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8 A characterization of linearized polynomials

with maximum kernel

Bence Csajbók, Giuseppe Marino, Olga Polverino, Ferdinando Zullo∗

Abstract

We provide sufficient and necessary conditions for the coefficients
of a q-polynomial f over Fqn which ensure that the number of dis-
tinct roots of f in Fqn equals the degree of f . We say that these
polynomials have maximum kernel. As an application we study in
detail q-polynomials of degree qn−2 over Fqn which have maximum
kernel and for n ≤ 6 we list all q-polynomials with maximum kernel.
We also obtain information on the splitting field of an arbitrary q-
polynomial. Analogous results are proved for qs-polynomials as well,
where gcd(s, n) = 1.

AMS subject classification: 11T06, 15A04

Keywords: Linearized polynomials, linear transformations, semilinear trans-
formations

1 Introduction

A q-polynomial over Fqn is a polynomial of the form f(x) =
∑

i aix
qi , where

ai ∈ Fqn. We will denote the set of these polynomials by Ln,q. Let K denote
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Scholarship of the Hungarian Academy of Sciences and by OTKA Grant No. K 124950.
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the algebraic closure of Fqn. Then for every Fqn ≤ L ≤ K, f defines an Fq-
linear transformation of L, when L is viewed as an Fq-vector space. If L is a
finite field of size qm then the polynomials of Ln,q considered modulo (xqm−x)
form an Fq-subalgebra of the Fq-linear transformations of L. Once this field
L is fixed, we can define the kernel of f as the kernel of the corresponding
Fq-linear transformation of L, which is the same as the set of roots of f in L;
and the rank of f as the rank of the corresponding Fq-linear transformation
of L. Note that the kernel and the rank of f depend on this field L and
from now on we will consider the case L = Fqn. In this case Ln,q considered
modulo (xqn −x) is isomorphic to the Fq-algebra of Fq-linear transformations
of the n-dimensional Fq-vector space Fqn . The elements of this factor algebra

are represented by L̃n,q := {
∑n−1

i=0 aix
qi : ai ∈ Fqn}. For f ∈ L̃n,q if deg f = qk

then we call k the q-degree of f . It is clear that in this case the kernel of f
has dimension at most k and the rank of f is at least n− k.

Let U = 〈u1, u2, . . . , uk〉Fq
be a k-dimensional Fq-subspace of Fqn. It is well

known that, up to a scalar factor, there is a unique q-polynomial of q-degree
k, which has kernel U . We can get such a polynomial as the determinant of
the matrix











x xq · · · xqk

u1 uq
1 · · · uqk

1
...

uk uq
k · · · uqk

k











.

The aim of this paper is to study the other direction, i.e. when a given
f ∈ L̃n,q with q-degree k has kernel of dimension k. If this happens then we
say that f is a q-polynomial with maximum kernel.

If f(x) ≡ a0x + a1x
σ + · · · + akx

σk

(mod xqn − x), with σ = qs for
some s with gcd(s, n) = 1, then we say that f(x) is a σ-polynomial (or qs-
polynomial) with σ-degree (or qs-degree) k. Regarding σ-polynomials the
following is known.

Result 1.1. [7, Theorem 5] Let L be a cyclic extension of a field F of degree
n, and suppose that σ generates the Galois group of L over F. Let k be an
integer satisfying 1 ≤ k ≤ n, and let a0, a1, . . . , ak be elements of L, not all
them are zero. Then the F-linear transformation defined as

f(x) = a0x+ a1x
σ + · · ·+ akx

σk

has kernel with dimension at most k in L.
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Similarly to the s = 1 case we will say that a σ-polynomial is of maximum
kernel if the dimension of its kernel equals its σ-degree.

Linearized polynomials have been used to describe families of Fq-linear
maximum rank distance codes (MRD-codes), i.e. Fq-subspaces of L̃n,q of or-
der qnk in which each element has kernel of dimension at most k. The first
examples of MRD-codes found were the generalized Gabidulin codes [3, 5],

that is Gk,s = 〈x, xqs, . . . , xqs(k−1)
〉Fqn

with gcd(s, n) = 1; the fact that Gk,s

is an MRD-code can be shown simply by using Result 1.1. It is impor-
tant to have explicit conditions on the coefficients of a linearized polynomial
characterizing the number of its roots. Further connections with projective
polynomials can be found in [8].

Our main result provides sufficient and necessary conditions on the coef-
ficients of a σ-polynomial with maximum kernel.

Theorem 1.2. Consider

f(x) = a0x+ a1x
σ + · · ·+ ak−1x

σk−1

− xσk

,

with σ = qs, gcd(s, n) = 1 and a0, . . . , ak−1 ∈ Fqn. Then f(x) is of maximum
kernel if and only if the matrix

A =















0 0 · · · 0 a0
1 0 · · · 0 a1
0 1 · · · 0 a2
...

...
...

...
0 0 · · · 1 ak−1















(1)

satisfies
AAσ · · ·Aσn−1

= Ik,

where Aσi

is the matrix obtained from A by applying to each of its entries
the automorphism x 7→ xσi

and Ik is the identity matrix of order k.

An immediate consequence of this result gives information on the splitting
field of an arbitrary σ-polynomial, cf. Theorem 4.1.

In Section 3.1 we study in details the σ-polynomials of σ-degree n − 2
for each n. For n ≤ 6 we also provide a list of all σ-polynomials with
maximum kernel cf. Sections 3.2, 3.3 and 3.4. These results might yield
further classification results and examples of Fq-linear MRD-codes.
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2 Preliminary Results

In this section we recall some results of Dempwolff, Fisher and Herman from
[4], adapting them to our needs in order to make this paper self-contained.

Let V be a k-dimensional vector space over the field F and let T be a
semilinear transformation of V . A T -cyclic subspace of V is an F-subspace
of V spanned by {v, T (v), . . .} over F for some v ∈ V , which will be denoted
by [v]. We first recall the following lemma.

Lemma 2.1. [4, Theorem 1] Let V be an n-dimensional vector space over
the field F, σ an automorphism of F and T an invertible σ-semilinear trans-
formation on V . Then

V = [u1]⊕ . . .⊕ [ur]

for T -cyclic subspaces satisfying dim[u1] ≥ dim[u2] ≥ . . . ≥ dim[ur] ≥ 1.

