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ABSTRACT

A new so-called ‘gravitational loss-cone instability’ in stellar systems has recently
been investigated theoretically in the framework of linear perturbation theory and
proved to be potentially important in understanding the physical processes in centres
of galaxies, star clusters, and the Oort comet cloud. Using N-body simulations, we
confirm previous findings and go beyond the linear theory. Unlike the well-known
instabilities, the new one shows no notable change in spherical geometry of the cluster,
but it significantly accelerates the speed of diffusion of particles in phase space leading
to a repopulation of the loss cone and early instability saturation.

Key words: Keywords: galaxies: elliptical and lenticular, cD, galaxies: kinematics
and dynamics, galaxies: nuclei, Astrophysics - Astrophysics of Galaxies

1 INTRODUCTION

In the pioneer paper, Polyachenko (1991) studied a simple
analytical model of a low-mass stellar disc in a dominating
point-mass potential. He argued that if the radial-orbit in-
stability (for review, see Polyachenko & Shukhman 2015) is
suppressed, a distant relative of the loss-cone instability in
plasma (Rosenbluth & Post 1965) still may occur.

Tremaine (2005) examined spherical and disc systems
and found that stability properties are determined by the
dependence of the distribution function (DF) F on angular
momentum L. In particular, flattened, nonrotating systems
were found to be secularly stable if ∂F/∂L < 0 at constant
energy, while for ∂F/∂L > 0 they are generally unstable.
Based on the analysis of dipole and quadrupole distortions,
the spherical systems in which F = 0 at L = 0 (an empty
loss cone) were claimed to be stable for any sign of ∂F/∂L.

Using a newly elaborated matrix method for spher-
ical systems analogous to the matrix method for
discs (Polyachenko 2005), Polyachenko et al. (2007) found
that the instability in spherical systems considered by
Tremaine is nevertheless possible, but for the higher-order
distortions starting from octupole. In the subsequent paper
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(Polyachenko et al. 2008, hereafter Paper I), we refined our
claim that it is only relevant to non-monotonic dependence
of the DF on L. In analogy with plasma, we called it gravi-
tational loss-cone instability (gLCI).

These analytical studies assume that a cluster of mass
M∗ is embedded in the dominating potential of a central
point mass M , so that ε ≡M∗/M is a small parameter. The
gravitational potential

Φ(r) = −
GM

r
+ Φ∗(r) , (1.1)

consists of the dominant Keplerian part, and Φ∗ due to
selfgravity of the cluster. If the latter is neglected, a par-
ticle travels along the fixed ellipses with semiaxes a =
GM/(2|E|), b = L/(2|E|)1/2 and eccentricity e = (1 −
α2)1/2, where α ≡ L/Lcirc, Lcirc = GM/(2|E|)1/2 is the
angular momentum of a particle with energy E on a circu-
lar orbit. The radial and orbital frequencies are equal and
independent of L: Ω1 = Ω2 = (2|E|)3/2/(GM).

Accounting for the selfgravity leads to slow orbit preces-
sion, which is always retrograde (Polyachenko et al. 2007).
Generally, there are four characteristic timescales in such
a system (Tremaine 2005): dynamical time tdyn ∼ Ω−1

1 ,
precession time tpr ∼ ε−1tdyn, resonant relaxation time
tres ∼ Nε−1tdyn (Rauch & Tremaine 1996), where N is the
number of particles, and two-body relaxation time trelax ∼
Nε−2tdyn. For N ≫ 1 these timescales are well separated:

tdyn ≪ tpr ≪ tres ≪ trelax . (1.2)
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If the system is dynamically stable, its evolution is driven by
relaxation on timescales tres or trelax. However, if there is an
instability due to collective mechanism in the distribution of
orbits, its timescale tins is expected to be close to the orbital
movement time, i.e. tpr. As found for several models in Pa-
per I, the instability time is in fact only a few times larger
than the precession time. Thus instability becomes the main
change driving process overtaking both kinds of relaxation.
However, the instability is slow in the dynamical timescale
and requires by a factor of ε−1 longer simulations than stan-
dard simulations of systems in which the dynamical time is
largely determined by selfgravity.

