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fDepartment of Computer Science, Eötvös Loránd University, H-1117 Budapest, Pázmány
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Abstract

The existence of ovals and hyperovals is an old question in the theory of non-
Desarguesian planes. The aim of this paper is to describe when a conic of
PG(2, q) remains an arc in the Hall plane obtained by derivation. Some combi-
natorial properties of the inherited conics are obtained also in those cases when
it is not an arc. The key ingredient of the proof is an old lemma by Segre-
Korchmáros on Desargues configurations with perspective triangles inscribed in
a conic.

1. Introduction

An arc in a projective plane is a set of points no three of which are collinear.
An old theorem of Bose says that an arc can have at most q + 2 points if q is
even, and at most q + 1 points if q is odd. An arc having k points is also called
a k-arc. A k-arc is said to be complete if it is not contained in a (k + 1)-arc.
(q + 1)-arcs are called ovals, (q + 2)-arcs are called hyperovals. It is also known
that ovals in planes of even order are contained in a (unique) hyperoval. Arcs
and ovals are among the most studied objects in finite geometry. A motivating
question was the existence of ovals in any (not necessarily Desarguesian) plane.
Several results are known for arcs in the Desarguesian plane PG(2, q), here we
just mention some of them.
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Theorem 1.1 (Segre, [14]). If K is a complete k-arc in PG(2, q), then k = q+2
or k ≤ q −√

q + 1 if q is even, and k = q + 1, in which case K is a conic, or
k ≤ q − 1

4

√
q + 7

4 if q is odd.

For a survey of results on arcs and blocking sets we refer to the book by
Hirschfeld [4]. Relatively few results are known for (complete) arcs in non-
Desarguesian planes. In particular, no embeddability results similar to Segre’s
theorems are known. Instead of giving a full list of the results we just refer
to an old survey paper by the fourth author [16] and pick some characteristic
results about arcs. Of course, the focus was on non-Desarguesian planes which
are close to Galois planes. This means that most results are about arcs of
Hall planes, André planes and their duals (Moulton planes). In the early years,
researchers wanted to find ovals and hyperovals in non-Desarguesian planes.
There are such examples by Rosati, Bartocci, Korchmáros [16, Theorem 3.1].
An early important result about complete arcs is due to Menichetti: there are
complete q-arcs in Hall planes of even order (≥ 16) [10]. A similar but easier
result is due to Szőnyi: there are complete (q − 1)-arcs in Hall planes of odd
order [16, Theorem 4.6]. A natural idea is to start with an oval (or a conic) of
the Desarguesian plane and study the combinatorial properties of these sets in
the non-Desarguesian plane (obtained from the Desarguesian one by replacing
some of the lines).

In this paper, we shall systematically study inherited conics in Hall planes.
In the next section some fundamental results used in the proofs are collected.
Then we discuss old and new results about different types of conics: parabolas,
hyperbolas, and ellipses and decide whether they yield inherited arcs or not.
Some cases were completely known before, some were not. The precise results
are stated in the corresponding sections.

We should remark that Barwick and Marshall [1] found a necessary and
sufficient condition in terms of the equation of the conic guaranteeing that it
remains an arc in the Hall plane. The disadvantage of the result is that the
condition is not easy to check explicitly.

Throughout the paper conic will stand for irreducible conic.

2. The Hall plane

In this section, the Hall planes are described briefly by using derivation and
also by giving the lines explicitly.

Consider the Desarguesian projective plane PG(2, q2), let ℓ be a line and let
D be a Baer subline of ℓ. So D ∼= PG(1, q) ⊂ PG(1, q2) = ℓ. We call ℓ= ℓ∞
the line at infinity. The points of the affine Hall plane Hall(q2) are the points
of PG(2, q2) \ ℓ∞. Lines whose infinite point does not belong to D remain the
same (‘old lines’). Instead of lines intersecting ℓ∞ in a point of D we consider all
Baer subplanes containing D. The affine part of these Baer subplanes are the
‘new lines’. It is not difficult to show that this incidence structure is an affine
plane (and the translations of the Desarguesian affine plane are translations in
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the Hall plane). The projective Hall plane is the projective closure of this affine
plane.

For the sake of completeness, we describe the affine Hall plane Hall(q2)
explicitly. Points are the pairs (x, y), where x, y ∈ GF(q2). Old lines have
equation Y = mX + b, where m /∈ GF(q). New lines are {(a + λu, b + λv) :
u, v ∈ GF(q)}, where a, b, λ are fixed elements of GF(q2). Note that the same
Baer subplane is obtained for several a, b, λ. In this case we have the standard
derivation set, ‘the usual PG(1, q)’:

D = {(m) | m ∈ GF(q) ∪ {∞}} = {(x : y : 0) | x, y ∈ GF(q)}.

3. Useful facts about conics

Let us begin with the following result by Segre and Korchmáros [15, page
617] which plays a crucial role in our proof.

Theorem 3.1 (Segre-Korchmáros). (a) Let K be a conic of PG(2, q), q even,
and r be a line which is not a tangent of K. For every triple {P1, P2, P3} ⊂
r \K there exists one and only one triangle {A1, A2, A3} inscribed in K \ r
such that AiAj ∩ r = Pk, where i, j, k is a permutation of 1, 2, 3.

