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ABSTRACT

Context. The exquisite precision of the space-based photometric surveys and the unavoidable presence of instrumental systematics
and intrinsic stellar variability call for the development of sophisticated methods that separate these signal components from those
caused by planetary transits.
Aims. Here we introduce tran_k2 a stand-alone Fortran code to search for planetary transits under the colored noise of stellar
variability and instrumental effects. With this code we perform a survey for new candidates.
Methods. Stellar variability is represented by a Fourier series, and, if needed, by an autoregressive model to avoid excessive Gibbs
overshoots at the edges. For the treatment of systematics, cotrending and external parameter decorrelation are employed by using
cotrending stars with low stellar variability, the chip position and the background flux level at the target. The filtering is made within
the framework of the standard weighted least squares, where the weights are determined iteratively, to allow robust fit and separate the
transit signal from stellar variability and systematics. Once the periods of the transit components are determined from the filtered data
by the box-fitting least squares method, we reconstruct the full signal and determine the transit parameters with a higher accuracy.
This step greatly reduces the excessive attenuation of the transit depths and minimizes shape deformation.
Results. The code was tested on the field of Campaign 5 of the K2 mission. We detected 98% of the systems with all their candidate
planets reported earlier by other authors, surveyed the whole field and discovered 15 new systems. Additional 3 planets were found
in 3 multiplanetary systems and 2 more planets were found in a previously known single planet system.

Key words. Methods: data analysis – Planetary systems

1. Introduction

Tackling instrumental systematics (colored noise) has been a ma-
jor issue from the very early years of the wide-field ground-
based surveys (e.g., TrES, SuperWASP, HATNet, XO). These
systematics were very severe due to the large field of views, the
ground-based nature of the observations and other imperfections
attributed to the optics or CCD cameras used (Alonso et al. 2004;
Bakos et al. 2004; McCullough et al. 2005; Pollacco et al. 2006).
Novel methods that were able to cure the crippling effect of sys-
tematics started to gain ground only a few years after these major
projects started. These methods are based on the simple observa-
tion that systematics (by the very meaning of this word) should
be common among many stars in the field, and therefore, can
be used for correcting the target star of our interest.1 The Trend
Filtering Algorithm (TFA, Kovacs et al. 2005), and Systematics
Removal (SysRem, Tamuz et al. 2005) use this idea. TFA is us-
ing it in a “brute force” way (with large number of correcting
stars), whereas SysRem employs a more sophisticated approach
(akin to Principal Component Analysis - PCA). With the aid of
PCA, only the dominating systematics are included in the cor-
rection process for a given target.

Additional effects hindering shallow signal discoveries have
also been considered. Unlike commonalities in the flux changes
of the objects in the field, differences in the pixel properties are
uncommon, and therefore, curable only on a target-by-target ba-
sis. External Parameter Decorrelation (EPD) can mitigate the de-

1 By following the jargon of the developers of the Kepler post-
processing pipeline (see Smith et al. 2012; Stumpe et al. 2012), we often
use the word “cotrending” for this filtering process.

pendence on pixel sensitivity by including polynomials of the
stellar image parameters (e.g., centroid position, size of the Point
Spread Function - PSF, etc.) in the time series modeling (Knut-
son et al. 2008; Bakos et al. 2010). Intrinsic/physical variation
of the stellar flux has become a more fundamental question with
the advance of space missions. The first attempt to deal with this
issue within the environment of systematics was presented by
Alapini & Aigrain (2009), within the context of the CoRoT mis-
sion. In their method, the stellar variation acts as a multiplicative
noise source and searched for by an iterative method while fitting
the raw stellar flux.

The start of the Kepler mission in 2009 and later its very
successful conversion to the two-wheel (K2) program (forced
by the failure of the reaction wheels), together with the fol-
lowup programs on additional space facilities, boosted further
efforts in making transit search more efficient. The official post-
processing pipeline (Presearch Data Conditioning – PDC) uses
PCA-selected basis vectors in a Bayesian framework to avoid
overcorrection (Smith et al. 2012; Stumpe et al. 2012). In the
early phase of the K2 mission, Vanderburg & Johnson (2014) in-
troduced the idea of Self Flat Filtering, SFF, based on the recog-
nition of the tight correlation between a nonlinear combination
of the image position and the observed stellar flux (akin to EPD).
Although the method proved to be very successful, because of
the absence of stellar variability in the model, other methods
have also been developed to include both satellite roll correc-
tion and stellar variability. The method developed by Aigrain et
al. (2016) successfully tackle the issue by using a Gaussian Pro-
cess (GP) model for the stellar variation. Yet another method,
based on the idea of Pixel-level Decorrelation of Deming et al.
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(2015), was developed by Luger et al. (2016). It stands out from
the other, ‘more traditional’ models. Called as EVEREST, it uti-
lizes only the pixel fluxes belonging to the target (no cotrend-
ing, no EPD). The assumption is that the incoming target flux is
the same, whereas the pixel sensitivities are different and there-
fore, they can be transformed out from the total stellar flux. With
the combination of GP modeling for stellar variability, it seems
that this approach is very efficient in searching for transits. By
applying EVEREST on the K2 Campaigns 0 − 8, Kruse et al.
(2019) discovered 374 new candidates, thereby nearly doubling
the number of potential planets in these fields. Therefore, the
method presented in this paper heavily relies on the sample on
Campaign 5 (C05) of Kruse et al. (2019) to perform a sanity
check.

Several other methods have been developed with similarities
to the ones briefly described above. We refer the interested reader
to a more complete list of methods in Kovacs (2017).

The purpose of this paper is to examine the possibility of fur-
ther improvements in the K2 transit search methodologies.2 Our
approach is based on allowing large TFA template size, using
Fourier series to represent stellar variability and protecting the
transit signal by using a robust least squares method to perform
the simultaneous TFA+Fourier filtering before the transit period
search (Box-fitting Least Squares – BLS, Kovacs et al. 2002).

2. Datasets

The data analysis method presented in this paper is a post-
processing step after the derivation of the time-dependent net
fluxes from the images taken by the telescope. We do not deal
with the various possibilities in getting these raw (Simple Aper-
ture Photometry, SAP) fluxes. As a result, we rely on those
datasets that have already been created by teams dealing with
this demanding task.

The raw fluxes used in this paper come from two sources:
a) the official image reduction and post processing pipeline of
the Kepler mission (Smith et al. 2012), and b) the k2phot3 code,
performing the aperture photometry in supplying the input time
series for the TERRA pipeline (Petigura & Marcy 2012; Petigura
et al. 2015; Aigrain et al. 2016). These data are accessible via the
NASA Exoplanet Archive4 and the affiliated Exoplanet Follow-
up Observing Program (ExoFOP)5, and referred to in the fol-
lowing, respectively, as KEP and PET. We note that the latter set
includes all available epochs in the campaigns (yielding an over-
all data point number of ∼ 3620 per target), whereas the KEP
set, to avoid instrumental transients, discards certain data items.
This leaves ∼ 3430 data points for the analysis.

3. tran_k2: Overall description

In constructing a code with the ability of treating systematics and
stellar variability without destroying the rare and shallow transit
events, we considered four vital goals to follow:

– Use a nearly complete time series model by including inter-
nal (i.e., non-instrumental) variability and systematics in the
filter acting on the input time series at the data preparation
phase (before signal search).

2 The source code tran_k2.f developed in this work is available at
http://www.konkoly.hu/staff/kovacs/tran_k2.html, or, can
be requested from the author.
3 https://github.com/petigura/k2phot
4 https://exoplanetarchive.ipac.caltech.edu/
5 https://exofop.ipac.caltech.edu/

– Employ a wealth of cotrending field stars and image parame-
ters following essentially the original ideas of TFA and EPD.

– For the protection of the transit events, no data clipping
should be used. Instead, employ robust fits on the original
(raw) data with iterative weight adjustment.

– Once the transit periods are found, use a full model for signal
reconstruction to compensate for the transit depression be-
cause of the use of an incomplete model at the signal search
phase.

According to these guidelines, by using broadly the notation
of Kovacs (2018), the main steps of data processing are as fol-
lows.

1. We select NTFA time series

{Uj(i); j = 1, 2, ...,NTFA; i = 1, 2, ...,Nj} , (1)

from the field by employing the criteria to be discussed in
Sect. 3.3. These time series are assumed to represent the
commonality shared by most of the stars in the field. In the
particular case of the Kepler mission, the number of data
points per star, Nj is almost the same, likewise their time dis-
tributions. Therefore, the requested interpolation to the same
timebase as that of the target star (as needed for the TFA
filtering) is very safe.

2. Generate self-correcting time series from the background
flux {B(i)} and the centroid pixel position {(X(i),Y(i))} of
the target with N datapoints

{Bj(i); j = 1, 2, 3; i = 1, 2, ...,N} , (2)
{Zj(i); j = 1, 2, ..., 9; i = 1, 2, ...,N} , (3)

where B1, B2, B3 = B, B2, B3, and Z1,Z2, ... =
X,Y, X2, XY,Y2, X3, X2Y, XY2,Y3. These time series are
scaled to unity and then zero-averaged. For {B(i)} a robust
outlier-correction6 is employed to avoid unwanted fluxes
from neighboring stars.