This paper is aimed to simulate numerically one of the
models studied earlier theoretically using linear perturba-
tion theory (Paper I). It serves two purposes: to confirm our
theoretical finding and to go beyond the linear approxima-
tion and study the consequences of the instability develop-
ment. In a companion paper (Polyachenko et al. 2019), we
simulated the instability in a dominating harmonic potential
and showed that unlike, e.g., the well-known bar instability
in discs, gLCI did not change the shape of the cluster, but
led to the enhanced diffusion resulting in the repopulation
of the loss cone and cease of the instability.

In addition to the peculiarities of the harmonic case,
the dominating central point mass requires additional care
for particles close to the centre. It is worthwhile to em-
phasize that popular N-body codes incorporating the black
hole dynamics or the external central mass potential (e.g.,
Nbody6++, Wang et al. 2015) are proved to be effective in
the opposite limit M ≪ M∗, but not in the case of interest
here. Thus additional investigations were needed to improve
the available numerical schemes for the current task.

The paper is organized as follows. The model and the
set-up are described in Section 2, along with details of N-
body simulations. Results containing a comparison of the
instability growth rate with the linear perturbation theory,
and analysis of peculiarities of the cluster evolution are given
in Section 3. The final section 4 contains conclusions, final
remarks, and describes future perspectives.

2 THE MODEL, N-BODY SET-UP AND

SIMULATIONS

2.1 The model

For numerical simulations, we choose a cluster in which all
particles have the same energy E0, i.e. the DF is F (E,L) =
Aδ(E − E0) f(α), where δ(x) is the Dirac delta-function,
A =M∗Ω1/(16π

3L2
circ) is a normalization constant. The sta-

bility properties are determined by the angular momentum
dependence, which is assumed to be non-monotonic:

f(α) =
Nn

α2
T

xne−x , x ≡
α2

α2
T

. (2.1)

Here E = v2/2 + Φ(r) and L = |v × r| are (specific) energy
and angular momentum of a particle; Nn is the normaliza-
tion constant to fulfil the condition

∫ 1

0
dααf(α) = 1. There

are two model parameters αT and n: the former controls
the fraction of nearly radial orbits, while the second one
controls the width of the loss cone. We define the potential
Φ∗(r) to be equail to −GM∗/R at the edge of the sphere, so
E0 = −G(M +M∗)/R.
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Figure 1. The model for M = 100: velocity dispersion profiles
for radial and transversal directions and cumulative mass M∗(r).
The vertical dashed line shows the radius of the circular orbit
rcirc.

For the modelling, we adopt units in which G = M∗ =
R = 1. The model parameters were fixed (αT = 0.173, n =
3), while the central mass M and the number of particles N
varied. For M = 100, the cumulative mass and the velocity
dispersion profiles σr and σp (= σθ = σϕ) are given in Fig. 1.

For the family of Eq. (2.1), linear perturbation theory
predicts the absence of instability for dipole and quadrupole
perturbations, and the complex frequency of the octupole
perturbations shown in Fig. 2. Positive γ means exponential
growth of the this harmonic in time. In particular, the values
of αT and n, adopted for the simulations, correspond to
ωr = 0.1 εΩ1, γ = 0.0174 εΩ1.

2.2 Initial distribution

The initial self-consistent model was constructed iteratively
using a relation between the density and the DF:

rρ(r) = 4πA

Lmax(r)
∫

0

f(α)LdL

[L2
max(r)− L2]1/2

, (2.2)

where Lmax(r) is determined from equation

L2
max(r) = 2r2(E0 − Φ(r)) , (2.3)

and Lcirc is determined by the radius of the circular orbit
rcirc,

2E0 − 2Φ(rcirc)− rcircΦ
′(rcirc) = 0 , (2.4)

L2
circ = r3circΦ

′(rcirc) . (2.5)

To avoid the singularity at L = Lmax, it is helpful to in-
troduce a new variable s by α = (1 − s2)1/2Lmax(r)/Lcirc.
Eq. (2.2) then reads:

rρ(r) = 4πALmax(r)

1
∫

0

f
(

α(s)
)

ds . (2.6)

As zero-order approximation, Φ∗ was set to zero, and an ap-
proximation was obtained for ρ(r). The normalization con-
stant A was recalculated after each iteration to provide the
total mass M∗ for the cluster. The next approximation for
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Figure 2. Octupole real and imaginary parts of the frequency
ω = ωr + iγ in the slow units εΩ1 v.s. parameter αT for several
values of n. The vertical dashed line shows αT = 0.173; the filled
circle marks the near maximum growth rate of the curve n = 3
we set out to reproduce.

