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CESÀRO MEANS OF SUBSEQUENCES OF PARTIAL SUMS OF
TRIGONOMETRIC FOURIER SERIES

GYÖRGY GÁT

Abstract. In 1936 Zygmunt Zalcwasser asked with respect to the trigonometric system
that how “rare” can a sequence of strictly monotone increasing integers (nj) be such that
the almost everywhere relation 1

N

∑N

j=1
Snj

f → f is fulfilled for each integrable function f .
In this paper, we give an answer to this question. It follows from the main result that this
a.e. relation holds for every integrable function f and lacunary sequence (nj) of natural
numbers.

1. Introduction and the main theorem

In 1936 Zalcwasser [21] asked how “rare” can a sequence of integers (nj) be such that

1

N

N
∑

j=1

Snj
f → f

a.e. for every function f ∈ L1. In this paper, we give an answer to this question (Theorem
1.1).

It is of main interest in the theory of trigonometric Fourier series that how to reconstruct
the function from the partial sums of its Fourier series. It is known from Du Bois-Reymond
[8] that the Fourier series of a continuous function can unboundedly diverge at some point.

A. N. Kolmogoroff [12] constructed his famous example of a function f ∈ L1 such that
the partial sums Smf(x) diverge unboundedly almost everywhere. In another paper [13] he
constructed an everywhere divergent Fourier series. In particular, it was not clear whether
the Fourier series of a continuous function can diverge everywhere. Carleson [6] showed
that if f ∈ L2, then the partial sums converge to the function almost everywhere. The
condition f ∈ L2 in the Carleson theorem was weakened by Hunt [11] (f ∈ Lp (p > 1)) and
recently Antonov [1] who proved that if f is in the class L log+ L log+ log+ log+ L, then the
partial sums of the Fourier series converge to the function almost everywhere again. It is a
fundamental question how to reconstruct a function in L1 from its Fourier series.

Inspired by Fejér’s results, Lebesgue [15] showed that for each integrable function we have
the almost everywhere convergence of the Fejér means σnf = 1

n+1

∑n
m=0 Smf → f .

It is also of prior interest what it can be said - with respect to this reconstruction issue
- if we have only a subsequence of the partial sums. With respect to the partial sums
and the Lebesgue space L1 the bad news is that in 1982 Totik [19] showed that for each
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2 GYÖRGY GÁT

subsequence (nj) of the sequence of natural numbers there exists an integrable function
f such that supj |Snj

f | = +∞ everywhere. Moreover, Konyagin [14] proved that for any
increasing sequence (nj) of positive integers and any nondecreasing function φ : [0,+∞) →
[0,+∞) satisfying the condition φ(u) = o(u log log u), there is a function f ∈ φ(L) such that
supj |Snj

f | = +∞ everywhere. That is, a summation method is needed.

In 1936 Zalcwasser [21] asked how “rare” the sequence of integers (nj) can be such that

1

N

N
∑

j=1

Snj
f → f

for every function f ∈ L1. This problem was completely solved with respect to the trigono-
metric system for continuous functions and uniform convergence in [16, 20, 3, 7]. That is,
if the sequence (nj) is convex, then the condition supj j

−1/2 log nj < +∞ is necessary and
sufficient for the uniform convergence for every continuous function.

With respect to convergence almost everywhere and integrable functions the situation is
more complicated. In 1936 Zalcwasser [21] proved the a.e. relation 1

N

∑N
j=1 Sj2f → f for

each integrable function f . In his paper Salem [16, page 394] writes that this theorem of
Zalcwasser is extended to j3 and j4 but there is no citation in [16] about it. Belinsky proved

[4] the existence of a sequence nj ∼ exp( 3
√
j) such that the relation 1

N

∑N
j=1 Snj

f → f
holds a.e. for every integrable function. In this paper, Belinsky also conjectured that if
the sequence (nj) is convex, then the condition supj j

−1/2 log nj < +∞ is necessary and
sufficient again. So, that would be the answer to the problem of Zalcwasser [21] in this case
(trigonometric system, a.e. convergence and L1 functions). In this paper, - among others -
it is proved that this is not the case.

The system of functions eınx (n = 0,±1,±2, . . . ) (x ∈ R, ı =
√
−1) is called the trigono-

metric system. It is orthogonal over any interval of length 2π, specifically over T := [−π, π).
Let f ∈ L1(T ), that is f is an integrable function on T . The kth Fourier coefficient of f is

f̂(k) :=
1

2π

∫

T

f(x)e−ıktdt,

where k is any integer number. The nth (n ∈ N) partial sum of the Fourier series of f is

Snf(y) :=

n
∑

k=−n

f̂(k)eıky.

The nth (n ∈ N) Fejér or (C, 1) mean of the function f is defined in the following way:

σnf(y) :=
1

n+ 1

n
∑

k=0

Skf(y).

It is known that

σnf(y) =
1

π

∫

T

f(x)Kn(y − x)dx,

where the function Kn is known as the nth Fejér kernel; we will now find an appropriate
expression for it (see e.g. the book of Bary [2]), namely

Kn(u) =
1

2(n+ 1)

(

sin(u
2
(n + 1))

sin(u
2
)

)2

.
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From this expression one can immediately derive the following properties of the kernel. They
will play an essential role later.

Kn(u) ≥ 0.

Kn(u) ≤
π2

2(n+ 1)u2
(0 < |u| ≤ π).

Now, we state the main theorem of the paper.

Theorem 1.1. Let f ∈ L1(T ) be a function and (nj) be a sequence of natural numbers with

the property that nj+1 ≥
(

1 + 1
jδ

)

nj holds for j ∈ N and for some 0 < δ < 1/2. Then the

almost everywhere relation

lim
N→∞

1

N

N
∑

j=1

Snj
f = f

holds on T .

Corollary 1.2. Let (nj) be a lacunary sequence of natural numbers. Then the almost ev-

erywhere relation limN→∞
1
N

∑N
j=1 Snj

f = f holds for every f ∈ L1(T ).

We remark, that the corresponding version of Corollary 1.2 for the Walsh-Paley system
can be found in [10]. On the other hand, no part of the paper [10] could be used here,
but the fact that the author of [10] could prove Corollary 1.2 for the Walsh system was an
inspiration for this article.

We say some preliminary words about the main ideas of the proof of Theorem 1.1. Let
Vnf := 1

n

∑2n−1
j=n Sjf be the nth de la Vallée-Poussin mean of the integrable function f .

Instead of the (C, 1) means of Snj
f we can investigate (C, 1) means of Snj

f − Vnj
f , since

for the de la Vallée-Poussin means Vnj
f we have the a.e. convergence Vnj

f → f . We define
some sequence of sets βFβj

and the whole sections 3, 4 and 5 are dedicated to prove the
“orthogonality” lemma (Lemma 6.1). That is,

∥

∥

∥

∥

∥

N
∑

j=1

(

Snj
f − Vnj

f
)

(

σmj
1βFβj

)

∥

∥

∥

∥

∥

2

2

≤ CβN log5(N + 1)‖f‖1λ,

where constant Cβ depends only on β and it is uniform in f, λ,N and (nj). To be honest,
“orthogonality” lemma (Lemma 6.1) is proved for lacunary sequences (nj) (with quotient
greater than 2.5), but this fact will be got around in the proof of the main theorem (Theorem
1.1). In the “replacement” lemma (Lemma 6.2) we basically prove that the sequences

1

N

N
∑

j=1

(

Snj
f − Vnj

f
)

(

σmj
1βFβj

)

,
1

N

N
∑

j=1

(

Snj
f − Vnj

f
)

are a.e. equiconvergent. This will lead to the a.e. convergence 1
N

∑N
j=1

(

Snj
f − Vnj

f
)

→
0. Roughly speaking, the proof of the main theorem is based on the “orthogonality” and
“replacement” lemmas. In the sequel, we start the process on the way to the “orthogonality”
lemma.
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2. A Decomposition Lemma

The dyadic subintervals of T are defined in the following way.

I0 := {T} , I1 := {[−π, 0), [0, π)} ,
I2 := {[−π,−π/2), [−π/2, 0), [0, π/2), [π/2, π)} , . . .

I :=
∞
⋃

n=0

In.

The elements of I are said to be dyadic intervals. If F ∈ I, then there exists a unique n ∈ N

such that F ∈ In, and consequently mes(F ) = |F | = 2π
2n

. Each In has 2n disjoint elements
(n ∈ N).

The following Calderon-Zygmund type decomposition lemma can be found for instance in
[18, page 17] or [17, page 90] (more precisely, in a slightly different way) or in [9] (with an
elementary proof). This will play a prominent role in the proof of the main theorem of this
paper.

Lemma 2.1. Let f ∈ L1(T ), and λ > ‖f‖1/(2π) . Then there exists a sequence of integrable
functions (fi) such that

f =

∞
∑

i=0

fi a.e.,

‖f0‖∞ ≤ 2λ, ‖f0‖1 ≤ 2‖f‖1, and

supp fi ⊂ I i, where

I i ∈ I are disjoint dyadic intervals depending only on |f | (and λ),

mes(I i) =
2π

2ki
for some

ki ≥ 1 (i ≥ 1). Moreover,
∫

T
fi(x)dx =

∫

Ii
fi(x)dx = 0 (i ≥ 1),

λ <
1

mes(I i)

∫

Ii
|f | ≤ 2λ,

1

mes(I i)

∫

Ii
|fi| ≤ 4λ

and for the union

F :=

∞
⋃

i=1

I i

of the disjoint dyadic intervals I i (i ≥ 1) we have mes(F ) = |F | ≤ ‖f‖1/λ.

Also using the notation with respect to Lemma 2.1 we define F := {I i : i = 1, . . . , }. That
is, F is the set of dyadic intervals, whose union is the set F . Moreover, for any dyadic
interval I, I ∈ F if and only if |I|−1

∫

I
|f | > λ and |J |−1

∫

J
|f | ≤ λ for every dyadic interval

J ) I. For any positive number β > 0 let Fβ := {I ∈ F : |I| > β}, Fβ := ∪I∈Fβ
I. Besides,

remark that fi = (f − |I i|−1
∫

Ii
f)1Ii (i ≥ 1), f0 = f1F̄ +

∑∞
i=1(|I i|−1

∫

Ii
f)1Ii (1F̄ is the

characteristic function of the complement of F ).

Let In(x) be the dyadic interval of measure 2π/2n with x ∈ In(x). For any dyadic interval
I ∈ I and integer i let I(i) := I + |I|i be the ith neighbour of I (the addition I + |I|i
is done modulo T = [−π, π), that is a circle represents T ). For instance I0 = I and for

I = In(x) ∈ I, I(1) = I
(1)
n (x) := In(x)+2π/2n, I(−1) = I

(−1)
n (x) := In(x)−2π/2n are the right
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and left adjacent (modulo T ) dyadic intervals of In(x) with the same measure. We also use
the notation I+ := I(1), I− := I(−1).

For any In(x) ∈ I let 3In(x) :=
⋃1

i=−1 I
(i)
n (x) be the tripled of In(x). That is, 3In(x) is an

interval with the same center as In(x) and with the tripled measure of In(x). Similarly, we
define

5In(x) :=

2
⋃

i=−2

I(i)n (x)

and so on. That is, we can define 7In(x), 9In(x) . . . . Moreover, use the notation for any odd
integer γ

γFβ :=
⋃

I∈Fβ

γI, γF :=
⋃

I∈F

γI.

We need a preliminary lemma:

Lemma 2.2. Let γ be an odd natural number, J be a dyadic interval. Then we have

∑

I(i)⊂J,I∈F

|I(i)| ≤ Cγ |J | for |i| ≤ γ − 1

2

and
∑

I,J∈F

|γI ∩ γJ | ≤ Cγ|F |.