(b) Let K be a conic of PG(2, q), q odd, and r be a line which is not a tangent
of K. For every triple {P1, P2, P3} ⊂ r \K there exist at most two triangles
{A1, A2, A3} inscribed in K \ r such that AiAj ∩ r = Pk, where i, j, k is a
permutation of 1, 2, 3. Moreover, if r is a tangent to K then there is one
and only one such triangle inscribed in K \ r.

Actually, one can say even more for q odd, by using an observation of Ko-
rchmáros [7, Teorema 1]. Sometimes this observation is called the axiom of
Pasch for external/internal points.

Proposition 3.2. Let K be a conic and r be a line of PG(2, q), q odd. If r
is not a tangent and {P1, P2, P3} contains either three or exactly one external
point then there are exactly two triangles {A1, A2, A3} inscribed in K \ r such
that AiAj ∩ r = Pk, where i, j, k is a permutation of 1, 2, 3. In the other cases,
for example, when the three points are internal, there is no {A1, A2, A3} with
this property.

The next result is useful when we wish to determine the intersection of a
conic and a Baer subplane.

Proposition 3.3. Let K be a conic in B = PG(2, q), a Baer subplane of
PG(2, q2). Let r be line in B. Extend K and r to K ′ and r′ in the larger plane
by using the same equation. Then if r is a tangent, then so is r′, otherwise r′

is a secant of K ′. In other words K ′ is a parabola if the original conic K was
a parabola, where r and r′ are the line at infinity, and it is a hyperbola if it is
not.
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The difference in extending a hyperbola and an ellipse is that the infinite
points in PG(2, q2) belong to the Baer subplane or not. This observation can
be used to determine the intersection of a Baer subplane and a conic. The only
thing one needs is that five points determine a conic uniquely.

Corollary 3.4. Let B be a Baer subplane and K a conic in PG(2, q2). Then
either |B ∩K| ≤ 4 or B ∩K is a conic of B.

4. Consequences for the number of collinear points

Let D = {(m) | m ∈ GF(q) ∪ {∞}} = {(x : y : 0) | x, y ∈ GF(q)} be the
standard derivation set we used to define the Hall plane in Section 2. In this
section we look at the case that the line at infinity, ℓ∞ is not a tangent.

We first consider the case that q is even (and at least 4).

Proposition 4.1. If K is a hyperbola either having two points in D, or two
conjugate points outside D, then K is defined over a subplane (containing D),
hence in the Hall plane it has q− 1 or q+1 collinear points, and the remaining
lines of the Hall plane intersect K in at most two points.

Proof. Let P1, P2, and P3 be any three points on ℓ∞, and A1, A2 and A3 be the
affine points on K described in Theorem 3.1. Notice that, {P1, P2, P3} ⊆ D iff
all points Ai belong to a subplane containing D. In particular, we can fix three
affine points of K contained in a subplane containing D, and they together with
the two points at infinity determine a conic (and this is of course K), whose
homogeneous part of degree 2, which is determined by the infinite points, can
be given coefficients from GF(q) and therefore, K intersects this subplane in a
subconic. If the two infinite points belong to D, then we find q − 1 collinear
points, if they are conjugate, we find q+1 collinear points in the Hall plane.

Theorem 4.2. For q even the following hold.

(a) If K is a hyperbola having two non-conjugate points on ℓ∞ \D, or if K is
an ellipse, then every line of the Hall plane intersects the affine part of K
in at most 4 points and the number of collinear triples is

(

q+1
3

)

.

(b) If K is a hyperbola having one point in D, then every line of the Hall plane
intersects the affine part of K in at most 3 points and the number of collinear
triples is

(

q
3

)

.

Proof. By Corollary 3.4 the lines intersect K in at most 4 points, and if K has
a point in D then at most 3, since in this case K does not intersect a Baer
subplane containing D in a conic. If K has one point in D, then from the
remaining q points we get

(

q
3

)

triples, and by Theorem 3.1 the same number of
triples in the intersection of K with a subplane containing D, otherwise K has
no points in D and we find

(

q+1
3

)

such triples.

Next we consider the case that q is odd. In this case we have the following
possibilities:
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(1) All points of D\K are internal. Now we get from Proposition 3.2 that there
are no collinear triples, so we get an inherited arc.

(2) D contains s > 0 external points. In this case we have roughly, but definitely
at least

(

s
3

)

+ s
(

q−1−s
2

)

collinear triples, so certainly K does not give rise to
an arc.

In the next section we will investigate the possible values of s.

5. External points in the derivation set

We consider the case that q is odd and want to determine the number of
external/internal points of the conic in the derivation set.

The line at infinity is the line with equation Z = 0. D is the standard
derivation set defined above. The conic K is given by Q(X,Y, Z) = X2 +
aXY + bY 2+ZL(X,Y, Z) = 0, or just by X2+aXY + bY 2+L(X,Y ), where of
course L(X,Y ) = L(X,Y, 1). Note that K is an ellipse if f = X2 + aXY + bY 2

is irreducible over GF(q2), a parabola if f is a square, and a hyperbola if f
factors into different linear factors. For convenience we take L so that the
point (1 : 0 : 0) is external, and now the infinite point (u) := (1 : u : 0) is
external/internal when 1 + au+ bu2 =✷ or 6✷.

Remark: it is an exercise to show that if P1 and P2 are two (external) points
on the same tangent, then either Q(Pi) is a square for both points, or a non-
square. As a consequence Q(P ) either is a square for all external points P , or
a non-square. This is essentially Theorem 8.17 in [4].