the potential Φ∗ was obtained from a numerical solution of
the Poisson equation

1

r2
d

dr
r2

d

dr
Φ∗(r) = 4πGρ(r) . (2.7)

After obtaining self-consistent profiles ρ(r) and Φ∗(r),
one can build a random realization of the DF. First, we find
L of the particle using the standard von Neumann rejection
technique for Eq. (2.1). Energy E = E0 and angular momen-
tum L determine the orbit. Second, we set the radius of the
particle, which is uniformly distributed in the radial angle
variable, w. The dependence r(w;E,L) can be obtained di-
rectly by orbit integration, if the number of particles is not
too large, or interpolating between reference orbits from a
library. The radius r immediately gives the square of radial
velocity v2r , and the absolute value of transversal velocity
v⊥ = (v2θ + v2ϕ)

1/2 = L/r. The velocity components (vθ , vϕ)
are uniformly distributed over a polar angle ψ in the veloc-
ity polar coordinates (v⊥, ψ). Finally, the spatial coordinates
are obtained as a uniform distribution on a sphere.

For our default model with N = 105 and the central
point mass M = 100, this procedure gives a nearly spheri-
cally symmetric N-body realisation with center-of-mass off-
set 1.5 ·10−3. Due to numerical noise, the initial amplitudes
of the spherical harmonics Al (see Eq. (A10)) for 1 6 l 6 4
are of the order of 10−3.

2.3 N-body simulations

The simulations presented in this work have been car-
ried out using the specially adapted direct N-body code
ϕ-GPU (Berczik et al. 2011, 2013). The basic concepts of
the code are based on the publicly available ϕ-GRAPE
(Harfst et al. 2007) code, an Aarseth N-body 1-like code in-
cluding an efficient MPI parallelization and support for the
special-purpose hardware GRAPE (Fukushige et al. 1991)
(currently Graphic Processing Units - GPU). The current
version of the ϕ-GPU code has been fully rewritten in the
C++ programming language for the most effective use of
GPUs.

The ϕ-GPU code is fully parallelized using the MPI
library. The MPI parallelization was done in the same “j”
particle parallelization scheme as in the earlier ϕ-GRAPE
code. All particles are divided equally between the working
nodes (using the MPI Bcast() command) and in each node
we calculate only the fractional forces for the particles in the
current time step, i.e. the so-called “active” or “i” particles.
We get the full forces from all particles acting on the active
particles after the global MPI Allreduce() communication
routine is applied.

The code supports the use of individual timestep Her-
mite integration algorithms of 4th, 6th or 8th order. Fur-
thermore, it includes a hierarchical block time-step scheme.
Compared to the earlier ϕ-GRAPE (Harfst et al. 2007) im-
plementation we obtain an additional speed-up by a factor
of ×2 on the recent generation of NVIDIA GPUs (i.e., K20
and V100 cards), depending on the specific number of par-
ticles and computing nodes used.

Further details of this high-performance computing
code is be described in Berczik et al. (2011, 2013). The
present code is well tested and already used to obtain im-
portant results in our earlier large scale few million body
simulations (Li et al. 2017, 2012; Wang et al. 2014).

The ϕ-GPU code does not include the regularization
(Mikkola & Aarseth 1998) of close encounters or binaries,
so we use small softening to avoid the formation of tight
binaries during our simulation. We use a typical Plummer-
type softening between individual particles (ǫ = 10−4). The
gravitational softening for the interaction between particles
and the central Keplerian potential was set exactly equal to
zero in the current set of runs.

We choose the conservative standard 4th order Hermite
integration parameter η = 0.01. For the default run, the total
energy is conserved to a relative error ≈ 0.6 % during the
full integration time of 1000 time units. The average random
velocity of the cluster center of mass (CoM) was ≈ 2 · 10−4.