3. Stellar variability in the target time series is represented by a
set of sine and cosine functions

{S k(i),Ck(i); k = 1, 2, ...,NFOUR; i = 1, 2, ...,N} , (4)

where NFOUR is the number of Fourier components. The fre-
quencies are given by k f0, where f0 is close to the reciprocal
of the total timebase. See Sects. 3.1 and 3.4 for the choice of
these parameters.

4. Employ robust least squares minimization to determine the
best fitting linear combination of the three signal constituents
above to the target time series {T (i)}

D =

N∑
i=1

w(i)[T (i) − F(i)]2 , (5)

with:

F(i) = a0 +

NTFA∑
j=1

ajUj(i) +

3∑
j=1

bjBj(i) +

9∑
j=1

cjZj(i) +

NFOUR∑
k=1

dkS k(i) + ekCk(i) . (6)

6 Implying robust polynomial fit with Cauchy weights and iterative 3σ
clipping.
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The weights {w(i)} are determined iteratively, starting with
uniform weighting. We choose the Cauchy weight function

w(i) =
σ2

σ2 + ∆2(i)
, (7)

where σ is the standard deviation of the fit and ∆(i) is the
difference between the observed and the predicted values,
i.e., ∆(i) = T (i) − F(i). At each step of the iteration we can
solve the linear problem within the framework of standard
weighted least squares, but then a correction is needed to the
weights according to Eq. 7. Iteration is stopped when the rel-
ative change in σ becomes less than 0.1%.

5. Minimize the effect of Gibbs overshooting7 at the edges. This
is done by fitting an autoregressive (AR) model8 to the inner
part of the noise-mixed Fourier signal and predicting the val-
ues at the edges. The AR model is not incorporated in the
more extended and full model fits described in step 7, but
only used to prepare the data for the BLS analysis. We refer
to Sect. 3.2 for further details on the AR edge correction.

6. With the converged regression coefficients, and considering
possible change at the edges found at step 5, compute the
residuals {R(i) = T (i)−F(i); i = 1, 2, ...,N} and perform stan-
dard BLS transit search on {R(i)} with successive prewhiten-
ing by the dominant BLS component found at each step of
the prewhitening process.

7. After finding all significant transit components, supply the
model given by Eq. 6 with the transit model and compute the
best transit depths and all other parameters entering in Eq. 6
with this full model. Subtract the non-transiting part of the
fit from the input signal {T (i)} and derive new transit param-
eters from the residuals, allowing to fit all transit parameters
(not only the depth, as in the previous step). With the new
sets of transit parameters loop back to the full model and
compute the next approximation for the transit depth (and
for all other parameters, including the weights {w(i)} – with
the concomitant sub-iterations). The process is repeated until
the same σ condition is satisfied as mentioned at step 4. For
the obvious time constraining nature, in the case of multi-
planetary signals all components are treated separately when
estimating the transit parameters of the individual compo-
nents. However, the transit depths are different from this re-
spect, since they can be estimated in a single grand linear fit
as described above. We refer to step 7 as signal reconstruc-
tion, since during this step all constituents of the signal are
considered and this leads to a (usually much) better approxi-
mation of the transit signal.

In addition to the most crucial ingredients of the data analy-
sis detailed above, there are many other, perhaps less crucial, but
still important particularities worth mentioning. Some of them
(e.g., matrix operation, iteration initialization) are related to the
speed, others to the quality of the performance of the code. Be-
cause these latter ones have an effect on the detection efficacy,
we briefly describe them below.
7 The Gibbs phenomenon is an asymptotic property of the Fourier de-
composition, and follows from the ‘almost everywhere’ type of conver-
gence for square-integrable functions – e.g., for continuous functions
defined on finite intervals. It is often exhibited as high-frequency os-
cillations or overshootings if the order of the Fourier decomposition is
high enough.
8 AR modeling performs backward/forward prediction from the linear
combination of certain number of future/past values of a time series (see
Sect. 3.2 and Fahlman & Ulrych 1982; Caceres et al. 2019, for early, and
recent applications.)

Transit shape - The assumption of box-like transit shape is
used only in the period search. Because of the high precision of
the Kepler data, we found it obligatory to use a better approxima-
tion of the transit (otherwise, when searching for additional tran-
sits, we may not be able to remove the already identified compo-
nent in its full extent). Therefore, the transit shapes are assumed
to be of trapezoidal, with a rounded bottom parts. To be more
specific, we show the shape of this simplified transit model for
a specific set of parameters in Fig. 1. In modeling a given tran-
sit, we adjust four parameters: Tc, the center of the transit, T14,
the full transit duration, T12, the ingress duration and δ the total
transit depth. We do not adjust the relative depth of the rounded
bottom (this is left always at 10% of the depth where the ingress
ends).

Fig. 1. Simplified transit shape used in this paper. The flux drops lin-
early in the ingress and egress parts at a rate given by the T14/T12 ratio
and δ. The U-shaped bottom is supposed to model the overall limb dark-
ening. It has an analytical form of u(x) = δ − 0.1(1 −

√
1 − x2), where

x = 2φ/(φ3 − φ2), with totality start/end phases φ2, φ3 and phase φ,
where the function is to be evaluated.

Single outliers - We recall that no outlier selection is made
in the data processing up to the pre-BLS phase. Since the BLS
search is sensitive to outliers, we focus on these, but carefully
avoid cases when transit-like features are suspected. As a result,
we consider only those instances when the flux decrease is lim-
ited to the middle point among three successive points. The out-
lier status is determined on the basis of the deviation from the
average of the two fluxes left and right of the point of interest.
If this deviation exceeds 3σ0 (with σ0 being the sigma-clipped
standard deviation of the pre-BLS phase time series), then the
flux of this point is replaced by the flux average of the neighbor-
ing points. A similar procedure can be employed in the recon-
struction phase, when the transit signal helps further identifying
the single outliers.

Flare correction - In a non-negligible number of stars, flares
may also jeopardize the success of the search for periodic tran-
sits, since these events increase the colored-noise component of
the BLS spectrum. Here we resorted the simplest and far from
optimum way to remedy the effect of flares. By considering only
events of flux increase relative to the average or to a given transit
signal – depending on the stage of the analysis – we replace the
“positive” outliers by the average or the corresponding values
of the transit signal. We do not correct any “flare” that does not
exceed the 3σ0 limit as given above.

3.1. Detuned Fourier fit

To handle stellar variability, we opted for traditional Fourier de-
composition, whereby – based on very fundamental and well-
known properties of Fourier series defined on a finite interval –
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we can fit the smooth part of the observed flux variation. Even
though any stellar variability has an inherently stochastic compo-
nent (primarily due to surface convection) the adjacent fluxes are
correlated at some degree, and the variation appears to be contin-
uous (albeit non-periodic). Consequently, we can apply Fourier
decomposition for a very large class of variations. Even though
this is true, we have to be aware of the fact that the finite time-
base inevitably introduces discontinuities, and as such, induce
what is commonly known Gibbs oscillations close to the edges
of the dataset. It is obvious that one needs to remedy this prob-
lem, since these high-frequency oscillations can easily dominate
the time series after corrections for systematics and stellar vari-
ability.

To avoid any data loss by simply chopping off some fraction
of both ends of the dataset, we searched for various methods
in the literature devoted to Gibbs oscillation minimization (e.g.,
by using the Lanczos sigma factor9). Because we did not find a
suitable one, we tested the idea of period detuning (a method we
did not find in the literature scanned). Although the precise (or at
least better than presented) discussion of the method is out of the
scope of this paper, we illustrate the method at work on an ex-
ample. The idea is simple. Increase the fundamental period (and
its harmonics) by some amount and thereby push the oscillations
outside the timebase of interest.

We show the effect of detuning in Fig. 2. We generated a
sinusoidal signal on the observed timebase of one of the mem-
bers of Campaign 5. We chose the following parameters: P =
7.6508 d, A = 10 ppt (parts per thousand, i.e., A = 0.010), with
an additive Gaussian (white) noise of σ = 0.001 ppt. We set the
order of the Fourier fit equal to 50. We see that detuning works
very efficiently, with only a negligible overshooting close to the
noise level. The degree by which detuning may eliminate Gibbs
phenomenon depends on the type of signal and the order of the
Fourier series. Nevertheless, the method worked neatly in nearly
all cases encountered so far during the analysis of the 20000 stars
of Campaign 5.