To count the number of external/internal points in D, we therefore have to
find the number of (affine) rational points (so u,w ∈ GF(q)) on the curve C
with equation

(1 + au+ bu2)(1 + āu+ b̄u2)− w2 = p(u)− w2 = 0.

This curve is absolutely irreducible unless the polynomial p is a square. One
possibility for this is that 1 + au+ bu2 is a square, in which case the conic is a
parabola. The line at infinity is a tangent in this case, so we have:

Proposition 5.1. If K is a parabola then all points in D different from the
infinite point of K are external.

The other possibility if p is a square, is that 1+ au+ bu2 = 1+ āu+ b̄u2 and
now a, b ∈ GF(q), so 1 + au + bu2 factors over GF(q2). In this case the conic
has two points at infinity so we have a hyperbola, and we have:

Proposition 5.2. If K is a hyperbola and either both infinite points belong to
D, or they are conjugates, (m) and (m̄), both outside D, then either all (other)
points of D are external, or all are internal.

If p is not a square, then we first take care of the case that p has a repeated
factor. If 1+ au+ bu2 = (1−αu)(1−βu), then 1+ āu+ b̄u2 = (1− ᾱu)(1− β̄u)
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and if now α = β̄ then β = ᾱ, so p is a square, and we are back in the case of a
hyperbola with conjugate infinite points, while if α = ᾱ but β 6= β̄ then, K has
one point in D, namely (α : 1 : 0) and one outside D namely (β : 1 : 0), and we
now look for the number of points on the curve

(1 + αu)2(1 + βu)(1 + β̄u)− w2,

and this is essentially a conic, possibly with some points at infinity.

Proposition 5.3. If K is a hyperbola with exactly one infinite point in D, then
D contains (q + 1)/2 external and (q − 1)/2 internal points, or the other way
around, depending on the quadratic character of ββ̄ in GF(q).

So in the case of an ellipse, or a hyperbola with two non-conjugate points
outside D we have no repeated factor, and now by [5, Example 5.59], C has
genus g = 1. Let Rq denote the number of points P ∈ C that lie in PG(2, q).
On the one hand, [5, Theorem 9.57(i)] implies

|Rq − (q + 1)| ≤ 2
√
q + 2.

On the other hand, C has a unique point at infinity and all GF(q)-rational affine
points C have the form (u,±w) with w 6= 0. That is, for (Rq − 1)/2 values
u ∈ GF(q), p(u) is a square. We get:

Proposition 5.4. If K is an ellipse, or a hyperbola with two non-conjugate
infinite points outside D, then the number of internal (external) points on D is
at least q/2− 1−√

q (at most q/2 + 1 +
√
q).

6. Inherited parabolas

The complete solution to the problem of inherited parabolas was given in a
sequence of papers. The story began with the results of Korchmáros [8, Theorem
1 and 2].

Theorem 6.1. Let K be a parabola in PG(2, q) where q is odd. If K is an arc
in a translation plane having the same translation group as the Desarguesian
plane, then the plane must be the Desarguesian one. For q even, there is a
parabola which remains an arc in the Hall plane obtained by derivation.

In the case q odd more information is given about parabolas as subsets of
the Hall plane in the paper [17]. Namely, it is shown that they are sets having
an internal nucleus set that is much larger than a subset of the Desarguesian
plane can have (P ∈ S is an internal nucleus if every line through P contains
at most one other point of S [19]). This happens in the case when the infinite
point of the parabola belongs to the derivation set.

If the infinite point of K is not in D, then we can use Theorem 3.1, which
gives that for any {P1, P2, P3} ⊆ D there are A1, A2, A3 ∈ K that are collinear
in Hall(q2). By Proposition 3.3 and Corollary 3.4 it also follows that every new
line intersects K in at most 4 points.
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Lemma 6.2. Let q be odd, and let K be a parabola whose infinite point does
not belong to D. Then every line of Hall(q2) meets K in at most four points.

Proof. Consider a new line of the affine Hall plane Hall(q2). This Baer subplane
cannot meet K in a subconic, because the infinite point of K does not belong
to D. Five points in a Baer subplane determine a subconic, hence the Baer
subplane can meet K in at most four points.

Moreover the number of collinear triples is
(

q+1
3

)

. Counting collinear triples

in the Hall plane we get a3 +4a4 =
(

q+1
3

)

, where ai denotes the number of lines
meeting K in i points. We prove below that the number of lines in the Hall
plane interesecting K in exactly 3 points does not depend on the choice of K.

Let K ′ be another parabola with D∩K ′ 6= ∅. There is a projectivity ϕ that
maps K ′ to K and the infinite point of K ′ to the infinite point of K. Then ϕ
maps ℓ∞ to itself and D to another Baer subline, say r. The Baer subplanes
containing D are mapped to the Baer subplanes containing r. It is enough to
show that there is a projectivity ψ which fixes K and maps r to D because then
the product ψϕ will map the 3-secant new lines to K ′ to the 3-secant new lines
to K. Denote by I the infinite point of K. Let G be the group of projectivities
fixing K, and H be the stabilizer of I in G. The group G ∼= PGL(2, q2), which
is sharply 3-transitive on the points of K. Thus H is sharply 2-transitive on
K \ {I}, implying that it acts doubly transitively on the tangents of K distinct
from ℓ∞, and hence also on the points in ℓ∞\{I}. When we identify ℓ∞\{I} with
GF(q2), then H acts as the set of maps z 7→ az + b, a ∈ GF (q2)∗, b ∈ GF(q2)
and Baer subplanes not containing I are circles (z− c)(z̄− c̄) = r so we see that
H contains a projectivity ψ that maps the first pair to the second. Clearly, ψ
will map r to D, and by this we showed that the number of lines in the Hall
plane interesecting K in exactly 3 points does not depend on the choice of K.