3 RESULTS

In order to compare results of our numerical simulations
with theoretical predictions, we evaluate the spherical har-
monics of the density distribution

ρ(r, θ, ϕ) =

∞
∑

l=0

ρl(r, θ, ϕ) , (3.1)

ρl(r, θ, ϕ) =
l

∑

m=−l

Cm
l (r)Y m

l (θ, φ) , (3.2)

MNRAS 000, 000–000 (0000)
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Figure 3. Growth of the octupole perturbations A3 in runs with
M = 100, N = 100k, and M = 10, N = 200k v.s. instability
slow time τ ≡ t/M1/2. The dashed lines shows the predicted
theoretical growth.

where Y m
l (θ, φ) are fully normalised spherical functions, for

each snapshot. The coefficients Cm
l depend on radius and

the orientation of the frame. In order to make a comparison
simpler, we evaluate amplitudes

Al =
1

N





l
∑

m=−l
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∣
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∣

∣
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Y m
l (θi, ϕi)

∣

∣

∣

∣

∣

2




1/2

(3.3)

invariant to the frame rotation (see Appendix A and
Polyachenko et al. 2019).

From Sec. 1 and Sec. 2 we infer that the dynamical time
scales with M as tdyn ∼ M−1/2. Therefore, the instability
time scales as tins ∼ tpr ∼M1/2. Fig. 3 compares the ampli-
tudes of the octupole perturbations (l = 3) for two runs in
the instability time scale. We see the exponential growth of
the amplitudes with the predicted slope, however the am-
plitudes are modulated by oscillations. These oscillations
are due to i) the oscillation character of the eigenfrequency
ωr 6= 0, and ii) the existense of another eigenfrequency with
the same growth rate. Indeed, the integral equation (2.18)
of Paper I has the form ω2ψl = L̂l ψl, where L̂l is the linear
integral real operator. Hence, if ω2 is an eigen-value, then
(ω2)∗ is also tan eigen-value of the problem. This means that
if ωr + iγ is a solution, then −ωr + iγ also is a solution. A
general growing solution then reads

F =
[

C1 exp(iωrt) + C2 exp(−iωrt)
]

· exp(γt) , (3.4)

and

|F |2 =
[

|C1|
2+|C2|

2+2|C1||C2| cos(2ωr+φ)
]

·exp(2γt) , (3.5)

where φ is due to the difference of the complex phases of the
amplitudes C1,2. These oscillations we see in Fig. 3.

We also observe early saturation of the instabil-
ity so that amplitudes remain below a level of 0.03,
similar to the gLCI in a dominating harmonic poten-
tial (Polyachenko et al. 2019). There, it was explained by
rapid repopulation of the loss cone, i.e. the region of low
angular momentum, due to diffusion enhanced by the insta-
bility.

For near-Keplerian models, we estimate the relaxation
time using the standard formula for two-body relaxation

trelax ∼
N

lnN

R3/2M3/2

G1/2M2
∗

, (3.6)

so that in dimensionless form the two-body relaxation time
in units of the slow time M1/2 is

trelax
M1/2

=
N

lnN
·M = (2− 9)× 105, (3.7)

where the value range covers the parameters shown Fig. 3.
For the resonant relaxation (Rauch & Tremaine 1996;

Tremaine 2005)

tres ∼ N
R3/2M1/2

G1/2M∗

(3.8)

so that in dimensionless form the resonance relaxation time
in units of slow time M1/2 is

tres
M1/2

= N ∼ (1− 2)× 105 . (3.9)

One can conclude that these two mechanisms alone cannot
be responsible for a particle repopulation during the time of
simulations.

To quantify the speed of the diffusion in E and L, we
evaluated the spread σt[E] as the difference between the
third and the first quartiles of the distribution of energy
of individual particles Ei(t). This method is more robust
to outliers than the calculation of the standard deviation
σ, while it gives 1.35 σ for a normal distribution. Similarly,
σt[L] was obtained for the angular momentum shifts Li(t)−
Li(0). In the diffusion driven by two-body relaxation, one
would expect

σ2
t [E]

W 2
= ζ

t

trelax
,

σ2
t [L]

L2
circ

= η
t

trelax
(3.10)

where ζ, η are constants of order unity, W is some energy
characteristic of the system, e.g. total kinetic energy, or
virial of Clausius WC (e.g., Sellwood 2015). If the resonant
relaxation takes place for angular momentum, one would
expect η ∼ (ε lnN)−1.