Theorem 2.2. Let T be an invertible semilinear transformation of V =
V (k, qn) of order n, with companion automorphism σ ∈ Aut(Fqn) such that
Fix(σ) = Fq. Then Fix(T ) is a k-dimensional Fq-subspace of V and 〈Fix(T )〉Fqn

=
V .

Proof. First assume that the companion automorphism of T is x 7→ xq and
that there exists v ∈ V such that

V = 〈v, T (v), . . . , T k−1(v)〉Fqn
.

Following the proof of [4, Main Theorem], consider the ordered basis BT =
(v, T (v), . . . , T k−1(v)) and let A be the matrix associated with T with respect
to the basis BT , i.e.

A =















0 0 · · · 0 α0

1 0 · · · 0 α1

0 1 · · · 0 α2
...

...
...

...
0 0 · · · 1 αk−1















∈ F
k×k
qn , (2)

where T k(v) =
∑k

i=1 αi−1T
i(v) with α0, . . . , αk−1 ∈ Fqn and, since T is

invertible, we have α0 6= 0. Denote by T the semilinear transformation of
F
k
qn having A as the associated matrix with respect to the canonical ordered

basis BC = (e1, . . . , ek) of F
k
qn and companion automorphism x 7→ xq. Note
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that cBT
(Fix(T )) = Fix(T ), where cBT

is the coordinatization with respect
to the basis BT . Also, since T has order n, we have

AAq · · ·Aqn−1

= Ik, (3)

where Aqi, for i ∈ {1, . . . , n−1}, is the matrix obtained from A by applying to
each of its entries the automorphism x 7→ xqi . A vector z = (z0, . . . , zk−1) ∈
F
k
qn is fixed by T if and only if



















α0z
q
k−1 = z0

zq0 + α1z
q
k−1 = z1

...
zqk−2 + αk−1z

q
k−1 = zk−1

Eliminating z0, . . . , zk−2, we obatin the equation

αqk−1

0 zq
k

k−1 + αqk−2

1 zq
k−1

k−1 + . . .+ αk−1z
q
k−1 − zk−1 = 0,

which has qk distinct solutions in the algebraic closure K of Fqn by the deriva-
tive test. Each solution determines a unique vector of Fix(T ) in K

k. Also,
the set Fix(T ) is an Fq-subspace of Kk and hence dimFq

Fix(T ) = k. Let

{w1, . . . ,wk} be an Fq-basis of Fix(T ) and note that since |Fix(T )| = qk,

a vector

k
∑

i=1

aiwi is fixed by T if and only if ai ∈ Fq. This implies that

w1, . . . ,wk are also K-independent. Thus 〈Fix(T )〉K = K
k and {w1, . . . ,wk}

is also a K-basis of Kk. Denote by φ the K-linear transformation such that
φ(wi) = ei and by P the associated matrix with respect to the canoni-
cal basis BC , so P ∈ GL(k,K). The semilinear transformation φ ◦ T ◦ φ−1

has companion automorphism x 7→ xq, order n and associated matrix with
respect to the canonical basis P · A · P−q, where P−q is the inverse of
P in which the automorphism x 7→ xq is applied entrywise. Note that
φ ◦ T ◦ φ−1(ei) = φ(T (wi)) = φ(wi) = ei, hence

P · A · P−q = Ik, (4)

i.e.
P q = P · A. (5)

By Equations (3) and (5) and using induction we get

P qn = P · A · Aq · . . . ·Aqn−1

= P,

5



i.e. P ∈ F
k×k
qn . This implies that Fix(T ) is an Fq-subspace of F

k
qn of dimension

k and hence Fix(T ) = c−1
BT
(Fix(T )) is a k-dimensional subspace of V (k, qn)

with the property that 〈Fix(T )〉Fqn
= V .

Consider now the general case, i.e. suppose T as in the statement, that is
T is an invertible semilinear map of order n with companion automorphism
x 7→ xqs and gcd(s, n) = 1. Since gcd(s, n) = 1 there exist l, m ∈ N such that
1 = sl + mn, and hence gcd(l, n) = 1. Then the semilinear transformation
T l has order n, companion automorphism x 7→ xq and Fix(T ) = Fix(T l). By
Lemma 2.1, we may write

V = [u1]⊕ . . .⊕ [ur],

where [ui] is a T l-cyclic subspace of V of dimension mi ≥ 1, for each i ∈
{1, . . . , r}, and

∑r
i=1mi = k. Then we can restrict T l to each subspace [ui]

and by applying the previous arguments we get that Ui = Fix(T l|[ui]) is an
Fq-subspace of [ui] of dimension mi with the property that 〈Ui〉Fqn

= [ui].
Thus

Fix(T ) = Fix(T l) = U1 ⊕ . . .⊕ Ur

is an Fq-subspace of dimension k of V with the property that 〈Fix(T )〉Fqn
=

V .

The existence of a matrix P ∈ GL(k,K), with K the algebraic closure of
a finite field of order q, satisfying (4) is also a consequence of the celebrated
Lang’s Theorem [9] on connected linear algebraic groups. More precisely,
by Lang’s Theorem, since GL(k,K) is a connected linear algebraic group,
the map M ∈ GL(k,K) 7→ M−1 · M q ∈ GL(k,K) is onto. In Theorem 2.2
it is proved that, if the semilinear transformation of V (k, qn) having A as
associated matrix has order n, then P ∈ GL(k,Fqn).