Lemma 6.3. Let q be odd, and P1, P2 and P3 be three affine points on a new
line ℓ of the Hall plane. Then there are exactly 3(q− 1) parabolas whose infinite
points are not in D and which intersect ℓ in exactly P1, P2 and P3.

Proof. Let us write Pi = (ai, bi) for i = 1, 2, 3. The translation (x, y) 7→ (x, y)−
(a1, b1) maps ℓ to a new line through the point (0, 0), and therefore, the affine
points of the latter new line form the set {(λx, λy) | x, y ∈ GF(q)} for some
λ ∈ GF(q2)∗. There exists a non-singular matrix A with entries in GF(q) such
that (a2 − a1, b2 − b1)A = λ(−1, 0) and (a3 − a1, b3 − b1)A = λ(0,−1). Let ϕ
be the automorphism of AG(q2) defined by ϕ : (x, y) 7→ λ−1(x − a1, y − b1)A.
This extends naturally to a projectivity of PG(2, q), which fixes ℓ∞ setwise, and
maps D to itself. The image ϕ(ℓ) is the new line for which

ϕ(ℓ) \ ℓ∞ = {(x, y) | x, y ∈ GF(q)}.

We are done if we show that there are exactly 3(q−1) parabolas whose infinite
points are not in D and which intersect ϕ(ℓ) in exactly the points (0, 0), (−1, 0)
and (0,−1).
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For u ∈ GF(q2)\GF(q), denote by Ku be the unique parabola that contains
the points (0, 0), (−1, 0) and (0,−1) and the infinite point (−u : 1 : 0). Then
Ku has affine equation

f(X,Y ) = (X + uY )2 +X + u2Y = 0.

We find next all GF(q)-rational points of Ku. If P = (a, b) is such a point,
then we compute

f(a, b)− f(a, b) = (u− ū)b(2a+ (u+ ū)(b+ 1)) = 0,

−ū2f(a, b) + u2f(a, b) = (u− ū)a((u + ū)(a+ 1) + 2uūb) = 0.

Since u − ū 6= 0, these show that a = 0 or b = 0 (and in this case (a, b) ∈
{(0, 0), (−1, 0), (0,−1)}), or (a, b) can be obtained as the unique solution of a
system of linear equations, which then yields

P =
( (u+ ū)(2uū− u− ū)

(u− ū)2
,
(u+ ū)(2− u− ū)

(u − ū)2

)

.

It is clear that P is GF(q)-rational, and we leave for the reader to check that it
lies on Ku.

We conclude that |ϕ(ℓ) ∩ Ku| ∈ {3, 4}, and |ϕ(ℓ) ∩ Ku| = 3 iff P is equal
to one of the points (0, 0), (−1, 0) and (0,−1). A quick computation gives that
this occurs iff u + ū ∈ {0, 2} or 1/u + 1/ū = 2. It can be easily checked that
u satisfies one of the latter conditions iff u ∈ GF(q)∗ω or u ∈ GF(q)∗ω + 1 or
u ∈ (GF(q)∗ω + 1)−1, where ω ∈ GF(q2) is any element such that ω2 is a non-
square in GF(q). This implies that there are 3(q− 1) parabolas Ku intersecting
ϕ(ℓ) in exactly the points (0, 0), (−1, 0) and (0,−1), and this completes the
proof of the lemma.

Theorem 6.4. Let D be a derivation set on ℓ∞ of AG(2, q2) with q odd. Let
K be a parabola whose infinite point does not belong to D. Then there are
a3 = (q2 − 1)/2 and a4 = (q− 3)(q2 − 1)/24 lines of Hall(q2) meeting K in 3 or
4 points, respectively.

Proof. Let U be the set of parabolas whose infinite point does not belong to D.
Any element of U has a uniquely defined equation of the form

Y = α(X − uY )2 + β(X − uY ) + γ,

with u ∈ GF(q2) \GF(q), α ∈ GF(q2)∗, β, γ ∈ GF(q2). Hence,

|U | = (q − 1)(q2 − 1)q5.

We showed above that for any K ∈ U , the number of 3-secant new lines is a
constant a3.

Let V be the set of new lines; |V | = (q + 1)q2. For the set

W = {(K,B, P1, P2, P3) | K ∈ U,B ∈ V,K ∩B = {P1, P2, P3}},
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one has
|W | = 6|U |a3 = |V |q2(q2 − 1)(q2 − q) · 3(q − 1)

by Lemma 6.3. The value for a4 follows from a3 + 4a4 =
(

q+1
3

)

.

The case when q is even is more interesting. The four cases are treated by
O’Keefe, Pascasio [12], O’Keefe, Pascasio, and Penttila [13] and Glynn, Steinke
[3].

Theorem 6.5 ([12], [13], [3]). Let D be a derivation set on ℓ∞ of AG(2, q2),
with q ≥ 4 even, and K a parabola with infinite point I and nucleus N .

(i) If I ∈ D and N ∈ D, then K is not an arc in the Hall plane.

(ii) If I 6∈ D and N ∈ D, then K is a translation q2-arc in the derived plane
and it can be extended to a hyperoval. Any two hyperovals of the Hall
plane arising from this construction are equivalent under the automor-
phism group of the Hall plane.