The character of the diffusion can be understood by
analyzing the plots summarised in Fig. 4. The upper left
panel shows the normalized energy diffusion coefficient

D[E] ≡
trelax
W 2

C

d

dt
σ2
t [E] , (3.11)

By construction, it should give the constant value ζ for two-
body relaxation. In fact, we observe an almost constant value
of order unity, which indicates that spreading in energy is
due to two-body relaxation. In the upper right panel, we
present the energy relaxation time calculated as

T [E] ≡

[

1

W 2
C

d

dt
σ2
t [E]

]−1

(3.12)

for nine available runs in which the central mass M varied
from 3 to 100, and the number of particles N varied from
25 · 103 to 106. Dashed lines show fits

trelax.fit = 0.43M3/2N/ lnN , (3.13)

for various M , demonstrating that the scaling perfectly cor-
responds to the two-body relaxation time.

The profiles for angular momentum diffusion consist of
two distinctive parts: nearly constant in the beginning and
modulated exponential growth and fall later. Using the first
constant part, we evaluated the angular momentum relax-
ation time

T [L] ≡

[

1

L2
circ

d

dt
σ2
t [L]

]−1

, (3.14)
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Figure 4. Characteristics of the E- and L-diffusion (upper and lower panels, respectively). Left panels show normalized diffusion
coefficients [see Eqs. (3.11) and (3.16)] for runs (M,N)=(100, 100k), (10, 200k); black dashed lines in the lower left panel indicate slopes

of the instability growth rate for the octupole harmonic from Fig. 3. Right panels show the relaxation times [see Eqs. (3.12) and (3.14)]
for runs M = 3, N =100k, 200k; M = 10, N =25k, 50k, 100k, 200k, 1000k; M = 100, N =50k, 100k. Colored dashed lines in the upper
right panel show the time fit of Eq. (3.13) corresponding to two-body relaxation; in the lower right panel – time fit (Eq. 3.15)) close to
resonant relaxation; the black dashed line marked RT96 shows the theoretical expectation of Rauch & Tremaine (1996). Upper and lower
values of errorbars show maximum and minimum times obtained from variations of the diffusion coefficients, while the filled circles give
average values.

which is presented in the lower right panel of Fig. 4. Color
dashed lines show fits

tres.fit = 0.75M2/3N/ lnN , (3.15)

which is close to the predicted scailing of resonant relax-
ation tres ∝ M1/2N (Rauch & Tremaine 1996), shown by
the black dashed line.

Using the dependence of Eq. (3.15), we construct the
normalized angular momentum diffusion coefficient

D[L] ≡
tres.fit
L2

circ

d

dt
σ2
t [L] . (3.16)

The profiles are shown in the lower left panel of Fig. 4. Due
to normalization, the constant parts are close to unity. The
growing parts are obviously due to instabilty, as follows from
a comparison with the theoretical slope for the octupole har-
monic given in Fig. 3.

4 CONCLUSIONS AND FINAL REMARKS

The gravitational loss-cone instability (gLCI) in a dominat-
ing Keplerian (near-K) potential predicted earlier theoret-
ically (Polyachenko et al. 2007, 2008), is now revealed for
the first time in numerical simulations. In the limit of slow

precessing orbital motion, it proved possible to connect the
sign of the orbital precession rate with the derivative of the
DF with respect to the angular momentum. It was found
that gLCI is possible if ∂F/∂L · Ωpr < 0. For the dominat-
ing Keplerian potential, the precession is always retrograde
(Ωpr < 0), i.e., independently of the cluster DF, so gLCI
requires ∂F/∂L > 0 at small L, or a deficit of particles at
small L (the loss cone) must be present. This instability has
a well-known counterpart in plasma physics called loss-cone
instability (Rosenbluth & Post 1965).

Our N-body runs typically consist of N ∼ 105 particles
evaluated during . 104 dynamical times. The main issue is
the dominating central mass which requires special treat-
ment of the orbital integration near the center. The simula-
tions reproduce well the linear regime for which instability
of the octupole harmonic was predicted. In particular, we
obtained the growth rate of the harmonic amplitude and
periodic modulations of the amplitudes due to the presence
of the complementary unstable eigen-mode (i.e. the mode
with the eigen-frequency −ω∗). However, the shape of the
cluster does not change due to early instability saturation.
The latter occurs due to diffusion enhanced by the instabil-
ity.

