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Simulation of the loss-cone instability in spherical systems.
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ABSTRACT

A new so-called ‘gravitational loss-cone instability’ in stellar systems has recently been
investigated theoretically in the framework of linear perturbation theory and proved to
be potentially important in understanding the physical processes in centres of galaxies,
star clusters, and the Oort comet cloud. Using N-body simulations of a toy model,
we confirm previous findings for the harmonic dominating potential and go beyond
the linear theory. Unlike the well-known instabilities, the new one shows no notable
change in the spherical geometry of the cluster, but it significantly accelerates the
speed of diffusion of particles in phase space leading to an early instability saturation.

Key words: Keywords: galaxies: elliptical and lenticular, cD, galaxies: kinematics
and dynamics, galaxies: nuclei, Astrophysics - Astrophysics of Galaxies

1 INTRODUCTION

Stellar systems, in general, are rich in different kinds of insta-
bilities (Fridman & Polyachenko 1984) that are the fastest
dynamical change driving processes, leaving behind differ-
ent relaxation mechanisms (Tremaine 2005). In particular,
spheres are often subject to the well-known radial-orbit in-
stability (ROI) (Polyachenko & Shukhman 1972; Antonov
1973; Polyachenko & Shukhman 1981; Palmer 1994) in-
herent in radially anisotropic systems (for a review, see
Polyachenko & Shukhman 2015).

When ROI is out of play, another mechanism called
gravitational loss-cone instability (gLCI) can be important.
The first example was given in Polyachenko (1991) by inves-
tigating a simple analytical disc model. This and other stud-
ies (Tremaine 2005; Polyachenko et al. 2007) assume that a
cluster of mass M∗ is embedded in the dominating potential
of a central point mass M , so that ε ≡ M∗/M is a small
parameter. It allows us to consider the slow precessing mo-
tion of stellar orbits and to go far enough in analytics. The
typical times for precession, tpr, and instability, tins, are:

tpr ∼ tins ∼ ε−1tdyn , (1.1)
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i.e. large in units of the dynamical time tdyn ∼
(GM/R3)−1/2, where R is the cluster radius.

Another dominating potential leading to slow orbital
precession is produced by an extended homogeneous halo,
which is harmonic, Φ0 = Ω2

0r
2/2, with Ω0 being the orbital

frequency, or inverse dynamical time. Substitution M →
R3Ω2

0/G establishes a connection between these two cases.
It is worthwhile to note that the harmonic potential is not
only for academic purposes: observations also suggest that
central dark matter density of galaxies most probably have
constant density cores on the scale of ∼ 1 kpc (Read et al.
2006).

The instability strength is characterized by the ratio of
the exponential growth rate γ to the dynamical frequency, or
e-folding time to dynamical time. The typical values of the
latter for bar instability is 2 − 10, for ROI & 1, for the gLCI
(5 − 10) ε−1. The time interval of numerical simulations to
catch the gLCI thus should be by a factor of ε−1 longer than
ordinary simulations of galactic discs. Furthermore, depend-
ing on the orbit integration scheme in particular N-body re-
alizations, the numerical workload can be extremely high,
significantly constraining the allowed number of particles.

As a first step to simulate the gLCI, we adopt a toy
model in a dominating harmonic potential, as described in
Polyachenko et al. (2010). The model details and N-body
set-up are given in Section 2. Results containing a compar-
ison of the instability growth rate with the linear pertur-
bation theory, and analysis of peculiarities of the cluster
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evolution are given in Section 3. The final section 4 contains
conclusions, final remarks, and describes future perspectives.