Proof. Without loss of generality we can suppose that i ≥ 0. If I(i) ⊂ J , then |I(i)| ≤ |J |
and I = I(0) = (I(i))(−i) ⊂ ⋃i

j=0 J
(−j) ⊂ γJ . The sets I ∈ F are disjoint and consequently

∑

I(i)⊂J,I∈F

|I(i)| =
∑

I(i)⊂J,I∈F

|I| ≤
∑

I⊂γJ,I∈F

|I| ≤ |γJ | = γ|J |.

Now, turn our attention to
∑

I,J∈F |γI ∩ γJ |. Suppose that we take the sum for pairs I, J

satisfying |I| ≤ |J | and take fixed i, j ∈ {1/2− γ/2, . . . , γ/2− 1/2}.
The intersection I(i)∩J (j) of dyadic intervals can be different from ∅ if and only if I(i) ⊂ J (j).

By the first inequality of Lemma 2.2 proved already we have
∑

J∈F

∑

I∈F,|I|≤|J |

|I(i) ∩ J (j)| ≤ Cγ

∑

J∈F

|J | ≤ Cγ|F |.

Taking into account that γI∩γJ =
⋃γ/2−1/2

i,j=1/2−γ/2(I
(i)∩J (j)) and the fact that the case |J | ≤ |I|

can be discussed in the same way the proof of Lemma 2.2 is complete. �

3. The integral on γFǫ

For f ∈ L1 and y ∈ T set a version of Hilbert transforms of f at y for n ∈ N, |n| := ⌊log2 n⌋
(that is, 2|n| ≤ n < 2|n|+1) as:

(3.0.1) Hnf(y) :=

∫

T\3I|n|(y)

f(x) cot

(

y − x

2

)

dx.
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The transform Hn is of type (Lp, Lp) for any 1 < p < ∞ and it is also of weak type (L1, L1)
as it can be seen in the following way. Let δ = |I|n|(y)| = 2π/2|n|. Then (y−δ, y+δ) ⊂ 3I|n|(y).
Then we have

|Hnf(y)| ≤
∣

∣

∣

∣

∫

T\(y−δ,y+δ)

f(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

+ Cn

∫

3I|n|\(y)\(y−δ,y+δ)

|f(x)|dx

≤ sup
ǫ>0

∣

∣

∣

∣

∫

T\(y−ǫ,y+ǫ)

f(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

+
C

δ

∫ y+2δ

y−2δ

|f(x)|dx.

Since the maximal (“ordinary”) Hilbert transform ([5, Chapter 3]) and the integral mean
value operator are of type (Lp, Lp) for any 1 < p < ∞ and they are also of weak type
(L1, L1), then so is the “newly defined” Hilbert transform.

The first lemma needed is:

Lemma 3.1. Let β > γ > 5 be odd integers, ǫ > 0, n,m ∈ N with n ≤ 100m and
f ∈ L1(T ), λ > ‖f‖1/(2π). Then the inequality

∫

γFǫ

|Hnf(y)|2|σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ

holds, where the constant Cβ,γ can depend only on β and γ (it is uniform in f, n,m, ǫ, λ)
and 1βFǫ

is the characteristic function of the complement of βFǫ.

Proof. Without loss of generality, in order not to write too many conjugate signs, we suppose
that f is a real function. By applying the Calderon-Zygmund decomposition lemma (Lemma
2.1) for f we have f =

∑∞
i=0 fi, where ‖f0‖∞ ≤ 2λ, ‖f0‖1 ≤ 2‖f‖1. Since the Hilbert

transform is of type (L2, L2) and ‖σm1βFǫ
‖∞ ≤ 1, then we have

∫

γFǫ

|Hnf0(y)|2|σm1βFǫ
(y)|2dy ≤ ‖Hnf0(y)‖22 ≤ C‖f0‖22 ≤ Cλ‖f‖1.

That is, instead of f we have to investigate only f 0 :=
∑∞

i=1 fi. Since the elements of F are
disjoint dyadic intervals, therefore

Hnf
0(y) =

∑

J∈F

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx,

and then

∫

γFǫ

|Hnf
0(y)|2|σm1βFǫ

(y)|2dy

=
∑

(J,K)∈F×F

∫

γFǫ

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

×
∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz|σm1βFǫ
(y)|2dy.

The sum over pairs (J,K) ∈ F × F will be divided into the following parts: (G = F × F)
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∑

(J,K)∈G

∫

γFǫ

=
∑

(J,K)∈G

∫

γFǫ∩γJ∩γK

+
∑

(J,K)∈G

∫

(γFǫ∩γJ)\γK

+
∑

(J,K)∈G

∫

(γFǫ∩γK)\γJ

+
∑

(J,K)∈G

∫

γFǫ\(γJ∪γK)

=:
4
∑

i=1

Ai.

First, we investigate A1. For x /∈ 3I|n|(y) we have
∣

∣

∣

∣

∣

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ Cn

∫

J

|f 0(x)|dx ≤ Cn|J ||J |−1

∫

J

|f 0| ≤ Cλn|J |

as it comes from Lemma 2.1. Similarly,
∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

≤ Cλn|K|.

Thus,

A1 ≤
∑

(J,K)∈G

∫

γFǫ∩γJ∩γK

Cλ2n2|J ||K||σm1βFǫ
(y)|2dy.

Let y ∈ γFǫ ∩ γJ ∩ γK, where (J,K) ∈ G. Then, there exists an I ∈ Fǫ such that y ∈
γI ∩ γJ ∩ γK, where (I, J,K) ∈ Gǫ = Fǫ × F × F. We give an upper bound for the
nonnegative real number σm1βFǫ

(y).

σm1βFǫ
(y) =

1

π

∫ π

−π

1βFǫ
(x)Km(y − x)dx

=
1

π

∫

βFǫ

Km(y − x)dx ≤ 8

m

∫

βFǫ

1

|y − x (modT )|2dx

≤ 16

m

∫

{z:z>(β−γ)|I|/2}

1

z2
dz ≤ 32

β − γ

1

m|I|

(3.0.2)

because for y ∈ γI, I ∈ Fǫ and x ∈ βFǫ we have x /∈ βI and consequently |y − x (modT )| >
(β − γ)|I|/2. Remark that y − x(modT ) means y − x(modT ) = y − x + u2π ∈ T for a
u ∈ {−1, 0, 1}. That is, if y − x is not in interval T , then it is shifted by 2π.

Moreover, if |J | ≥ |I|, then by I ∈ Fǫ which is equivalent with |I| > ǫ (and of course I ∈ F)
we also have |J | > ǫ, that is, J ∈ Fǫ, y ∈ γJ and consequently by the fact that x ∈ βFǫ

σm1βFǫ
(y) ≤ 32

β − γ

1

m|J | .

The same can be said about K because y ∈ γK. This yields

(3.0.3) σm1βFǫ
(y) ≤ 32

(β − γ)mmax(|I|, |J |, |K|) for y ∈ γI ∩ γJ ∩ γK.
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Henceforth it is easy to give a bound for A1:

A1 ≤
∑

(J,K)∈G

Cλ2n2

(β − γ)2m2

∫

γFǫ∩γJ∩γK

|J ||K|
(|J |+ |K|)2dy

≤ Cλ2

(β − γ)2

∑

(J,K)∈G

|J ||K||γFǫ ∩ γJ ∩ γK|
(|J |+ |K|)2

≤ Cλ2

(β − γ)2

∑

(J,K)∈F×F

|J ||K||γJ ∩ γK|
(|J |+ |K|)2

≤ Cλ2

(β − γ)2

∑

(J,K)∈F×F

|γJ ∩ γK| =: A1,1.

Thus, by Lemma 2.2 and Lemma 2.1 we have

A1 ≤ A1,1 ≤ Cλ2

(β − γ)2
Cγ |F | ≤ Cβ,γ‖f‖1λ.

Next, turn our attention to A2. Since x /∈ 3I|n|(y), then as in the investigation of A1 we have

∣

∣

∣

∣

∣

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ Cλn|J |

again. Meanwhile, as in the investigation of A1 for any y ∈ γI ∩ γJ̃ (I ∈ Fǫ, J̃ ∈ F) it yields

σm1βFǫ
(y) ≤ 32

m(β − γ)

1

max(|I|, |J̃|)

and

∣

∣σm1βFǫ
(y)
∣

∣

2 ≤ 32

m(β − γ)

1

max(|I|, |J̃|)
≤ 32

m(β − γ)

1

|J̃ |

(B ≤ a, C gives B2 ≤ Ca.) Recall that γJ =
⋃γ/2−1/2

j=1/2−γ/2 J
(j) and fix a j.

Let F′ be a subset of F. We call the dyadic interval J̃ (j) maximal with respect to F′ if

J̃ ∈ F′ and there is no interval J ∈ F′ such that J̃ (j) ( J (j). This will be abbreviated as
J̃ ∈ F′, J̃ (j) maximal. If F′ = F, then we simply use the term maximal intervals. Thus,
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recalling that two dyadic intervals are disjoint or one of them contains the other, one has

A2 ≤
γ/2−1/2
∑

j=1/2−γ/2

∑

K∈F

∑

J̃∈F,J̃(j) maximal

∑

J∈F,J(j)⊂J̃(j)

∫

(γFǫ∩J(j))\γK

Cλn|J |

×
∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

∣

∣σm1βFǫ
(y)
∣

∣

2
dy

≤
γ/2−1/2
∑

j=1/2−γ/2

∑

K∈F

∑

J̃∈F,J̃(j) maximal

∑

J∈F,J(j)⊂J̃(j)

∫

(γFǫ∩J̃(j))\γK

Cλn|J |

×
∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

∣

∣σm1βFǫ
(y)
∣

∣

2
dy

≤
γ/2−1/2
∑

j=1/2−γ/2

∑

K∈F

∑

J̃∈F,J̃(j) maximal

∑

J∈F,J(j)⊂J̃(j)

∫

(γFǫ∩J̃(j))\γK

Cλn|J | C

m(β − γ)

1

|J̃ |

×
∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy.

Since by Lemma 2.2

∑

J∈F,J(j)⊂J̃(j)

|J |
|J̃ |

=
∑

J∈F,J(j)⊂J̃(j)

|J (j)|
|J̃ (j)|

≤ Cγ,

in the estimation of A2 we have

A2 ≤ Cγλ

β − γ

γ/2−1/2
∑

j=1/2−γ/2

∑

K∈F

∑

J̃∈F,J̃(j) maximal

∫

(γFǫ∩J̃(j))\γK

×
∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy.

Since the maximal dyadic intervals J̃ (j) (J̃ ∈ F) are disjoint, then

A2 ≤ Cγλ

β − γ

∑

K∈F

∫

T\γK

∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy.

Two dyadic intervals are disjoint or one of them is contained in the other. Is it possible
that I|n|(y) ⊂ K? If yes, then y ∈ I|n|(y) ⊂ K ⊂ 3K ⊂ γK gives a contradiction since
y ∈ T \ γK. That is, either K \ I|n|(y) = ∅ or K \ I|n|(y) = K. On the other hand, if
I+|n|(y) ⊂ K, then y ∈ I|n|(y) ⊂ 3K ⊂ γK gives the same contradiction. That is, either

K \ I+|n|(y) = ∅ or K \ I+|n|(y) = K. The same situation concerns I−|n|(y) which means that

K \ 3I|n|(y) is either ∅ or K.

