighted
counterpart. Such a definition is a natural extension of the non-weighted setup.

Definition 2.7 (Weighted Hardy property). Let I be an interval with inf I = 0, R ⊂ R

be a ring. For an R-weighted mean M on I and weights λ ∈ W 0(R), let C be the smallest
extended real number such that, for all sequences (xn) in I,

∞∑

n=1

λn ·
n

M
i=1

(
xi, λi

)
≤ C ·

∞∑

n=1

λnxn.

We call C the λ-weighted Hardy constant of M or the λ-Hardy constant of M and denote it
by Hλ(M). Whenever this constant is finite, then M is called a λ-weighted Hardy mean or
simply a λ-Hardy mean.

This definition is an extension of the Hardy constant (and, consequently, the Hardy prop-

erty). Indeed, if we define 1 := (1, 1, 1, . . . ) then, by Theorem 2.2, the weighted mean M̃

with weights 1 could be associated with the non-weighted mean M, and (in the setting of
this theorem) the following equality is valid

H1(M̃) = H(M).

There appears a natural question. What is a relation between being λ-Hardy and 1-Hardy.
Luckily, we have a simple (in its wording) property which generalizes the result of Elliott–
Copson (1.2) (see [4] and [11]).

Theorem 2.8. For every symmetric and monotone mean M on I over R, we have

H1(M) = sup
λ∈W 0(R)

Hλ(M).

Its technical and quite long proof is shifted upon the last section. As an immediate
consequence we obtain

Corollary 2.9. Let M̃ be a symmetric and monotone on I over R. Then the following
conditions are equivalent:
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(i) M̃ is a λ-Hardy mean for all λ ∈ W 0(R);

(ii) M̃ is a 1-Hardy mean;
(iii) M defined by (2.3) is a Hardy mean.

3. Auxiliary Results

In this section we prove a number of technical lemmas which will be useful in the forth-
coming sections.

First, a purely analytic fact is established. This is followed by results that are directly
related to weighted Hardy property. Throughout this section, let λ ∈ W 0(R) and set Λn :=
λ1 + · · ·+ λn for n ∈ N.

Lemma 3.1. The series
∑
λn and

∑
λn/Λn are equi-convergent (either both convergent or

both divergent).

Indeed, if
∑∞

n=1 λn <∞, then
∑∞

n=1 λn/Λn ≤
∑∞

n=1 λn/Λ1 <∞. The reversed implication
is due to Abel, see [18, p. 125].

Now we turn to results directly related to means. The first two statements are about
properties of the Hardy constant, while the last one is a sort of rearranging property of a
weighted mean in a case of a nonincreasing function.

The following lemma is somehow related to the so-called Hardy sequence (cf. [36, Prop.
3.1]).

Lemma 3.2. Let M be an R-weighted mean on I. Then, for all n ∈ N and x ∈ In,

(3.1)

n∑

i=1

λi ·

i

M
j=1

(
xj , λj

)
≤ Hλ(M)

n∑

i=1

λixi.

Proof. Take ε ∈ I and xm := min
(
ε/(λm2

m), ε
)

for m > n. Then we have

n∑

i=1

λi ·

i

M
j=1

(
xj , λj

)
≤

∞∑

i=1

λi ·

i

M
j=1

(
xj , λj

)
≤ Hλ(M)

∞∑

i=1

λixi

≤ Hλ(M)

(
n∑

i=1

λixi +

∞∑

i=n+1

ε

2i

)
≤ Hλ(M)

(
ε+

n∑

i=1

λixi

)
.

Now we can pass the limit ε→ 0 to obtain (3.1). �

Having this already proved, we can present a weighted analogue of [36, Thm 3.3]. By the
virtue of Stolz’s theorem [37], its proof is significantly shortened.