2 THE MODEL AND SET-UP

Polyachenko et al. (2010) considered the one-parameter
family of distribution functions (DF) with power law de-
pendence on angular momentum

F (E,L) = Nnδ(E)αn , α ≡ L/Lcirc , (2.1)

where E = v2/2+Φ(r) and L = |r×v| are (specific) energy
and angular momentum of a particle; Nn is the normaliza-
tion constant; Lcirc is the angular momentum of the circular
orbit, corresponding to E = 0. The Dirac delta-function
δ(x) implies that all particles have the same energy E = 0
(mono-energetic). The potential

Φ(r) =
Ω2

0r
2

2
+ Φ∗(r) + constant , (2.2)

where the constant in the r.h.s. is chosen so that Φ(r) van-
ishes on the edge of the sphere R; Φ∗(r) is the potential due
to the cluster, which density distribution is:

ρ(r) ∝ rn(R2 − r2)(n+1)/2 . (2.3)

In the models with slow precessional motion of orbits,
the perturbed DF allows averaging over the fast dynamical
period. In this case, the dynamics of the system is mainly
determined by the DF dependence on the angular momen-
tum, while the energy dependence of the unperturbed DF
is not significant (Tremaine 2005; Polyachenko et al. 2007).
On the other hand, the mono-energetic DF is preferable for
analytical studies. The power law loss cone ∝ Ln can be
astrophysically justified only for nearly radial orbits. In our
previous theoretical study and here we expanded the law up
to the circular orbits for simplicity. Note that precession can
also be due to a weak radial dark matter halo inhomogeneity,
for any light embedded stellar cluster (Polyachenko et al.
2010).

The DFs (2.1) belong to the family of generalised power
laws, for which the local anisotropy parameter β(r) ≡ 1 −
σ2
p/σ

2
r = −n/2. According to the theoretical criterion, gLCI

is possible when the orbit precession is retrograde, providing
the DF is a growing function of angular momentum. Orbits
with retrograde precession occur for n > 0.4, i.e. all models
in the family interesting for our simulations are tangentially
anisotropic.

In what follows, we set G = M∗ = R = 1, Ω0 = 10,
so that the small parameter ε = 0.01. We also fix a typical
value for the index n = 2. The initial density and velocity
dispersion profiles σr and σp (= σθ = σϕ) are shown in
Fig. 1. The linear theory predicts an exponential growth rate
for the quadrupole harmonic of perturbations γ ≈ 0.14 εΩ0

(see Fig. 2), the corresponding e-folding time is ≈ 70.
After several auxiliary runs aimed to determine the

optimal code and integration scheme, time steps and
gravity softening, we choose the leap-frog integrator and
gravity softening equal to 0.001. The simulations were
performed using the own developed TREE-GPU code
ber-gal (Zinchenko et al. 2015; Polyachenko et al. 2016;
Khoperskov et al. 2019) with an opening angle θ = 0.5.
The number of particles varied in the range from 0.25× 106
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Figure 1. The numerical model: initial mass distribution and
velocity dispersion profiles for radial and transversal directions.
The vertical dashed line shows the circular orbit radius rcirc.
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Figure 2. The exponential growth rate vs. index n for models of

Eq. 2.1 in instability time units.

to 4 × 106. The current set of simulations was carried out
with the new GPU version of the code using the very recent
NVIDIA Graphics Processing Unit (GPU) platform. On a
typical desktop hardware (CPU: i5-2500K with 4 cores @
3.3 GHz + GPU: GeForce GTX 570 with 480 cores @ 1.46
GHz) we get the results for the full self-gravity force cal-
culation routine for N = 4 × 106 particles in ≈ 8 sec. The
typical N = 4× 106 model presented in the current paper is
run up to t = 500 time units in ∼ 68 hours.

The initial N-body realisation was obtained using the
standard von Neumann rejection technique in L-space,
which fixes the orbital shape. The orbit was oriented ran-
domly in spherical coordinates, while the position along the
orbit was chosen inversely proportional to the radial veloc-
ity. Due to numerical noise, a position of the centre of mass
was not exactly zero. In some runs, we performed a centre-
of-mass correction, however with no impact on the results.

