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A characterization of linearized polynomials
with maximum kernel
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Abstract

We provide sufficient and necessary conditions for the coefficients
of a g-polynomial f over F,» which ensure that the number of dis-
tinct roots of f in Fyn equals the degree of f. We say that these
polynomials have maximum kernel. As an application we study in
detail g-polynomials of degree ¢"~2 over Fg» which have maximum
kernel and for n < 6 we list all ¢g-polynomials with maximum kernel.
We also obtain information on the splitting field of an arbitrary g¢-
polynomial. Analogous results are proved for ¢*-polynomials as well,
where ged(s,n) = 1.
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1 Introduction

A g-polynomial over F» is a polynomial of the form f(z) =), a;x7, where
a; € Fgn. We will denote the set of these polynomials by £,, ;. Let K denote
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the algebraic closure of Fyn. Then for every Fp» <L <K, f defines an [Fy-
linear transformation of L, when LL is viewed as an F-vector space. If L is a
finite field of size ¢™ then the polynomials of £,, , considered modulo (24" —z)
form an IF,-subalgebra of the [F-linear transformations of IL. Once this field
L is fixed, we can define the kernel of f as the kernel of the corresponding
[F,-linear transformation of I, which is the same as the set of roots of f in L;
and the rank of f as the rank of the corresponding IF -linear transformation
of L. Note that the kernel and the rank of f depend on this field L and
from now on we will consider the case L = F,». In this case L,, , considered
modulo (27" —z) is isomorphic to the F -algebra of F,-linear transformations
of the n-dimensional IF -vector space Fy». The elements of this factor algebra
are represented by L, , == {30 aix? : a; € Fn}. For f € L, , if deg f = ¢"
then we call k the g-degree of f. It is clear that in this case the kernel of f
has dimension at most k£ and the rank of f is at least n — k.

Let U = (u1,us, . .., ur)w, be a k-dimensional Fg-subspace of Fgn. It is well
known that, up to a scalar factor, there is a unique g-polynomial of g-degree
k, which has kernel U. We can get such a polynomial as the determinant of

the matrix .

r x4 .. x4
k
up ul o ul
k
Ug uz [P uZ

The aim of this paper is to study the other direction, i.e. when a given
fe ﬁn,q with ¢-degree k has kernel of dimension k. If this happens then we
say that f is a ¢g-polynomial with maximum kernel.

If f(z) = apx + a12” + - + apz® (mod 29" — z), with 0 = ¢° for
some s with ged(s,n) = 1, then we say that f(x) is a o-polynomial (or ¢°-
polynomial) with o-degree (or ¢°-degree) k. Regarding o-polynomials the
following is known.

Result 1.1. [7, Theorem 5] Let L be a cyclic extension of a field F of degree
n, and suppose that o generates the Galois group of I over F. Let k be an
integer satisfying 1 < k < n, and let ag, aq,...,a be elements of I, not all
them are zero. Then the F-linear transformation defined as

f(x) =apx +a1x” + -+ aka:”k

has kernel with dimension at most k in L.



Similarly to the s = 1 case we will say that a o-polynomial is of mazimum
kernel if the dimension of its kernel equals its o-degree.

Linearized polynomials have been used to describe families of F,-linear
mazimum rank distance codes (MRD-codes), i.e. F,-subspaces of L, , of or-
der ¢"* in which each element has kernel of dimension at most k. The first
examples of MRD-codes found were the generalized Gabidulin codes [3], [5],
that is Gy s = (z,27,. .. ,xqs(kfl)ﬁpqn with ged(s,n) = 1; the fact that Gy 4
is an MRD-code can be shown simply by using Result [Tl It is impor-
tant to have explicit conditions on the coefficients of a linearized polynomial
characterizing the number of its roots. Further connections with projective
polynomials can be found in [g].

Our main result provides sufficient and necessary conditions on the coef-
ficients of a o-polynomial with maximum kernel.

Theorem 1.2. Consider

f(z) = apxr + ayz® + -+ ag_12° | — :c”k,
with o = ¢°, ged(s,n) =1 and ag, . .., ax,_1 € Fyn. Then f(x) is of mazimum
kernel if and only if the matriz
0 0 - 0 ag
1 0 - 0 ay
A=1] 0 1 - 0 as (1)
0 0 -1 Ap—1

satisfies
n—1
AA AT =1,
where A°" is the matriz obtained from A by applying to each of its entries
the automorphism x + x° and I}, is the identity matriz of order k.

An immediate consequence of this result gives information on the splitting
field of an arbitrary o-polynomial, cf. Theorem Tl

In Section B we study in details the o-polynomials of o-degree n — 2
for each n. For n < 6 we also provide a list of all o-polynomials with
maximum kernel cf. Sections B.2] and 3.4l These results might yield
further classification results and examples of [Fy-linear MRD-codes.
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2 Preliminary Results

In this section we recall some results of Dempwolff, Fisher and Herman from
[4], adapting them to our needs in order to make this paper self-contained.