In the first case (K\3I|n|(y) = ∅) there is nothing to prove. In the second case (K\3I|n|(y) =
K) we have

∫

K\3I|n|(y)
f 0(z)dz = 0, because by Lemma 2.1

∫

K
f 0(z)dz = 0. Then, denoting
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by z0 the center of the interval K we have

∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z)

(

cot

(

y − z

2

)

− cot

(

y − z0
2

))

dz

∣

∣

∣

∣

∣

≤ C

∫

K\3I|n|(y)

|f 0(z)| |K|
sin2

(

y−z0
2

)dz

≤ C|K|
sin2

(

y−z0
2

)

∫

K

|f 0(z)|dz

(3.0.4)

because
∣

∣

∣

∣

cot

(

y − z

2

)

− cot

(

y − z0
2

)∣

∣

∣

∣

≤ C|z − z0|
1

sin2
(

y−z0
2

) ≤ C
|K|

sin2
(

y−z0
2

) .

Besides, as above we have
∫

K
|f 0(z)|dz ≤ 4λ|K|. Thus,

A2 ≤ Cγλ
2

β − γ

∑

K∈F

|K|2
∫

T\γK

1

sin2
(

y−z0
2

)dy.

Consequently,

A2 ≤ Cγλ
2

β − γ

∑

K∈F

|K|2
∫

T\γK

1

(y − z0)
2dy.

Since z0 is the center of K, we have (γ > 5)
∫

T\γK

1

(y − z0)
2dy ≤ C

∫ ∞

γ−1
2

|K|

1

t2
dt ≤ C

|K| .

Consequently, we have

A2 ≤ Cγλ
2

β − γ

∑

K∈F

|K|2 1

|K| ≤
Cγλ

2

β − γ

∑

K∈F

|K|

=
Cγλ

2

β − γ
|F | ≤ Cγ

β − γ
‖f‖1λ ≤ Cβ,γ‖f‖1λ.

This completes the discussion for A2. The sum A3 is similar. Only the role of J and K is
changed and therefore we also have

A3 ≤ Cβ,γ‖f‖1λ.
Finally, we turn our attention to the sum A4. Apply the inequality σm1βFǫ

(y) ≤ 1 and then

A4

≤
∑

J,K∈F

∫

T\(γJ∪γK)

∣

∣

∣

∣

∣

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy.

In the same way as in the investigation of A2 we get again (γ > 5) (see (3.0.4))
∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

≤ C|K|
sin2

(

y−z0
2

)

∫

K

|f 0(z)|dz ≤ C|K|2λ
sin2

(

y−z0
2

) ,



CESÀRO MEANS OF SUBSEQUENCES OF PARTIAL SUMS 11

where z0 is the center of K. Similarly,
∣

∣

∣

∣

∣

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ C|J |2λ
sin2

(

y−x0

2

) ,

where x0 is the center of J . Thus,

(3.0.5) A4 ≤ Cλ2
∑

J,K∈F

∫

T\(γJ∪γK)

|J |2|K|2
sin2

(

y−x0

2

)

sin2
(

y−z0
2

)dy.

Let A4,1 be the part of the right hand side of (3.0.5) for which J 6= K (then y0 6= z0). In
this case apply the inequality sin2(a− b) ≤ sin2 a + sin2 b+ 2| sin a sin b| ≤ 2(sin2 a + sin2 b)
for a = (y − z0)/2, b = (y − x0)/2. We have

(3.0.6)
1

sin2
(

y−x0

2

)

sin2
(

y−z0
2

) ≤ 2

sin2
(

x0−z0
2

)

(

1

sin2
(

y−x0

2

) +
1

sin2
(

y−z0
2

)

)

.

Just as in the investigation of the sum A2 we get again (γ > 5)
∫

T\(γJ∪γK)

1

sin2
(

y−x0

2

) +
1

sin2
(

y−z0
2

)dy

≤ C

∫

T\γJ

1

(y − x0)2
dy + C

∫

T\γK

1

(y − z0)2
dy

≤ C

(

1

|J | +
1

|K|

)

.

Consequently,

A4,1 ≤ Cλ2
∑

J,K∈F,J 6=K

|J |2|K|2
sin2

(

x0−z0
2

)

(

1

|J | +
1

|K|

)

.

x0 and z0 are the centers of the disjoint dyadic intervals J and K. Therefore,

∑

J∈F,J 6=K

|J |
sin2

(

x0−z0
2

) ≤ C

∫

T\K

1

(t− z0)2
dt ≤ C

∫ +∞

|K|
2

1

t2
dt ≤ C

|K| .

Similarly,
∑

K∈F,K 6=J

|K|
sin2

(

x0−z0
2

) ≤ C

|J | .

These assumptions give

A4,1 ≤ Cλ2
∑

K∈F

|K|+ Cλ2
∑

J∈F

|J | ≤ Cλ2|F | ≤ C‖f‖1λ.

On the other hand, let A4,2 be the part in the right hand side of (3.0.5) (estimation of A4)
for which J = K. For this we have

A4,2

≤ Cλ2
∑

J∈F

∫

T\γJ

|J |4
sin4

(

y−x0

2

)dy

≤ Cλ2
∑

J∈F

|J |4
∫

T\γJ

1

(y − x0)4
dy ≤ Cλ2

∑

J∈F

|J | ≤ C‖f‖1λ.
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Consequently,

(3.0.7) A4 ≤ C‖f‖1λ.

This completes the proof of Lemma 3.1. �

The second lemma to be proved is

Lemma 3.2. Let β > γ > 5 be odd integers, ǫ > 0, l, m ∈ N with l ≤ 100m and f ∈
L1(T ), λ > ‖f‖1/(2π). Then the inequality

∫

γFǫ

|Slf(y)|2|σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ,

holds, where the constant Cβ,γ can depend only on β and γ (and it is uniform in f, l,m, ǫ, λ).

Proof. Denote by |l| the lower integer part of the binary logarithm of l. It is well-known that

1

eız − 1
= −1

2
− ı

2
cot

z

2

and for the Dirichlet kernel

(3.0.8) Dl(z) =
1

2

l
∑

k=−l

eıkz =
(

eı(l+1)z − e−ılz
)

(

−1

4
− ı

4
cot

z

2

)

.

Then, let

(3.0.9) S̃lf(y) :=
1

π

∫

T\3I|l|(y)

f(x)Dl(y − x)dx.

From the definition of the Hilbert transform (3.0.1) we have

|S̃lf(y)| ≤
1

2π

∫

T\3I|l|(y)

|f(x)|dx

+
1

4π

∣

∣Hl(f(·)e−ı(l+1)·)(y)
∣

∣+
1

4π

∣

∣Hl(f(·)eıl·)(y)
∣

∣

and by this we also have

(3.0.10) |S̃lf(y)|2 ≤ ‖f‖21 +
∣

∣Hl(f(·)e−ı(l+1)·)(y)
∣

∣

2
+
∣

∣Hl(f(·)eıl·)(y)
∣

∣

2
.

Recall the Calderon-Zygmund decomposition lemma, that is, Lemma 2.1. Then ‖f‖21 ≤
2π‖f‖1λ. Besides, since |f(·)| = |f(·)eık·| for any k ∈ Z, the set F for the function f(·)e−ık·

will be the same as for the function f . That is, by Lemma 3.1 we have
∫

γFǫ

|S̃lf(y)|2|σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ.

Define the operator El as follows:

(3.0.11) Elf(y) := l

∫

3I|l|(y)

f(x)dx.



CESÀRO MEANS OF SUBSEQUENCES OF PARTIAL SUMS 13

Now we have to check the difference of Slf and S̃lf . This is nothing else but

(3.0.12)
1

π

∣

∣

∣

∣

∣

∫

3I|l|(y)

f(x)Dl(y − x)dx

∣

∣

∣

∣

∣

≤ l + 1/2

π

∫

3I|l|(y)

|f(x)|dx ≤ El|f |(y).

We investigate the operator El as it would be in the statement of Lemma 3.2 instead
of Sl. Recall again the Calderon-Zygmund decomposition lemma, that is, Lemma 2.1 for
f =

∑∞
i=0 fi = f0 + f 0. For f0 we have |Elf0(y)|2 ≤ 12π‖f0‖∞|Elf0(y)| and consequently,

∫

γFǫ

|Elf0(y)|2|σm1βFǫ
(y)|2dy ≤ C

∫ π

−π

‖f0‖∞|Elf0(y)|dy ≤ C‖f0‖∞‖f0‖1 ≤ C‖f‖1λ.

Next, let’s see the discussion for f 0. Using the notation of the proof of Lemma 3.1 we have

∫

γFǫ

|Elf
0(y)|2|σm1βFǫ

(y)|2dy

≤
∑

J,K∈F

∫

γFǫ

l2

∣

∣

∣

∣

∣

∫

J∩3I|l|(y)

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I|l|(y)

f 0(z)dz

∣

∣

∣

∣

∣

|σm1βFǫ
(y)|2dy.

The sum over pairs (J,K) ∈ F × F will be divided into the following parts: (G = F × F)

∑

(J,K)∈G

∫

γFǫ

=
∑

(J,K)∈G

∫

γFǫ∩γJ∩γK

+
∑

(J,K)∈G

∫

(γFǫ∩γJ)\γK

+
∑

(J,K)∈G

∫

(γFǫ∩γK)\γJ

+
∑

(J,K)∈G

∫

γFǫ\(γJ∪γK)

=:
4
∑

i=1

Ai.

First, check A3. In this case y ∈ γK \ γJ . That is, y /∈ γJ .

If |I|l|(y)| = 2π
2|l|

< |J |, then (by y ∈ I|l|(y)) we have 3I|l|(y) ∩ J = ∅ and consequently
∫

J∩3I|l|(y)
f 0(x)dx = 0 gives that the every addend in A3 corresponding to intervals J of this

type is 0.

On the other hand, |I|l|(y)| ≥ |J | gives that either J ∩ I|l|(y) = ∅ or J ∩ I|l|(y) = J . The
same can be said about the intervals I+|l|(y) and I−|l|(y). This gives that either J ∩ 3I|l|(y) =

(J ∩ I|l|(y))∪ (J ∩ I+|l|(y))∪ (J ∩ I−|l|(y)) = ∅ or J ∩ 3I|l|(y) = J . In both cases by Lemma 2.1

we have
∫

J∩3I|l|(y)
f 0(x)dx = 0.

That is, in any cases y /∈ γJ gives
∫

J∩3I|l|(y)
f 0(x)dx = 0. This implies that every addend

in A3 corresponding to any interval J (regardless of its measure) is 0. Thus, A3 = 0. The
same argument gives A4 = 0 and changing the role of J and K gives A2 = 0. That is, the
only sum (or you may say case) remained to be investigated is A1. In this situation we can
just follow the corresponding steps of the proof of Lemma 3.1 (see (3.0.2) and (3.0.3)). That
is, again we have for y ∈ γI ∩ γJ ∩ γK (where I is some element of Fǫ):

σm1βFǫ
(y) ≤ C

β − γ

1

m(|I|+ |J |+ |K|) ≤ C

β − γ

1

m(|J |+ |K|) .
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Denoting F × F by G again

A1 ≤ C
∑

(J,K)∈G

∫

γFǫ∩γJ∩γK

l2

∣

∣

∣

∣

∣

∫

J∩3I|l|(y)

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I|l|(y)

f 0(z)dz

∣

∣

∣

∣

∣

× 1

(β − γ)2m2(|J |+ |K|)2 .

By the decomposition Lemma 2.1 we have
∣

∣

∣

∣

∣

∫

J∩3I|l|(y)

f 0(x)dx

∣

∣

∣

∣

∣

≤ |J ||J |−1

∫

J

|f 0| ≤ 4λ|J |,
∣

∣

∣

∣

∣

∫

K∩3I|l|(y)

f 0(z)dz

∣

∣

∣

∣

∣

≤ 4λ|K|.

Thus,

A1 ≤
∑

(J,K)∈G

Cλ2l2

(β − γ)2m2

∫

Fǫ∩γJ∩γK

|J ||K|
(|J |+ |K|)2dy

≤ Cλ2

(β − γ)2

∑

(J,K)∈G

|J ||K||Fǫ ∩ γJ ∩ γK|
(|J |+ |K|)2

≤ Cλ2

(β − γ)2

∑

(J,K)∈F×F

|γJ ∩ γK| =: A1,1.