3 RESULTS

The stability analysis considers spherical harmonics of per-
turbations separately. The density distribution ρ(r, θ, ϕ) can
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Figure 3. Growth of the amplitude of the quadrupole harmonic
(N = 4 × 106). The theoretically predicted growth rate corre-
sponds to the slope shown by the dashed line.

be represented as follows

ρ(r, θ, ϕ) =
∞
∑

l=0

ρl(r, θ, ϕ) , (3.1)

where

ρl(r, θ, ϕ) =
l

∑

m=−l

Cm
l (r)Y m

l (θ, φ) , (3.2)

and Y m
l (θ, φ) are spherical harmonics. The expansion co-

efficients Cm
l integrated over radius give a global charac-

teristic amplitude Al of spherical harmonic l, see details in
Appendix A.

Fig. 3 presents the growth of the quadrupole harmonic
amplitude A2 extracted from the N-body simulations. This
harmonic, as well as other spherical harmonics, has a non-
zero initial value due to numerical noise. After some ad-
justment, it begins to grow exponentially in good agree-
ment with our previous theoretical findings. However, af-
ter t = 350 the instability is attenuated and then saturates
barely reaching the level 0.02.

The lowest order spherical harmonics show growth rates
and saturation levels similar to the quadrupole term (Fig. 4).
The instability has no strong effect on the shape of the clus-
ter, which remains almost spherical (but for the radial struc-
ture see Fig. 7 below).

A variation of the Ω0 parameter shows that the growth
rate of instability does not depend strongly on the strength
of the external homogeneous halo. Fig. 5 compares the slopes
for several runs in units of dynamical times, which is here
characterized by Ωcirc = Lcirc/r

2
circ rather than Ω0 since it

suits better for weak external halos (but close to Ω0 for
heavy halos). The growth rates and attenuation of the in-
stability occur similarly.

To find a reason for such an early instability satura-
tion, we analysed the particle distribution in phase space.
The initial DF represents a narrow line in the (E,L)-plane
(Fig. 6, left panel). In absence of collisions and instability,
the DF should remain fixed over time, since E and L are
constants of motion. Naturally, due to various diffusion pro-
cesses, a spreading of the narrow distribution occurs. How-
ever, the observed relaxation has been too fast. Indeed,
the two-body relaxation time for a Maxwellian DF is (e.g.,

10−4

10−3

10−2

10−1

 0  100  200  300  400  500

t

l=1
l=2
l=3
l=4

Figure 4. Growth of the amplitudes of the lowest spherical har-
monics (l 6 4, N = 4 × 106). The low initial amplitude of the
dipole perturbation (l = 1) is due to centre-of-mass correction of
the initial data.
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Figure 5. Amplitudes of the quadrupole harmonics for different
external halo parameters Ω0, as function of normalised time units
(N = 0.25× 106).

Binney & Tremaine 2008, p.587):

trel = 0.34
Nσ3

0

G2M∗ρ ln Λ
, (3.3)

where ln Λ is the Coulomb logarithm, σ0 is the velocity
dispersion. For the shortest possible time estimate, assume
σ0 = σr, and lnΛ = lnN . Then for N = 4 × 106 we esti-
mate trel ∼ 107, which is by far larger than the time of the
simulation.

Fig. 7 presents the radial density profile change during
the simulation. Up to t = 300, the profile doesn’t change;
after that, a homogeneous core begins to form. Meanwhile,
the DF changes towards more isotropic models: fitting the
angular momentum distribution in the range 0 < α < 3/4
shows a drop of the index n from 2 down to 0.2, meaning
attenuation and cease of the instability (Fig. 8).

In systems with dominating Keplerian or harmonic po-
tential, a more efficient mechanism called resonant relax-
ation should take place (Rauch & Tremaine 1996). This re-
laxation does not affect spreading in energy but shortens
the relaxation time in angular momentum by a factor ε ln Λ
(=0.15 for N = 4× 106).