Let V be a k-dimensional vector space over the field F and let T" be a
semilinear transformation of V. A T-cyclic subspace of V' is an F-subspace
of V spanned by {v,T(v),...} over F for some v € V, which will be denoted
by [v]. We first recall the following lemma.

Lemma 2.1. [j, Theorem 1] Let V' be an n-dimensional vector space over
the field B, o an automorphism of F and T" an invertible o-semilinear trans-
formation on V. Then

V=[wle...eu]

for T-cyclic subspaces satisfying dim[u;] > dim[uy] > ... > dim[u,] > 1.

Theorem 2.2. Let T be an invertible semilinear transformation of V. =
V(k,q") of order n, with companion automorphism o € Aut(Fyn) such that
Fix(o) =F,. Then Fix(T) is a k-dimensional Fq-subspace of V' and (Fix(T))g, . =
V.

Proof. First assume that the companion automorphism of 7" is x — 2% and
that there exists v € V such that
V=T, . TV

q

Following the proof of [4, Main Theorem], consider the ordered basis By =
(v,T(v),...,T**(v)) and let A be the matrix associated with T’ with respect
to the basis Br, i.e.

00 0 o
1 0 - 0 (03]
_ . kxk
A= Q 1 0 22 e Fix¥, (2)
00 --- 1 ar
where TH(v) = 28, 1T(v) with aq,..., 41 € Fgn and, since T is

invertible, we have ag # 0. Denote by T the semilinear transformation of
IE";n having A as the associated matrix with respect to the canonical ordered
basis Bo = (ey,...,e;) of F';n and companion automorphism x — x?. Note
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that cp,.(Fix(T)) = Fix(T'), where cg,. is the coordinatization with respect
to the basis Br. Also, since T has order n, we have

AAT- AT = (3)

where A7 fori € {1,...,n—1}, is the matrix obtained from A by applying to
each of its entries the automorphism z x?. A vector z = (29,...,2k-1) €
Iﬁ'gn is fixed by 7' if and only if

q _
QpZ,_1 = %20
q )
20 + 12 1 = 21

q q —

Eliminating zy, ..., 2x_2, we obatin the equation

qkfl qk: qk:72 qkfl q

which has ¢* distinct solutions in the algebraic closure K of F . by the deriva-
tive test. Each solution determines a unique vector of Fix(T) in KF. Also,
the set Fix(T) is an Fy-subspace of K* and hence dimg, Fix(T) = k. Let
{wi,...,wi} be an F -basis of Fix(T) and note that since |Fix(T)| = ¢,
k
a vector Z%Wz’ is fixed by T if and only if a; € F,. This implies that
i=1
Wi, ..., Wy are also K-independent. Thus (Fix(T))x = K* and {wy,...,w,}
is also a K-basis of K¥. Denote by ¢ the K-linear transformation such that
¢(w;) = e; and by P the associated matrix with respect to the canoni-
cal basis Bg, so P € GL(k,K). The semilinear transformation ¢ o T o ¢!
has companion automorphism x — 29, order n and associated matrix with
respect to the canonical basis P - A - P79 where P~? is the inverse of
P in which the automorphism z ~— 27 is applied entrywise. Note that

poTop l(e;)=o(T(w;)) = ¢(w;) = e;, hence
P-A-P %=1, (4)

i.e.

Pi=P. A (5)
By Equations (@) and (B) and using induction we get

Pl =P.-A-Al.. . AT =P,
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i.e. P € F&X*. This implies that Fix(T') is an F,-subspace of F%. of dimension
k and hence Fix(T') = cg;(F ix(T)) is a k-dimensional subspace of V(k,q")
with the property that (Fix(T))r,.. = V.

Consider now the general case, i.e. suppose 1" as in the statement, that is
T is an invertible semilinear map of order n with companion automorphism
x — 29 and ged(s,n) = 1. Since ged(s,n) = 1 there exist [, m € N such that
1 = sl + mn, and hence ged(l,n) = 1. Then the semilinear transformation
T'" has order n, companion automorphism z + x? and Fix(T") = Fix(T"). By
Lemma 2.1, we may write

V=wle&.. &ul

where [u;] is a T'-cyclic subspace of V' of dimension m; > 1, for each i €
{1,...,7r}, and >°;_, m; = k. Then we can restrict 7" to each subspace [u;]
and by applying the previous arguments we get that U; = Fix(T"|,)) is an
[ -subspace of [u;] of dimension m; with the property that (Ujg,. = [w].
Thus

Fix(T) = Fix(TH) =U, @ ... U,

is an F,-subspace of dimension k of V' with the property that (Fix(T"))g , =

q

V. O

The existence of a matrix P € GL(k, K), with K the algebraic closure of
a finite field of order ¢, satisfying () is also a consequence of the celebrated
Lang’s Theorem [9] on connected linear algebraic groups. More precisely,
by Lang’s Theorem, since GL(k,K) is a connected linear algebraic group,
the map M € GL(k,K) — M- M? € GL(k,K) is onto. In Theorem
it is proved that, if the semilinear transformation of V(k,¢") having A as
associated matrix has order n, then P € GL(k,Fn).