Have a look at Lemma 2.2 or alternatively recall that in the proof of Lemma 3.1 it was
proved that A1,1 is not greater than Cγ

(β−γ)2
‖f‖1λ. That is, for the operator El we have

∫

γFǫ

|Elf
0(y)|2|σm1βFǫ

(y)|2dy ≤ Cβ,γ‖f‖1λ.

Since this inequality is also proved for the function f0, then it is also verified for f = f0+f 0.
Apply this inequality for the function |f | instead of f . (Remark that F depends only on |f |
and λ.) This gives

∫

γFǫ

|El|f |(y)|2|σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ.

That is, by
∣

∣

∣

∫

3I|l|(y)
f(x)Dl(y − x)dx

∣

∣

∣
≤ πEl|f |(y) we have

∫

γFǫ

∣

∣

∣

∣

∣

∫

3I|l|(y)

f(x)Dl(y − x)dx

∣

∣

∣

∣

∣

2

σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ

and finally taking into account that S̃l has already been estimated it follows that
∫

γFǫ

|Slf(y)|2 σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ.

This completes the proof of Lemma 3.2. �

By Lemma 3.2 it is easy to prove the next corollary concerning the difference of partial
sums and de la Vallée-Poussin means. Namely,
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Corollary 3.3. Let β > γ > 5 be odd integers, ǫ > 0, n,m ∈ N with n ≤ 50m and
f ∈ L1(T ), λ > ‖f‖1/(2π). Then the inequality

∫

γFǫ

|Snf(y)− Vnf(y)|2|σm1βFǫ
(y)|2dy ≤ Cβ,γ‖f‖1λ

holds. The constant Cβ,γ can depend only on β and γ (and it is uniform in f, n,m, ǫ, λ).

Proof. The equality Vnf = 1
n

∑2n−1
l=n Slf and Lemma 3.2 give

∫

γFǫ

|Vnf(y)|2|σm1βFǫ
(y)|2dy

≤ 1

n

2n−1
∑

l=n

∫

γFǫ

|Slf(y)|2|σm1βFǫ
(y)|2dy

≤ 1

n

2n−1
∑

l=n

Cβ,γ‖f‖1λ

≤ Cβ,γ‖f‖1λ.

We also used the well-known inequality
∣

∣

1
n

∑n
i=1 xi

∣

∣

2 ≤ 1
n

∑n
i=1 |xi|2 for complex numbers.

Then by Lemma 3.2 the proof of Corollary 3.3 is complete. �

4. The sum of integrals on γF \ γFβj

This section is probably the most difficult part of this paper. But its understanding is
helped by the reading of the previous section. Similar methods and notation are used in this
section.

Throughout this section let (nj) be a lacunary sequence of natural numbers. More precisely,
nj+1/nj ≥ 2 for each j ∈ N. Set the sequence (βj) as njβj = 20(j + 1) log2(j + 1) (j ∈ N)
(thus njβj > 16). Let f ∈ L1 and use the notation of Lemma 2.1.

Lemma 4.1. Let γ > 5 be an odd integer, N ∈ N. Let f, gj ∈ L1(T ) be such that |gj| = |f |
everywhere for j = 1, . . . , N, λ > ‖f‖1/(2π). Then the inequality

N
∑

j=1

∫

γF\γFβj

|Hnj
gj(y)|2dy ≤ CγN log5(N + 1)‖f‖1λ

holds. The constant Cγ can depend only on γ (and it is uniform in f, (gj), (nj), N, λ).

Proof. Without loss of generality we can suppose that f is real. First of all, N ≥ 32 can
be supposed because in the case of N < 32 we can complement n1, . . . , nN with nN+1 ≥
2nN , nN+2 ≥ 2nN+1, . . . , n32 ≥ 2n31 and the left hand side of the statement of Lemma 4.1 is
increased, while the right hand side is still a constant (depending on γ) multiplied by ‖f‖1λ.
Apply Lemma 2.1, that is the Calderon-Zygmund decomposition for the function gj . That
is, gj =

∑∞
i=0 gj,i = gj,0 + g0j . Since |gj| = |f | everywhere, the set of intervals F for the

function gj and f are the same. Since the Hilbert transform is of type (L2, L2), one has
∫

γF\γFβj

|Hnj
gj,0(y)|2dy ≤ ‖Hnj

gj,0‖22 ≤ C‖gj,0‖22 ≤ C‖gj,0‖1λ ≤ C‖gj‖1λ ≤ C‖f‖1λ.
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That is, instead of the functions gj it is enough to investigate g0j only.

∫

γF\γFβj

|Hnj
g0j (y)|2dy

=
∑

J,K∈F

∫

γF\γFβj

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dzdy.

The sum over pairs (J,K) ∈ F×F and the integral
∫

γF\γFβj
will be divided into the following

parts:

∑

J,K∈F

∫

γF\γFβj

=
∑

J,K∈F

∫

(γF\γFβj
)∩γJ∩γK

+
∑

J,K∈F

∫

((γF\γFβj
)∩γJ)\γK

+
∑

J,K∈F

∫

((γF\γFβj
)∩γK)\γJ

+
∑

J,K∈F

∫

(γF\γFβj
)\(γJ∪γK)

=:
4
∑

i=1

Ai
j .

First, we investigate A4
j .

Is it possible that any of the dyadic intervals I|nj |(y), I
+
|nj|

(y), I−|nj|
(y) is a subset of K,

when y ∈ (γF \ γFβj
) \ (γJ ∪ γK)? No, because I+|nj |

(y) ⊂ K or I−|nj |
(y) ⊂ K would give

y ∈ I|nj |(y) ⊂ γK (γ > 3) and this does not hold. Consequently, either K \ 3I|nj |(y) = ∅
or K \ 3I|nj |(y) = K. In the first case (K \ 3I|nj|(y) = ∅) there is nothing to prove. In the
second case (K \ 3I|nj |(y) = K)

∫

K\3I|nj |
(y)

g0j (z)dz = 0

which gives (as in the proof of Lemma 3.1, at (3.0.4))
∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

≤ C|K|
sin2

(

y−z0
2

)

∫

K

|g0j (z)|dz ≤ Cλ|K|2
sin2

(

y−z0
2

) ,

where z0 is the center of K.

We can say the same with respect to the integral
∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot
(

y−x
2

)

dx
∣

∣

∣
and conse-

quently

A4
j ≤ Cλ2

∑

J,K∈F

|J |2|K|2
∫

(γF\γFβj
)\(γJ∪γK)

1

sin2
(

y−x0

2

)

sin2
(

y−z0
2

)dy,

where x0 is the center of J . The right hand side of this inequality is almost the same as in
(3.0.5). More precisely, the integral in (3.0.5) is greater (or the same) since the domain of
the integral is larger (or the same).
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Consequently, by (3.0.7)

N
∑

j=1

A4
j ≤ CN‖f‖1λ.

Next, investigate A2
j .

We have to integrate with respect to y on the set ((γF \ γFβj
) ∩ γJ) \ γK. We divide the

set γF \ γFβj
into two disjoint subsets:

γF \ γFβj
=







⋃

I∈F

γI \
⋃

I∈F,|I|> 16
nj

γI






∪







⋃

I∈F,|I|> 16
nj

γI \
⋃

I∈F,|I|>βj

γI







= (γF \ γF16/nj
) ∪ (γF16/nj

\ γFβj
)

=: (γF \ γF16/nj
) ∪∆j .

Split A2
j with respect to the sets above as

A2
j =

∑

J,K∈F

∫

((γF\γF16/nj
)∩γJ)\γK

+
∑

J,K∈F

∫

(∆j∩γJ)\γK

=: A2,1
j + A2,2

j .

First, check A2,1
j . If y ∈ (γF \ γF16/nj

) ∩ γJ , then |J | ≤ 16
nj

which gives by the definition of

g0j and Lemma 2.1 that

∣

∣

∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ Cnj

∫

J

|g0j (x)|dx ≤ Cλnj|J |.

And of course nj |J | ≤ 16 (this will also be needed later). On the other hand, as in the case
of A4

j we have again (z0 is the center of K):

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

≤ Cλ|K|2
sin2

(

y−z0
2

) .

Recall that the dyadic interval J̃ (k) is called F \ F16/nj
maximal if J̃ ∈ F \ F16/nj

and if

there is no interval J ∈ F \F16/nj
such that J̃ (k) ( J (k). In the displayed formula below J̃ (k)

maximal means J̃ (k) is F \ F16/nj
maximal. Recall that two dyadic intervals are disjoint or

one of them contains the other. Then by Lemma 2.2 we have
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A2,1
j ≤

γ/2−1/2
∑

k=1/2−γ/2

∑

K∈F

∑

J̃∈F\F16/nj
,J̃(k) maximal

∑

J∈F,J(k)⊂J̃(k)

Cλnj |J |

×
∫

((γF\γF16/nj
)∩J(k))\γK

Cλ|K|2
sin2

(

y−z0
2

)dy

≤
γ/2−1/2
∑

k=1/2−γ/2

∑

K∈F

∑

J̃∈F\F16/nj
,J̃(k) maximal

∑

J∈F,J(k)⊂J̃(k)

Cλnj|J |

×
∫

((γF\γF16/nj
)∩J̃(k))\γK

Cλ|K|2
sin2

(

y−z0
2

)dy

≤
γ/2−1/2
∑

k=1/2−γ/2

∑

K∈F

∑

J̃∈F\F16/nj
,J̃(k) maximal

Cγλnj |J̃|
∫

((γF\γF16/nj
)∩J̃(k))\γK

Cλ|K|2
sin2

(

y−z0
2

)dy.

Now, we use the fact that nj |J̃| ≤ 16 and also that the maximal dyadic intervals (with
respect to any fixed subset of F) are disjoint. Thus,

A2,1
j ≤ Cγ

∑

K∈F

∫

(γF\γF16/nj
)\γK

Cλ2|K|2
sin2

(

y−z0
2

)dy

≤ Cγλ
2
∑

K∈F

|K|2
∫

T\γK

1

sin2
(

y−z0
2

)dy

≤ Cγλ
2
∑

K∈F

|K|2
∫ ∞

|K|

1

t2
dt

≤ Cγ‖f‖1λ.

Now, turn our attention to A2,2
j . That is, check the integral with respect to y on the set

∆j . Since y ∈ ∆j , then y /∈ ⋃I∈F,|I|>βj
γI = γFβj

and y ∈ γJ give J /∈ Fβj
, that is, |J | ≤ βj

and consequently,
∣

∣

∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ Cnj |J ||J |−1

∫

J

|g0j | ≤ Cλnj|J |.

Later on, we will also use that nj |J | ≤ njβj = 20(j + 1) log2(j + 1) ≤ 40N log2(N + 1).

Moreover, as at the beginning of the investigation of the case of A4
j we have again that

since y /∈ γK, either K \ 3I|nj|(y) = ∅ or K \ 3I|nj |(y) = K. In both cases we have again (in
the first case there is nothing to prove)

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

≤ Cλ|K|2
sin2

(

y−z0
2

)

(z0 is the center of K). So, we have
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∫

(∆j∩γJ)\γK

∣

∣

∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤ Cλ2nj |J ||K|2
∫

(∆j∩γJ)\γK

1

sin2
(

y−z0
2

)dy.