3.2. Autoregressive edge correction

Here we focus on those (not very numerous) cases when detun-
ing does not work. Instead of trying to adjust the Fourier order,
we opted to employ an AR model on the noise-perturbed Fourier
fit and predict the Gibbs-free signal at the edges. The AR mod-
eling is always performed and compared with the Fourier fit and
the one is chosen that yields a better fit to the data. The main
steps of the AR modeling are as follows.

a. Cut some fraction (L data points, some 5% the full set of
N points) of the Fourier signal at the edges of the dataset.
Add Gaussian noise to the signal to avoid complete fit to the
Fourier solution and thereby reproducing the Gibbs oscilla-
tions at the edges, where the AR model is used to predict
the oscillation-free continuation of the Fourier solution. The
size of the noise can be estimated from the fit based on the
Fourier model.

b. Interpolate the above noisy Fourier signal {x(i); i =
1, 2, ..., n} to an equidistant timebase and fit it by a high-
order AR model. To maintain stability we use an AR order of
m = 900. To determine the autoregressive coefficients {a j},
we use one-side predictions for the outermost m data points,
i.e.,

9 See Weisstein, Eric W. "Lanczos sigma Factor." From MathWorld–A
Wolfram Web Resource.
https://mathworld.wolfram.com/LanczosSigmaFactor.html

Fig. 2. Illustration of the effect of frequency detuning with fixed fre-
quency components { fi = (i + 1)/(β × T )}, where T is the total time
span and β = 1.0 for the classical Fourier decomposition (steelblue
dots) and β = 1.05 for the detuned case (brown dots). The lower panel
shows the input sinusoidal signal (black line) and the Fourier fit (yellow
line – there is no β dependence on this scale)

.

x(k) =

m∑
i=1

aix(k + i) and x(k) =

m∑
i=1

aix(k − i) , (8)

for the left and the right ends, respectively. For the middle
of the dataset (i.e., from k = m + 1 to k = n − m we use a
two-side model with simple arithmetic mean

x(k) =
1
2

m∑
i=1

ai[x(k + i) + x(k − i)] . (9)

Least squares with equal weights are used to determine the
AR coefficients {ai}.

c. Predict the outermost L values of the Fourier points from
those interior to the edges. We found that these predictions
may still have some curvature or mild wavy behavior. To
eliminate this feature, and protect any possible transit feature
close to the end points, we robustly fit 5th-order polynomials
to the AR predictions.

d. Compare the residuals between the systematics-free data and
approximations obtained by the AR and Fourier modeling.
Select the one that yields smaller Root Mean Square (RMS)
and pass the so-obtained systematics- and variability-free
time series to the BLS routine.

To illustrate the method at work, we generated a synthetic
sinusoidal signal with P = 9.091 d, semi-amplitude A = 500 ppt
and superposed a transit signal with Ptr = 14.286 d, δ = 0.2 ppt.
We also added two individual boxy transits near the end points
to test if the method will preserve these events. The order of the
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Fourier series was 50. The result is shown in Fig. 3. It is im-
portant to note that the Fourier fit was made with detuned fun-
damental period (see Sect. 3.1). As it was emphasized earlier,
detuning is very efficient in the elimination of the Gibbs oscilla-
tions. If detuning is not efficient enough, AR modeling may go
to the rescue and allow the detection of faint signals.

Fig. 3. Illustration of the elimination of the Gibbs oscillations at the
edges of the dataset by using AR modeling. Bottom: input dataset (black
line: noisy sinusoidal with transits), Fourier fit (yellow). The transits are
not visible at this scale. Middle panels: residual signal after subtracting
the best Fourier fit and the best AR model (black and red dots, respec-
tively). The green dots indicate where the Fourier fit was accepted. Up-
permost panel: residual time series obtained by Fourier (black) and AR
modeling (light blue). See text for the main signal parameters.

3.3. TFA template selection

The selection of the proper set of cotrending time series is one
of the fundamental questions in filtering out systematics from the
observed signal. The most liberal choice one can try is to avoid
clear variables showing excessive scatter, but otherwise paying
not too much attention to stellar variability in the cotrending set
(i.e., Kovacs et al. 2005). The somewhat vague (but – under cer-
tain circumstance – working) argument here is that in the pres-
ence of noise and targeting transits, the variability of the cotrend-
ing time series will be scaled down due to the nearly constant
nature of the target time series. The transits, due to their short
time scales will not be much effected, and the final result will
be positive, since the cotrending time series will fit primarily the
systematics, due to their coherence with these components in the
flux variation of the target. Interestingly, this approach has been
fairly successful over the numerous applications in searching for
periodic transits.

In spite of the success of the above ‘brute force’ method, ef-
forts have been made to decrease the number of cotrending time
series as much as possible, to: a) avoid signal degradation due
to overfitting, b) using only the essential (i.e., ‘most common’)
components and aid a better separation of the transit signal and
systematics. The most obvious approach in reaching these goals
is to employ PCA on the pre-selected set of candidate cotrending
time series and use only those PCA components that are ‘essen-
tial’, based on their eigenvalues, a product of the PCA analy-
sis. From the very first application in the SysRem algorithm by
Tamuz et al. (2005), this selection method has been widely used,
often supplemented by other criteria, such as selecting dominant
components from the PCA set based on the statistical properties
of the regression coefficients of the cotrending vectors (Petigura
& Marcy 2012). Or, in another approach, application of maxi-
mum likelihood criterion by considering the effect of the non-
Gaussian nature of the full model with systematics (i.e., PDC-
MAP, the Kepler pipeline by Smith et al. 2012; Stumpe et al.
2012).

Because the Kepler data are dominated by systematics, rather
than white noise (at least down to the Neptune/Super Earth
regime), here we recognize the importance of avoiding variables
in the TFA templates set. However, we still do not use any PCA-
like combination to select the ‘most dominant’ correcting vec-
tors. This is because templates, that are ‘less common’ could
also be useful in the case a some targets. For example, outlier
data points may lead to the rejection of a particular template
in the PCA classification, whereas the same template may be-
come rather instrumental in filtering out these outlying points if
and when they occur in a target of interest. This is very impor-
tant, since the signal of interest (the transit) is also some sort of
outlier. Preserving the transit but treating the outliers ‘naturally’
(i.e., without clipping them) is an important ingredient of a suc-
cessful transit (or transient) search.

The main steps in selecting the TFA template set are as fol-
lows:

– Spatially uniform sampling: Because systematics are differ-
ent across the field of view (FOV), we aim for spatially ho-
mogeneous sampling. From each of the 19 tiles (built up
from 2 × 2 closely spaced CCD units) we select the same
number of templates. Because of the distortion introduced
by the use of equatorial coordinates (α, δ), we shifted, ro-
tated and stretched/squeezed the FOV so that all tiles became
approximately of the shape of a rectangle. This step is nec-
essary for the simple bookkeeping of the potential templates
and their association with a given tile. The transformation
formulae to the new coordinate system (X,Y) are as follows:

∆α = α − α0 , (10)
∆δ = δ − δ0 , (11)
X = (∆α cosω + ∆δ sinω) cos δ , (12)
Y = ∆δ cosω − ∆α sinω . (13)

We determined the transformation parameters with a simple
trial and error method. For C05 we obtained: α0 = 130.2,
δ0 = 16.8, ω = −1◦. In each tile the potential templates
were chosen from a uniform random distribution on the
brightness-ordered list of stars. We allowed up to 200 ran-
dom tries from each tile and selected those stars that satisfied
the criteria below.

– Focus on low photon noise: Templates are chosen from the
bright side of the magnitude distribution of the campaign
field (in the case of C05, this limit was set at K p = 13.4,
corresponding the brightest 10000 stars in the field).
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– Avoid near singular cases: The distance between two tem-
plate stars should exceed some value, dmin, limited by the
PSF of the Kepler telescope.

– Small overall scatter: The RMS of the residuals around the
fitted low-order polynomial {p} to the SAP time series {x}
cannot be greater than σt, i.e., σ(x/p) < σt.

– Small Fourier power: The Fourier fit { f } to the residuals of
the polynomial fit above should not improve the goodness of
fit by more than a factor of rσ, i.e.,
σ(x/p)/σ(x/p − f ) < rσ.

We used 2nd order polynomials and 50th order Fourier series in
all template sets. These parameters were chosen after various
tests, including visual inspection of the candidate templates. The
other parameters resulted from the same procedure, and set at the
following values: σt = 0.03 (in relative flux units, normalized to
1.0 in respect of the average flux of the given star), rσ = 1.2. The
final set of templates is shown in Figure 4. It is intriguing that the
tile in the center contains significantly less number of templates
than all the other tiles. A brief visual examination of the light
curves (LCs) for this tile revealed an overall lower level of satel-
lite rotation adjustment. As the referee suggested, the different
behavior of the objects on the central tile could be related to the
closeness of this tile to the rotation axis of the satellite. How-
ever, the general drift and the ramping at the start of the cam-
paign remained, leading to a poor polynomial fit at low order.
Consequently, the Fourier fit on the residuals became more sig-
nificant and that led to the failure in satisfying the "small Fourier
power" criterion by most of the LCs associated with this tile. Al-
though the template number distribution among the tiles can be
made uniform easily by using a higher order polynomial fit, this
does not change the detection efficacy in any major way (i.e., all
detections discussed in this paper remain reliable/strong).

Fig. 4. Distribution of the TFA template stars (red dots) for 387 tem-
plates. The X and Y coordinates (given in [deg] relative to the center
of the field) result from the transformation of the equatorial coordinates
to remedy strong distortions of the CCD subfields (see text). The best
fitting rectangles to the hulls of the subfields are shown by black lines.
The small blue dots show the stars with Kepler photometry.

3.4. Optimizing the Fourier order

Determination of the Fourier order NFOUR is important, because
in critical cases (e.g., in the presence of high-frequency or high-
amplitude stellar flux variations), the shallow transit signal can
be easily washed out by a too high-order fit or by leaving in the

high-frequency components because of a too parsimony choice
of the Fourier order. Due to the complexity of the time series, and
the specific representation of it via a Fourier series with frequen-
cies independent of the actual contributing components, standard
methods (e.g., Fisher test) for optimized parameter number are
not straightforward to employ. The method presented here is far
from being exact. It is largely based on the general pattern of the
RMS of the Fourier fit as a function of the number of the Fourier
components (in brief the Fourier order). The scheme and the pa-
rameters used are derived form the large number of tests per-
formed on the Campaign 5 data and serve one goal only: separate
the smooth Fourier component from the discrete transit events.