Remark 2.3. Let T be an invertible semilinear transformation of V. =
V(k,q"™) with companion automorphism x +— x% and let K be the algebraic
closure of Fyn. Denote by T the semilinear transformation of K* asso-
ciated with T as in the proof of Theorem 22 If A € K, then the set
E\) = {v € K¥: T(v) = Av} is an F,-subspace of KE. By [, page 293],
it follows that E(\) = \a-1Fix(T) and by [, Main Theorem] E()) is a k-
dimensional F,-subspace of K*. Also, when T has order n and ATT € Fon,

by Theorem[22, E(X) is a k-dimensional F-subspace contained in Ff. such
that (E(A))r,. = FF..



3 Main Results

Now we are able to prove our main result:

Proof of Theorem[L.4 First suppose dimg, ker f = k. Then there exist
Uy, U1, - . ., Up—1 € Fgn which form an F-basis of ker f.
Put u := (ug,uy,...,ur_1) € F’;n. Since ug, Uy, ..., ux—1 are F-linearly in-
dependent, by [10, Lemma 3.51], we get that B := (u,u?,..., uqs(kfl)) is an
ordered [Fj»-basis of F’;n. Also, u” = apu+a;u? +- - -+ak_1uqs(k71). It can be
seen that the matrix (Il) represents the F n-linear part of the F,»-semilinear
map o: Vv € Iﬁ‘lgn — vl € F';n w.r.t. the basis B. Since ged(s,n) = 1, 7 has
order n and hence the assertion follows.

Viceversa, let 7 be defined as follows

S

q

X Zo
xy xy
T , eFl.—A| € Fk., (6)
Tp—1 Tk—1

where A is as in (I)) with the property AA? ---A”"™” = I, Then 7 has
order n and, by Theorem [2.2] it fixes a k-dimensional [F -subspace S of F’;n
with the property that (S)r_, = F.

Let Bs = (so, - . .,8—1) be an Fy-basis of S and note that, since (S)r . =
Flgn, Bs is also an [Fn-basis of F’;n, then denoting by B¢ the canonical ordered
basis of F';n, there exists a unique isomorphism ¢ of F';n such that ¢(s;) = e;
for each i € {1,...,k}. Then o = ¢poT0¢™", where: v € Fl, — v?" € FF,.
Also,

T =¢oT 0!, (7)
for each i € {1,...,n —1}. Also, by (@)

T(eg) = ey,
7(e1) = 7%(ey) = e,

T(ek_l) = Tk(eo) = (CL(], e ,ak_l) = Qp€o + e 4 Ap—1€k—1.
So, we get that

Tk(e()) = agp€g + &17’(60) + -+ ak_l’Tk_l(eo),
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and applying ¢ it follows that

o(7*(e0)) = agd(en) + a19(7(e9)) + - - - + ar_16(7" (o))

By () the previous equation becomes

7" (p(en)) = app(eg) + ar15(p(eg)) + -+ + ar—15" " (d(ep)).

Put u = ¢(ey), then

sk s s(k—1)
u? =gou+au? +---+ap_u?

This implies that wug, uq, ..., us_1 are elements of ker f, where

u = (ug, ..., ug_1). Also, they are [F -independent since B = (u, ..., uqs(kfl)) =

(¢(eo), - .., p(ex—1)) is an ordered Fyn-basis of FF,.. This completes the proof.
U

As a corollary we get the second part of [6, Theorem 10], see also [12]
Lemma 3] for the case s = 1 and [I1] for the case when ¢ is a prime. Indeed, by

evaluatinﬁ the determinants in AAY -+ A" ™" = I, we obtain the following
corollary:.

Corollary 3.1. If the kernel of a ¢*-polynomial f(z) = apx + ayz? + -+ +

a1z = 27" has dimension k, then N(ag) = (—1)"*+D),

Corollary 3.2. Let A be a matriz as in Theorem[L2. The condition

s(n—1)

AAT ATV

is satisfied if and only if AAT - AT fizes ey = (1,0,...,0).

Proof. The only if part is trivial, we prove the if part by induction on 0 <
i < k—1. Suppose AAT .. -Aqs("fl)egp =e! for some 0 < i < k — 1. Then
by taking ¢°-th powers of each entry we get A?°A7” ... AeT = eT. Since
AeT = el this yields A7 A7 ... A7 Vel | = eT. Then multiplying both
sides by A yields AAT AT ... AT" Vel = e, . O

'For & € Fgn and for a subfield Fgm of Fyn we will denote by Ngn jgm () the norm of
over Fym and by Trgn /qm () we will denote the trace of z over Fym. If n is clear from the
context and m = 1 then we will simply write N(z) and Tr(z).



Consider a ¢*-polynomial f(z) = apz + a129 + -+ + TR A
the matrix A € F&X* as in Theorem [[2 and the semilinear map 7 defined in
@.