Following the already known steps, by Lemma 2.2, by the inequality njβj ≤ 40N log2(N+1)

and by the fact that the maximal (with respect to F \ Fβj
) dyadic intervals J̃ (k) (k is fixed)

are disjoint we get

∑

J∈F,|J |≤βj

nj |J ||K|2
∫

(∆j∩γJ)\γK

1

sin2
(

y−z0
2

)dy

≤
γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F\Fβj
,J̃(k) maximal

∑

J∈F,J(k)⊂J̃(k)

nj |J ||K|2
∫

(∆j∩J(k))\γK

1

sin2
(

y−z0
2

)dy

≤
γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F\Fβj
,J̃(k) maximal

∑

J∈F,J(k)⊂J̃(k)

nj |J ||K|2
∫

(∆j∩J̃(k))\γK

1

sin2
(

y−z0
2

)dy

≤ Cγ

γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F\Fβj
,J̃(k) maximal

nj |J̃||K|2
∫

(∆j∩J̃(k))\γK

1

sin2
(

y−z0
2

)dy

≤ Cγ

γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F\Fβj
,J̃(k) maximal

N log2(N + 1)|K|2
∫

(∆j∩J̃(k))\γK

1

sin2
(

y−z0
2

)dy

≤ CγN log2(N + 1)|K|2
∫

∆j\γK

1

sin2
(

y−z0
2

)dy.

Recall that

(4.0.1) ∆j =







⋃

I∈F,|I|> 16
nj

γI \
⋃

I∈F,|I|>βj

γI






= γF16/nj

\ γFβj
.

We prove that for k ≥ log2N (N ≥ 32) ∆j+k and ∆j are disjoint for j ≤ N . This
follows from the lacunarity of the sequences (nj), that is, from nj+1 ≥ 2nj , nj+k ≥ 2knj >
4(j+k+1) log2(j+k+1)nj because 2k > 4(j+k+1) log2(j+k+1) for every k ≥ log2N, j ≤ N
and N ≥ 32. That is, in this case βj+k < 16

nj
and this shows that ∆j+k ∩ ∆j = ∅ for

k ≥ log2N . This implies ∆a⌈log2 N⌉+b ∩∆(a−1)⌈log2 N⌉+b = ∅, b < ⌈log2N⌉, a⌈log2N⌉ + b ≤ N
and consequently
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Cγ

N
∑

j=1

N log2(N + 1)λ2
∑

K∈F

|K|2
∫

∆j\γK

1

sin2
(

y−z0
2

)dy

≤ CγN log2(N + 1)λ2
∑

K∈F

|K|2 log2(N + 1)

∫

T\γK

1

sin2
(

y−z0
2

)dy

≤ CγN log4(N + 1)λ2
∑

K∈F

|K| ≤ CγN log4(N + 1)‖f‖1λ.

Summarizing our achievements we get

N
∑

j=1

A2
j =

N
∑

j=1

A2,1
j +

N
∑

j=1

A2.2
j ≤ CγN log4(N + 1)‖f‖1λ

and similarly
∑N

j=1A
3
j ≤ CγN log4(N + 1)‖f‖1λ.

Finally, investigate A1
j . That is, give an estimation for the sum of integrals

∑

J,K∈F

∫

(γF\γFβj
)∩γJ∩γK

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

×
∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dzdy =: A1
j .

We split the set

γF \ γFβj
= (γF \ γF16/nj

) ∪ (γF16/nj
\ γFβj

) = (γF \ γF16/nj
) ∪∆j

as above again and estimate the integrals on the set γF \ γF16/nj
(this will be A1,1

j ) then on

∆j (and that will be A1,2
j ).

If y ∈ γF \ γF16/nj
, then y /∈ γL for any L ∈ F16/nj

. Consequently, y ∈ (γF \ γF16/nj
) ∩

γJ ∩ γK gives |J |, |K| ≤ 16
nj

and

N
∑

j=1

A1,1
j

≤
N
∑

j=1

∑

J,K∈F

∫

(γF\γF16/nj
)∩γJ∩γK

∣

∣

∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤ C

N
∑

j=1

∑

J,K∈F

∫

(γF\γF16/nj
)∩γJ∩γK

nj|J |λnj|K|λdy

≤ Cλ2

N
∑

j=1

∑

J,K∈F

|(γF \ γF16/nj
) ∩ γJ ∩ γK|

≤ Cγλ
2N |F |

≤ CγN‖f‖1λ
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as it comes from the method already used several times (see e.g. Lemma 2.2).

Finally, investigate

N
∑

j=1

A1,2
j

≤
N
∑

j=1

∑

J,K∈F

∫

(γF16/nj
\γFβj

)∩γJ∩γK

∣

∣

∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy.

Since y ∈ (γF16/nj
\ γFβj

) ∩ γJ = ∆j ∩ γJ , one has y /∈ γFβj
and consequently J /∈ Fβj

,
that is, |J | ≤ βj. By this fact we have

∣

∣

∣

∣

∣

∫

J\3I|nj |
(y)

g0j (x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ Cnj|J |λ.

Later on, we also will use that nj|J | ≤ njβj = 20(j+1) log2(j+1) ≤ 40N log2(N+1). Thus,
the already known method gives an estimation for

N
∑

j=1

A1,2
j ≤ Cλ

N
∑

j=1

∑

J,K∈F,|J |≤βj

nj |J |
∫

∆j∩γJ∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy.

That is,

N
∑

j=1

A1,2
j ≤ Cλ

N
∑

j=1

∑

K∈F

γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F,|J̃|≤βj ,J̃(k) maximal

∑

J∈F,J(k)⊂J̃(k)

nj |J |

×
∫

∆j∩J(k)∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤ Cγλ

N
∑

j=1

∑

K∈F

γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F,|J̃|≤βj,J̃(k) maximal

nj|J̃ |

×
∫

∆j∩J̃(k)∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤ CγλN log2(N + 1)
N
∑

j=1

∑

K∈F

γ/2−1/2
∑

k=1/2−γ/2

∑

J̃∈F,|J̃ |≤βj,J̃(k) maximal

×
∫

∆j∩J̃(k)∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤ CγλN log2(N + 1)
∑

K∈F

N
∑

j=1

∫

∆j∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy
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because by Lemma 2.2 we have
∑

J∈F,J(k)⊂J̃(k) |J | ≤ Cγ|J̃ (k)| ≤ Cγβj, and because the F \Fβj

maximal dyadic intervals J̃ (k) are disjoint.

Recall that the sets ∆j are not necessarily disjoint, but “nearly disjoint”. That is, ∆j+k ∩
∆j = ∅ for k ≥ log2N (N ≥ j, 32). Besides, for each fixed K ∈ F there are at most
(γ + 1) log2N ∆j-s such that γK ∩ ∆j 6= ∅. This comes as follows. We have two possible
situations. |K| > 16/nj and |K| ≤ 16/nj. Let j be the smallest index for which |K| > 16/nj

and γK ∩ ∆j 6= ∅. In this case |K| > 16/nj > βj+k for k ≥ log2N and consequently
γK ∩∆j+k = ∅. If |K| ≤ 16/nj (and γK ∩∆j 6= ∅), then one of the K(i)’s, say K(ij) must
be part of ∆j , and so those ∆j ’s for which ij is the same, will intersect, so the claim follows
from the earlier proven fact about the disjointness of the different ∆j ’s.

Take such a ∆j and let y ∈ γK ∩ ∆j and z ∈ K \ 3I|nj |(y). This latter gives |y − z| >
2π/2|nj| > 1/nj. Besides, z ∈ K, y ∈ γK gives |y − z| ≤ γ|K| ≤ γβj because γK ∩ ∆j 6= ∅
also means |K| ≤ βj .

That is, 1/nj < |y − z| ≤ γβj and consequently

∫

∆j∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤
∫

K

|g0j (z)|
∫

{

y: 1
nj

<|y−z|≤γβj

}

∣

∣

∣

∣

cot

(

y − z

2

)∣

∣

∣

∣

dydz

≤ Cγ

∫

K

|g0j (z)| log(βjnj)dz

≤ Cγλ|K| log(N + 1).

Moreover, by what is written above we get

N
∑

j=1

∫

∆j∩γK

∣

∣

∣

∣

∣

∫

K\3I|nj |
(y)

g0j (z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy ≤ Cγ |K|λ log3(N + 1).

This inequality finally gives

N
∑

j=1

A1,2
j ≤ CγN log5(N + 1)‖f‖1λ.

That is, the proof of Lemma 4.1 is complete. �

We go further in section 4 in the investigation of integrals on the set γF \ γFβj
. The next

lemma to be proved is:

Lemma 4.2. Let γ > 5 be an odd integer, N ∈ N. Let f ∈ L1(T ), λ > ‖f‖1/(2π), nj ≤ lj ≤
2nj be natural numbers njβj = 20(j + 1) log2(j + 1) for j = 1, . . . , N . Then the equality

N
∑

j=1

∫

γF\γFβj

|Sljf(y)|2dy ≤ CγN log5(N + 1)‖f‖1λ

holds. The constant Cγ can depend only on γ (and it is uniform in f, (lj), (nj), N, λ).
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Proof. Similarly, as in the proof of Lemma 3.2, but not the very same way (compare with
(3.0.9) and see the domain of the integral) we define

S̃ljf(y) :=
1

π

∫

T\3I|nj |
(y)

f(x)Dlj(y − x)dx.

From the definition of the Hilbert transform (3.0.1) in the same way as (3.0.10) is given we
have

|S̃ljf(y)|2 ≤ ‖f‖21 +
∣

∣Hnj
(f(·)e−ı(lj+1)·)(y)

∣

∣

2
+
∣

∣Hnj
(f(·)eılj ·)(y)

∣

∣

2
.

For gj(x) = f(x)e−ı(lj+1)x and hj(x) = f(x)eıljx we can apply Lemma 2.1 and then we get
that the set F is the same for gj , hj and f since their absolute values coincide. Then we can
apply Lemma 4.1 for them and this implies

N
∑

j=1

∫

γF\γFβj

|S̃ljf(y)|2dy

N
∑

j=1

(

‖f‖21 +
∫

γF\γFβj

|Hnj
gj(y)|2dy +

∫

γF\γFβj

|Hnj
hj(y)|2dy

)

≤ N‖f‖21 + CγN log5(N + 1)‖f‖1λ ≤ CγN log5(N + 1)‖f‖1λ.

Now, we have to check the difference of Sljf and S̃ljf . Setting

Eljf(y) := lj

∫

3I|nj |
(y)

f(x)dx

(a bit different then it was in (3.0.11)) we have (similarly as in (3.0.12))

∣

∣

∣
Sljf(y)− S̃ljf(y)

∣

∣

∣
≤ 1

π

∣

∣

∣

∣

∣

∫

3I|nj |
(y)

f(x)Dlj (y − x)dx

∣

∣

∣

∣

∣

≤ lj + 1/2

π

∫

3I|nj |
(y)

|f(x)|dx ≤ Elj |f |(y).

In the sequel we prove

N
∑

j=1

∫

γF\γFβj

|Eljf(y)|2dy ≤ CγN log4(N + 1)‖f‖1λ

for every f ∈ L1(T ). This inequality applied to the function |f | ∈ L1(T ) would complete
the proof of Lemma 4.2. (Set F (with fixed λ) is the same for f and |f |.)

See again Lemma 2.1 for f =
∑∞

i=0 fi = f0 + f 0. Similarly, as in the proof of Lemma 3.2
we have |Eljf0(y)|2 ≤ 24π‖f0‖∞|Eljf0(y)| and consequently,

∫

γF\γFβj

|Eljf0(y)|2dy ≤ Cλ‖Eljf0‖1 ≤ Cλ‖f‖1.

Next, investigate f 0.
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As earlier in this paper

N
∑

j=1

∫

γF\γFβj

|Eljf
0(y)|2dy

≤ C

N
∑

j=1

∑

J,K∈F

∫

γF\γFβj

l2j

∣

∣

∣

∣

∣

∫

J∩3I|nj |
(y)

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I|nj|
(y)

f 0(z)dz

∣

∣

∣

∣

∣

dy =:

N
∑

j=1

Aj .