Remark 2.3. Let T be an invertible semilinear transformation of V =
V (k, qn) with companion automorphism x 7→ xq and let K be the algebraic
closure of Fqn. Denote by T the semilinear transformation of K

k asso-
ciated with T as in the proof of Theorem 2.2. If λ ∈ K, then the set
E(λ) := {v ∈ K

k : T (v) = λv} is an Fq-subspace of Kk. By [4, page 293],

it follows that E(λ) = λ
1

q−1Fix(T ) and by [4, Main Theorem] E(λ) is a k-

dimensional Fq-subspace of Kk. Also, when T has order n and λ
1

q−1 ∈ Fqn,
by Theorem 2.2, E(λ) is a k-dimensional Fq-subspace contained in F

k
qn such

that 〈E(λ)〉Fqn
= F

k
qn.
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3 Main Results

Now we are able to prove our main result:

Proof of Theorem 1.2. First suppose dimFq
ker f = k. Then there exist

u0, u1, . . . , uk−1 ∈ Fqn which form an Fq-basis of ker f .
Put u := (u0, u1, . . . , uk−1) ∈ F

k
qn. Since u0, u1, . . . , uk−1 are Fq-linearly in-

dependent, by [10, Lemma 3.51], we get that B := (u,uqs , . . . ,uqs(k−1)
) is an

ordered Fqn-basis of F
k
qn . Also, u

qsk = a0u+a1u
qs+· · ·+ak−1u

qs(k−1)
. It can be

seen that the matrix (1) represents the Fqn-linear part of the Fqn-semilinear
map σ : v ∈ F

k
qn 7→ vqs ∈ F

k
qn w.r.t. the basis B. Since gcd(s, n) = 1, σ has

order n and hence the assertion follows.

Viceversa, let τ be defined as follows

τ :











x0

x1
...

xk−1











∈ F
k
qn 7→ A











x0

x1
...

xk−1











qs

∈ F
k
qn , (6)

where A is as in (1) with the property AAqs · · ·Aqs(n−1)
= Ik. Then τ has

order n and, by Theorem 2.2, it fixes a k-dimensional Fq-subspace S of Fk
qn

with the property that 〈S〉Fqn
= F

k
qn.

Let BS = (s0, . . . , sk−1) be an Fq-basis of S and note that, since 〈S〉Fqn
=

F
k
qn, BS is also an Fqn-basis of F

k
qn, then denoting by BC the canonical ordered

basis of Fk
qn, there exists a unique isomorphism φ of Fk

qn such that φ(si) = ei
for each i ∈ {1, . . . , k}. Then σ = φ ◦ τ ◦φ−1, where σ : v ∈ F

k
qn 7→ vqs ∈ F

k
qn .

Also,
σi = φ ◦ τ i ◦ φ−1, (7)

for each i ∈ {1, . . . , n− 1}. Also, by (6)

τ(e0) = e1,
τ(e1) = τ 2(e0) = e2,
...
τ(ek−1) = τk(e0) = (a0, . . . , ak−1) = a0e0 + · · ·+ ak−1ek−1.

So, we get that

τk(e0) = a0e0 + a1τ(e0) + · · ·+ ak−1τ
k−1(e0),

7



and applying φ it follows that

φ(τk(e0)) = a0φ(e0) + a1φ(τ(e0)) + · · ·+ ak−1φ(τ
k−1(e0)).

By (7) the previous equation becomes

σk(φ(e0)) = a0φ(e0) + a1σ(φ(e0)) + · · ·+ ak−1σ
k−1(φ(e0)).

Put u = φ(e0), then

uqsk = a0u+ a1u
qs + · · ·+ ak−1u

qs(k−1)

.

This implies that u0, u1, . . . , uk−1 are elements of ker f , where
u = (u0, . . . , uk−1). Also, they are Fq-independent since B = (u, . . . ,uqs(k−1)

) =
(φ(e0), . . . , φ(ek−1)) is an ordered Fqn-basis of F

k
qn. This completes the proof.

As a corollary we get the second part of [6, Theorem 10], see also [12,
Lemma 3] for the case s = 1 and [11] for the case when q is a prime. Indeed, by

evaluating the determinants in AAqs · · ·Aqs(n−1)
= Ik we obtain the following

corollary.1

Corollary 3.1. If the kernel of a qs-polynomial f(x) = a0x + a1x
qs + · · ·+

ak−1x
qs(k−1)

− xqsk has dimension k, then N(a0) = (−1)n(k+1).

Corollary 3.2. Let A be a matrix as in Theorem 1.2. The condition

AAqs · · ·Aqs(n−1)

= Ik

is satisfied if and only if AAqs · · ·Aqs(n−1)
fixes e0 = (1, 0, . . . , 0).

Proof. The only if part is trivial, we prove the if part by induction on 0 ≤
i ≤ k − 1. Suppose AAqs · · ·Aqs(n−1)

eTi = eTi for some 0 ≤ i ≤ k − 1. Then
by taking qs-th powers of each entry we get AqsAq2s · · ·AeTi = eTi . Since

AeTi = eTi+1 this yields AqsAq2s · · ·Aqs(n−1)
eTi+1 = eTi . Then multiplying both

sides by A yields AAqsAq2s · · ·Aqs(n−1)
eTi+1 = eTi+1.

1For x ∈ Fqn and for a subfield Fqm of Fqn we will denote by Nqn/qm(x) the norm of x
over Fqm and by Trqn/qm(x) we will denote the trace of x over Fqm . If n is clear from the
context and m = 1 then we will simply write N(x) and Tr(x).

8



Consider a qs-polynomial f(x) = a0x + a1x
qs + · · · + ak−1x

qs(k−1)
− xqsk ,

the matrix A ∈ F
k×k
qn as in Theorem 1.2 and the semilinear map τ defined in

(6).
Note that

eτ0 = (0, 1, 0, . . . , 0) = e1

eτ
2

0 = (0, 0, 1, . . . , 0) = e2

...

eτ
k−1

0 = (0, 0, 0, . . . , 1) = ek−1

eτ
k

0 = (a0, a1, a2, . . . , ak−1)

eτ
k+1

0 = (a0a
qs

k−1, a
qs

0 + a1a
qs

k−1, a
qs

1 + a2a
qs

k−1, . . . , a
qs

k−2 + aq
s+1

k−1 ). (8)

Hence, if
eτ

i

0 = (Q0,i, Q1,i, . . . , Qk−1,i)

where Qj,i can be seen as polynomials in a0, a1, . . . , ak−1, for i ≥ 0, then

eτ
i+1

0 = (a0Q
qs

k−1,i, Q
qs

0,i + a1Q
qs

k−1,i, . . . , Q
qs

k−2,i + ak−1Q
qs

k−1,i),

i.e. the polynomials Qj,i for 0 ≤ j ≤ k − 1 can be defined by the following
recursive relations for 0 ≤ i ≤ k − 1:

Qj,i =

{

1 if j = i,
0 otherwise,

and by the following relations for i ≥ k:

Q0,i+1 = a0Q
qs

k−1,i

Qj,i+1 = Qqs

j−1,i + ajQ
qs

k−1,i.
(9)

Now, we are able to prove the following.