Note that

T

e, =(0,1,0,...,0) =¢;
el =(0,0,1,...,0) = e,

kal
€ :(0,0,0,...,l):ek_l
Tk
€ = (ag, a1, as, ..., ar1)
k+1 s s s s s s s
T _ q q q q q q q°+1
e, = (aoaj_y,ay +araj_j,af +asay j, ... a5 o+ ai). (8)
Hence, if

e] = (Qoir Quis. - Qr_1.)

where ();,; can be seen as polynomials in ag, a1,

.., a_1, for i >0, then
i+1 s s s s s
e = (aOQZ—Lw an' + alQZ—u’ = >QZ—2,1' + ak—lQZ—u)’

i.e. the polynomials @;; for 0 < j7 < k — 1 can be defined by the following
recursive relations for 0 < i <k — 1:

(1 ity =4,
@ji = { 0 otherwise,

and by the following relations for 7 > k:

QO,H—l = CLO?ZS_LZ- . (9)
Qjiv1 =Qf 1, + aJQZ—l,i
Now, we are able to prove the following.
Theorem 3.3. The kernel of a q*-polynomial f(x) = apx + a1x? + -+ +
apz? T =gt e Fn|x], where ged(s,n) = 1, has dimension k if and only
if

B 1 if =0,
Qjn(ao, ar, ..., ag-1) = { 0 otherwise. (10)



Proof. Relations (@) can be written as follows

O 0 --- 0 ag 7°
17‘2+1 _ 0 1 0 as .l,i ’
‘ S : : ¢
Qk—1,2+1 0 0 1 A1 k—1,i

withi € {0,...,n—1}. Also, (Qo0, @10, - .., Qr-10) = (1,0,...,0) and €] =
(Qots- -, Qr—14) for t € {0,...,n}. By Theorem and by Corollary B2,
the kernel of f(z) has dimension k if and only if ey = (Qo 0, Q1.0,-- -, Qr—1.0)

is fixed by AA? .. -Aqs(nfl), so this happens if and only if

egn - (QO,TH Ql,nu vevy Qk—l,n) = (17 07 tey O)
]

Theorem with £k = n — 1 and s = 1 gives the following well-known
result as a corollary.

Corollary 3.4. [Il}, Theorem 2.24] The dimension of the kernel of a q-
polynomial f(x) € Fyn[x] is n — 1 if and only if there exist o, € [}, such
that

f(w) = aTx(Bz).

Again from Theorem we can deduce the following.

Corollary 3.5. [Il), Fz. 2.14] The ¢*-polynomial agx — = Fonlx], with
ged(s,n) = 1 and 1 < k < n — 1, admits ¢* roots if and only if k | n and
Nqn/qk (CLQ) =1.

3.1 When the ¢°-degree equals n — 2

In this section we investigate ¢°-polynomials

f(z) = apr + ayax® + -+ an_gscqs(nfg) _ g
with ged(s,n) = 1. By Theorem B3] dimker f(x) = n — 2 if and only if
ag, ay, - . ., a,_3 satisfy the following system of equations
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2s

([ Qo =aolal_y+al ") =1,
2 2 2s+q
lezao n3+a1(n4+a' ) =0,

2 2 23
) Q2,n—a0 +a 3a1 +a2( 4+a +q):0, (1)
2 2 2.5
QS,n:al +an 3“2 +a'3(n4+a +q):0a
2s 2s 2s q2s+qs
\ Qn—3,n: n— 5+an 3an 4+a” 3(an 4+an—3 )207
which is equivalent to
ap(a n284 +ay 2S+q ) =1,
a = ag +1aq 4 —2 gl(\ao,an 3), (12)
a; = —aj Ko — ag 3a] 160 =: gj(ag, an_3), for 2 <j <n-—3.

So, dimg, ker f(x) = n — 2 if and only if ag and a,_3 satisfy the equations
{ ao(gn-1(ao, an—3)*" +a q28+q ) =1,
Ap—3 = gn—3(a07 an—3)7
and a; = g;(ag, an—3) for j € {1,...,n —4}.

n—2

Theorem 3.6. Suppose that f(z) = aor + a1zt + -+ ap_sz?" ° — 29" has
mazimum kernel. Then for t > 2 with ged(t — 1,n) = 1 the coefficients a;_o
and a,_; are non-zero and, with s =n —t+1,

2s s 2s
-t +qt *+1 q
An—2t4+10Q;_o = = —Qp_y Gy 3. (13)

Also, it holds that

@ity e (14)

— an—o(—af_ 2a3t 4t ag,
In particular, for t > 2 with ged(t — 1,n) = 1 we get
N(an—t) = (=1)" N(a:—2) (15)

and
N(an—2t+1) = (—=1)" N(az-3), (16)

where n — 2t + 1 and 2t — 3 are considered modulo n.
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Proof. Let t > 2 with ged(t — 1,n) = 1 and consider the polynomial F'(z) =
f(z9), that is,

t t+1 n+t—3
F(z) = apx® + ayz? + -+ + a,_32° —

n+t—2
Clearly dimg, ker F' = dimp_ ker f = n — 2. By renaming the coefficients,
F(z) can be written as

q2(n7t+1) q(n7t+1)(n73) q(n7t+1)(n72)

F(z) = aortarxr? T fag +- a3 +ay, 9T

t+1 2

qn— q3t73 q2t—
= T + T + -+ ap_3T + 2T .