(iii) If I ∈ D and N 6∈ D, then K is a translation q2-arc in the derived plane
and it can be extended to a hyperoval. Any two hyperovals of the Hall
plane arising from this construction are equivalent under the automor-
phism group of the Hall plane. The two cases give inequivalent hyperovals
in the Hall plane.

(iv) If I 6∈ D and N 6∈ D, then K ∪ {I} is a translation oval if and only if q is
a square, and I and N are conjugate with respect to D.

Also in the case q even, we know something about the combinatorial struc-
ture of K in Hall(q2) if I,N ∈ D. In this case we may assume that the parabola
has equation K : Y = X2 and D is the standard derivation set. Points of K
whose coordinates are in GF(q) are collinear in Hall(q2) and the same is true
for points whose first coordinate is in an additive coset of GF(q). So the points
of K are on q parallel lines. Other triples are not collinear.

In the general Glynn–Steinke case I,N 6∈ D, we can show that each line
meets K in 0, 1, 2 or 4 points.

Lemma 6.6. Let q be a power of 2 and β ∈ GF(q2)∗. Let Nβ be the number of
GF(q)-rational roots of

f(T ) = T 3 + ββ̄T + ββ̄(β + β̄).

(a) If q is a square then

Nβ =

{

3 for β ∈ GF(q),

1 for β ∈ GF(q2) \GF(q).

(b) If q is not a square then

Nβ =

{

3 if β is a cube in GF(q2)∗,

0 otherwise.
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Proof. If β = β̄ then the roots of f(T ) are 0, β, β, in accordance with (a) and
(b). For the remaining part, we assume β 6= β̄. Let ε, d be elements of GF(q)
such that ε2 + ε+1 = 0 and d3 = β. Then, the three different roots of f(T ) are

t1 = dq+1(d+ dq),

t2 = dq+1(ε2d+ εdq),

t3 = dq+1(εd+ ε2dq).

(β 6= β̄ implies ti 6= tj for i 6= j.)
Assume that q is not a square. Then εq = ε2, and thus if β is a cube in

GF(q2), then d ∈ GF(q2), and t1, t2, t3 ∈ GF(q). If d 6∈ GF(q2) then the three

cubic roots of β are d, dq
2

, dq
4

, and we have dq
2

= εd. This implies tq1 = t2,
tq2 = t3 and tq3 = t1, showing that no root of f(T ) lies in GF(q). This proves
(b).

Now, let q be a square. Then εq = ε, and we obtain that tq1 = t1, t
q
2 = t3 and

tq3 = t2 when β is a cube in GF(q2), and tq3 = t3, t
q
1 = t2 and tq2 = t1 when β is

not a cube. In either case f(T ) has one root in GF(q), as claimed in (a).

Theorem 6.7. Let D be a derivation set on ℓ∞ of AG(2, q2), with q ≥ 4 even,
and K a parabola with infinite point I and nucleus N . Assume that I 6∈ D and
N 6∈ D. Then the following holds:

(i) Each line of the Hall plane intersects K in 0, 1, 2 or 4 points.

(ii) If I and N are conjugate with respect to D, and q is not a square, then each
point P ∈ K is contained in (q + 1)/3 4-secant new lines and 2(q + 1)/3
1-secant new lines. In particular, the Hall plane has no 2-secant new lines.

Proof. Let I and N be the points (u : 1 : 0) and (v : 1 : 0) of the line at infinity;
u, v ∈ GF(q2) \GF(q). Then, the homogeneous equation of K has the form

X2 + u2Y 2 + β0Z(X + vY ) + β1Z
2 = 0,

where β0 ∈ GF(q2)∗ and β1 ∈ GF(q2). Let ℓ be a new line of the Hall plane and
assume K ∩ ℓ 6= ∅. W.l.o.g. we can assume that (0, 0) ∈ K ∩ ℓ. Then β1 = 0
and

ℓ \ ℓ∞ = {(λx, λy, 1) | x, y ∈ GF(q)}
for some λ ∈ GF(q2)∗. In order to compute K ∩ ℓ, we substitute X = λx,
Y = λy, Z = 1 in the equation of K. We obtain

C : x2 + u2y2 + β(x + vy) = 0,

where β = β0/λ ∈ GF(q2)∗. The GF(q)-rational points of C are contained in
C ∩ C̄.

Assume β = β̄ ∈ GF(q)∗. Then C + C̄ : (u2 + ū2)y2 + β(v + v̄)y = 0, giving

two GF(q)-rational roots y1 = 0 and y2 = β(v+v̄)
u2+ū2 = γ ∈ GF(q)∗. For y1 = 0,

we get x1 = 0 or x2 = β, two rational points. For y2 = γ, we get two different
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roots x3, x4 of x2 + βx+ u2γ2 + βvγ. This means 2 or 4 GF(q)-rational points
on C.

Assume now β 6= β̄ and compute the resultant

RC,C̄(y) = (u+ū)4y4+[(u+ū)2ββ̄+(u+v̄)2β̄2+(v+ū)2β2]y2+ββ̄(β+β̄)(v+v̄)y.

As the derivative is a nonzero constant, this resultant has four different roots.
Clearly, if three of them sit in GF(q) then so does the fourth. If y = γ is a
rational root of the resultant, then

x2 + βx + u2γ2 + βvγ, x2 + β̄x+ ū2γ2 + β̄v̄γ

have a unique rational common root, giving rise to a unique GF(q)-rational
point of C. In particular, ℓ intersects K in 0, 1, 2 or 4 points, and this together
with the previous paragraph shows that (i) holds.