To quantify the speed of the diffusion in E and L, we
evaluated the spread σt[E] as the difference between the

MNRAS 000, 000–000 (0000)
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Figure 6. Spreading of the initial DF in E/WC−L/Lcirc phase space in N-body simulations (N = 4×106). The shadowed area is above
the circular orbit’s curve, i.e. unavailable for particles. The simulation time of the snapshot is shown in the upper left. Here WC is the
virial of Clausius, WC =

∣

∣

∑

i ri × ai

∣

∣ /N , where ai is the acceleration of the particle i (e.g., Sellwood 2015).
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Figure 7. Time dependence of the density ρ(r) for selected N-
body snapshot times (N = 4× 106).
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Figure 8. Fitted effective index n of the model (Eq. 2.1) vs. time.

third and the first quartiles of the distribution of energy of
individual particles Ei(t). This method is more robust to
outliers than the calculation of standard deviation σ, while
it gives 1.35 σ for the normal distribution. Similarly, σt[L]
was obtained for the angular momentum shifts Li(t)−Li(0).
In the diffusion driven by two-body relaxation, we expect

σ2
t [E]

W 2
= ζ

t

trel
,

σ2
t [L]

L2
circ

= η
t

trel
(3.4)

where ζ, η are constants of order unity, W is some energy
characteristic of the system, e.g. total kinetic energy, or
virial of Clausius WC (e.g., Sellwood 2015). If the resonant
relaxation takes place, we expect η ∼ (ε ln Λ)−1.

Fig. 9 presents the normalized diffusion coefficients:

D[E] ≡
trel
W 2

C

d

dt
σ2
t [E] , D[L] ≡

trel
L2

circ

d

dt
σ2
t [L] . (3.5)

By construction, it should give constant values ζ and η for
two-body or resonant relaxation. In reality, we see an ex-
ponential growth of the coefficients with a rate close to
that predicted for the quadrupole harmonics (see Fig. 3).
Curves for different N nearly overlap each other, and thus
the spreads increment as:

dσ2
t ∝ N−1 exp(γt) dt . (3.6)

From this dependence, we conclude that the accelerated dif-
fusion is due to the instability. The expected contribution
of two-body relaxation is less over time and thus cannot be
identified. In turn, the resonant relaxation should in princi-
ple be seen at the beginning of the simulations up to t ∼ 100,
but the D[L] curves obviously show no sign of this type of
relaxation.

4 CONCLUSIONS AND FINAL REMARKS

The gravitational loss-cone instability (gLCI) predicted ear-
lier theoretically, is now revealed for the first time in nu-
merical simulations. In the limit of slow precessing orbital
motion, allowed for all stars of a system in dominating Ke-
plerian and harmonic potentials only, it proved possible to
connect the sign of the orbital precession rate with the
derivative of the DF with respect to the angular momen-
tum. Namely, gLCI is possible if ∂F/∂L · Ωpr < 0. For the
dominating Keplerian potential, the precession is always ret-
rograde, i.e. Ωpr < 0. So, independently of the cluster DF,
gLCI requires ∂F/∂L > 0 at small L. In the dominating
harmonic potential, the precession could be both prograde
and retrograde. The latter occurs only if the DF grows suffi-
ciently fast at small angular momenta (n > 0.4 for the power
law DF of Eq. 2.1). Thus for both types of dominating po-
tentials, the instability requires a deficit of particles at small

MNRAS 000, 000–000 (0000)
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Figure 9. Normalized diffusion coefficients (Eqs. 3.5) for energy
(upper) and angular momentum (lower) in three runs with 1/4,
1 and 4 million particles. The dashed lines show the predicted
theoretical slope from Fig. 3.

L, i.e. the loss cone must be present. This instability has a
well-known counterpart in plasma physics called loss-cone
instability (Rosenbluth & Post 1965).

For the first simulations, we choose a toy model in the
harmonic potential, since it avoids complications of hard
encounters with the massive central body. The main feature
here is the lengthy duration of simulations, which is 5,000 –
10,000 typical dynamical times. Our runs consist of up to
4M (million particles), although satisfying results could be
obtained already with 0.25M. We confirm the value of the
growth rate found previously using linear perturbation the-
ory (Polyachenko et al. 2010), but we also note that the
shape of the cluster does not change due to early instabil-
ity saturation. In addition, we found that other spherical
harmonics have growth rates similar to the quadrupole har-
monic. A further study shows the presence of abnormally
high diffusion of particles in the (E,L) phase space, obvi-
ously connected to the instability. The efficiency of two-body
relaxation is smaller over the whole period of simulation.
The resonant relaxation, which is possible in principle for
these kinds of stellar systems, seems to be suppressed.