Since F'(x) has maximum kernel, by the second equation of (I2) we get
ag # 0, a0 # 0 and the following relation

qs+1 qQS
) e w
Q2 Qp_2 Qp—2

The coefficient «; of F(z) equals the coefficient a; of f(z) with i =n —t +
j(1 —+¢) (mod n), in particular

Qy = Ap—t,

a1 = Gp—2¢41,

Qp_3 = 423, (18)
Qo = Ar—2,

Op—g = A3t—4,

and by (), we get that a;_» and a,_, are nonzero, and

2s s s 2s
- +q° °+1 q
Ap—2t+10p_o = = —Qp_y Aoy_3,

which gives ([I3]). The first equation of (I2)) gives
qQS q2s+qs
o ((_a) . (_an_g) ) .
Op—2 Qp—2 Op—2

qs q2s q25+qs . q25+qs+1
_ao(_an—2an—4 + Q3 ) =Qp_9 :

that is,

Then (I8) and ov,_4 = ag;_4 imply
qs q25 q2s+qs . q25+qs+1
—Qpi(—af_yaz, 4+ a3 3" ) =ai, )

12



which gives (I4]). By Corollary Bl with s =n — ¢t 4+ 1 we obtain

()
Qp—9
and taking (I8) into account we get
N(ap—t) = (—1)" N(at—2).

Then (I3) and the previous relation yield
N(an—241) = (=1)" N(ag—3).

0

Proposition 3.7. Let f(x) be a ¢°-polynomial with ¢°-degree n — 2 and with
mazimum kernel. If the coefficient of x¢ is zero, then n is even and f(x) =
a Trgn 2 (Bx) for some a, B € F..

s s(n—3 s(n—2 .
Proof. We may assume f(z) = apx +a12? + - - -+ a, 327 7 _ " with

a; = 0. By the second equation of (I2), it follows that a,_3 = 0. By the third
equation of (I2)), we get that a; = 0 for every odd integer j € {3,...,n —3}.
If j is even then we have

a; = (_1)%’agsj+qs<j*2>+---+q23+1' (19)
If n — 3 is even, then this gives us a contradiction with j = n — 3. It follows
that n—3 is odd and hence n is even. By N(ag) = (—1)", there exists A € [},

s(n—2) s(n—2)

such that ay = —A\'7¢ . So, by ([I9) we get a; = P , and hence
f(z) = %
]

In the next sections we list all the ¢°-polynomials of Fj» with maximum
kernel for n < 6. By Corollaries 3.4 and the n < 3 case can be easily
described hence we will consider only the n € {4,5,6} cases.

For f(z) = Z?:_Ol a;z? € ﬁn,q we denote by f(a:) = Z"_l al

i=0 %
the adjoint (w.r.t. the symmetric non-degenerate bilinear form defined by

(z,y) = Tr(zy)) of f.
By [l Lemma 2.6], see also [2, pages 407-408], the kernel of f and f has
the same dimension and hence the following result holds.

n—1

n—i
x4
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Proposition 3.8. If f(z) € ﬁnvq 1 a q°-polynomial with mazimum kernel,
then f(x) is a ¢"*-polynomial with maximum kernel.

This will allow us to consider only the s < n/2 case.

3.2 The n =4 case

In this section we determine the linearized polynomials over Fg+ with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is —1.

Because of Proposition 3.8, we can assume s = 1. Corollaries [3.4] and
cover the cases when the ¢-degree of f is 1 or 3 so from now on we suppose
f(x) = apx + a2 — z7. If a; = 0 then we can use again Corollary and
we get agr — 7, with Ng1/2(ao) = 1. Suppose a; # 0. By Equation (I2),
we get the conditions

g+l _g¢?

2 2
q q g\ __
ap(ag +af ™) =1,

which is equivalent to

{ Nq4/q(a0) 2: L,
g+l __  q“+q+1 q
ay = Qg — Qgp,

see (A1) of Section Bl

Here we list the g-polynomials of £,, with maximum kernel, up to a
non-zero scalar in F,. Applying the adjoint operation we can obtain the list
of ¢*-polynomials over F, with maximum kernel. In the following table the
g-degree will be denoted by k.

k | polynomial form conditions
3 Tr(A\x) = IF;
2 apr — ¢ Nga/q2(ag) = 1
N4 (CLQ) =1
2 q __ q2 q*/q
apx + a1 T { a‘{“ _ ag”q“ _ ag
1 apx — x4 Nga/q(a0) =1

Table 1: Linearized polynomials of F,« with maximum kernel with s =1
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3.3 The n =15 case

In this section we determine the linearized polynomials over F s with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is —1. Because of Proposition B.8] we can as-
sume s € {1,2}. Corollaries B.4] and cover the cases when the ¢°-degree
of fis 1 or 4. First we suppose that f has ¢°-degree 3, i.e.
f(z) = apx + a12® + apz? — 27

From (I2), f(z) has maximum kernel if and only if ag, a; and ay satisfy the
following system:

. qs+1 q2s
3s 2s 4s 2s s
q>°+q=+1 ¢ q°+q
—ay ay; +a, ap =1,
2s 3s 2s 2s s
+1 + +go+1
as = —ag +ad Tl T

which is equivalent to

N(ao) = 1,
N R
3s 2s 4s 2s s
+q%+1 +
—al T Tad +agad T =1,

see (A2) of Section [
Suppose now that the ¢°-degree is 2, i.e.

f(x) = apz + az? — 27"
By Theorem the polynomial f(x) has maximum kernel if and only if its
coefficients satisfy
{ aoaf af +af (af " +af ")) =1,

qs+1 q33 q35+q23 o
ao (ao + a’l ) + al — O,

3

which is equivalent to

{ N(ao) = —1,
qs qs+1 . q2s+qs+1 q35
ay + aq = ay a;

see (A3) of Section [l

Here we list the ¢*-polynomials, s € {1,2} of L5, with maximum kernel,
up to a non-zero scalar in IFZE,. Applying the adjoint operation we can obtain
the list of ¢’-polynomials, ¢t € {3,4}, over F,s with maximum kernel. As
before, the ¢*-degree is denoted by k.
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k polynomial form conditions

1 Tr(\r) NET,
N(CL()) =1
s 2s 3s s 2s
3| apr + a2 + asx? — xf ar = —gg + af%’ )
S S 1 S S S
—al Tl fagad T =1
2 0 g N(ao) =1~
aox + alx T q.s+1 qs q35 q2.s+q.s+1
a;  tayg =a; ag
S
1 apr — 4 N(ap) =1

Table 2: Linearized polynomials of F s with maximum kernel with s € {1,2}

3.4 The n =06 case

In this section we determine the linearized polynomials over F  with max-
imum kernel. Without loss of generality, we can suppose that the leading
coefficient of the polynomial is —1. Because of Proposition B.8 we can as-
sume s = 1. Corollaries B.4] and cover the cases when the ¢-degree of f
is 1 or 5. As before, denote by k the ¢*-degree of f.

We first consider the case k = 2, ie. f(z) = apx + ayz? — 29, By
Theorem B3, f(x) has maximum kernel if and only if the coefficients satisfy

N(ao) = 1, o
(a§ +af™)? = af T (af + af ),
4 3 2 4 4 3
af af +af (af +af ™) =~
0

see (A4) of Section [l

If k = 3, then f(z) = apx + a12%” + apx?” — 29", and by Theorem it
has maximum kernel if and only the coefficients fulfill

N(ao) = 1, '

ag3+"+1 + a%3a§2a8+1 —aday = ad,
a§™ = —af T Al —af,

a? = agal + ag”q*laf,

see (AD) of Section Al Note that a; = 0 if and only if a; = 0 and in this case
we get the trace over [Fs.
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Finally, let k& = 4. Then the polynomial f(z) = apz + ayz? + asz? +
azz?” — 29" has maximum kernel if and only if the coefficients satisfy

4 _
N(CL(]) - 17
4 2 5 4 4 3 2 2
+ + +q¢°+ +
ao(—af ™ + af Tl T g af ) =1,
g+l ¢?
¢ a1 = —ay as,
?+1 e+a? ?+q+1
a2 — _ao _I_ a3 CLO 5
4 3 2 2 3 3 2 4 3 2
¢ ¢’ +g°+1 q° q°+q+1 q°+q°+q+1 _q*+q°+q
L a3 = a3 q + a3 ag — ay as ,

see (A6) of Section [Bl

Here we list the g-polynomials of L4 , with maximum kernel, up to a non-
zero scalar in Fe. Applying the adjoint operation we can obtain the list of
¢°-polynomials over F 6 with maximum kernel.
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]

Table 3: Linearized polynomials of F,¢ with maximum kernel with s =1

polynomial form conditions
. *
Trqf)/q()\x) )\ E IFQG
aq # 0
N(ao) =1
4 2 5 4 4 3 2 2
s aelag gty g =
apx + a1x9 4+ asx? + azx? — x4 g+1 _q2
2 3 2 2
+1 + +q+1
as=—ad T +ad T al ™
4 3 2 2 3 3 2 4 3 2
+q*+1 +q+1 +@®+a+1 gt 4P+
az=a3 al T 4 ad al T —ad TV gd 7T
*
Tl"qﬁ/qz ()\.TJ) = Fqﬁ
N(ao) =1
3 1 3 2 1
q s 7 ag """ +ay af af" — ajar = af
apr + a1x? + asx? —x g+1 PriP+q+1 gt q
as = = —a a; —a
2 0 ,
q+1 _ q q“+q+1 _gq
a; = azag + ag ag
*
Tl"qﬁ/qs ()\.TJ) A\ E Fqﬁ
a7 # 0
. P N(CL(]) =1
apr +ax? — x q a+1\g3 _ P+a*+d® q q+1
(ag 4‘3“1 )2 - g s (ag+ai™)
qa _q q q q+q7y __ ay
aj ay +aj (ag +af ") = T
(
2
apx — ¢ Ngs/q2(ag) = 1
apr — x4 Ngs/q(ao) =1




4 Application

As an application of Theorem we are able to prove the following result
on the splitting field of ¢-polynomials.