We turn now to the statement in (ii), and assume that q is not a square and
I and N are conjugate w.r.t. D. This means u = v̄ and the resultant RC,C̄(y)
becomes

r(T ) = T 4 + ββ̄T 2 + ββ̄(β + β̄)T,

where T = (u + ū)y. By Lemma 6.6, r(T ) has 1 or 4 GF(q)-rational roots,
depending whether β is a cube or not in GF(q2)∗. Moreover, these roots are
different for β 6= β̄, and hence ℓ is a 1- or a 4-secant of K depending whether
β is a cube or not. If β = β̄, then a straightforward calculation shows, that in
this case, the four points of C ∩ C̄ are

(0, 0), (0, β),

(

uβ

u+ ū
+ εβ,

β

u+ ū

)

,

(

uβ

u+ ū
+ ε2β,

β

u+ ū

)

,

where ε2 + ε + 1 = 0. The last two points are GF(q)-rational iff ε + εq = 1,
which holds iff q is not a square. The multiplicative group GF(q2)∗ is a cyclic
group of order q2 − 1, let K and L be its unique subgroups of order q − 1 and
(q2−1)/3, resp. As q is not a square, (q−1) divides (q2−1)/3, and thus K < L.
Our above discussion shows that the new line ℓ is a 1- or a 4-secant of K, and
that it is a 4-secant is equivalent to say that β ∈ L.

Recall that, β = β0/λ, where β0 is some fixed element in GF(q2)∗, and
λ ∈ GF(q2)∗ defines the new line ℓ. The q+1 new lines through the affine point
(0, 0) can be listed by letting λ run over any complete set of coset representatives
of K in GF(q2)∗. Now, denoting by Λ such a set of coset representatives, the
number of 4-secants through (0, 0) is equal to

|{λ ∈ Λ : β0/λ ∈ L}| = |Λ ∩ Lβ0|.

Consider the canonical projection η : GF(q2)∗ → GF(q2)∗/K. It follows that
η(Λ) = GF (q2)∗/K, and η induces a bijection from Λ ∩ Lβ0 to η(Λ ∩ Lβ0) =
GF (q2)∗/K ∩ L/K (Kβ0) = L/K (Kβ0) (here Kβ0 is regarded as an element in
GF(q2)∗/K). This gives |Λ ∩ Lβ0| = |L/K| = (q + 1)/3, and (ii) follows.
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Part (i) of the last proposition also follows from the proof of Glynn–Steinke,
see [3, Section 4].

Part (ii) implies that if I,N are conjugate w.r.t. D and q is not a square,
then the number of i-secant new lines of the Hall plane is a0 = 1

4q
2(q + 1),

a1 = 2
3q

2(q + 1) and a4 = 1
12q

2(q + 1) for i = 0, 1, 4.

7. Inherited hyperbolas

A surprising phenomenon occurs in this case. When the infinite points of
a hyperbola belong to the derivation set, then it is possible that although the
affine points of the hyperbola form an inherited arc, this arc is complete. This
was pointed out in [17] and the possible configurations were fully described
by O’Keefe and Pascasio. Note that in Galois planes there are no complete
(q − 1)-arcs by the theorems of Segre mentioned in the introduction.

Theorem 7.1 (O’Keefe-Pascasio, [12]). Suppose that the line at infinity is a
secant of a hyperbola K whose infinite points belong to the derivation set D.
Assume that q > 3 is odd and D is the standard derivation set. Then either we
have K equivalent to the hyperbola XY = 1 which does not give an inherited
arc, or to the hyperbola XY = −d with d a non-square in GF(q2) and we get
a complete (q2 − 1)-arc in Hall(q2). For q > 2 even, and D standard, K is
equivalent to the hyperbola XY = 1 and does not give an inherited arc.

Note that the odd case of the above theorem essentially is (one part of)
Proposition 5.2.

O’Keefe and Pascasio [12] give a complete description of the resulting con-
figurations in the Hall plane for q = 3.

The next case we consider is that the line at infinity is a secant of the
hyperbola K with two conjugate infinite points outside the derivation set.

Theorem 7.2. Suppose that the line at infinity is a secant of a hyperbola K
whose infinite points are conjugate, so outside of the (standard) derivation set
D. Assume that q > 3 is odd. Then either all points of D are internal, and K
(together with the two infinite points) is an inherited oval in the Hall plane, or
all points of D are external and now we find (two) lines containing q+1 points
of K.

The first case is just Proposition 5.2 together with Proposition 3.2. If all
points are external, then again by Proposition 3.2, for every triple of points in
D, there are two corresponding triangles in K, and these together form two
ellipses in two Baer subplanes on D.

Remark: if q is even, and the two infinite points of K are conjugate, then we
find exactly one line in the Hall plane with q + 1 points of K as a consequence
of Proposition 4.1.

The third case to consider is that the line at infinity is a secant of the
hyperbola K with one point in the derivation set, and one outside.
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The following proposition makes more precise what we already mentioned
in the section about consequences of the theorem by Segre and Korchmáros,
together with Proposition 5.3.

Theorem 7.3. If q > 5 is odd and K is a hyperbola with one point in the
derivation set, and one point outside of it, then the affine part of K does not
give an arc in the Hall plane, moreover, lines of the Hall plane intersect it in at
most three points. If s = 1

2 (q± 1) denotes the number of external points on our
derivation set D, then the total number of collinear triples in the Hall plane is
2s
(

q−s
2

)

+ 2
(

s
3

)

, which for q large enough is roughly 7q3/48, so small.