Lemma 3.3. Let M be an R-weighted mean on I. If
∑∞

n=1 λnxn = ∞ then

Hλ(M) ≥ lim inf
n→∞

1

xn

n

M
i=1

(
xi, λi

)
.
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Proof. By Stolz’s theorem and Lemma 3.2, we have

Hλ(M) ≥ lim inf
N→∞, λN>0

∑N
n=1 λn ·M

n
i=1

(
xi, λi

)
∑N

n=1 λnxn

≥ lim inf
n→∞, λn>0

λnM
n
i=1

(
xi, λi

)

λnxn
≥ lim inf

n→∞

M
n
i=1

(
xi, λi

)

xn
,

which was to be shown. �

4. Main results

In this section we will prove an important relation between the λ-Kedlaya and the λ-
Hardy property. Having this, we will use the notation of V (R) and V (Q) to present a handy
characterization of the λ-Hardy property. In fact, a lot of statements will depend on the
summability of the weight sequence (λn).

Theorem 4.1. Let M be an R-weighted mean on I and λ ∈ W 0(R). Define

Cλ(M) := sup
y>0

lim inf
n→∞

λ1 + λ2 + · · ·+ λn
y

·

n

M
k=1

( y

λ1 + λ2 + · · ·+ λk
, λk

)
.

(i) If
∑∞

n=1 λn = ∞, then Hλ(M) ≥ Cλ(M).
(ii) If M is monotone and satisfies the λ-Kedlaya inequality, then Hλ(M) ≤ Cλ(M).

Proof. Denote the partial sum of λ1 + · · ·+ λk by Λk. In the first part, Lemma 3.1 implies

∞∑

n=1

λn ·
y

Λn
= ∞ for all y > 0.

Consequently, by Lemma 3.3,

Hλ(M) ≥ lim inf
n→∞

Λn

y

n

M
k=1

( y

Λk
, λk

)
for all y > 0.

Finally, we can take the supremum over all positive y and obtain Hλ(M) ≥ Cλ(M).
To prove part (ii), let x ∈ ℓ1(λ) be a sequence of positive numbers and y0 :=

∑∞
n=1 λnxn.

Then

mk =
1

Λk

k∑

i=1

λi · xi ≤
y0
Λk
, k ∈ N.

The (n, λ)-Kedlaya inequality applied to the vector (x1, x2, . . . , xn) and the monotonicity of
M imply

n∑

k=1

λk ·

k

M
i=1

(xi, λi) ≤ Λn ·

n

M
k=1

(
mk, λk

)
≤ Λn ·

n

M
k=1

( y0
Λk
, λk

)
.
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Upon taking the lim inf as n tends to ∞, we obtain

∞∑

k=1

λk ·

k

M
i=1

(xi, λi) ≤

(
lim inf
n→∞

Λn

y0
·

n

M
k=1

( y0
Λk
, λk

))
· y0 ≤ Cλ(M)

∞∑

n=1

λnxn.

Therefore, the desired inequality Hλ(M) ≤ Cλ(M) follows. �

At the moment, using Theorem 2.6, we obtain two direct consequences of Theorem 4.1.

Corollary 4.2. Let M be a symmetric, monotone and Jensen-concave Q-weighted mean and
λ ∈ V (Q). Then Hλ(M) ≤ Cλ(M). Furthermore, if

∑∞
n=1 λn = ∞, then Hλ(M) = Cλ(M).

Corollary 4.3. Let M be a symmetric, monotone and Jensen-concave R-weighted mean
which is continuous in the weights and λ ∈ V (R). Then Hλ(M) ≤ Cλ(M). Furthermore, if∑∞

n=1 λn = ∞, then Hλ(M) = Cλ(M).

We can also apply this theorem to justify λ-Hardy property.

Corollary 4.4. Let M be an R-weighted mean on I and λ ∈ W 0(R).

(i) If
∑∞

n=1 λn = ∞ and Cλ(M) = ∞, then M is not a λ-Hardy mean.
(ii) If M is a monotone mean which satisfies the λ-Kedlaya inequality and Cλ(M) is finite,

then M is a λ-Hardy mean.

5. Proof of Theorem 2.8

Let us mention some further definitions and notations from [27]. Instead of explicitly
writing down weights, we can consider a function with finite range as the argument of the
given mean. Let R be a subring of R. We will denote its quotient field (the smallest field
generated by R) by R∗. We say that D ⊆ R is an R-interval if D is of the form [a, b), where
a, b ∈ R.