Theorem 4.1. Let f(x) = agr + a129 + - - - + ap_qx? =2t € Fn[x] with
ag # 0 and let A be defined as in (). Then the splitting field of f(x) is Fynm
where m is the (multiplicative) order of the matriz B == AA... AT

Proof. The derivative of f(z) is non-zero and hence f(x) has ¢* distinct roots
in some algebraic extension of Fyn. Suppose that F,.n is the splitting field
of f(x) and let ¢ denote the order of B. Then the kernel of the F,-linear
Fnm — Fynm map defined as x — f(z) has dimension k over F, and hence
by Theorem [[.2] we have

nm—1

AAT. .. A1 = Ij.

Since the coefficients of A are in F,», this is equivalent to B™ = I}, and hence
t | m. On the other hand

nt—1

B = AA7... AT =,

and hence again by Theorem [[.2] the kernel of the IF-linear Fyne — Fjne map
defined as « +— f(z) has dimension k over F,. It follows that F,.m is a
subfield of Fnt from which m | t. O

A further application of Theorem is the following.

Theorem 4.2. Let n,m,s and t be positive integers such that ged(s,nm) =
ged(t,nm) = 1 and s = t (mod m). Let f(z) = apz + ayx® + -+ +
— 27" and g(z) = apr + amx? + -+ apx — zqtk, where
ag, y, - .., a5—1 € Fym. The kernel of f(x) considered as a linear transforma-
tion of Fynm has dimension k if and only if the kernel of g(x) considered as
a linear transformation of Fynm has dimension k.

Proof. Denote by A the matrix associated with f(x) asin ({l). By hypothesis,
A € FiXF and it is the same as the matrix associated with g(z). By Theorem
the kernel of f(x), considered as a linear transformation of Fjnm, has
dimension k if and only if

s(nm—1)

AAT .. Al = Ij.
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Since s =t (mod m), we have

s(nm—1) t(nm—1)

AAT ... A = AAT ... A = I,
and, again by Theorem [[2 this holds if and only if the kernel of g(x),
considered as a linear transformation of Fgynm, has dimension £. O
Addendum

During the “Combinatorics 2018” conference, the fourth author presented the
results of this paper in the talk entitled “On ¢-polynomials with maximum
kernel”. In the same conference John Sheekey presented a joint work with
Gary McGuire [§] in his talk entitled “Ranks of Linearized Polynomials and
Roots of Projective Polynomials”. It turned out that, independently from
the authors of the present paper, they also obtained similar results.
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5 Appendix

In this section we develop some calculations regarding the relations on the
coefficients of a linearized polynomials with maximum kernel presented in

Sections [3.2] and B4 see also [13].

(A1) By Equation (1)) with n =4, s =1 and k = 2, we get the conditions

2 2
q q°+qy __
. aplag +af ™) =1,
2 2
_ q+1 _q

By Corollary B}, the system ¥ is equivalent to the following system

Nq4/q(a0) =1,

2 2
I, q e A
_ _atl ¢

which can be rewritten as follows

2
/ q°—1 _ 1

Z . al - _ag+17

a+l _ _¢*+q+l q
Now consider the system

2*. Nq4/q(a0) = 1,
: I — aq2+q+1 4
1 =@ 0

Clearly, S(¥') € S(X*), where S(¥') and S(X*) denote the set of so-
lutions of X" and X*, respectively. Let (ag,a1) € S(X*), then by using
the norm condition on aqg

q—1 3\ ¢—1
2_1 ]_ 1 - aq+q
q _ q _ 0 _
a; - 3 — Qg =\ 53 -
q q
Qg Qg

14¢2 3
_ ]_ ao q3_1 _ angq q3 1 . 1
q+q3 0 q+q3 0 q+1

i.e. (ap,a;) € S(X') and hence S(¥X*) = S(¥') = S(X2).
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(A2)

From () with n = 5, ged(s,5) = 1 and k = 3, we get the following

conditions: ,

aglal +af ) =1,

. . qs+1 qQS
X q ar=—ad Tl
2s 1 2s s
ay = —ad T —ad a? ap.

By Corollary Bl ¥ is equivalent to

Nejlw) =1
ap(al” +ad ") =1,

/.
Z . . qs_,’_l q2s
2s 2s s
— q=*+1 q=° g

which can be rewritten as follows

Nq5/q(a0) =1,

s4+1 2s
2/, ay = _ag a’% ?
3s 2s 4s 2s s
: +q*+1 +
—al T Tl +ad T ag =1,
2s 3s 2s 2s s
_ = +1 > +q= = +q°+1
az = —qy + ay ag .