Theorem 3.3. The kernel of a qs-polynomial f(x) = a0x + a1x
qs + · · · +

ak−1x
qs(k−1)

−xqsk ∈ Fqn[x], where gcd(s, n) = 1, has dimension k if and only
if

Qj,n(a0, a1, . . . , ak−1) =

{

1 if j = 0,
0 otherwise.

(10)

9



Proof. Relations (9) can be written as follows











Q0,i+1

Q1,i+1
...

Qk−1,i+1











=















0 0 · · · 0 a0
1 0 · · · 0 a1
0 1 · · · 0 a2
...

...
...

...
0 0 · · · 1 ak−1

























Qqs

0,i

Qqs

1,i
...

Qqs

k−1,i











,

with i ∈ {0, . . . , n−1}. Also, (Q0,0, Q1,0, . . . , Qk−1,0) = (1, 0, . . . , 0) and eτ
t

0 =
(Q0,t, . . . , Qk−1,t) for t ∈ {0, . . . , n}. By Theorem 1.2 and by Corollary 3.2,
the kernel of f(x) has dimension k if and only if e0 = (Q0,0, Q1,0, . . . , Qk−1,0)

is fixed by AAqs · · ·Aqs(n−1)
, so this happens if and only if

eτ
n

0 = (Q0,n, Q1,n, . . . , Qk−1,n) = (1, 0, . . . , 0).

Theorem 3.3 with k = n − 1 and s = 1 gives the following well-known
result as a corollary.

Corollary 3.4. [10, Theorem 2.24] The dimension of the kernel of a q-
polynomial f(x) ∈ Fqn[x] is n − 1 if and only if there exist α, β ∈ F

∗

qn such
that

f(x) = αTr(βx).

Again from Theorem 3.3 we can deduce the following.

Corollary 3.5. [10, Ex. 2.14] The qs-polynomial a0x − xqsk ∈ Fqn [x], with
gcd(s, n) = 1 and 1 ≤ k ≤ n − 1, admits qk roots if and only if k | n and
Nqn/qk(a0) = 1.

3.1 When the qs-degree equals n− 2

In this section we investigate qs-polynomials

f(x) = a0x+ a1x
qs + · · ·+ an−3x

qs(n−3)

− xqs(n−2)

with gcd(s, n) = 1. By Theorem 3.3, dim ker f(x) = n − 2 if and only if
a0, a1, . . . , an−3 satisfy the following system of equations

10









































Q0,n = a0(a
q2s

n−4 + aq
2s+qs

n−3 ) = 1,

Q1,n = aq
s

0 aq
2s

n−3 + a1(a
q2s

n−4 + aq
2s+qs

n−3 ) = 0,

Q2,n = aq
2s

0 + aq
2s

n−3a
qs

1 + a2(a
q2s

n−4 + aq
2s+qs

n−3 ) = 0,

Q3,n = aq
2s

1 + aq
2s

n−3a
qs

2 + a3(a
q2s

n−4 + aq
2s+qs

n−3 ) = 0,
...

Qn−3,n = aq
2s

n−5 + aq
2s

n−3a
qs

n−4 + an−3(a
q2s

n−4 + aq
2s+qs

n−3 ) = 0,

(11)

which is equivalent to











a0(a
q2s

n−4 + aq
2s+qs

n−3 ) = 1,

a1 = −aq
s+1

0 aq
2s

n−3 =: g1(a0, an−3),

aj = −aq
2s

j−2a0 − aq
2s

n−3a
qs

j−1a0 =: gj(a0, an−3), for 2 ≤ j ≤ n− 3.

(12)

So, dimFq
ker f(x) = n− 2 if and only if a0 and an−3 satisfy the equations

{

a0(gn−4(a0, an−3)
q2s + aq

2s+qs

n−3 ) = 1,
an−3 = gn−3(a0, an−3),

and aj = gj(a0, an−3) for j ∈ {1, . . . , n− 4}.

Theorem 3.6. Suppose that f(x) = a0x+ a1x
q + · · ·+ an−3x

qn−3
−xqn−2

has
maximum kernel. Then for t ≥ 2 with gcd(t− 1, n) = 1 the coefficients at−2

and an−t are non-zero and, with s = n− t+ 1,

an−2t+1a
q2s+qs

t−2 = −aq
s+1

n−t a
q2s

2t−3. (13)

Also, it holds that

− an−t(−aq
s

t−2a
q2s

3t−4 + aq
2s+qs

2t−3 ) = aq
2s+qs+1

t−2 . (14)

In particular, for t ≥ 2 with gcd(t− 1, n) = 1 we get

N(an−t) = (−1)nN(at−2) (15)

and
N(an−2t+1) = (−1)n N(a2t−3), (16)

where n− 2t+ 1 and 2t− 3 are considered modulo n.
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Proof. Let t ≥ 2 with gcd(t− 1, n) = 1 and consider the polynomial F (x) =
f(xqt), that is,

F (x) = a0x
qt + a1x

qt+1

+ · · ·+ an−3x
qn+t−3

− xqn+t−2

.

Clearly dimFq
kerF = dimFq

ker f = n − 2. By renaming the coefficients,
F (x) can be written as

F (x) = α0x+α1x
qn−t+1

+α2x
q2(n−t+1)

+· · ·+αn−3x
q(n−t+1)(n−3)

+αn−2x
q(n−t+1)(n−2)

= α0x+ α1x
qn−t+1

+ · · ·+ αn−3x
q3t−3

+ αn−2x
q2t−2

.

Since F (x) has maximum kernel, by the second equation of (12) we get
α0 6= 0, αn−2 6= 0 and the following relation

−
α1

αn−2

= −

(

−
α0

αn−2

)qs+1(

−
αn−3

αn−2

)q2s

. (17)

The coefficient αj of F (x) equals the coefficient ai of f(x) with i ≡ n− t +
j(1− t) (mod n), in particular























α0 = an−t,
α1 = an−2t+1,
αn−3 = a2t−3,
αn−2 = at−2,
αn−4 = a3t−4,

(18)

and by (17), we get that at−2 and an−t are nonzero, and

an−2t+1a
q2s+qs

t−2 = −aq
s+1

n−t a
q2s

2t−3,

which gives (13). The first equation of (12) gives

−
α0

αn−2

(

(

−
αn−4

αn−2

)q2s

+

(

−
αn−3

αn−2

)q2s+qs
)

= 1,

that is,

−α0(−αqs

n−2α
q2s

n−4 + αq2s+qs

n−3 ) = αq2s+qs+1
n−2 .