The sum over pairs (J,K) ∈ F × F and the integral
∫

γF\γFβj
will be divided into the

following parts:
∑

J,K∈F

∫

γF\γFβj

=
∑

J,K∈F

∫

(γF\γFβj
)∩γJ∩γK

+
∑

J,K∈F

∫

((γF\γFβj
)∩γJ)\γK

+
∑

J,K∈F

∫

((γF\γFβj
)∩γK)\γJ

+
∑

J,K∈F

∫

(γF\γFβj
)\(γJ∪γK)

=:

4
∑

i=1

Ai
j .

First, check A3
j .

In this case y ∈ (γF \ γFβj
) \ γJ . That is, y /∈ γJ . If |I|nj |(y)| = 2π/2|nj| ≤ |J |, then

3I|nj|(y)∩J = ∅ and consequently
∫

J∩3I|nj |
(y)

f 0(x)dx = 0. If |I|nj |(y)| > |J |, then I|nj |(y) ⊂ J

is not possible and consequently either J ∩ I|nj |(y) = J or J ∩ I|nj |(y) = ∅. In both cases
∫

J∩I|nj |
(y)

f 0(x)dx = 0. The same can be said about the intervals I+|nj |
(y) and I−|nj |

(y). That

is,
∫

J∩3I|nj |
(y)

f 0(x)dx = 0 in every case when y /∈ γJ . This gives that A3
j = 0 and also that

A4
j = 0 and similarly (applying this procedure for K instead of J) that A2

j = 0. That is, it
is remained to investigate

N
∑

j=1

Aj =
N
∑

j=1

A1
j

=

N
∑

j=1

∑

J,K∈F

∫

(γF\γFβj
)∩γJ∩γK

l2j

∣

∣

∣

∣

∣

∫

J∩3I|nj |
(y)

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I|nj |
(y)

f 0(z)dz

∣

∣

∣

∣

∣

dy.

Recall that

γF \ γFβj
=







⋃

I∈F

γI \
⋃

I∈F,|I|> 16
nj

γI






∪







⋃

I∈F,|I|> 16
nj

γI \
⋃

I∈F,|I|>βj

γI






=
(

γF \ γF16/nj

)

∪∆j .

Either |J | ≤ 16/nj or (γF \ γF16/nj
) ∩ γJ = ∅. In other words, if we integrate on (γF \

γF16/nj
) ∩ γJ ∩ γK, then we can suppose that |J |, |K| ≤ 16/nj. This by inequalities

|J |−1

∫

J

|f 0|, |K|−1

∫

K

|f 0| ≤ 4λ
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(see Lemma 2.1) and by Lemma 2.2 implies that

N
∑

j=1

∑

J,K∈F

∫

(γF\γF16/nj
)∩γJ∩γK

l2j

∣

∣

∣

∣

∣

∫

J∩3I|nj |
(y)

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I|nj |
(y)

f 0(z)dz

∣

∣

∣

∣

∣

dy

≤
N
∑

j=1

∑

J,K∈F

∫

(γF\γF16/nj
)∩γJ∩γK

214λ2dy

≤ 214λ2
N
∑

j=1

∑

J,K∈F

|(γF \ γF16/nj
) ∩ γJ ∩ γK| ≤ 214λ2

N
∑

j=1

∑

J,K∈F

|γJ ∩ γK|

≤ Cγλ
2N |F | ≤ CγN‖f‖1λ.

Now, we have to check the integrals
∫

∆j
dy. In this case, y ∈ ∆j = γF16/nj

\ γFβj
. Thus, by

the next lemma, that is by Lemma 4.3 below the proof of Lemma 4.2 is complete. �

In order to complete the proof of Lemma 4.2 we need one additional step which is written
in the next lemma. It also uses the notation of Lemma 4.2 and other parts of this paper but
from the point of view of readability, we give this additional step in a separate lemma.

Lemma 4.3.
N
∑

j=1

∑

J,K∈F

∫

∆j∩γJ∩γK

n2
j

∣

∣

∣

∣

∣

∫

J∩3I|nj |
(y)

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I|nj|
(y)

f 0(z)dz

∣

∣

∣

∣

∣

dy ≤ CγNλ log4(N+1)‖f‖1.

The constant Cγ can depend only on γ (and it is uniform in f, (nj), N and λ).

Proof. With the same argument as in the very beginning of Lemma 4.1, we can suppose
that N ≥ 32 again. In this proof - if it does not cause misunderstanding- I|nj |(y) is simply

denoted by I. Set ( 2π

2|nj |
< 16/nj)

∆̃j := γF 2π

2
|nj |

\ γFβj
⊃ γF 16

nj

\ γFβj
= ∆j ,

and (recall the definition of ∆j at (4.0.1))

∆′
j := {y ∈ ∆̃j : nj

∫

3I|nj |
(y)

|f(z)|dz > 50λ}, ∆′′
j := ∆̃j \∆′

j .

Remark that the set ∆′
j is the union of dyadic intervals of length 2π/2|nj|. Then by the

relations f 0 = f − f0, ‖f0‖∞ ≤ 2λ we have

N
∑

j=1

∑

J,K∈F

∫

∆′′
j ∩γJ∩γK

n2
j

∣

∣

∣

∣

∫

J∩3I

f 0(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∫

K∩3I

f 0(z)dz

∣

∣

∣

∣

dy

≤ Cλ2
N
∑

j=1

∑

J,K∈F

|∆′′
j ∩ γJ ∩ γK| ≤ Cλ2 log2N

∑

J,K∈F

|γJ ∩ γK| ≤ Cγλ log
2N‖f‖1,

where the last but one inequality comes from the fact that ∆′′
j ⊂ ∆̃j and ∆′′

k ⊂ ∆̃k are disjoint

for |j − k| > log2N and N ≥ j, k, 32 (similarly as in the case of ∆j ,∆k for |j − k| > log2N)
and the last inequality comes from Lemma 2.2.
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Now, let |a|, |b| < γ/2 be integers and investigate for some J,K ∈ F:

Aa,b :=

∫

∆′
j∩J

(a)∩K(b)

n2
j

∫

J∩3I

|f 0(x)|dx
∫

K∩3I

|f 0(z)|dzdy.

If |J | > βj , then by definition ∆̃j∩γJ = ∅ and then ∆′
j∩J (a)∩K(b) = ∅. That is, |J |, |K| ≤ βj

can be supposed.

If |J | ≤ 16/nj, then nj

∫

J∩3I
|f 0(x)|dx ≤ nj |J |4λ ≤ 64λ, nj

∫

K∩3I
|f 0(z)|dz ≤ 4λnjβj ≤

160λN log2(N + 1). Thus, we have Aa,b ≤ Cλ2N log2(N + 1)|∆′
j ∩ J (a) ∩K(b)| and

N
∑

j=1

∑

K∈F

∑

J∈F,|J |≤16/nj

|∆′
j ∩ J (a) ∩K(b)| ≤

∑

J,K∈F

N
∑

j=1

|∆′
j ∩ J (a) ∩K(b)| ≤ Cγ log

2N |F |.

(Recall that for |j − k| > log2N and j, k ≤ N we have ∆′
j ∩∆′

k = ∅.) The same can be said
if |K| ≤ 16/nj . That is, from now on we can suppose that βj ≥ |J |, |K| > 16/nj.

Let Al be the σ-algebra generated by the dyadic intervals with measure 2π/2l (l ∈ N). For
a fixed j, ej := 2π/2|nj|, ∆′

j − ej = {y − ej : y ∈ ∆′
j} (and similarly for ∆′

j + ej). We prove

for |j − k| > log2N , ǫ, δ = −1, 0, 1 that the sets ∆′
j + ǫej and ∆′

k + δek are disjoint,

Suppose that k > j+log2N . If z ∈ ∆′
j+ǫej , then the distance of z and ∆′

j is not more than

2π/2|nj|. Consequently at least one of I|nj |(z), I
−
|nj |

(z), I+|nj |
(z) is a subset of the ∆′

j ∈ A|nj |

measurable set. Say, I−|nj |
(z) is this set. Then for y = z − ej we have y ∈ ∆′

j and thus

nj

∫

3I|nj |
(y)

|f | > 50λ and consequently there is at least one set among I|nj |(y), I
−
|nj|

(y), I+|nj|
(y)

say I−|nj |
(y) for which 2|nj |/(2π)

∫

I−
|nj |

(y)
|f | > λ. This by Lemma 2.1 and by the definition of F

gives the existence of a dyadic interval L ∈ F such that I−|nj |
(y) ⊂ L. Then |L| ≥ 2π/2|nj| > βk

for k > j + log2N . Then by definition we have γL ∩ ∆̃k = ∅. Then γL ∩ ∆′
k = ∅. This

implies (γ − 2)L ∩ ∆′
k + δek = ∅ for δ = −1, 0, 1. But y ∈ 3L and then z ∈ 5L and γ ≥ 7

gives that z /∈ ∆′
k + δek. That is, we proved that

∆′
j + ǫej ∩∆′

k + δek = ∅ (ǫ, δ = −1, 0, 1, |j − k| > log2N).

Go back to check Aa,b. Then y ∈ ∆′
j ∩ J (a) ∩ K(b). If |a| > 1, then y /∈ 3J and then

J ∩ 3I|nj |(y) = ∅ and thus Aa,b = 0. The same can be said if |b| > 1. That is, |a|, |b| ≤ 1 can
be supposed.

Case 1. From now on we suppose that J 6= K (which also means J ∩K = ∅). Recall that
in this proof - if it does not cause misunderstanding, I|nj |(y) is simply denoted by I. One
of I ∪ I+ and I ∪ I− should be I|nj |−1(y). Say, this is I ∪ I+ and this should be a subset of
J or a subset of K (otherwise at least one of J ∩ 3I and K ∩ 3I is the empty set and the
corresponding integral on J ∩ 3I or on K ∩ 3I is zero). Say, I ∪ I+ = I|nj |−1(y) ⊂ K. Then

I− ⊂ J should hold. This means y ∈ K = K(0), y ∈ J + ej and y /∈ J (J ∩K = ∅). Thus,
y ∈ J+ = J (1). This case can happen only if a = 1, b = 0. Consequently, we have to check
the cases only for (a, b) = {(1, 0), (−1, 0), (0, 1), (0,−1)}. Check the case (a, b) = (1, 0).
Then by the relations nj

∫

K∩3I
|f 0(z)|dz ≤ 4nj |K|λ ≤ 4njβjλ ≤ CN log2(N + 1)λ and by
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the disjointness of the elements of F (recall that now 16/nj < |J |, |K| ≤ βj)

B :=
∑

K∈F16/nj
\Fβj

A1,0 ≤
∑

K∈F16/nj
\Fβj

∫

∆′
j∩K

n2
j

∫

J∩3I

|f 0(x)|dx
∫

K∩3I

|f 0(z)|dzdy

≤ CλN log2(N + 1)
∑

K∈F

∫

∆′
j∩K

nj

∫

J∩3I

|f 0(x)|dxdy

≤ CλN log2(N + 1)

∫

∆′
j

nj

∫

J∩3I

|f 0(x)|dxdy.

Since J,∆′
j are measurable with respect to A|nj | (J ∈ F, |J | > 16/nj > 2π/2|nj |) consequently

we have for every g ∈ L1:
∫

∆′
j

2|nj |

2π

∫

J∩I|nj |
(y)

|g(x)|dxdy =

∫

∆′
j∩J

|g(y)|dy,
∫

∆′
j

2|nj |

2π

∫

J∩I−
|nj |

(y)

|g(x)|dxdy =

∫

(∆′
j−ej)∩J

|g(y)|dy,

∫

∆′
j

2|nj |

2π

∫

J∩I+
|nj |

(y)

|g(x)|dxdy =

∫

(∆′
j+ej)∩J

|g(y)|dy.