It is also important to investigate if testing the SAP LCs is
suitable for a reliable estimation of the best Fourier order. We
found that systematics may lead to serious errors in the estimated
order. Therefore, we decided to perform a TFA filtering first, and
then employ the method described below on the filtered data to
estimate the Fourier order.

The main goals of the optimization are as follows: i) find a
simple and easy to use criterion that handles most cases of stellar
variabilities encountered in the Kepler survey; ii) minimize mix-
ing instrumental systematics and stellar variability; iii) perform
the determination of the optimum order quickly (before the com-
plex filtering of the input time series, involving systematics and
stellar variability); iv) aim for low Fourier order (CPU demand
increases sharply by higher Fourier order).

All these point to seeking low-order fits, and we restrict the
search to NFOUR < 150. Concerning iii), we linearly interpolate
the TFA-filtered LC of the target to an equidistant basis and per-
form the test by using simple Fourier transforms (equivalent to a
least squares fit on an equidistant timebase, but much faster).

As expected, σ(NFOUR) – the RMS of the residuals of the
fit – has a very steep decreasing part for low NFOUR and then,
a long, nearly linearly decreasing tail toward higher NFOUR val-
ues. If there is a high-frequency stellar variation, then we have
other steep drops in RMS at large-enough NFOUR values. The
nearly flat parts in the σ(NFOUR) function make the simple Fisher
test difficult to use for parameter optimization. Therefore, the
method described below considers both the statistical properties
of the RMS of the Fourier fit and the possible late (i.e., high
NFOUR) convergence of the fit.

– Fit the SAP LC with the TFA template set to be used by the
routine performing the full analysis for the target. Use the
residuals of this fit in the subsequent steps.

– Compute σ(NFOUR) for NFOUR = 1 − 150 by omitting 5% of
the data points at both edges (to avoid extra increase in RMS
due to the Gibbs phenomenon).

– Perform robust linear fit to σ(NFOUR) between NFOUR = 100
and 150.

– Compute S 1, the RMS of the above linear fit.
– Extrapolate this line all the way to the lowest Fourier order,

and compute the difference ∆L between σ(NFOUR) and the
extrapolated line L(NFOUR).

– The first type of optimum Fourier order M1 is defined as the
largest order at which σ − L is greater than S 1.

– Compute the ratio R2(NFOUR) = σ2(NFOUR)/σ150, where
σ150 is the standard deviation of σ2(NFOUR) at the highest
Fourier order tested, i.e., σ150 = σ2(150)

√
2/(0.9n), where n

is the original number of data points with a factor taking into
account the data cut at the edges (see above)10.

10 The formula cited for the standard deviation of the sam-
ple variance is valid under the assumption that the resid-
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– The second type of optimum Fourier order M2 is defined as
the largest order at which R2(NFOUR) − R2(150) > 6.

– Since we found too low order fits often insufficient, the
optimum Fourier order is defined as follows: Mopt =
MAX(20,MIN(M1,M2) + 10).

Fig. 5. Examples on the optimized selection of the Fourier order. Left
column: normalized standard deviation of the Fourier fit as a function of
the Fourier order. Red line shows the robust linear regression to the data
in NFOUR = 100 − 150. Right column: Fit variances over the standard
deviation of the fit variance at NFOUR = 150. Vertical yellow stripes
show the optimum Fourier orders derived from the statistics given in
the header. See text for further details.

Figure 5 exhibits four typical types of the functions described
above. Examples shown are from the list of planetary candidates
of Kruse et al. (2019). The uppermost panel shows the pattern
for an apparently non-variable star. As expected, the optimum
Fourier order is low. The R2 statistic shows a similar pattern.
Since R2 gives the change in σ2(NFOUR) normalized to its theo-
retical error at the highest Fourier order tested, the absolute value
of the change in R2 is important. This is different from the statis-
tic derived from the linear fit to the tail of σ(NFOUR), that yields
a measure only of the topological property of the RMS variation.

The next panel shows the case when the size of the stellar
variability is similar to the size of the systematics. The robust fit
and the interval chosen to perform the linear regression leads to a
bad approximation of the low-NFOUR regime, reflecting the trend
expected from the high-NFOUR regime, where the harmonic con-
tent of the signal is supposed to be exhausted. The point where
the prediction deviates by more than a given amount (see above)
yields an estimate of the minimum Fourier order. Similarly, the
R2 statistic measures the relative change, and when it exceeds
a certain amount, we can consider that value of NFOUR as the
minimum value needed to represent the Fourier content of the
signal.

The other two examples are dominated by stellar variability.
The target in the bottom panel is a good example for the stepsize
variation of σ(NFOUR) and the need to map this function to rather
high values. From the rule given in last step of the optimization

uals follow a Gaussian distribution. For an easy reference,
see: https://stats.stackexchange.com/questions/29905/
reference-for-mathrmvars2-sigma4-left-frac2n-1-frac-kappan

process, from top to bottom, the finally used Fourier orders are
as follows: 20, 86, 53 and 110.

Fig. 6. Example of the capability of joint robust Fourier and TFA fit
in disentangling stellar variability and measurement systematics. The
target name and the type of the final data product are indicated in the
header. The Fourier order is optimized at NFOUR = 83. From the bottom
to top: raw (SAP) LC from KEP; TFA and FOUR components; raw
minus (TFA+FOUR) components – the periodic dips due to the transit
signal emerge; folded LC with the best BLS period. Continuous black
line: best fitting transit signal.

To illustrate the overall performance of the code and the va-
lidity of the optimized choice of the Fourier order, Fig. 6 shows
the case of EPIC 211897272. The quasi-periodic stellar variabil-
ity has been well disentangled from the systematics and resulted
in the detection of the transit signal with a depth of 0.5 ppt (some
40-times smaller than the amplitude of the SAP signal, heavily
scrambled by systematics in the first half of the campaign).

In summary, to avoid excessive run times by using flat, over-
estimated Fourier order for all targets (and risk loosing some
of the important candidates because of overfitting), optimization
seems to be an important part of the data processing. We found
that well over 90% of the potential candidates can be found in
this way and get signatures of hidden signals for the remaining
few percents. These targets can be resolved by performing more
detailed test, including detection sensitivity against changing the
Fourier order.

4. Significance of the signal reconstruction
(complete signal modeling)

When unknown signal components are searched without the ex-
act knowledge of the perturbing components, it is unavoidable
to introduce some deformation in the signal searched for. This is
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simply because of the (natural) incompleteness of the model we
use for signal search. This effect is present even by using some
“protective shield” for the unknown component, like the self-
adjusted weights on outliers as used in this paper. There have
been attempts to avoid signal degradation due to the use of in-
complete signal models (Foreman-Mackey et al. 2015; Angus
et al. 2016; Taaki et al. 2020), but subsequent work by Kovacs
et al. (2016) showed that full modeling in signal search is con-
siderably less efficient than thought, and, obviously, more CPU
demanding.

Although the overall accuracy is always a focus of attention
in deriving parameters of interest in any physical system, certain
parameters may bear higher importance. In the particular case
of extrasolar planets, the radius (through the scaleheight) is a
crucial parameter in planetary atmosphere models, and, it is ob-
viously important in population synthesis studies. For example,
the “radius gap” problem (the low number density of planets at
Rp ∼ 2REarth – see, e.g. Van Eylen et al. 2018; Fulton & Petigura
2018) is quite sensitive to the radius error, that should be pushed
below 5% to sharpen the feature needed for further theoretical
considerations (Petigura 2020).

Constituting the last step of the signal search, reconstruction
requires the knowledge of the signal period and the approximate
parameters of the transit. By adding this approximation to com-
plete the signal model, we can iteratively improve the signal pa-
rameters by solving this complete model (see Kovacs et al. 2005,
for the first application of this approach). Here we use Eq. 6 sup-
plied by the successive approximations of the transit signal to
minimize Eq. 5 with the adjusted/optimized weights {w(i)}. We
note in passing that full modeling is a must in most cases for
precise transit parameter determination and used commonly in
planet atmosphere studies based on space observatory data such
as HST and Spitzer (Knutson et al. 2008).

In the following we investigate the signal preserving proper-
ties of tran_k2 from injected signal tests performed on a subset
of field C05. Because of the substantial size of the parameter
space, we simplify the test to all transit parameters fixed, except
for the transit depth, our main focus of interest. In preparing the
tests, first we define our detection parameters and criteria.

4.1. Signal detection parameters

We consider the signal detected in a simulation if all criteria be-
low are satisfied:

1. |1 − Pobs/Pin j| < 0.002
2. δ < 0
3. S NRsp > 6 with S NRsp = (sp(peak)− < sp >)/σ(sp)

Here Pobs denotes the observed period at the peak power of the
BLS spectrum of the time series with the injected test signal
of period Pin j. The second condition filters out possible flares,
whereas the third one is our standard condition to characterize
the signal to noise ratio (SNR) of the BLS spectrum (sp(peak),
< sp > and σ(sp), respectively, stand for the peak value, the av-
erage and for the standard deviation of the spectrum). The search
was performed in the frequency band [1/T, 2.5] c/d, where the
lower limit comes from the constraint of avoiding large gaps in
the trial phase-folded LCs at periods longer than the total time
span T . To minimize low-frequency power surplus (Bakos et al.
2004), the spectrum was robustly fitted by a 6th-order polyno-
mial and the residuals were used to compute S NRsp.