Then (18) and αn−4 = a3t−4 imply

−an−t(−aq
s

t−2a
q2s

3t−4 + aq
2s+qs

2t−3 ) = aq
2s+qs+1

t−2 ,

12



which gives (14). By Corollary 3.1 with s = n− t + 1 we obtain

N

(

−
α0

αn−2

)

= 1,

and taking (18) into account we get

N(an−t) = (−1)nN(at−2).

Then (13) and the previous relation yield

N(an−2t+1) = (−1)nN(a2t−3).

Proposition 3.7. Let f(x) be a qs-polynomial with qs-degree n− 2 and with
maximum kernel. If the coefficient of xqs is zero, then n is even and f(x) =
αTrqn/q2(βx) for some α, β ∈ F

∗

qn.

Proof. We may assume f(x) = a0x+ a1x
qs + · · ·+ an−3x

qs(n−3)
−xqs(n−2)

with
a1 = 0. By the second equation of (12), it follows that an−3 = 0. By the third
equation of (12), we get that aj = 0 for every odd integer j ∈ {3, . . . , n− 3}.
If j is even then we have

aj = (−1)
j

2aq
sj+qs(j−2)+···+q2s+1

0 . (19)

If n− 3 is even, then this gives us a contradiction with j = n− 3. It follows
that n−3 is odd and hence n is even. By N(a0) = (−1)n, there exists λ ∈ F

∗

qn

such that a0 = −λ1−qs(n−2)
. So, by (19) we get aj = λqjs−qs(n−2)

, and hence

f(x) =
Trqn/q2(λx)

λqs(n−2)
.

In the next sections we list all the qs-polynomials of Fqn with maximum
kernel for n ≤ 6. By Corollaries 3.4 and 3.5 the n ≤ 3 case can be easily
described hence we will consider only the n ∈ {4, 5, 6} cases.

For f(x) =
∑n−1

i=0 aix
qi ∈ L̃n,q we denote by f̂(x) :=

∑n−1
i=0 aq

n−i

i xqn−i

the adjoint (w.r.t. the symmetric non-degenerate bilinear form defined by
〈x, y〉 = Tr(xy)) of f .

By [1, Lemma 2.6], see also [2, pages 407–408], the kernel of f and f̂ has
the same dimension and hence the following result holds.

13



Proposition 3.8. If f(x) ∈ L̃n,q is a qs-polynomial with maximum kernel,

then f̂(x) is a qn−s-polynomial with maximum kernel.

This will allow us to consider only the s ≤ n/2 case.

3.2 The n = 4 case

In this section we determine the linearized polynomials over Fq4 with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is −1.

Because of Proposition 3.8, we can assume s = 1. Corollaries 3.4 and 3.5
cover the cases when the q-degree of f is 1 or 3 so from now on we suppose
f(x) = a0x+ a1x

q − xq2 . If a1 = 0 then we can use again Corollary 3.5 and
we get a0x − xq2 , with Nq4/q2(a0) = 1. Suppose a1 6= 0. By Equation (12),
we get the conditions

{

a0(a
q2

0 + aq
2+q

1 ) = 1,

a1 = −aq+1
0 aq

2

1 ,

which is equivalent to

{

Nq4/q(a0) = 1,

aq+1
1 = aq

2+q+1
0 − aq0,

see (A1) of Section 5.

Here we list the q-polynomials of L4,q with maximum kernel, up to a
non-zero scalar in F

∗

q4 . Applying the adjoint operation we can obtain the list

of q3-polynomials over Fq4 with maximum kernel. In the following table the
q-degree will be denoted by k.

k polynomial form conditions
3 Tr(λx) λ ∈ F

∗

q4

2 a0x− xq2 Nq4/q2(a0) = 1

2 a0x+ a1x
q − xq2

{

Nq4/q(a0) = 1

aq+1
1 = aq

2+q+1
0 − aq0

1 a0x− xq Nq4/q(a0) = 1

Table 1: Linearized polynomials of Fq4 with maximum kernel with s = 1
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3.3 The n = 5 case

In this section we determine the linearized polynomials over Fq5 with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is −1. Because of Proposition 3.8, we can as-
sume s ∈ {1, 2}. Corollaries 3.4 and 3.5 cover the cases when the qs-degree
of f is 1 or 4. First we suppose that f has qs-degree 3, i.e.

f(x) = a0x+ a1x
qs + a2x

q2s − xq3s .

From (12), f(x) has maximum kernel if and only if a0, a1 and a2 satisfy the
following system:











a1 = −aq
s+1

0 aq
2s

2 ,

−aq
3s+q2s+1

0 aq
4s

2 + aq
2s+qs

2 a0 = 1,

a2 = −aq
2s+1

0 + aq
3s+q2s

2 aq
2s+qs+1

0 ,

which is equivalent to






N(a0) = 1,

a1 = −aq
s+1

0 aq
2s

2 ,

−aq
3s+q2s+1

0 aq
4s

2 + a0a
q2s+qs

2 = 1,

see (A2) of Section 5.

Suppose now that the qs-degree is 2, i.e.

f(x) = a0x+ a1x
qs − xq2s .

By Theorem 3.3 the polynomial f(x) has maximum kernel if and only if its
coefficients satisfy

{

a0(a
q2s

0 aq
3s

1 + aq
s

1 (aq
3s

0 + aq
3s+q2s

1 )) = 1,

aq
s+1

0 (aq
3s

0 + aq
3s+q2s

1 ) + a1 = 0,

which is equivalent to
{

N(a0) = −1,

aq
s

0 + aq
s+1

1 = aq
2s+qs+1

0 aq
3s

1 ,

see (A3) of Section 5.