Given an R-interval D = [a, b), a function f : D → I is called R-simple if there exist n ∈ N

and a partition ofD into R-intervals {Di}
n
i=1 such that supDi = infDi+1 for i ∈ {1, . . . , n−1}

and f is constant on each subinterval Di. Then, for an R-weighted mean M on I, we define

b

M
a

f(x)dx :=

n

M
i=1

(f |Di
, |Di|) = M((f |D1

, . . . , f |Dn
), (|D1|, . . . , |Dn|)).

In this setting, M is symmetric if and only if, for every pair of R-simple functions f, g : D →
I which have the same distribution, the equality Mf(x)dx = Mg(x)dx holds. Similarly, M
is monotone if and only if, for every pair of R-simple functions f, g : D → I with f ≤ g, the
inequality Mf(x)dx ≤ Mg(x)dx is valid.

Furthermore, for an R-interval [p, q) ⊂ D and function f like above, we will keep all
integral-type convections. For instance,

M
[p, q)

f(x)dx =

q

M
p

f(x)dx.
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Let us now present some simple result related to decreasing functions.

Lemma 5.1. Let M be a R∗-weighted, monotone mean on I and a ∈ R∗∩ (0,∞). Then, for
any nonincreasing R∗-simple function f : [0, a) → I, the mapping F : R∗ ∩ (0, a] → I given
by F (u) :=M

u
0 f(t) dt, is nonincreasing.

Proof. Fix p, q ∈ R∗ ∩ (0, a] with q < p. As f is decreasing, we know that f(p
q
t) ≤ f(t) for

all t ∈ [0, q). Therefore, by nullhomogeneity in the weights and monotonicity,

F (p) =

p

M
0

f(t) dt =

q

M
0

f
(p
q
· t
)
dt ≤

q

M
0

f(t) dt = F (q),

which was to be proved. �

By Theorem 2.5 we know that M has a unique extension to an R∗-weighted mean on I.
As the weights are fixed (and belong to R) one can assume without loss of generality that we
are dealing with weight sequence from R∗. Consequently, as it is handy, M is a R∗-weighted
mean.

To verify Theorem 2.8, it suffices to prove that, for all N ∈ N, λ ∈ W 0(R∗) and x ∈ IN ,
there holds

(5.1)
N∑

n=1

λn

n

M
i=1

(
xi, λi

)
≤ H1(M)

N∑

n=1

λnxn.

Indeed, if we pass the limit N → ∞, this inequality would imply Hλ(M) ≤ H1(M).
This proof is split into two parts. In fact each part can be formulated as a separate lemma.

Lemma 5.2. Let M be a monotone R∗-weighted mean on I. Then, for all N ∈ N, for all
nonincreasing sequences x ∈ IN and weights λ ∈ W 0

N(R
∗), the inequality (5.1) is valid.

Lemma 5.3. Let M be a symmetric and monotone R-weighted mean on I. Then, for all
N ∈ N, for all vectors x ∈ IN and weights λ ∈ W 0

N(R), there exist M ∈ N, a nonincreasing
sequence y ∈ IM and a weight sequence ψ ∈ W 0

M(R) such that

(5.2)

∑

{n : xn=t}

λn =
∑

{m : ym=t}

ψm

for all t ∈ R and

(5.3)
N∑

n=1

λn

n

M
i=1

(
xi, λi

)
≤

M∑

m=1

ψm

m

M
i=1

(
yi, ψi

)
.

Let us underline that the the fact that sum of λ-s and ψ-s are equal is not used in the
proof of main theorem, however it could be useful in potential another use.