Although in the particular case of test signals we did not use
any other parameters to characterize the significance of the sig-
nal, in the transit survey performed on the field of C05, we also

utilized the quantity we call Spectral Peak Density (SPD). This
parameter is aimed for the quantification of the sparsity of the
spectrum, yielding small values for those with few large peaks
and large values for those with many small ones. The former
spectra are more likely to contain significant signal, whereas the
latter ones look more closely to what we expect from a noise.
For further reference, SPD is defined as follows:

S PD =
N(sp/sp(peak) > spcut)

N(sp)
, (14)

Where N(sp/sp(peak) > spcut) is the number of spectral val-
ues (normalized to the highest peak) exceeding a certain cut-
off from the available N(sp) spectral points. Trained on the C05
data, we found that spcut = 0.3 yields a quite reliable estimate of
the “cleanliness” of the spectra and the derived S PD values are
consonant with the visual inspections.

Although S NRsp and S PD yield useful information on the
signal content of the time series, the quality of the derived folded
light curve may not always entirely in agreement with the scores
received from these parameters. This is because spectral param-
eters reflect the relative significance of the peak component to
other possible components. For example, in the case of rare or
single – otherwise high-SNR – events, S NRsp and S PD will, in
general, indicate low significance, whereas the folded LC will
obviously suggest the presence of a strong signal. Therefore,
largely following Kovacs et al. (2005), we characterize the qual-
ity of the folded LC by the Dip Significance Parameter (DSP):

DS P =
|δ|

√
varδ + varoot + vardi f f

, (15)

where |δ| is the absolute value of the transit depth, varδ is the
variance of the average (i.e., square of the error of the mean)
of the intransit data points (i.e., all points from the first con-
tact to the last one). In the evaluation of the remaining vari-
ances we divide the phase-folded LC into bins of the same
length as the full transit.11 By omitting the bin correspond-
ing to the transit, we compute the bin averages for the Nb out
of transit (oot) bins {aoot( j); j = 1, 2, ...,Nb}. The variance of
these values is varoot. This quantity may not decrease DSP to
the level needed in the case of ragged LCs with large varia-
tions between the oot bins. Therefore, we added the average of
the squared differences between the adjacent bin averages, i.e.,
vardi f f = 1

(Nb−1)
∑Nb−1

j=1 (aoot( j + 1) − aoot( j))2.

4.2. Tests: transit depth and transit duration

As we have already mentioned earlier in this section, we limit
the tests on signals that differ only in transit depth, with all other
parameters fixed during each simulation. Two types of transit
signal are used:

– Signal A: Ptr = 11.111 d, T14 = 0.2 d, T12/T14 = 0.2, 0.1 <
|δ| < 1.9 ppt, no sinusoidal component

– Signal B: Signal A with a sinusoidal component; period:
7.692 d, amplitude: 20 ppt.

We note that the center of transit and the phase of the sinusoidal
component are unimportant in the present context. The transit
depth δ is chosen from a uniform distribution. The range of tran-
sit depth was chosen to roughly match most of the values of the
candidates in the list of Kruse et al. (2019).
11 Choosing the bin size the same as that of the full transit ensures sim-
ilar statistical treatment of all parts of the LC.
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We used our “400” TFA template set of 387 stars with
low/small stellar variability from the PET database, and injected
the signals above. These signals were tested with and without
employing the reconstruction option. We focus on the transit
depth and duration in the comparison of the injected and derived
parameters.

From the 387 injected signals of type A, we recovered 297.
For type B injections the rate was slightly lower (294). Figure 7
shows the ratio of the detected and injected values for δ and T14.
We see that with signal reconstruction the derived basic transit
parameters are essentially unbiased, however, with a scatter in-
creasing toward signals of lower significance. Also, except per-
haps for the transit duration, there is no difference (in statistical
sense) between the parameters derived from signals with or with-
out a sinusoidal component.

Fig. 7. Ratio of the observed and injected transit depths δ and durations
T14 as functions of the dip significance parameter DSP. Transit param-
eters have been derived by using signal reconstruction. Red and blue
points show the result with (signal B) and without (signal A) added si-
nusoidal component to mimic stellar variability. Inset labels show the
mean differences and their errors for signal A. The estimated transit pa-
rameters show no overall bias.

On the other hand, without employing complete signal
model, we get a substantial bias (Fig. 8). As expected, the ob-
served transit depths are lower than the injected values, with a
strong increase in this difference toward less significant signals.
The transit duration follows the same same pattern, albeit the
bias is somewhat lower.

The above tests give supporting evidence that tran_k2 is ca-
pable of yielding unbiased estimates of the basic transit param-
eters, assuming that a complete signal model is used. We expect
that, in general, transit depth and duration are estimated better
than ∼ 10% for strong (DSP> 12) signals. For weaker signals
the errors increase, but unlikely to go above ∼ 30%, while main-
taining the unbiased nature of the estimates.

5. Comparison with other searches

Before we compare the detection rates between our search by
tran_k2 and other searches, upon the suggestion of the ref-
eree, we present the averages of the standard deviations of the
means, taken on a 6.5 hour timebase of our final data product

Fig. 8. As in Fig. 7, but without employing signal reconstruction. The
estimated transit parameters show significant bias, especially for less
significant signals at lower DSP values.

(i.e., including signal reconstruction). This quantity, often called
as Combined Differential Photometric Precision (CDPP, Chris-
tiansen et al. 2012), is devoted to sense the potential of transit
detection based solely on the overall error of the means on a
given (transit) time scale. There are various approximations to
this quantity (e.g., Vanderburg & Johnson 2014; Aigrain et al.
2016), often including the application of a Savitsky-Golay-type
(i.e., least squares polynomial) filtering of the final data product
(e.g., Gilliland et al. 2011; Luger et al. 2018). Here we relied on
the full time series model and computed the 6.5 hour CDPP from
the unbiased estimate of the standard deviation (σfit) of the resid-
uals between the model and the input time series. With the over-
all cadence of 0.5 hours, we get CDPP(6.5)= σfit/

√
13. For the

∼ 20000 stars analyzed, we obtained the result shown in Fig. 9.

Fig. 9. Average of the standard deviations of the 6.5 hour means (in
parts per million) vs stellar brightness. The final time series (i.e., the
full, reconstructed models) were used to calculate the standard devia-
tions from the residuals between these, and the input (raw) time series.
Continuous line shows the robust fit of a 10-th order polynomial to the
data.

Luger et al. (2018) reports for the updated EVEREST
pipeline basically a full agreement for the ridge CDPP values
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with those of the original Kepler mission. Vanderburg & Johnson
(2014), in their Table 1 compare the CDPP values of SFF with
those of the original Kepler mission. From this table we have
18, 22, 30 and 81 ppm precision at Kp = 10.5, 11.5, 12.5 and
14.5. From the ridge fit to the CDPP values in Fig. 9 we have
20, 23, 32, and 89 ppm at these magnitude values. In spite of
the impressive close approximation of the precision of the orig-
inal Kepler mission, we caution that low CDPP values tell only
that the residuals are small at the particular window used, but it
does not grant automatically a powerful transit detection. This
depends on the delicate balance between noise suppression and
transit signal preservation.

One of the basic steps in testing the code performance is
to verify earlier detections and check the consistency of the
transit parameters. Although this is obviously an important hu-
man/machine training ground and crucial test in a comparison of
the detection efficacy of different methods, there are two caveats
to keep in mind before making too far reaching conclusions from
such a test: i) the result may depend on the input time series (SAP
photometry), that are obtained differently by various groups; (ii)
detection criteria and thoroughness of the analysis might vary
between the different searches, discarding the trace of transit by
one search and considering it by other.

Focusing only on Campaign 5, in the basic verification we
relied primarily on the 115 host stars with 138 planet candidates
of Kruse et al. (2019). In addition to this, quite recent work, we
also tested the 8 candidates in Zink et al. (2020). The basic anal-
ysis was performed on the PET database, but in unresolved cases
we also used the KEP database.

From the 115 targets of Kruse et al. (2019), 103 have been
identified with high confidence, by using the survey setting of
the code (i.e., optimized Fourier order with detection criteria
listed in Sect. 4.1). The remaining 12 targets were examined
in detail. By using the KEP data, 7 of these were reclassified
as “good/strong” detections. EPIC 211613886 showed up as a
high SNR candidate in both datasets, but with half of the pe-
riod given by Kruse et al. (2019). Therefore, we accepted it as a
“detection”. EPIC 211988320 shows multiple, apparently non-
repetitive transit events, yielding high SNR detection, but the
favored period is different from the one given by Kruse et al.
(2019). Because of the non-repetitive nature of the events and the
significance of events, we consider this candidate as “detected”.
The case of EPIC 211939692 is quite similar, but the Fourier
order is overestimated, yielding a lower SNR. Detailed exami-
nation showed that with lower Fourier order this target comes
out as strong as EPIC 211988320. Finally, we are left with only
two candidates (EPIC 211432922 and 211913395) that we could
not detect, no matter how hard we tried (in agreement with the
conclusion reached at the various earlier stages while developing
tran_k2).