Here we list the qs-polynomials, s ∈ {1, 2} of L5,q with maximum kernel,
up to a non-zero scalar in F

∗

q5. Applying the adjoint operation we can obtain

the list of qt-polynomials, t ∈ {3, 4}, over Fq5 with maximum kernel. As
before, the qs-degree is denoted by k.
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k polynomial form conditions
4 Tr(λx) λ ∈ F

∗

q5

3 a0x+ a1x
qs + a2x

q2s − xq3s







N(a0) = 1

a1 = −aq
s+1

0 aq
2s

2

−aq
3s+q2s+1

0 aq
4s

2 + a0a
q2s+qs

2 = 1

2 a0x+ a1x
qs − xq2s

{

N(a0) = −1

aq
s+1

1 + aq
s

0 = aq
3s

1 aq
2s+qs+1

0

1 a0x− xqs N(a0) = 1

Table 2: Linearized polynomials of Fq5 with maximum kernel with s ∈ {1, 2}

3.4 The n = 6 case

In this section we determine the linearized polynomials over Fq6 with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is −1. Because of Proposition 3.8, we can as-
sume s = 1. Corollaries 3.4 and 3.5 cover the cases when the q-degree of f
is 1 or 5. As before, denote by k the qs-degree of f .

We first consider the case k = 2, i.e. f(x) = a0x + a1x
qs − xq2s . By

Theorem 3.3, f(x) has maximum kernel if and only if the coefficients satisfy











N(a0) = 1,

(aq0 + aq+1
1 )q

3
= aq

5+q4+q3

0 (aq0 + aq+1
1 ),

aq
4

1 aq
3

0 + aq
2

1 (aq
4

0 + aq
4+q3

1 ) = − a1
aq+1
0

,

see (A4) of Section 5.

If k = 3, then f(x) = a0x+ a1x
qs + a2x

q2s − xq3s , and by Theorem 3.3 it
has maximum kernel if and only the coefficients fulfill



















N(a0) = 1,

aq
3+q+1

0 + aq
3

2 aq
2

1 aq+1
0 − aq2a1 = aq0,

aq+1
2 = −aq

3+q2+q+1
0 aq

4

1 − aq1,

aq+1
1 = a2a

q
0 + aq

2+q+1
0 aq

3

2 ,

see (A5) of Section 5. Note that a1 = 0 if and only if a2 = 0 and in this case
we get the trace over Fq3.
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Finally, let k = 4. Then the polynomial f(x) = a0x + a1x
qs + a2x

q2s +
a3x

q3s − xq4s has maximum kernel if and only if the coefficients satisfy



























N(a0) = 1,

a0(−aq
4+q2

0 + aq
5+q4

3 aq
4+q3+q2

0 + aq
2+q

3 ) = 1,

a1 = −aq+1
0 aq

2

3 ,

a2 = −aq
2+1

0 + aq
3+q2

3 aq
2+q+1

0 ,

a3 = aq
4

3 aq
3+q2+1

0 + aq
2

3 aq
3+q+1

0 − aq
3+q2+q+1

0 aq
4+q3+q2

3 ,

see (A6) of Section 5.

Here we list the q-polynomials of L6,q with maximum kernel, up to a non-
zero scalar in F

∗

q6 . Applying the adjoint operation we can obtain the list of

q5-polynomials over Fq6 with maximum kernel.
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Table 3: Linearized polynomials of Fq6 with maximum kernel with s = 1

k polynomial form conditions
5 Trq6/q(λx) λ ∈ F

∗

q6

4 a0x+ a1x
q + a2x

q2 + a3x
q3 − xq4



































a1 6= 0
N(a0) = 1

a0(−aq
4+q2

0 + aq
5+q4

3 aq
4+q3+q2

0 + aq
2+q

3 ) = 1

a1 = −aq+1
0 aq

2

3

a2 = −aq
2+1

0 + aq
3+q2

3 aq
2+q+1

0

a3 = aq
4

3 aq
3+q2+1

0 + aq
2

3 aq
3+q+1

0 − aq
3+q2+q+1

0 aq
4+q3+q2

3

4 Trq6/q2(λx) λ ∈ F
∗

q6

3 a0x+ a1x
q + a2x

q2 − xq3



















N(a0) = 1

aq
3+q+1

0 + aq
3

2 aq
2

1 aq+1
0 − aq2a1 = aq0

aq+1
2 = −aq

3+q2+q+1
0 aq

4

1 − aq1
aq+1
1 = a2a

q
0 + aq

2+q+1
0 aq

3

2

3 Trq6/q3(λx) λ ∈ F
∗

q6

2 a0x+ a1x
q − xq2



















a1 6= 0
N(a0) = 1

(aq0 + aq+1
1 )q

3
= aq

5+q4+q3

0 (aq0 + aq+1
1 )

aq
4

1 aq
3

0 + aq
2

1 (aq
4

0 + aq
4+q3

1 ) = − a1
aq+1
0

2 a0x− xq2 Nq6/q2(a0) = 1
1 a0x− xq Nq6/q(a0) = 1
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4 Application

As an application of Theorem 1.2 we are able to prove the following result
on the splitting field of q-polynomials.

Theorem 4.1. Let f(x) = a0x+ a1x
q + · · ·+ ak−1x

qk−1
− xqk ∈ Fqn[x] with

a0 6= 0 and let A be defined as in (1). Then the splitting field of f(x) is Fqnm

where m is the (multiplicative) order of the matrix B := AAq · · ·Aqn−1
.

Proof. The derivative of f(x) is non-zero and hence f(x) has qk distinct roots
in some algebraic extension of Fqn. Suppose that Fqnm is the splitting field
of f(x) and let t denote the order of B. Then the kernel of the Fq-linear
Fqnm → Fqnm map defined as x 7→ f(x) has dimension k over Fq and hence
by Theorem 1.2 we have

AAq · · ·Aqnm−1

= Ik.

Since the coefficients of A are in Fqn , this is equivalent to Bm = Ik and hence
t | m. On the other hand

Bt = AAq · · ·Aqnt−1

= Ik

and hence again by Theorem 1.2 the kernel of the Fq-linear Fqnt → Fqnt map
defined as x 7→ f(x) has dimension k over Fq. It follows that Fqnm is a
subfield of Fqnt from which m | t.

A further application of Theorem 1.2 is the following.