Having these two lemmas, for a given sequence x = (x1, x2, . . . ) with weights λ ∈ W 0(R∗)
and N ∈ N, we can apply Lemma 5.3 and then Lemma 5.2 to a vector y ∈ IM with
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corresponding weights ψ to obtain

N∑

n=1

λn

n

M
i=1

(
xi, λi

)
≤

M∑

m=1

ψm

m

M
i=1

(
yi, ψi

)
≤ H1(M)

M∑

n=1

ψnyn = H1(M)
N∑

n=1

λnxn

Then, if we pass the limit N → ∞, we get
∞∑

n=1

λn

n

M
i=1

(
xi, λi

)
≤ H1(M)

∞∑

n=1

λnxn (λ ∈ W 0(R∗) ),

which obviously implies Hλ(M) ≤ H1(M). As 1 ∈ W 0(R), the equality in Theorem 2.8
simply follows.

In order to make the proofs more compact, define Λn := λ1 + · · ·+ λn for n ∈ {1, . . . , N}.
In view of the nullhomogeneity of the mean M, we may also assume that ΛN = 1. Now,
define the function f : [0, 1) → R as follows

f |[Λn−1,Λn) := xn, n ∈ {1, . . . , N}.

Then, we have that

Λn

M
0

f(x)dx =
n

M
i=1

(
xi, λi

)
, n ∈ {1, . . . , N}.

Proof of Lemma 5.2. First observe that, if H1(M) = ∞, then this lemma is trivial. From
now on suppose that H1(M) is finite. Define, for j ∈ N, the function fj : [0, 1) → I by

fj|[n/j, (n+1)/j) := f
(
n
j

)
for all n ∈ {0, . . . , j − 1}.

As the sequence x is nonincreasing, thus f is nonincreasing, too. Therefore, f ≤ fj and fj is
nonincreasing for every j ∈ N. Thus, by Lemma 5.1, so is the function Cj : [0, 1) → I given
by

Cj(t) :=





inf
s≤t
s∈R∗

M
s
0 fj(x)dx if t ∈ (0, 1),

x1 if t = 0,
(j ∈ N).

As Cj is monotonic, it is also Riemann integrable. Using these properties, we get

λn ·

n

M
i=1

(
xi, λi

)
= λn ·

Λn

M
0

f(x)dx ≤ λn ·

Λn

M
0

fj(x)dx

= λn · Cj(Λn) =

ˆ Λn

Λn−1

Cj(Λn)dx ≤

ˆ Λn

Λn−1

Cj(x)dx.

Therefore, for all j ∈ N,

(5.4)
N∑

n=1

λn ·
n

M
i=1

(
xi, λi

)
≤

ˆ 1

0

Cj(x)dx.
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We are now going to majorize the right hand side of this inequality. Observe first that,
for all j ∈ N,

(5.5)
ˆ

1

j

0

Cj(x)dx ≤
1

j
· Cj(0) =

x1
j
.

Furthermore, for all j, n ∈ N such that n < j,

(5.6)
ˆ

n+1

j

n
j

Cj(x)dx ≤
1

j
· Cj

(
n
j

)
=

1

j
·

n
j

M
0

fj(x)dx =
1

j
·

n

M
i=0

(
fj
(
i
j

)
, 1
)
.

If we now sum up (5.5) and (5.6) for all n ∈ {1, . . . , j − 1}, we obtain, for all j ≥ 2,

(5.7)

ˆ 1

0

Cj(x)dx ≤
1

j

(
x1 +

j−1∑

n=1

n

M
i=0

(
fj
(
i
j

)
, 1
))
.

However, M is a 1-weighted Hardy mean. In this setting by [36, Proposition 3.1], we have
that finite estimation announced in the definition of Hardy constant remains valid for finite
sequences too. That is

(5.8)

j−1∑

n=1

n

M
i=0

(
fj
(
i
j

)
, 1
)
≤ H1(M) ·

j−1∑

n=0

fj
(
n
j

)
(j ≥ 2).

Moreover, as f is nonincreasing, we have

(5.9)
1

j

j−1∑

n=0

fj
(
n
j

)
=

1

j

j−1∑

n=0

f
(
n
j

)
≤
x1
j

+

ˆ 1

0

f(x)dx =
x1
j

+
N∑

n=1

λnxn (j ≥ 2).