Although in theory, it is hard to link the instability to
the deficit of particles at the lower angular momentum end
an arbitrary halo, we followed the instability by gradually
decreasing the impact of the halo. It occurs that all features,
including the instability growth rate and it’s attenuation due
to accelerated diffusion, persist for the moderate and even
vanishing halos.

In our simulations, the stars didn’t scatter out, contrary
to the particles in plasma traps where they continuously es-

cape in the direction parallel to the magnetic field. There-
fore, the loss cone filling in the stellar cluster leads to cease
the instability.

Our next step is to simulate the gLCI with a toy model
in the Keplerian dominating potential.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-
ID 138713538 – SFB 881 (“The Milky Way System”, sub-
project A06), by the Volkswagen Foundation under the Tri-
lateral Partnerships grants No. 90411, and the Basic Re-
search program II.16 (Ilia Shukhman). Peter Berczik ac-
knowledges support by the Chinese Academy of Sciences
through the Silk Road Project at NAOC, through the
“Qianren” special foreign experts program, and the Pres-
ident’s International Fellowship for Visiting Scientists pro-
gram of CAS, the National Science Foundation of China
under grant No. 11673032 and also the Strategic Prior-
ity Research Program (Pilot B) “Multi-wavelength gravi-
tational wave universe” of the Chinese Academy of Sciences
(No. XDB23040100). The special GPU accelerated super-
computer Laohu at NAOC has been used and we thank
the Center of Information and Computing of NAOC for
support. Peter Berczik also acknowledges the special sup-
port by the NASU under the Main Astronomical Obser-
vatory GRID/GPU computing cluster project. This work
benefited from support by the International Space Science
Institute, Bern, Switzerland, through its International Team
programme ref. no. 393 “The Evolution of Rich Stellar Pop-
ulations & BH Binaries” (2017-18).

REFERENCES

Antonov V. A., 1973, in Omarov E. G., ed., Dynamics of Galaxies
and Star Clusters. Alma Ata, p. 139 (in Russian) [trasnslated
in 1987, Structure and Dynamics of Elliptical Galaxies, Ed. by
T. de Zeeuw, Proc. IAU Symp., No. 127 (Reidel, Dordrecht),
p. 549]

Batygin V.V., and Toptygin I.N., 1978, Problems in Electrody-
namics, 2nd ed., Academic Press Inc, London

Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition.
Princeton University Press

Fridman A. M., Polyachenko V. L., 1984, Physics of gravitating
systems. I - Equilibrium and stability. Springer, New York

Khoperskov S., Di Matteo P., Gerhard O., Katz D., Haywood M.,
Combes F., Berczik P., Gomez A., 2019, A&A, 622, L6

Palmer P. L., 1994, Stability of collisionless stellar systems: mech-
anisms for the dynamical structure of galaxies. Vol. 185,
Kluwer, Dordrecht

Polyachenko E. V., Berczik P., Just A., 2016, MNRAS, 462, 3727

Polyachenko E. V., Polyachenko V. L., Shukhman I. G., 2007,
MNRAS, 379, 573

Polyachenko E. V., Shukhman I. G., 2015, MNRAS, 451, 601
Polyachenko V. L., 1991, Soviet Astronomy Letters, 17, 371
Polyachenko V. L., Polyachenko E. V., Shukhman I. G., 2010,

Astronomy Letters, 36, 175
Polyachenko V. L., Shukhman I. G., 1972, Preprint SibIZMIR 1-2-

72, Stability of gravitating systems with quadratic potential.
Parts I and II, Irkutsk (in Russian)

Polyachenko V. L., Shukhman I. G., 1981, Soviet Astronomy, 25,
533

MNRAS 000, 000–000 (0000)