Theorem 4.2. Let n,m, s and t be positive integers such that gcd(s, nm) =
gcd(t, nm) = 1 and s ≡ t (mod m). Let f(x) = a0x + a1x

qs + · · · +

ak−1x
qs(k−1)

− xqsk and g(x) = a0x + a1x
qt + · · · + ak−1x

qt(k−1)
− xqtk , where

a0, a1, . . . , ak−1 ∈ Fqm. The kernel of f(x) considered as a linear transforma-
tion of Fqnm has dimension k if and only if the kernel of g(x) considered as
a linear transformation of Fqnm has dimension k.

Proof. Denote by A the matrix associated with f(x) as in (1). By hypothesis,
A ∈ F

k×k
qm and it is the same as the matrix associated with g(x). By Theorem

1.2 the kernel of f(x), considered as a linear transformation of Fqnm , has
dimension k if and only if

AAqs · · ·Aqs(nm−1)

= Ik.

19



Since s ≡ t (mod m), we have

AAqs · · ·Aqs(nm−1)

= AAqt · · ·Aqt(nm−1)

= Ik,

and, again by Theorem 1.2, this holds if and only if the kernel of g(x),
considered as a linear transformation of Fqnm , has dimension k.

Addendum

During the “Combinatorics 2018” conference, the fourth author presented the
results of this paper in the talk entitled “On q-polynomials with maximum
kernel”. In the same conference John Sheekey presented a joint work with
Gary McGuire [8] in his talk entitled “Ranks of Linearized Polynomials and
Roots of Projective Polynomials”. It turned out that, independently from
the authors of the present paper, they also obtained similar results.
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5 Appendix

In this section we develop some calculations regarding the relations on the
coefficients of a linearized polynomials with maximum kernel presented in
Sections 3.2, 3.3 and 3.4, see also [13].

(A1) By Equation (11) with n = 4, s = 1 and k = 2, we get the conditions

Σ:

{

a0(a
q2

0 + aq
2+q

1 ) = 1,

a1 = −aq+1
0 aq

2

1 .

By Corollary 3.1, the system Σ is equivalent to the following system

Σ′ :







Nq4/q(a0) = 1,

a0(a
q2

0 + aq
2+q

1 ) = 1,

a1 = −aq+1
0 aq

2

1 ,

which can be rewritten as follows

Σ′ :











Nq4/q(a0) = 1,

aq
2−1

1 = − 1

aq+1
0

,

aq+1
1 = aq

2+q+1
0 − aq0.

Now consider the system

Σ∗ :

{

Nq4/q(a0) = 1,

aq+1
1 = aq

2+q+1
0 − aq0.

Clearly, S(Σ′) ⊆ S(Σ∗), where S(Σ′) and S(Σ∗) denote the set of so-
lutions of Σ′ and Σ∗, respectively. Let (a0, a1) ∈ S(Σ∗), then by using
the norm condition on a0

aq
2−1

1 =

(

1

aq
3

0

− aq0

)q−1

=

(

1− aq+q3

0

aq
3

0

)q−1

=

=
1− a1+q2

0

1− aq+q3

0

aq
3−1

0 =
1− 1

aq+q3

0

1− aq+q3

0

aq
3−1

0 = −
1

aq+1
0

,

i.e. (a0, a1) ∈ S(Σ′) and hence S(Σ∗) = S(Σ′) = S(Σ).
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(A2) From (11) with n = 5, gcd(s, 5) = 1 and k = 3, we get the following
conditions:

Σ:











a0(a
q2s

1 + aq
2s+qs

2 ) = 1,

a1 = −aq
s+1

0 aq
2s

2 ,

a2 = −aq
2s+1

0 − aq
2s

2 aq
s

1 a0.

By Corollary 3.1, Σ is equivalent to

Σ′ :



















Nq5/q(a0) = 1,

a0(a
q2s

1 + aq
2s+qs

2 ) = 1,

a1 = −aq
s+1

0 aq
2s

2 ,

a2 = −aq
2s+1

0 − aq
2s

2 aq
s

1 a0.

which can be rewritten as follows

Σ′ :



















Nq5/q(a0) = 1,

a1 = −aq
s+1

0 aq
2s

2 ,

−aq
3s+q2s+1

0 aq
4s

2 + aq
2s+qs

2 a0 = 1,

a2 = −aq
2s+1

0 + aq
3s+q2s

2 aq
2s+qs+1

0 .

By raising the third equation to qs and multiplying by aq
2s+1

0 , since
N(a0) = 1, we get the fourth equation. Therefore Σ′, and hence Σ, is
equivalent to







Nq5/q(a0) = 1,

a1 = −aq
s+1

0 aq
2s

2 ,

−aq
3s+q2s+1

0 aq
4s

2 + a0a
q2s+qs

2 = 1.

(A3) Applying Theorem 3.3 with n = 5 and k = 2, we get that the polyno-
mial f(x) has maximum kernel if and only if its coefficients satisfy

Σ:

{

Q0,5 = a0(a
q2s

0 aq
3s

1 + aq
s

1 (aq
3s

0 + aq
3s+q2s

1 )) = 1,

Q1,5 = aq
s

0 (aq
3s

0 + aq
3s+q2s

1 ) + a1(a
q2s

0 aq
3s

1 + aq
s

1 (aq
3s

0 + aq
3s+q2s

1 )) = 0,

which is equivalent to







Nq5/q(a0) = −1,

a0(a
q2s

0 aq
3s

1 + aq
s

1 (aq
3s

0 + aq
3s+q2s

1 )) = 1,

aq
s+1

0 (aq
3s

0 + aq
3s+q2s

1 ) + a1 = 0,
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because of Corollary 3.1 and since aq
2s

0 aq
3s

1 + aq
s

1 (aq
3s

0 + aq
3s+q2s

1 ) =
1

a0
.

The above system can be rewritten as follows










Nq5/q(a0) = −1,

aq
3s

0 + aq
3s+q2s

1 = − a1
aq

s+1
0

,

aq
3s

1 aq
2s+qs+1

0 − aq
s+1

1 = aq
s

0 ,

which is equivalent to










Nq5/q(a0) = −1,

aq
s+1

1 + aq
s

0 = aq
3s

1 aq
2s+qs+1

0 ,

a1a
q4s+q3s+q2s

0 = − a1
aq

s+1
0

.