Now combining (5.4), (5.7), (5.8), and (5.9), for j ≥ 2, we obtain

N∑

n=1

λn·
n

M
i=1

(
xi, λi

)
≤

ˆ 1

0

Cj(x)dx ≤
1

j

(
x1 +

j−1∑

n=1

n

M
i=0

(
fj
(
i
j

)
, 1
))

≤
1

j

(
x1 +H1(M)

j−1∑

n=0

fj
(
n
j

))
≤

(1 +H1(M))x1
j

+H1(M)
N∑

n=1

λnxn.

Finally, as j → ∞, we get (5.1). �

Now we turn to the proof of Lemma 5.3. Let us stress that in this lemma the assumptions
for the mean M are more restrictive. More precisely, we assume M to be not only monotone
but also symmetric. On the other hand, we need M to be R-weighted instead of R∗-weighted
only. However, in view of Theorem 2.5, this difference is rather a technical one.

Proof of Lemma 5.3. Throughout this proof, let us denote by g∗ the right continuous non-
increasing rearrangement of an R-simple function g : D → R. It is easy to observe that g∗ is
again R-simple.
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Without the loss of generality, we may assume that the members of the sequence λ are
positive. Consider a strictly increasing sequence (Ψm)

M
m=0 ∈ RM+1 such that Ψ0 = 0, ΨM =

ΛN , (Λn)
N
n=0 is a subsequence of (Ψm)

M
m=0, and f ∗ is constant on all intervals [Ψm−1,Ψm),

where m ∈ {1, 2, . . . ,M}.
Set ψm := Ψm − Ψm−1 and ym to be the value of f ∗ on [Ψm−1,Ψm); m ∈ {1, . . . ,M}.

Furthermore, for every n ∈ {0, . . . , N} there exists a unique in ∈ {0, . . . ,M} such that
Ψin = Λn. As ΨM = ΛN , we obtain iN =M ; furthermore, by Λ0 = 0 = Ψ0, we get i0 = 0.

Obviously (ym) is nonincreasing,
∑N

n=1 λn = ΛN = ΨM =
∑M

m=1 ψM , and

N∑

n=1

λnxn =

ˆ ΛN

0

f(x) dx =

ˆ ΨM

0

f(x) dx =

ˆ ΨM

0

f ∗(x) dx =

M∑

m=1

ψmym.

Therefore the only property, which remains to be proved is (5.3). One can easily see that

(f |[0,u))
∗(x) ≤ f ∗(x), x ∈ [0, u), u ∈ R ∩ [0,ΛN).

Thus, by the monotonicity of M,

u

M
0

(f |[0,u))
∗(x) dx ≤

u

M
0

f ∗(x) dx, u ∈ R ∩ [0,ΛN).

But, by the definition, (f |[0,u))
∗ and f |[0,u) have the same distribution. Whence, applying

the symmetry of M, we arrive at

u

M
0

f(x) dx ≤
u

M
0

f ∗(x) dx, u ∈ R ∩ [0,ΛN).

Therefore, applying this inequality for u = Λn, we obtain

(5.10)
N∑

n=1

λn

n

M
i=1

(
xi, λi

)
=

N∑

n=1

λn

Λn

M
0

f(x) dx ≤
N∑

n=1

λn

Λn

M
0

f ∗(x) dx.

Now, let us notice that

λn = Λn − Λn−1 = Ψin −Ψin−1
=

in∑

m=in−1+1

(Ψm −Ψm−1).
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Therefore, by Lemma 5.1, definition of (in), and the identity above, we obtain

N∑

n=1

λn ·
Λn

M
0

f ∗(x)dx =
N∑

n=1

( in∑

m=in−1+1

(Ψm −Ψm−1)
) Ψin

M
0

f ∗(x)dx

≤
N∑

n=1

in∑

m=in−1+1

(Ψm −Ψm−1)
Ψm

M
0

f ∗(x)dx

=

M∑

m=1

(Ψm −Ψm−1)

Ψm

M
0

f ∗(x)dx =

M∑

m=1

ψm ·

m

M
i=1

(yi, ψi).

But this inequality combined with (5.10) is exactly what (5.3) states. As this was the only
remaining property to be verified, the proof is complete. �
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