It is an obvious matter of interest to compare the basic transit
parameters derived in this study and that of Kruse et al. (2019).
Figure 10 shows the result of this comparison. In the light of the
tests presented in Sect. 4.2, it is quite surprising the systematic
difference and the large scatter we see between the two studies.
To add to this discrepancy, the injected signal test performed by
Zink et al. (2020) indicate that the EVEREST transit depths are
lower by some 2.3% as they should be. Unfortunately, we have
no answer at this moment on the source of the apparently signif-
icant discrepancy between our results and those of Kruse et al.
(2019).

Interestingly, while testing their planet vetting pipeline on
C05, Zink et al. (2020) found 8 candidates that do not enter in the
list of Kruse et al. (2019). At the same time, they could not verify

Fig. 10. Comparison of the transit depth δ and transit duration T14 be-
tween this work (KO) and that of Kruse et al. (2019) (KR). The 103
targets detected from the analysis of the PET dataset are plotted. The
mean differences and their errors are shown in the upper right corners.

49% of the candidates of Kruse et al. (2019). Considering that
both studies are based on EVEREST data (however, appended
with different analysis tools and vetting criteria), this is quite
intriguing and shows the delicacy of planet search in the strongly
contaminated environment of stellar variability and instrumental
systematics.

In checking the candidates of Zink et al. (2020), we found
three targets confirmed with high SNR. The 4th planet candi-
date in EPIC 211562654 is confirmed. For EPIC 211711685
we found a single event in addition to the component claimed
by Zink et al. (2020). EPIC 212119244 was also confirmed, al-
beit with low SNR at twice of the period given by Zink et al.
(2020). There remained two candidates (EPIC 211953244 and
212020330) that we could not confirm, in spite of extensive test-
ing.

6. Search for new candidates

Although the field of C05 has been scrutinized by many searches
(Barros et al. 2016; Pope et al. 2016; Mayo et al. 2018; Petigura
et al. 2018; Kruse et al. 2019; Zink et al. 2020), we decided to
do the same, based on the high success rate in identifying the al-
ready known candidates. With the goal of presenting a secure list
of new candidates for potential followup studies, we surveyed
the brightest 20000 stars from the nominally available ∼ 25000
targets. The analysis was run on the KEP and PET datasets sepa-
rately. The signal search was performed in the frequency interval
of [0, 3] c/d. We used the “400” template sets for the respective
datasets, and the optimization method for selecting the Fourier
order.

The most viable candidates were selected by using the fol-
lowing detection criteria: S NRsp > 7, S PD < 0.5, δ < 0,
DS P > 5 , Nev > 1, T12/T14 < 0.3 and Nev/Nint < 0.5. The
first two conditions simply require that the BLS spectrum be of
high-SNR and sparse-enough, as expected from the spectrum of
a transit signal embedded in moderate to tolerable noise. The
next two conditions require that the folded signal should imply
flux decrease, and also be of reasonably significant. The next
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condition makes avoidance of single transits (nevertheless, we
found a nice one, likely at an earlier stage of search, when such
a criterion was not employed). To decrease the binary false pos-
itive rate, we added the condition of minimum steepness of the
ingress/egress phase. Finally, to avoid false detections due to re-
peating outliers, we required the transit be reasonably well cov-
ered by the individual events (i.e., the number of transit events
should be considerably smaller than the number of intransit data
points). Clearly, this might lead to missing some candidates with
transit durations less than an hour, or so.

For the simplest way of linearly decreasing the total running
time on our multiprocessor computer, the data were analyzed
parallel in segments containing 5000 stars in each set. The se-
lection criteria above yielded 233, 127, 83 and 39 items from
these sets containing objects of decreasing brightness (and, con-
sequently, of higher noise). These pre-selected targets were then
more deeply inspected and then selected as viable candidates
if the inspections and tests (e.g., stability of the signal against
changing the Fourier order, sensitivity to the selection of the TFA
template set) ended up positive. Then, we deselected those can-
didates that were already suggested by the surveys listed above.
Thereafter, a brief check of the physical plausibility of the de-
tected companion was made on the basis of the published stel-
lar parameters from recent large-scale studies, aided by the Gaia
satellite. The top candidates were then further examined for ad-
ditional transit components.

We found 15 candidates12 passing all these steps and end-
ing up as potential planetary systems. The derived photometric
transit parameters for these systems are given in Table 1, the ac-
companying diagnostic plots are shown in Appendix A.

By using the stellar parameters accessible through Gaia DR2
(Gaia Collaboration et al. 2018), the TESS and the K2 stellar
catalogs (Huber et al. 2016; Stassun et al. 2019; Hardegree-
Ullman et al. 2020), we checked the physical properties of the
new candidate systems. As a sanity check, assuming central tran-
sit and circular orbit, we computed the relative transit duration
Qtran =T14/Porb through the basic stellar parameters and orbital
period:

Qtran = 0.0756 Rs M
− 1

3
s P

− 2
3

orb , (16)

where the stellar parameters are in solar units, the period is in
days. Please note that this check does not depend on the blending
status of the target.

In testing the consistency of the calculated transit durations
with the observed ones, first we selected systems with well-
established planetary status (see Appendix B, Table B.2). Then,
we plotted the corresponding Qtran values together with those of
the new candidates. Figure 11 shows that the new candidates pre-
sented in this paper fit well to the overall topology of this plot:
most of the systems lack exact central transit, therefore, the cal-
culated Qtran values are greater than the observed values.13 Sev-
eral systems have Qtran(calc) < Qtran(obs). The most likely cause
of this discrepancy is the insufficient accuracy of the stellar pa-
rameters. Another, albeit less likely/efficient contributing factor
is orbital eccentricity. The most prominent downward outlier if

12 We could not find traces of these candidates in any other earlier pub-
lications. However, the single transit of EPIC 211503363 is also nicely
visible in the processed (PDC, TERRA) light curves at the NASA/IPAC
exoplanet site.
13 This is also true for the single transiter EPIC 211503363. For the
minimum orbital period of ∼ 58 d the calculated transit duration is
greater than observed (0.020 vs 0.013), allowing longer periods for the
system.

WASP-4 (Wilson et al. 2008). All current stellar radius values
are in the close neighborhood of 0.90 R/R� (Bonfanti & Gillon
2020), making it difficult to increase the calculated Qtran value.
High resolution imaging (Bergfors et al. 2013) does not indicate
any nearby companion that might indirectly affect the transit du-
ration.

Fig. 11. Observed vs calculated relative transit durations for the 15 sys-
tems presented in this paper, together with the 30 HATNet and 30 WASP
planetary systems detailed in Appendix B. Equation 16 was used to de-
rive Qtran(calc). The surplus of objects above the 45◦ line indicates the
expected effect of off-central transit. The slight excess of systems below
the 45◦ line is due to errors in the stellar masses and radii.

In the evaluation of the candidates, we estimated the planet
radii with the assumption that blending was not an issue for any
of the targets. The stellar and planetary parameters are summa-
rized in Table B.1 of Appendix B.

We found that the majority of the companions have
radii between 1 and 2 Earth radii. We have 5 candidates
(EPIC 211537406, 211777794, 211825799, 211977277 and
211503363) with sub-Jupiter–Neptune radii. Except for EPIC
211537406, in this group of more massive planets, all compan-
ions are around evolved (off of the main sequence) stars.

The brightest candidate, EPIC 211914045 is special in our
sample. The star is a K dwarf and the companion has a sub-
Earth radius of 0.63 RE. The candidate was detected only in the
KEP time series. This can be the result of the optimized aperture
used by the KEP pipeline. The PET time series are generated by
k2phot with an aperture size of 3 × 3 pixels. The correspond-
ing square covers the target and avoids gathering photons from
the considerably fainter stars about 10" to the North.14 The ex-
act location and the extent of the optimized aperture of the KEP
pipeline is not known, but the net flux is higher by some 5%
than the one supplied by k2phot. This may indicate some level of
contamination by the neighbors. Our fully processed LC for the
KEP data yields RMS= 0.053 ppt, while for the LC derived from
the PET data we get 0.061 ppt. The higher precision is a likely
contributing factor to the detection in the KEP data. No time se-
ries are available for the faint visual double to the North, but
the nearby, similarly bright star EPIC 211913753 to the South,
show no signal in any of the databases. Because of the lack of
full frame images with sufficient cadence during the K2 cam-

14 https://exofop.ipac.caltech.edu/k2/files/211914045/
Photometry/\211914045P-ep20160806.pdf

Article number, page 11 of 18

https://exofop.ipac.caltech.edu/k2/files/211914045/Photometry/\211914045P-ep20160806.pdf
https://exofop.ipac.caltech.edu/k2/files/211914045/Photometry/\211914045P-ep20160806.pdf


A&A proofs: manuscript no. tran_k2_aph

paigns, we can rely only on future dedicated followup works to
decide if the faint neighbors to the North have any contribution
to the signal detected in EPIC 211914045.

We searched for additional planets both among the 115 sys-
tems of Kruse et al. (2019) and the newly found 15 systems.
As described in Sect. 3, we successively subtracted the already
found transit component, and searched for the next one until the
SNR of the spectrum reached the noise level. In the final solution
all transit components were included together with the stellar
variation and instrumental systematics. The transit depths were
fitted simultaneously, with the other transit parameters fixed.
Naturally, the search for additional components is also sensitive
to secondary eclipses and therefore, it helps in filtering out false
positives. We did not find any sign for blended binaries among
the candidate systems.