If the first and the second equations are satisfied, clearly also the last
one is fulfilled, hence Σ is equivalent to the following system

{

Nq5/q(a0) = −1,

aq
s+1

1 + aq
s

0 = aq
3s

1 aq
2s+qs+1

0 .

(A4) By Theorem 3.3, with n = 6, s = 1 and k = 2, we get
{

Q0,6 = a0(a
q2

0 (aq
4

0 + a
q4+q3

1 ) + a
q
1(a

q3

0 a
q4

1 + a
q2

1 (aq
4

0 + a
q4+q3

1 ))) = 1,

Q1,6 = a
q2

0 a1(a
q4

0 + a
q4+q3

1 ) + (aq+1
1 + a

q
0)(a

q3

0 a
q4

1 + a
q2

1 (aq
4

0 + a
q4+q3

1 )) = 0,

which is equivalent to
{

aq
2

0 (aq
4

0 + aq
4+q3

1 ) + aq1(a
q3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 )) = 1
a0
,

a1
a0

+ aq0(a
q3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 )) = 0,

i.e.
{

aq
2

0 (aq
4

0 + aq
4+q3

1 ) + aq1(a
q3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 )) = 1
a0
,

aq
3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 ) = − a1
aq+1
0

.

By Corollary 3.1, the previous system is equivalent to










N(a0) = 1,

aq
2

0 (aq
4

0 + aq
4+q3

1 ) + aq1(a
q3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 )) = 1
a0
,

aq
3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 ) = − a1
aq+1
0

,
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which is equivalent to















N(a0) = 1,

aq
2

0 (aq0 + aq+1
1 )q

3
−

aq+1
1

aq+1
0

= 1
a0
,

aq
3

0 aq
4

1 + aq
2

1 (aq
4

0 + aq
4+q3

1 ) = − a1
aq+1
0

,

hence it is equivalent to











N(a0) = 1,

(aq0 + aq+1
1 )q

3
= aq

5+q4+q3

0 (aq0 + aq+1
1 ),

aq
4

1 aq
3

0 + aq
2

1 (aq
4

0 + aq
4+q3

1 ) = − a1
aq+1
0

.

(A5) By Theorem 3.3 with n = 6, s = 1 and k = 3, we get







a0Q
q
2,5 = 1,

Qq
0,5 + a1Q

q
2,5 = 0,

Qq
1,5 + a2Q

q
2,5 = 0,

where
Q0,5 = a0(a

q2

1 + aq
2+q

2 ),

Q1,5 = aq0a
q2

2 + a1(a
q2

1 + aq
2+q

2 ),

Q2,5 = aq
2

0 + aq
2

2 aq1 + a2(a
q2

1 + aq
2+q

2 ),

hence we obtain the following system











a0(a
q3

0 + aq
3

2 aq
2

1 + aq2(a
q3

1 + aq
3+q2

2 )) = 1,
a1
a0

+ aq0(a
q3

1 + aq
3+q2

2 ) = 0,
a2
a0

+ aq
3

2 aq
2

0 + aq1(a
q3

1 + aq
3+q2

2 ) = 0.

By Corollary 3.1 it is equivalent to



















N(a0) = 1,

a0(a
q3

0 + aq
3

2 aq
2

1 + aq2(a
q3

1 + aq
3+q2

2 )) = 1,

aq
3

1 + aq
3+q2

2 = − a1
a1+q
0

,

a2
a0

+ aq
3

2 aq
2

0 + aq1(a
q3

1 + aq
3+q2

2 ) = 0,
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by substituting the third equation into the others we get



























N(a0) = 1,

a0(a
q3

0 + aq
3

2 aq
2

1 −
aq2a1

a1+q
0

) = 1,

aq
3

1 + aq
3+q2

2 = − a1
a1+q
0

,

a2
a0

+ aq
3

2 aq
2

0 −
aq+1
1

a1+q
0

= 0,

i.e.


















N(a0) = 1,

aq
3+q+1

0 + aq
3

2 aq
2

1 aq+1
0 − aq2a1 = aq0,

aq+1
2 = −aq

3+q2+q+1
0 aq

4

1 − aq1,

aq+1
1 = a2a

q
0 + aq

2+q+1
0 aq

3

2 .

(A6) Equations (11) with n = 6, s = 1 and k = 4 are



















a0(a
q2

2 + aq
2+q

3 ) = 1,

aq0a
q2

3 + a1(a
q2

2 + aq
2+q

3 ) = 0,

aq
2

0 + aq
2

3 aq1 + a2(a
q2

2 + aq
2+q

3 ) = 0,

aq
2

1 + aq
2

3 aq2 + a3(a
q2

2 + aq
2+q

3 ) = 0,

which, by Corollary 3.1, is equivalent to



























N(a0) = 1,

a0(a
q2

2 + aq
2+q

3 ) = 1,

aq0a
q2

3 + a1(a
q2

2 + aq
2+q

3 ) = 0,

aq
2

0 + aq
2

3 aq1 + a2(a
q2

2 + aq
2+q

3 ) = 0,

aq
2

1 + aq
2

3 aq2 + a3(a
q2

2 + aq
2+q

3 ) = 0,

thus it can be rewritten as follows






























N(a0) = 1,

aq
2

2 + aq
2+q

3 = 1
a0
,

aq0a
q2

3 + a1
a0

= 0,

aq
2

0 + aq
2

3 aq1 +
a2
a0

= 0,

aq
2

1 + aq
2

3 aq2 +
a3
a0

= 0,
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and hence


























N(a0) = 1,

a0(a
q2

2 + aq
2+q

3 ) = 1,

a1 = −aq+1
0 aq

2

3 ,

a2 = −aq
2+1

0 − aq
2

3 aq1a0,

a3 = −aq
2

1 a0 − aq
2

3 aq2a0,

i.e.


























N(a0) = 1,

a0(−aq
4+q2

0 + aq
5+q4

3 aq
4+q3+q2

0 + aq
2+q

3 ) = 1,

a1 = −aq+1
0 aq

2

3 ,

a2 = −aq
2+1

0 + aq
3+q2

3 aq
2+q+1

0 ,

a3 = aq
4

3 aq
3+q2+1

0 + aq
2

3 aq
3+q+1

0 − aq
3+q2+q+1

0 aq
4+q3+q2

3 .
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MTA–ELTE Geometric and Algebraic Combinatorics Research Group
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