The final case to consider is where both infinite points of the hyperbola K
are outside the derivation set D and are not conjugate. From Proposition 5.4 we
know that the number of internal/external points in D is at most q/2− 1−√

q.
If s denotes the number of external points in our derivation set D, then the

total number of collinear triples in the Hall plane is 2s
(

q+1−s
2

)

+ 2
(

s
3

)

, roughly
7q3/48, using the above bound on s. Note also that we do not have collinear
sets of size 5 or more, since 5 points of our Baer subplanes extend to a conic
with points at infinity. We will return to this case in section 9 where the case q
even is studied in more detail.

8. Inherited ellipses for q odd

The last case to consider is an ellipse K in the affine plane AG(2, q2), so a
conic without points on the line at infinity. Let q be odd. Then, on the line at
infinity ℓ∞ we have (q2 + 1)/2 external and (q2 + 1)/2 internal points. If D is
a Baer subline of ℓ∞ then K is again an oval in the derived plane if and only
if the derivation set D is disjoint from the set of external points (on ℓ∞), as
a consequence of Proposition 3.2. In Proposition 5.4 we have seen that this is
impossible for q > 7. The following combinatorial proof works for all q.

Theorem 8.1. Let q be odd, K an ellipse in AG(2, q2), then K does not remain
an oval in Hall(q2).

Proof. Here we essentially just count. Consider the line ℓ∞ together with the
partition E ∪ I into external and internal points. The subgroup of PGL(2, q2)
stabilizing this partition has order 2(q2 + 1), there is a dihedral group of order
q2+1 fixing the set E and an extra factor 2 because we may interchange E and
I. Now how does this group act on the set of Baer-sublines, or better, how large
are the orbits? The stabilizer of a Baer-subline has order (q + 1)q(q − 1), and
the greatest common divisor of (q2+1) and (q+1)q(q− 1) is 2, this means that
if we find a Baer-subline contained in E, we find (q2 + 1)/2, and an additional
set of this size in I. Now let us count the number N of triples (Pe, Pi, B), of an
external point Pe, an internal point Pi and a Baer-subline B containing them.
Since every pair of points is contained in (q2−1)/(q−1) = (q+1) Baer-sublines,
we find N = 1

4 (q
2+1)2(q+1). Now we count in the other way, the total number

of Baer-sublines is (q2 + 1)q2(q2 − 1)/((q + 1)q(q − 1)) = (q2 + 1)q, but if we
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assume that there is a Baer-subline contained in E, then at least (q2 + 1) of
them do not contribute to our counts, so we find N ≤ 1

4 (q
2+1)(q−1)(q+1)2 <

1
4 (q

2 + 1)2(q + 1), contradiction.

Remark 8.2. (i) If s denotes the number of external points in our derivation
set D, then as in the hyperbola case the total number of collinear triples
in the Hall plane is 2s

(

q+1−s
2

)

+ 2
(

s
3

)

, roughly 7q3/48, using the bound on
s from Proposition 5.4.

(ii) Also, we do not have collinear sets of size 5 or more, since 5 points in of
our Baer-subplanes extend to a conic with points at infinity.

We finish this section with an open problem concerning the exact number of
3-secant new lines.

Question 8.3. Let q be odd, K an ellipse or a hyperbola with non-conjugate
infinite points in AG(2, q2). Let s denote the number of external points of K in
the derivation set D. Find a formula for the number a3 of 3-secant new lines
in terms of q and s.

In the last section, we answer this question for the even q case.

9. Inherited ellipses and hyperbolas for q even

In Theorem 4.2, we showed that if q is even and K is either an ellipse or a
hyperbola having two non-conjugate infinite points, then in the Hall plane K
has

(

q+1
3

)

collinear triples. In this section, we give an explicit formula for the

number a3 of 3-secant new lines. By a3 + 4a4 =
(

q+1
3

)

this also determines the
number a4 of 4-secant new lines.

Theorem 9.1. Let q be even, and D a derivation set on ℓ∞ of AG(2, q2). Let
K be either an ellipse or a hyperbola such that the infinite points of K are non-
conjugate and none of them is contained in D. Then, the number of 3-secant
new lines is a3 = q(q − 1)/2.

Lemma 9.2. Let u1, u2 ∈ GF(q4) be the roots of the quadratic polynomial
f(X) = X2+βX+γ ∈ GF(q2)[X ] and assume ui 6∈ {uqi , uj, uqj}, where {i, j} =

{1, 2}. Then there is a GF(q)-rational map z 7→ az+b
cz+d which brings f(X) to the

form X2 +X + w with some w ∈ GF(q2) \GF(q).

Proof. The fact ui 6= uj implies β 6= 0. Straightforward calculation shows

f(u(z)) =
(a2 + βac+ γc2)z2 + β(cb+ ad)z + b2 + βdb + γd2

(cz + d)2
.

Assume first that β ∈ GF(q2) \ GF(q). If γ = tβ with t ∈ GF(q) then
u(z) = t/z brings f(Z) to the form X2 +X + t/β. If γ/β 6∈ GF(q), then β, γ
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forms a GF(q)-basis of GF(q2) and there are unique elements t1, t2 ∈ GF(q),
t2 6= 0, such that

1 = t1β + t2γ.