Altogether we found 5 systems that were classified either as
single or of lower multiplicity. Somewhat more detailed descrip-
tion of the systems follows below. The parameters of transit com-
ponents are given in Table 2.

EPIC 211314705 − This is a 3-planet candidate. No entry in
Kruse et al. (2019); single planet candidate in Pope et al. (2016).
We found two additional signals with transit depths ∼ 1.5 and
1.2 ppt. Somewhat intriguingly, the orbital periods have a con-
stant ratio of 1.38. Figure 12 shows the BLS spectra and the
folded LCs for the three components.

EPIC 211562654 − This is K2-183, a 5-planet candidate. En-
ters as a 3-planet candidate in Kruse et al. (2019). The 4th com-
ponent was discovered by Zink et al. (2020). Here we present
the 5th component, in near 2:1 resonance with the 4th com-
ponent. The transit center of the 5th candidate is located at
Tc(4) + 0.375P4, indicating that it is not some sort of artifact
of the method used during the prewhitening of pc04. The ratio
of the relative transit durations is not entirely consonant with the
expected value from Eq. 16, but is still within the error range
indicated by our tests for a signal of DSP∼ 9 (see Fig. 7). The 5
components are displayed in Fig. 13.

EPIC 212012119 − This is a 3-planet system, listed by both
Pope et al. (2016) and Kruse et al. (2019) as a 2-planet system.
The 3rd component is in a near 3:1 resonance with the second
component. The transit center of the 3rd component is near in the
middle of the 3-period cycle of the 2nd component, i.e., Tc(2) +
1.482P2. The observed decrease in the transit length is greater
than expected from Eq. 16, but again, this is within the error
limits. The three components are displayed in Fig. 14.

EPIC 212164470 − This is a 2-planet system, listed earlier
as a single component system by Pope et al. (2016) and Kruse et
al. (2019). The 2 components are displayed in Fig. 15.

EPIC 211988320 − This is a likely multiplanetary system,
but the orbital periods are not well constrained, because of the
rareness of the transit events. Kruse et al. (2019) list this target
as a single planet system, but as is shown in Fig. 16, the system
must host more than one planet.

7. Conclusions

In an effort to test some simple ideas in further improving our
capability to detect shallow transits in the environment of domi-
nating colored noise, we developed tran_k2, a stand-alone For-
tran code. Development and debugging were performed on the
Campaign 5 field data of the K2 mission, including the direct
use of these data together with various test signals injected into
the original data. The input data were the raw (simple aperture
photometry) fluxes available in public archives.

Fig. 12. The 3-planet candidate EPIC 211314705. Left panels: succes-
sively prewhitened BLS spectra, normalized to unity at each panel. The
spectra are divided into 2000 bins and only the maxima are shown in
each bin. Right panels: folded LCs for each component, zoomed on
the transit. Continuous line shows the fit to our transit model. Relative
fluxes are in [ppt].

Fig. 13. The 5-planet candidate EPIC 211562654. Notation is the same
as in Fig. 12. The short period component pc03 may exhibit TTV, as
indicated by the high power remained at the same frequency in the BLS
spectrum of panel pc05 and the proximity of the associated epoch to
that of pc03.

The input signal is assumed to be built up from four com-
ponents: (i) instrumental systematics, (ii) stellar variability, (iii)
white noise (iv) transit signal. In filtering out (i) we used cotrend-
ing (TFA), based on low-variability stars in the field and some
image property parameters. To eliminate the effect of (ii), Fourier
modeling was used.

The prime goal was to protect the underlying transit signal
from being crushed during the pre-BLS phase, and thereby to
ensure maximum SNR of the resulting frequency spectrum. To
reach this goal, we employed the following ingredients in the
pre-BLS data preparation.

Article number, page 12 of 18



Kovacs, G.: More planetary candidates from K2 Campaign 5

Table 1. New planetary candidates from K2 Campaign 5.

No EPIC Kp Porb Tc−T0 ∆F/F T14/Porb T12/T14 RMS Ndat Nev Nint
(mag) (day) (BJD) (ppt) - - (ppt) - - -

1 211914045 11.132 1.81207 40.35521 0.061 ± 0.006 0.0423 0.000 0.053 3453 41 147
2 211777794 12.108 19.26493 58.84401 0.239 ± 0.016 0.0183 0.113 0.091 3440 4 62
3 211328600 12.568 1.04383 40.11712 0.176 ± 0.020 0.0544 0.001 0.195 3445 71 189
4 211528937 12.812 2.27631 40.34633 0.197 ± 0.016 0.0229 0.124 0.101 3451 33 78
5 211825799 12.877 33.25434 61.12873 0.563 ± 0.033 0.0139 0.006 0.148 3450 2 41
6 211977277 13.037 4.80015 41.04836 0.209 ± 0.019 0.0621 0.117 0.201 3620 16 232
7 211503363 13.221 73.91076 97.51803 4.019 ± 0.047 0.0131 0.154 0.216 3440 1 43
8 212017374 14.192 9.82573 39.91297 0.332 ± 0.045 0.0142 0.003 0.231 3455 8 53
9 211754117 14.199 13.79727 40.44087 0.763 ± 0.055 0.0097 0.208 0.233 3445 6 36

10 211537406 14.565 19.43824 55.35711 1.114 ± 0.102 0.0077 0.009 0.376 3429 4 27
11 211852237 14.594 2.68947 40.43272 0.311 ± 0.043 0.0285 0.003 0.297 3445 28 97
12 211633000 14.601 9.23213 42.66952 0.454 ± 0.054 0.0100 0.001 0.225 3449 8 35
13 211330455 15.148 1.62210 40.22541 0.619 ± 0.084 0.0301 0.000 0.598 3427 45 101
14 211755530 15.279 1.74985 40.48744 1.202 ± 0.158 0.0221 0.001 0.986 3455 43 78
15 211327678 15.540 7.71791 42.87519 1.525 ± 0.175 0.0109 0.010 0.774 3445 10 39

Notes. Kp, Porb and Tc, respectively, stand for the Kepler photometric magnitude, the orbital period and for the moment of the
center of the transit. T0 = 2457100.0, ∆F/F denotes the relative flux decrease, T14 and T12 are, respectively, the complete transit
and ingress durations. RMS stands for the standard deviation of the residuals after subtracting the complete time series model, Ndat,
Nev and Nint, respectively, are for the number of data points, number of transit events and the number of intransit points. The KEP
dataset is used for all candidates, except for EPIC 211977277, where we used the PET dataset. The period for the single transiter
EPIC 211503363 is the formal BLS period, close to the total time span of the data. Errors for the transit depths are calculated from
e(∆F/F) = RMS

√
2/Nint (see Kovács & Kovács 2019).

Fig. 14. The 3-planet candidate EPIC 212012119. Notation is the same
as in Fig. 12. The 3rd candidate is in a close 3:1 resonance with the 2nd

candidate.

– We used general Fourier series representation of the stellar
variability (i.e., without knowing the particular signal fre-
quencies entering in the few-parameter model of the signal).

– To minimize the overshoots due to the Gibbs phenomenon at
the edges of the dataset, we employed detuned fundamental
frequency in the Fourier series and autoregressive modeling
near the edges.

– To protect the sharp transit features, data adapted weighting
was used in the robust least squares fit of the combination
of the Fourier and TFA parts of the model. No outliers were
selected at this stage.

Fig. 15. The 2-planet candidate EPIC 212164470. Notation is the same
as in Fig. 12.

Fig. 16. Time series of the multiplanet candidate EPIC 211988320. The
orbital periods are not well constrained, because of the rareness of the
transit events (shown with yellow background shading for better visi-
bility. The time series starts at t0 = 2457139.6111.

– After the above TFA+Fourier filtering, the data were cor-
rected for single outliers and flares before passing them to
the BLS search.

Except for single events, the BLS spectrum represents the basic
statistic that determine if the signal found is interesting or not.
Although the SNR of the peak remains the prime indicator of the
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Table 2. New planetary candidates in multiple systems from K2 C05.

EPIC 211314705
No. forb ∆F/F T14/Porb T12/T14 Tc−T0
1 0.263623 1.464 0.0182 0.192 40.22765
2 0.138210 1.524 0.0081 0.083 42.40394
3 0.191368 1.231 0.0101 0.231 42.43310

EPIC 211562654
1 0.092649 0.800 0.0135 0.056 47.77446
2 0.044202 0.804 0.0075 0.206 44.16401
3 2.130636 0.139 0.0735 0.185 39.64525
4 0.464426 0.178 0.0298 0.029 40.46272
5 0.235254 0.176 0.0248 0.019 41.26941

EPIC 212012119
1 0.304792 0.942 0.0291 0.245 42.13420
2 0.118495 1.054 0.0135 0.226 42.48517
3 0.039278 0.355 0.0049 0.010 54.99590

EPIC 212164470
1 0.128066 0.556 0.0209 0.152 44.86411
2 0.573654 0.123 0.0681 0.160 40.46965

Notes. forb is the orbital frequency, ∆F/F denotes the relative
flux decrease – in [ppt], T14 and T12 are, respectively, the
complete transit and ingress durations, T0 = 2457100. New
planetary candidates found in this work are displayed in the
colored rows. See text for additional details on these systems.

signal content, we found useful to introduce the spectral peak
density (SPD), that characterizes the sparseness of the spectrum.