A comparison to the near-harmonic (near-h)

MNRAS 000, 000–000 (0000)
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case (Polyachenko et al. 2019) shows the following dis-
tinctive features:
– energy diffusion is driven by two-body relaxation in the
near-K case, while it is enhanced by instability in near-h
case;
– in the near-K case, angular momentum diffusion is driven
by resonant relaxation until the instability enhanced diffu-
sion takes over;
– in the near-h case, angular momentum diffusion is en-
hanced by instability from the very beginning, but we found
no signs of resonant relaxation.

In the future, we plan to explore a diversity of more
realistic DFs to detect the gLCI. We also plan to modify
the numerical code so that the stars diffused to the loss
cone will be excluded from the simulations. This may help
to sustain the instability.
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APPENDIX A: SPHERICAL HARMONICS IN

N-BODY SIMULATIONS

We start with a smooth density distribution

ρ(r, θ, ϕ) =
∞
∑

l=0

ρl(r, θ, ϕ) , (A1)

where

ρl(r, θ, ϕ) =

l
∑

m=−l

Cm
l (r)Y m

l (θ, φ) , (A2)

and Y m
l (θ, φ) are fully normalised spherical harmonics:

∫

dΩY m
l (θ, ϕ)[Y m′

l′ (θ, ϕ)]∗ ≡

≡

π
∫

0

sin θ dθ

2π
∫

0

dϕY m
l (θ, ϕ)[Y m′

l′ (θ, ϕ)]∗ = δll′ δmm′ (A3)

([...]∗ denotes the complex conjugate). This orthogonality
gives the coefficients of the expansion:

Cm
l (r) =

∫

dΩ ρl(r, θ, ϕ) [Y
m
l (θ, ϕ)]∗, |m| 6 l . (A4)

In models of clusters with a DF depending on E and L only,
the time dependence (i.e. eigenfrequencies of oscillations) is
independent of m (e.g., Fridman & Polyachenko 1984).

Now we consider a particle distribution in N-body sim-
ulations

ρ(r, θ, φ) =
N
∑

i=1

µi
δ(r − ri)

r2
δ(θ − θi)

sin θ
δ(ϕ− ϕi) (A5)

(here N is the total number of particles; µi, ri, θi and ϕi are
mass and spherical coordinates of particle i) and introduce a
global characteristic of each harmonic component as follows:

Am
l =

1

M∗

∫

dr r2Cm
l (r) =

1

M∗

N
∑

i=1

µi[Y
m
l (θi, ϕi)]

∗ . (A6)

MNRAS 000, 000–000 (0000)



7

The strength of the spherical harmonic l can be described
by coefficients Al, where:

A2
l ≡

l
∑

m=−l

|Am
l |2 . (A7)

Using the addition theorem for spherical harmonics (e.g.
Arfken 1985):

Pl(cosΘ) =
4π

2l + 1

l
∑

m=−l

Y m∗
l (θ′, ϕ′)Y m

l (θ, ϕ) , (A8)

(Pl(x) are the Legendre polynomials, Θ is an angle between
directions (θ, ϕ) and (θ′, ϕ′)), one can show the indepen-
dence of Al (Eq.A7) of the orientation of the coordinate
frame:

N2A2
l = N2

l
∑

m=−l

|Am
l |2 =

=

l
∑

m=−l

N
∑

i=1

µiY
m
l (θi, ϕi)

N
∑

j=1

µjY
m∗
l (θj , ϕj) =

=
N
∑

i=1

N
∑

j=1

µiµj

l
∑

m=−l

Y m
l (θi, ϕi)Y

m∗
l (θj , ϕj) =

=
2l + 1

4π

N
∑

i=1

N
∑

j=1

µiµjPl(cosΘij) =

=
2l + 1

4π





N
∑

i=1

µ2
i +

∑

i6=j

µiµjPl(cosΘij)



 (A9)

(Θij denotes an angle between particle i and j). The last
expression is clearly independent of the orientation of the
frame. If masses of the particles are equal, µi = M∗/N ,
then

Al =
1

N





l
∑

m=−l

∣

∣

∣

∣

∣

N
∑

i=1

Y m
l (θi, ϕi)

∣

∣

∣

∣

∣

2




1/2

. (A10)

This expression is used to evaluate the strength of spherical
harmonics in our N-body simulations.
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