By raising the third equation to ¢° and multiplying by ag%ﬂ, since
N(ap) = 1, we get the fourth equation. Therefore ', and hence ¥, is
equivalent to

NQS/Q(CLO) = 1,2
_ ¢ +1_q=°
3s 2s 1 4s 2s s
al” Tl 4 apal T =1

Applying Theorem with n =5 and k = 2, we get that the polyno-
mial f(x) has maximum kernel if and only if its coefficients satisfy

2s 3s s 3s 35+ 2s
.} Qos = ao(ag Sa[f +3@‘f 2(a3 + af i ! 3)) =1 o
. S S S S S S S S S S
Q15 =ad (af + af Y fa(al af +al (af +al TT)) =0,

which is equivalent to

Nq5/q2(a0)3: —1, , ,
S S S S S S

ag(ag af +af (ag +af ")) =1,
q°+1

3s 3s 2s
q 5 +q
al T (ad +af )+a; =0,

3
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. 2s 3s s 3s 3s 2s 1
because of Corollary B and since af a? + af (af +af ™) = —.
ao
The above system can be rewritten as follows

N 5/q(a0) = —1,
3.5 2s
+q*° __ a
CLO + Cll = —as—1+1,

3s 2s s s
q°° q“*+q°+1 ¢+l __ g
ap Qg —a; =aqg,

which is equivalent to

N 5/q(CLO) = —1,

q 541 35 q23+qs+1
+a0 =aj a 5

4s 3s 2s
alao +q°°+q :_%'
0

If the first and the second equations are satisfied, clearly also the last
one is fulfilled, hence ¥ is equivalent to the following system

{ N 5/q(a0) = —1,

q S41 33 q25+qs+1
+a0 =af af .

(A4) By Theorem B3 with n =6, s =1 and k = 2, we get
3 4
Qoe = aogao (a§ +aq e ) +af(af af + ai (‘}18 + ‘;q ) =1,
Quo = af ar(af +af ") + (af" + af)(af af +af (af +af ) =0,
which is equivalent to
3 4
al (a? +aq e’ )+a‘f(a8 af +a‘f (@l + a7 7)) = L
o +a0(a0 al + af (ao + af e )) =0,
ie.
3 4
ao (ao +a‘1 o >+a‘{<a8 a‘{ +af (af +af 7)) =L

II'H] ai

By Corollary Bl the previous system is equivalent to

N( )—1
q*+¢® ar. @ ¢t q? 4\ _ 1
ao (ao —|—a )+a1(ao a; +a; (ao +ai ™)) =,
aOal + af (ao _i_aq—l—q)__%,
Ao
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which is equivalent to

N( 0) =1,
q+1
ad (ao +althe — Zéﬂ = %;
af af +af (af +afT7) =~
g
hence it is equivalent to
N(ao) = 1,
(ag + aq+1) @ _ ags+q4+q (ad + aq+1>
7

2 4
al ao +af (af + af

a*+q® ) = —-a
alt

(A5) By Theorem B3 with n =6, s =1 and k = 3, we get

aOQ%s = ]-7
Qg,5 + a’ng,E) - 07
Q({ﬁ + CLQQg,E) =0,

where
Qos = ao(al +ad +q)
Q15 = a8a2 + al(a1 +al +q)
Qa5 = a82 + a2 ai + a2(a1 + a§2+q),

hence we obtain the following system

ao(ao +a2 a1 +a2(a1 +al S+’ ) =1,
@ +a0(a1 +al e’ ) =0,

“2+a2 ao —iral(a1 + al +q):O.

By Corollary B.]it is equivalent to

N(ao) = ]_
ao(ao +a2 al +a2(a1 +al Sa? ) =1,
@ B3+¢> a
aj +a; = T
O

“2+a2 ao —iral(a1 +aq +q):O,
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by substituting the third equation into the others we get

p
N(CL(]) = 1,
3 3 2 q
q q” _q asaily __
aO(ao taa; — a(1)+q) =1,
e+ _ a
al + as - _al}rqu
2 q+1O

az @ q ] _
a0 T 02 G alFa =0,

i.e.
N(ao) = 1,
ag3+q+1 + agga1 al™ — aday = al,
agH _ _a83+q +q+1a‘{4 al,
af! = ayal + al T al

(A6) Equations ([[Il) with n =6, s =1 and k = 4 are

ao(a2 + al +q) =1,

a0a3 + al(a2 +aj +q) =0,
ao + a3 ai + a2(a2 + al +q)
al + a3 ald + ag(a2 + al +q)

0,
0,

which, by Corollary B.1] is equivalent to

( N(a )—1

ao(a2 +al +q) =1,

agag + al(ag2 + aq2+q) =0,

ao2 + a32a1 + a2(a2 +al +q) =0,
al + a3 as + ag(a2 + al +q) =0,

\

thus it can be rewritten as follows

(
N( ):1
+q _ _ 1
a2 +a a0
a
a0a3 +g— )
ao +a3 aj + %2 =0,
‘13_
al +a3 as + 0,
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and hence

l.e.

( N(CL(]) = 17
aolag +aj ") =1,
 a; = —ag+1a§2,
ay = —al ' — af alay,
[ a3 = —a‘fao — a§2aga0,

N(CL(]) = 17

ao(_ag4+q2 _l_ ag5+q4ag4+q3+q2 _l_ agQ+q) _ 1’

a; = —CLg—HCng,

ay = —ag2+1 + a§3+q2ag2+q+l,

a3 _ ag4a83+q2+1 + agza83+q+1 . a83+q2+q+1ag4+q3+q2
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