Define a = b = 1, c =
√
t2, d = 1 +

√
t2. Then

a2 + βac+ γc2 = (t1 +
√
t2)β, (1)

β(cb + ad) = β, (2)

b2 + βbd+ γd2 = β(1 + t1 +
√
t2) + γ. (3)

By (1), t1+
√
t2 = 0 implies that c/a =

√
t2 is a root of f(X), which contradicts

to ui 6= uqi . Hence, u brings f(X) to the form f0(X) = X2 + β0X + γ0, with

β0 =
1

t1 +
√
t2

∈ GF (q)∗.

Now, v(z) = β0z brings f0(X) to the desired form X2+X+w, where w 6∈ GF(q)
follows from ui 6= uqj .

Lemma 9.2 implies that AG(2, q2) has an affine coordinate frame in which
D = {(x, y, 0) | x, y ∈ GF(q)} and the equation of K has the form

K : X2 +XY + cY 2 + uX + vY + w,

with c ∈ GF(q2) \ GF(q), u, v, w ∈ GF(q2). All dilations (=translations and
homotheties) preserve D and the quadratic component X2 +XY + cY 2 of K.

We use the notation tP for the tangent line of K at the point P ∈ K.

Lemma 9.3. Let B be a new line.

(i) If |B ∩K| = 3 then there is a unique P ∈ B ∩K such that the tangent tP
intersects D.

(ii) If tP intersects D for an element P ∈ B ∩K then |B ∩K| ≤ 3.

Proof. Up to dilatations we can assume that B = {(x, y) | x, y ∈ GF(q)}, which
means that B ∩ K consists of the GF(q)-rational points of K. Equivalently,
B ∩K = K ∩ K̄, where

K̄ : X2 +XY + cqY 2 + uqX + vqY + wq

is the conjugate of K. Counting with multiplicities, K and K̄ have 4 points
in common over the algebraic closure of GF(q). (Cf. Bézout’s Theorem [5,
Theorem 3.14]). If |B ∩K| = 3 then there is a unique P ∈ B ∩K such that K
and K̄ have intersection multiplicity 2. In particular, K and K̄ have a common
tangent t at P (see [5, Proposition 3.6]). This means that t is defined over GF(q)
and the infinite point of t is in D. This proves (i).

Conversely, if tP ∩D 6= ∅ for some P ∈ B ∩K, then tP is a common tangent
of K and K̄. Hence, K and K̄ have a common tangent at P , which implies an
intersection multiplicity at least 2. Thus, (ii) follows.
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Proof of Theorem 9.1. Fix a point A = (u, v, 0) ∈ D. Let t be the tangent from
A toK, with tangent point T ∈ K. We want to determine the 3-secant new lines
through T . Lemma 9.3 shows that if A runs through D, then this enumerates
all 3-secant new lines for K.

Up to dilations, we can have T = (0, 0) and let K have equation

K : X2 +XY + cY 2 + vX + uY.

Moreover, any new line through T has the form

Bλ = {(λ−1x, λ−1y) | x, y ∈ GF(q)}

for some λ ∈ GF(q2). More precisely, since λ is given up to a nonzero GF(q)-
rational scalar multiple, w.l.o.g. λ = 1 or λ = λ0 + c with λ0 ∈ GF(q). By
substituting the generic point of Bλ in the equation of K, we find a 1 − 1
correspondence between Bλ ∩ K and the set of GF(q)-rational points of the
conic

Kλ : X2 +XY + cY 2 + vλX + uλY.

Case 1: λ = 1. ThenKλ+K̄λ : Y 2 = 0, This implies Y = 0 andX2+vX = 0.
The only rational points of Kλ are (0, 0) and (v, 0). Thus, |Bλ ∩K| ≤ 2.

Case 2: λ 6= 1 and (u, v) = (1, 0). As λ = λ0 + c, we have λ + λq = c + cq

and Kλ + K̄λ : (c + cq)(Y 2 + Y ) = 0. If Y = 0 then X = 0. In order to
have |Bλ ∩ K| = 3, we need two more rational points, which holds if Y = 1
and X2 +X + λ0 has two distinct roots in GF(q). This happens if and only if
TrGF(q)/GF(2)(λ0) = 0. Therefore, we found exactly q/2 new lines Bλ through
T = (0, 0) such that |Bλ ∩K| = 3.

Case 3: λ 6= 1 and v = 1. Again, λ = λ0 + c and

Kλ + K̄λ : (c+ cq)(Y 2 +X + uY ) = 0.

Substituting X = Y 2 + uY into Kλ, we have

Y 2(Y 2 + Y + u2 + u+ λ0) = 0.

If Y = 0 then X = 0. If

TrGF(q)/GF(2)(u
2 + u+ λ0) = TrGF(q)/GF(2)(λ0) = 1

then Bλ ∩K = {(0, 0)}. If λ0 = u2 + u then Y = 0 or Y = 1, and Bλ ∩K =
{(0, 0), (u + 1, 1)}. Finally, if TrGF(q)/GF(2)(λ0) = 0 and λ0 6= u2 + u, then
Y 2 +Y + u2+ u+λ0 has two roots in GF(q) \ {0, 1}, giving rise to two rational
points ofKλ, different from (0, 0). Hence, we found q/2−1 new lines Bλ through
T = (0, 0) such that |Bλ ∩K| = 3.

Resuming the results, we found q/2+q(q/2−1) = q(q−1)/2 new lines which
intersect K in exactly 3 points.
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