(4.0.2)

Thus, taking into account the estimation for B above:

N
∑

j=1

∑

J,K∈F16/nj
\Fβj

A1,0

≤ CλN log2(N + 1)
N
∑

j=1

∑

J∈F

(

∫

∆′
j∩J

|f 0(y)|dy +
∫

(∆′
j−ej)∩J

|f 0(y)|dy +
∫

(∆′
j+ej)∩J

|f 0(y)|dy
)

≤ CλN log2(N + 1)

N
∑

j=1

(

∫

∆′
j

|f 0(y)|dy +
∫

(∆′
j−ej)

|f 0(y)|dy +
∫

(∆′
j+ej)

|f 0(y)|dy
)

≤ CN log4(N + 1)‖f‖1λ,
since as we proved above (∆′

j + ǫej) ∩ (∆′
k + δek) = ∅ for any |j − k| > log2N . That is, the

investigation of the case 1 is done.

Case 2. From now on we suppose that J = K. Then in Aa,b it can be supposed that
a = b.

Aa,a ≤ CλN log2(N + 1)

∫

∆′
j∩J

(a)

nj

∫

J∩3I

|f 0(x)|dxdy.

Recall that 2π/2|nj| = |I| = |I|nj |(y)| < 16/nj < |J | ≤ βj can be (and it is already) supposed.

If |a| > 1, then y ∈ J (a) gives J ∩ 3I = ∅ and then Aa,a = 0. That is, a = −1, 0, 1. In the
very same way as above in the case of Aa,b by (4.0.2) we get again in the case J = K

Aa,a ≤ CλN log2(N + 1)

(

∫

∆′
j∩J

|f 0(y)|dy +
∫

(∆′
j−ej)∩J

|f 0(y)|dy +
∫

(∆′
j+ej)∩J

|f 0(y)|dy
)

.
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Thus, summing up with respect to J ∈ F and j we get the same bound as in Case 1. The
proof of Lemma 4.3 is complete. �

A straightforward consequence of Lemma 4.2 is

Corollary 4.4. Let γ > 5 be an odd integer, N ∈ N. Let f ∈ L1(T ), λ > ‖f‖1/(2π),
(nj) be a lacunary (with parameter not less than 2) sequence of natural numbers and njβj =
20(j + 1) log2(j + 1) for j = 1, . . . , N . Then the inequality

N
∑

j=1

∫

γF\γFβj

|Snj
f(y)− Vnj

f(y)|2dy ≤ CγN log5(N + 1)‖f‖1λ

holds. The constant Cγ can depend only on γ (and it is uniform in f, (nj), N and λ).

Proof. Use the inequality |Vnj
f |2 =

∣

∣

∣

1
nj

∑2nj−1
lj=nj

Sljf
∣

∣

∣

2

≤ 1
nj

∑2nj−1
lj=nj

|Sljf |2. By Lemma 4.2

we have
N
∑

j=1

∫

γF\γFβj

|Vnj
f(y)|2dy

≤
N
∑

j=1

1

nj

2nj−1
∑

lj=nj

∫

γF\γFβj

|Sljf(y)|2dy

=

2nN−1
∑

lN=nN

· · ·
2n1−1
∑

l1=n1

1

nN · · ·n1

N
∑

j=1

∫

γF\γFβj

|Sljf(y)|2dy

≤ 1

nN · · ·n1

2nN−1
∑

lN=nN

· · ·
2n1−1
∑

l1=n1

CγN log5(N + 1)‖f‖1λ ≤ CγN log5(N + 1)‖f‖1λ.

Besides, apply Lemma 4.2 to Snj
f , that is, to the numbers lj = nj and the proof of Corollary

4.4 is complete. �

Summarize our achievements for the time being:

Corollary 4.5. Let β > γ > 5 be odd integers, N ∈ N. Let f ∈ L1(T ), λ > ‖f‖1/(2π),
(nj) be a lacunary (with parameter not less than 2) sequence of natural numbers and njβj =
20(j + 1) log2(j + 1), nj ≤ 50mj for j = 1, . . . , N . Then the inequality

N
∑

j=1

∫

γF

|Snj
f(y)− Vnj

f(y)|2
∣

∣

∣
σmj

1βFβj
(y)
∣

∣

∣

2

dy ≤ Cβ,γN log5(N + 1)‖f‖1λ

holds. The constant Cβ,γ can depend only on γ and β (and it is uniform in f, (nj), N and
λ).

Proof. For the sum of integrals
∫

γFβj

dy by Corollary 3.3 we have the estimation Cβ,γN‖f‖1λ
and for the sum of integrals

∫

γF\γFβj
dy by the inequality ‖σmj

1βFβj
‖∞ ≤ 1 and by Corollary

4.4 we have the estimation CγN log5(N + 1)‖f‖1λ. This completes the proof of Corollary
4.5. �

The final “integral section” is
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5. The integral on T \ γF

Recall the definition of the Hilbert transform Hn in (3.0.1). The first lemma in this section
is:

Lemma 5.1. Let γ > 5 be an odd integer, n ∈ N and f ∈ L1(T ), λ > ‖f‖1/(2π). Then the
inequality

∫

T\γF

|Hnf(y)|2dy ≤ C‖f‖1λ

holds. The constant C is uniform in f, n and λ.

Proof. Without restriction of generality, in order to avoid writing too many conjugate signs,
we suppose that f is a real function. Let K ∈ F, y ∈ T \ γF, that is, y /∈ γF and check the
set K \ 3I|nj |(y). Is it possible that K \ 3I|nj |(y) is not K or the empty set? Only, when one

of I|nj |(y), I
+
|nj|

(y), I−|nj|
(y) is a subset of K (two dyadic intervals are disjoint or one of them is

contained in the other). If so, then it follows that y ∈ I|nj |(y) ⊂ γK which is a contradiction.
Thus, either K \ 3I|nj|(y) = ∅ or K \ 3I|nj |(y) = K. In both cases in the same way as in the
proof of Lemma 3.1 (see (3.0.4)) (moreover in the first case there is nothing to prove):

∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

≤ C|K|
sin2

(

y−z0
2

)

∫

K

|f 0(z)|dz ≤ C|K|2λ
sin2

(

y−z0
2

) ,

where z0 is the center of K. Similarly,
∣

∣

∣

∣

∣

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

≤ C|J |2λ
sin2

(

y−x0

2

) ,

where x0 is the center of J . This gives
∫

T\γF

|Hnf(y)|2dy ≤ 2

∫

T\γF

|Hnf0(y)|2dy + 2

∫

T\γF

|Hnf
0(y)|2dy ≤ C‖f‖1λ

+ C
∑

J,K∈F

∫

T\γF

∣

∣

∣

∣

∣

∫

J\3I|n|(y)

f 0(x) cot

(

y − x

2

)

dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

K\3I|n|(y)

f 0(z) cot

(

y − z

2

)

dz

∣

∣

∣

∣

∣

dy

≤ C‖f‖1λ+ Cλ2
∑

J,K∈F

∫

T\γF

|J |2|K|2
sin2

(

y−x0

2

)

sin2
(

y−z0
2

)dy =: C‖f‖1λ+ A.

The term A is smaller (or equival to) than the right-hand side in (3.0.5) since the integrals
are smaller because T \ γF ⊂ T \ (γJ ∪ γK) for any J,K ∈ F. Consequently, estimation
(3.0.7) can be applied and then A ≤ C‖f‖1λ. This completes the proof of Lemma 5.1. �

The second lemma in this section is to be proved:

Lemma 5.2. Let γ > 5 be an odd integer, l ∈ N and f ∈ L1(T ), λ > ‖f‖1/(2π). Then the
inequality

∫

T\γF

|Slf(y)|2dy ≤ C‖f‖1λ

holds. The constant C is uniform in f, l and λ.
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Proof. Recall the formula for the Dirichlet kernel (3.0.8) and the definition of the modified
partial sums (3.0.9) (see Lemma 3.2). Also recall the estimation (3.0.10). That is,

|S̃lf(y)|2 ≤ ‖f‖21 +
∣

∣Hl(f(·)e−ı(l+1)·)(y)
∣

∣

2
+
∣

∣Hl(f(·)eıl·)(y)
∣

∣

2
.

That is, by Lemma 5.1 we have
∫

T\γF

|S̃lf(y)|2dy ≤ C‖f‖1λ.

Recall the definition of the operator El in Lemma 3.2 at (3.0.11):

Elf(y) := l

∫

3I|l|(y)

f(x)dx.

Now we have to check the difference of Slf and S̃lf . It is bounded by (see (3.0.12))

1

π

∣

∣

∣

∣

∣

∫

3I|l|(y)

f(x)Dl(y − x)dx

∣

∣

∣

∣

∣

≤ El|f |(y).

That is, we finally have to prove that
∫

T\γF

|Elf(y)|2dy ≤ C‖f‖1λ

and apply this inequality for the function |f | (set F for f and |f | is the same). That
would complete the proof of Lemma 5.2. Apply Lemma 2.1 for the function f . We have
f =

∑∞
i=0 fi = f0 + f 0. We prove for any y ∈ T \ γF that Elf

0(y) = 0. Let J ∈ F. Then
y ∈ T \ γF gives that either 3I|l|(y) ∩ J = J or 3I|l|(y) ∩ J = ∅ because I|l|(y), I

+
|l|(y), I

−
|l|(y)

can not be a subset of J . In both cases
∫

3I|l|(y)∩J
f 0(x)dx = 0. This holds for each J ∈ F

and consequently, l
∫

3I|l|(y)∩F
f 0(x)dx = Elf

0(y) = 0. Finally, by the fact that the operator

El is of type (L2, L2) we have
∫

T\γF

|Elf0(y)|2dy ≤ C‖f‖1λ.

This completes the proof of Lemma 5.2. �

A straightforward consequence of Lemma 5.2 is

Corollary 5.3. Let γ > 5 be an odd integer, n ∈ N. Let f ∈ L1(T ), λ > ‖f‖1/(2π). Then
the inequality

∫

T\γF

|Snf(y)− Vnf(y)|2dy ≤ C‖f‖1λ

holds. The constant C is uniform in f, n and λ.

Proof. The proof is a direct application of Lemma 5.2 and follows the steps of the proof of
Corollary 3.3. �

Corollaries 4.5 and 5.3 give
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Corollary 5.4. Let β > 7 be an odd integer, N ∈ N. Let f ∈ L1(T ), λ > ‖f‖1/(2π), (nj)
be a lacunary (with parameter not less than 2) sequence of natural numbers and njβj =
20(j + 1) log2(j + 1), mj = ⌊nj/10⌋ for j = 1, . . . , N . Then the inequality

N
∑

j=1

∫

T

|Snj
f(y)− Vnj

f(y)|2
∣

∣

∣
σmj

1βFβj
(y)
∣

∣

∣

2

dy ≤ CβN log5(N + 1)‖f‖1λ

holds. The constant Cβ depends only on β and it is uniform in f, λ,N and (nj).

6. Orthogonality, replacement and the proof of the main theorem

The “orthogonality” lemma:

Lemma 6.1. Let β > 7 be an odd integer, N ∈ N and f ∈ L1(T ), λ > ‖f‖1/(2π). Let (nj)
be a lacunary sequence of natural numbers with nj+1 ≥ qnj, where q > 2.5 and βj be the
number defined as njβj = 20(j+1) log2(j+1) and let mj = ⌊nj/10⌋ for j = 1, . . . , N . Then
the relation

∥

∥

∥

∥

∥

N
∑

j=1

(

Snj
f − Vnj

f
)

(

σmj
1βFβj

)

∥

∥

∥

∥

∥

2

2

=
N
∑

j=1

∥

∥

∥
|Snj

f − Vnj
f |
∣

∣

∣
σmj

1βFβj

∣

∣

∣

∥

∥

∥

2

2
≤ CβN log5(N + 1)‖f‖1λ

holds. The constant Cβ depends only on β and it is uniform in f, λ,N and (nj).