6 E.V. Polyachenko et al.

Rauch K. P., Tremaine S., 1996, J. R. Astron. Soc. Canada, 90,
334

Read J. I., Goerdt T., Moore B., Pontzen A. P., Stadel J., Lake
G., 2006, MNRAS, 373, 1451

Rosenbluth M. N., Post R. F., 1965, Physics of Fluids, 8, 547
Sellwood J. A., 2015, MNRAS, 453, 2919
Tremaine S., 2005, ApJ, 625, 143
Zinchenko I. A., Berczik P., Grebel E. K., Pilyugin L. S., Just A.,

2015, ApJ, 806, 267

APPENDIX A: SPHERICAL HARMONICS IN

N-BODY SIMULATIONS

We start with a smooth density distribution

ρ(r, θ, ϕ) =
∞
∑

l=0

ρl(r, θ, ϕ) , (A1)

where

ρl(r, θ, ϕ) =
l

∑

m=−l

Cm
l (r)Y m

l (θ, φ) , (A2)

and Y m
l (θ, φ) are fully normalised spherical harmonics:

∫

dΩY m
l (θ, ϕ)[Y m′

l′ (θ, ϕ)]∗ ≡

≡

π
∫

0

sin θ dθ

2π
∫

0

dϕY m
l (θ, ϕ)[Y m′

l′ (θ, ϕ)]∗ = δll′ δmm′ (A3)

([...]∗ denotes the complex conjugate). This orthogonality
gives the coefficients of the expansion:

Cm
l (r) =

∫

dΩ ρl(r, θ, ϕ) [Y
m
l (θ, ϕ)]∗, |m| 6 l . (A4)

In models of clusters with a DF depending on E and L only,
the time dependence (i.e. eigenfrequencies of oscillations) is
independent of m (e.g., Fridman & Polyachenko 1984).

Now we consider a particle distribution in N-body sim-
ulations

ρ(r, θ, φ) =
N
∑

i=1

µi
δ(r − ri)

r2
δ(θ − θi)

sin θ
δ(ϕ− ϕi) (A5)

(here N is the total number of particles; µi, ri, θi and ϕi are
mass and spherical coordinates of particle i) and introduce a
global characteristic of each harmonic component as follows:

Am
l =

1

M∗

∫

dr r2Cm
l (r) =

1

M∗

N
∑

i=1

µi[Y
m
l (θi, ϕi)]

∗ . (A6)

The strength of the spherical harmonic l can be described
by coefficients Al, where:

A2
l ≡

l
∑

m=−l

|Am
l |2 . (A7)

Using the addition theorem for spherical harmonics (e.g.
Batygin & Toptygin 1978):

Pl(cosΘ) =
4π

2l + 1

l
∑

m=−l

Y m∗
l (θ′, ϕ′)Y m

l (θ, ϕ) , (A8)

(Pl(x) are the Legendre polynomials, Θ is an angle between

directions (θ, ϕ) and (θ′, ϕ′)), one can show the indepen-
dence of Al (Eq.A7) of the orientation of the coordinate
frame:

N2A2
l = N2

l
∑

m=−l

|Am
l |2 =

=

l
∑

m=−l

N
∑

i=1

µiY
m
l (θi, ϕi)

N
∑

j=1

µjY
m∗
l (θj , ϕj) =

=

N
∑

i=1

N
∑

j=1

µiµj

l
∑

m=−l

Y m
l (θi, ϕi)Y

m∗
l (θj , ϕj) =

=
2l + 1

4π

N
∑

i=1

N
∑

j=1

µiµjPl(cosΘij) =

=
2l + 1

4π





N
∑

i=1

µ2
i +

∑

i6=j

µiµjPl(cosΘij)



 (A9)

(Θij denotes an angle between particle i and j). The last
expression is clearly independent of the orientation of the
frame. If masses of the particles are equal, µi = M∗/N ,
then

Al =
1

N





l
∑

m=−l

∣

∣

∣

∣

∣

N
∑

i=1

Y m
l (θi, ϕi)

∣

∣

∣

∣

∣

2




1/2

. (A10)

This expression is used to evaluate the strength of spherical
harmonics in our N-body simulations.
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