Proof. The proof is quite simple and based on the fact that the trigonometric polynomials

(Snj
f − Vnj

f)
(

σmj
1βFβj

)

for different j’s are orthogonal because for a j the set of k’s for

which the kth Fourier coefficient is different from zero is a subset of

{k ∈ Z : k ∈ [nj −mj , 2nj +mj ] ∪ [−2nj −mj ,−nj +mj ]}
⊂ {k ∈ Z : k ∈ [0.9nj, 2.1nj] ∪ [−2.1nj ,−0.9nj ]} .

And for example [0.9nj , 2.1nj] ∩ [0.9nj+1, 2.1nj+1] = ∅ because 2.1nj < 0.9nj+1 for every j.
This proves the equality part of Lemma 6.1. The inequality part of Lemma 6.1 is Corollary
5.4. �

Next, we state and prove the “replacement” lemma. That is, - roughly speaking- we show
why it is correct to investigate (Snj

f − Vnj
f)σmj

1βFβj
instead of Snj

f − Vnj
f . Before this

some more notation is needed.

For a number N ∈ N let K = ⌊
√
N⌋. That is, K2 ≤ N < (K + 1)2. Besides, for every

0 < δ < 1/2 let K0 := ⌊K2δ⌋. For every 1 ≤ i ≤ N there is a unique pair of natural numbers
(j, b) such that i = (j − 1)K0 + b, where 1 ≤ j ≤ N/K0 + 1 and 0 ≤ b < K0. Besides, set

n′
j,b := n(j−1)K0+b = ni, m′

j,b := m(j−1)K0+b = mi = ⌊ni/10⌋,

β ′
j,b :=

20(j + 1) log2(j + 1)

n′
j,b

= β ′
i.

(6.0.1)
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Moreover, set

TN,βf :=
1

N

N
∑

i=1

(Sni
f − Vni

f)
(

σmi
1βFβ′

i

)

.

The “replacement” lemma:

Lemma 6.2. Let β > 7 be an odd integer, 0 < δ < 1/2, f ∈ L1(T ), λ > ‖f‖1/(2π). Let (nj)
be a strictly monotone increasing sequence of natural numbers,

TNf :=
1

N

N
∑

i=1

(Sni
f − Vni

f) .

Then we have

mes

{

y ∈ T : sup
N∈N

|TN,βf(y)− TNf(y)| > λ/2

}

≤ Cβ
1

1− 2δ

√

‖f‖1
λ

.

That is, the maximal operator of |TN,βf−TNf | is a kind of weak type (L1, L1). The constant
Cβ depends only on β and it is uniform in f, λ and (nj).

Proof. Investigate the ith addend in TNf(y)−TN,βf(y), that is, (Sni
f − Vni

f)
(

1− σmi
1βFβ′

i

)

.

We give an estimation for 1− σmi
1βFβ′

i

. Since σmi
1 = 1 everywhere, one has

1− σmi
1βFβ′

i

(y) = σmi
1βFβ′

i
(y) =

1

π

∫ π

−π

1βFβ′
i
(x)Kmi

(y − x)dx

=
1

π

∫

βFβ′
i

Kmi
(y − x)dx ≤ C

mi

∫

βFβ′
i

1

|y − x (modT )|2dx,

where y − x (modT ) ∈ T and y − x (modT ) = y − x + u2π for a u ∈ {−1, 0, 1}. That is,
if y − x is not in interval T , then it is shifted by 2π. This can be done, since sin2((y −
x)/2) = sin2((y − x + u2π)/2). Besides, notice that 0 ≤ |(y − x (modT ))/2| ≤ π/2. Let
α > β > 7 be odd integers and let y ∈ T \ αF. Thus, for each i we have y ∈ T \ αFβ′

i
. If

x ∈ βFβ′
i
, then there is an I ∈ Fβ′

i
(that is, I ∈ F, |I| > β ′

i) such that x ∈ βI. This gives
|y − x (modT )| > (α− β)|I|/2 > (α− β)β ′

i/2. Thus,

0 ≤ 1− σmi
1βFβ′

i

(y)

≤ C

mi

∫

{z:z>(α−β)β′
i/2}

1

z2
dz

≤ C

α− β

1

miβ ′
i

=
C

α− β

1

m′
j,bβ

′
j,b

≤ C

α− β

1

(j + 1) log2(j + 1)
.
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This gives for y ∈ T \ αF

A := mes

{

y ∈ T \ αF : sup
N∈N

|TN,βf(y)− TNf(y)| > λ/2

}

≤ mes

{

y ∈ T \ αF : sup
N

1

K2

K0
∑

b=0

⌊N/K0⌋+1
∑

j=1

|Sn′
j,b
f(y)− Vn′

j,b
f(y)| C

α− β

× 1

(j + 1) log2(j + 1)
> λ/2

}

≤ 2

λ

∫

T\αF

sup
N

1

K2

K0
∑

b=0

∞
∑

j=1

|Sn′
j,b
f(y)− Vn′

j,b
f(y)| C

α− β

1

(j + 1) log2(j + 1)
dy.

Use Corollary 5.3 and the Cauchy-Bunyakovsky-Schwarz inequality. Then for every l ∈ N
∫

T\αF

|Slf(y)− Vlf(y)|dy ≤
√

C‖f‖1λ

and consequently by K2 ≤ N < (K + 1)2, K0 ≤ K2δ we have

A ≤ C

λ(α− β)

∞
∑

K=1

1

K2

⌊K2δ⌋
∑

b=0

∞
∑

j=1

√

C‖f‖1λ
1

(j + 1) log2(j + 1)

≤ C

(α− β)(1− 2δ)

√

‖f‖1
λ

since 2δ < 1. Since α can be any odd integer with α > β, say β + 2, then by mes(αF ) ≤
α‖f‖1/λ the proof of Lemma 6.2 is complete. �

Proof of the main theorem (Theorem 1.1). Basically, we use the notation of Lemma 6.2 and
(6.0.1). We prove that the sequence (n(j−1)K0+b) is lacunary for any fixed b < K0 as j runs
from 1 in a way that (j − 1)K0 + b is less than (K + 1)2. This observation follows, from

na+K0 ≥
(

1 +
1

(a+K0)δ

)K0

na >

(

1 +
1

(1 +K)2δ

)K2δ−1

na ≥ 2.6na

for every a ∈ N with a+K0 ≤ (K + 1)2 for K ≥ kδ for some fixed kδ because
(

1 +
1

(1 +K)2δ

)K2δ−1

→ exp(1)

as K → ∞. Consequently Lemma 6.1 can be applied to sequence (n′
j,b). Before this,

apply the well-known inequality between the arithmetic and quadratic means. (Suppose
that N ≥ k2

δ .)

|TN,βf(y)|2 ≤
2

K4

∣

∣

∣

∣

∣

K2
∑

i=1

(Sni
f − Vni

f)
(

σmi
1βFβ′

i

)

∣

∣

∣

∣

∣

2

+
2

K4

∣

∣

∣

∣

∣

N
∑

i=K2+1

(Sni
f − Vni

f)
(

σmi
1βFβ′

i

)

∣

∣

∣

∣

∣

2

2

=: AN +BN .
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Again, by the inequality between the arithmetic and quadratic means we have

AN ≤ CK0

K4

∑

b<K0

⌊K2/K0⌋+1
∑

L=⌊K2/K0⌋

∣

∣

∣

∣

∣

L
∑

j=1

(

Sn′
j,b
f − Vn′

j,b
f
)

(

σm′
j,b
1βFβ′

j,b

)

∣

∣

∣

∣

∣

2

=: A1
K .

Apply Lemma 6.1.

‖A1
K‖1 ≤ Cβ

K0

K4

∑

b<K0

K2

K0

log5
(

K2

K0

+ 1

)

‖f‖1λ ≤ Cβ
1

K2(1−δ)
log5(K + 1)‖f‖1λ.

Fix natural numbers K,N such that K2 ≤ N < (K +1)2, where K ≥ kδ. Apply again the
inequality between the arithmetic and quadratic means.

BN ≤ CK0

K4

∑

b<K0

⌊(N−K2)/K0⌋+1
∑

L=⌊(N−K2)/K0⌋

∣

∣

∣

∣

∣

L
∑

j=1

(

Sn′
j,b
f − Vn′

j,b
f
)

(

σm′
j,b
1βFβ′

j,b

)

∣

∣

∣

∣

∣

2

.

Apply Lemma 6.1 (and the fact that N −K2 < 2K).

‖BN‖1 ≤ Cβ
K0

K4

∑

b<K0

K

K0
log5

(

N

K0
+ 1

)

‖f‖1λ ≤ Cβ
1

K1+2(1−δ)
log5(K + 1)‖f‖1λ.

Consequently, for B1
K := supK2≤N<(K+1)2 BN (kδ ≤ K ∈ N is fixed) we have

‖B1
K‖1 ≤

(K+1)2−1
∑

N=K2

Cβ
1

K1+2(1−δ)
log5(K + 1)‖f‖1λ ≤ Cβ

1

K2(1−δ)
log5(K + 1)‖f‖1λ.

This immediately gives (δ < 1/2 is an arbitrarily fixed number) that

mes

{

y ∈ T : sup
k2δ≤N∈N

|TN,βf(y)| > λ/2

}

mes

{

y ∈ T : sup
k2δ≤N∈N

|TN,βf(y)|2 > λ2/4

}

mes

{

y ∈ T : sup
k2δ≤K∈N

(

A1
K +B1

K

)

> λ2/4

}

≤
∞
∑

K=1

Cβ
1

K2(1−δ)
log5(K + 1)

‖f‖1
λ

≤ Cβ,δ
‖f‖1
λ

because 2(1− δ) > 1.

This inequality for supN |TN,β| and (“replacement”) Lemma 6.2 by the fact that β can be
any odd integer greater than 7, say 9, give that

mes

{

y ∈ T : lim sup
N∈N

|TNf(y)| > λ

}

≤ mes

{

y ∈ T : sup
k2δ≤N∈N

|TNf(y)| > λ

}

≤ Cδ

√

‖f‖1
λ

.

Let ǫ and η be positive reals discussed later. The set of trigonometric polynomials is dense
in L1. Thus, we have a trigonometric polynomial P such that ‖f − P‖1 ≤ η, 2πǫ. Besides,
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for P we also have that Sni
P − Vni

P = 0 holds for sufficiently large i. Therefore,

mes

{

y ∈ T : lim sup
N∈N

|TNf(y)| > ǫ

}

≤ mes

{

y ∈ T : lim sup
N∈N

|TN(f − P )(y)|+ lim sup
N∈N

|TNP (y)| > ǫ

}

= mes

{

y ∈ T : lim sup
N∈N

|TN(f − P )(y)| > ǫ

}

≤ Cδ

√

‖f − P‖1
ǫ

≤ Cδ

√

η

ǫ

for each η > 0 and consequently

mes

{

y ∈ T : lim sup
N∈N

|TNf(y)| > ǫ

}

= 0

for each ǫ > 0. Thus, by
{

y ∈ T : lim sup
N∈N

|TNf(y)| > 0

}

⊂
∞
⋃

l=1

{

y ∈ T : lim sup
N∈N

|TNf(y)| > 1/l

}

we proved for each integrable function f the a.e. relation

lim
N→∞

1

N

N
∑

j=1

(

Snj
f − Vnj

f
)

= 0.

Since for the de la Vallée-Poussin means Vnj
f the a.e. relation

lim
j→∞

Vnj
f = f

is well-known, the proof of the main theorem is complete.

�
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