A final step in the signal analysis is to consider all signal
constituents, including the transit components found in the BLS
search. In this grand robust fit we get a considerable improve-
ment in the precision of the transit depths, a vital parameter in
planet characterization and prone to underestimation when the
modeling is incomplete.

We found that tran_k2 is capable to detect nearly all previ-
ously claimed systems and planet components, with a missing
rate of 1 − 2%. We found that the strength of the detections de-
pends at a non-negligible level on the input data used. In partic-
ular, the database from the standard Kepler pipeline and the one
produced by k2phot often result in spectra of different quality,
and therefore, occasionally, missing candidates in one of these
datasets.

In spite of the several earlier visits of Campaign 5 by various
groups, we found 15 new candidate systems and 5 additional
planets in already known planetary systems. A brief check made
on the physical size of the new planet candidates indicate that
most of them have radii less than 2 RE and there is one candidate
with Rp = 0.6 RE.
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Appendix A: New candidates

We show the diagnostic plots for the 15 new planetary candidate
systems presented in Sect. 6. All candidates are in the Campaign
5 field of the K2 mission. Please consult with Sect. 6 (Table 1)
and Appendix B (Table B.1) for details of system parameters and
physical properties.

Fig. A.1. Diagnostic plots for the new candidates. Clock-wise for each
star: BLS spectrum, time series, zoomed and full phase-folded light
curves. For the zoomed light curve the residuals (data minus model)
are shifted upward for better visibility. Transit model: black line. Y
axis units: arbitrary (BLS), ppt (others). X axis units: d−1 (BLS),
BJD−2457139.610425 (time series), phase (others).

Fig. A.2. Diagnostic plots for the new candidates. See Fig. A.1 for de-
tails. Candidates no. 4 to 6 from Table 1 are plotted.

Appendix B: Predicted and estimated transit
durations

To support Fig. 11 here we present the actual values used to cre-
ate the plot. For completeness, we also include the coordinates
and the planet radii for the new K2/C05 candidates.

Table B.1 shows the basic stellar parameters for the 15 new
candidates. The stellar parameters are the simple averages of the
values published by the Gaia Collaboration (Gaia Collaboration
et al. 2018), those given in the K2 and TESS Input Catalogs (Hu-
ber et al. 2016; Stassun et al. 2019), and the items of a revised
K2 catalog by Hardegree-Ullman et al. (2020). Depending on
the availability, we could use 2–4 values to calculate the aver-
ages. For EPIC 211528937 Huber et al. (2016) yields a factor
of two larger radius, therefore, their item is omitted for this tar-
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Fig. A.3. Diagnostic plots for the new candidates. See Fig. A.1 for de-
tails.Candidates no. 7 to 9 from Table 1 are plotted.

get. For the single transiter EPIC 211503363 we used P=58 d
(the minimum period). Please note that this table is aimed pri-
marily for the estimation of the transit duration from the stellar
parameters and orbital period and may not pass the rigor usually
followed in the analysis of newly discovered individual systems.
Nevertheless, the consistency of the stellar parameters from vari-
ous catalogs gives enough trust in the estimated transit durations
and planetary radii.

Table B.2 contains the main stellar parameters and Qtran
values for the first 30 extrasolar planetary systems discovered
by the two major wide-field ground-based surveys. The stellar
parameters are from the TESS Input Catalog (TIC, see Stas-
sun et al. 2019). The transit durations based on TIC have been
proven to be more accurate than those calculated with the aid of

Fig. A.4. Diagnostic plots for the new candidates. See Fig. A.1 for de-
tails.Candidates no. 10 to 12 from Table 1 are plotted.

http://exoplanet.eu/ – the calculated Qtran values were less
frequently lower than the observed values.

The observed transit durations were gathered from the Ex-
oplanet Transit Database (ETD, see Poddany, Brat & Pejcha
2010). As before, Eq. 16 was used to derive Qcalc.

The sequential numbers of the WASP systems are not con-
tinuous, because WASP-9 was proven to be a false positive,
WASP-11=HAT-P-10 and WASP-27=HAT-P-14. We also note
that WASP-30b is not a planetary system, but a stellar binary,
with a near main sequence F8 primary and a 61 MJ secondary,
that can be classified as a brown dwarf. Because there is no mass
entry in TIC for WASP-20, we relied on the analysis of South-
worth et al. (2020). WASP-20 is a binary, and the stellar param-
eters correspond to the brighter companion.
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Table B.1. Some parameters of the new planetary candidates presented in this paper.

EPIC ID RA DE Porb ∆F/F Qobs Teff <R> <M> Rp Qcalc
(◦) (◦) (d) (ppt) − (K) (Sun) (Sun) (Jup) −

211914045 129.79767 18.93494 1.812 0.061 0.042 5154 0.734 0.883 0.057 0.039
211777794 124.96254 17.00097 19.265 0.239 0.018 6044 1.779 1.116 0.275 0.018
211328600 132.13554 10.41960 1.044 0.176 0.054 5191 0.878 0.890 0.116 0.067
211528937 127.98521 13.54793 2.276 0.197 0.023 5016 0.769 0.898 0.109 0.035
211825799 134.37171 17.68293 33.254 0.563 0.014 4985 2.664 1.298 0.632 0.018
211977277 133.91804 19.88943 4.800 0.209 0.062 4827 3.645 1.487 0.527 0.085
211503363 127.50679 13.18657 58.000 4.019 0.013 5121 4.098 0.996 0.260 0.021
212017374 129.50271 20.54328 9.826 0.332 0.014 5722 0.956 0.909 0.174 0.016
211754117 134.14808 16.66580 13.797 0.763 0.010 5063 0.671 0.790 0.185 0.010
211537406 135.60571 13.66539 19.438 1.114 0.008 4380 0.657 0.694 0.219 0.008
211852237 127.06017 18.04899 2.690 0.311 0.029 4946 0.823 0.892 0.145 0.033
211633000 129.29558 14.99941 9.232 0.454 0.010 5176 0.828 0.889 0.176 0.015
211330455 130.72883 10.45512 1.622 0.619 0.030 4031 0.547 0.569 0.136 0.036
211755530 127.25637 16.68488 1.750 1.202 0.022 3397 0.307 0.300 0.106 0.024
211327678 130.42308 10.40233 7.718 1.525 0.011 3818 0.460 0.455 0.180 0.012

Notes. Equatorial coordinates (RA,DE) refer to J2000. The relative transit duration Qcalc was calculated by using Eq. 16. See text
for additional details on the data items.

Table B.2. Sample of confirmed planets for the transit duration test.

ID Porb Teff R M Qobs Qcalc ID Porb Teff R M Qobs Qcalc
(d) (K) (Sun) (Sun) − − (d) (K) (Sun) (Sun) − −

HAT-P-01 4.465 5980 1.178 1.126 0.0249 0.0316 | WASP-01 2.520 6200 1.564 1.153 0.0623 0.0609
HAT-P-02 5.634 6414 1.704 1.290 0.0314 0.0374 | WASP-02 2.152 5150 0.855 0.869 0.0349 0.0406
HAT-P-03 2.900 5224 0.822 0.890 0.0298 0.0318 | WASP-03 1.847 6400 1.361 1.261 0.0515 0.0633
HAT-P-04 3.057 5890 1.599 1.100 0.0575 0.0556 | WASP-04 1.338 5500 0.895 0.970 0.0675 0.0563
HAT-P-05 2.789 5960 1.130 1.051 0.0436 0.0424 | WASP-05 1.628 5700 1.094 1.020 0.0606 0.0594
HAT-P-06 3.853 6570 1.573 1.499 0.0366 0.0423 | WASP-06 3.361 5450 0.818 0.930 0.0322 0.0282
HAT-P-07 2.205 6259 1.994 1.347 0.0765 0.0806 | WASP-07 4.955 6400 1.469 1.360 0.0300 0.0345
HAT-P-08 3.076 6200 1.431 1.285 0.0488 0.0470 | WASP-08 8.159 5600 0.997 0.990 0.0225 0.0187
HAT-P-09 3.923 6350 1.300 1.190 0.0365 0.0373 | WASP-10 3.093 4675 0.750 0.754 0.0287 0.0293
HAT-P-10 3.723 4980 0.821 0.809 0.0297 0.0277 | WASP-12 1.091 6360 1.749 1.170 0.1146 0.1184
HAT-P-11 4.888 4780 0.760 0.770 0.0196 0.0218 | WASP-13 4.353 5826 1.585 1.076 0.0372 0.0439
HAT-P-12 3.213 4650 0.704 0.740 0.0303 0.0270 | WASP-14 2.244 6475 1.326 1.312 0.0517 0.0534
HAT-P-13 2.916 5638 1.827 1.020 0.0461 0.0672 | WASP-15 3.752 6300 1.503 1.176 0.0413 0.0446
HAT-P-14 4.628 6600 1.545 1.433 0.0197 0.0373 | WASP-16 3.119 5550 1.071 1.020 0.0256 0.0377
HAT-P-15 10.864 5568 0.895 1.006 0.0210 0.0138 | WASP-17 3.735 6650 1.573 1.354 0.0489 0.0447
HAT-P-16 2.776 6158 1.242 1.164 0.0460 0.0452 | WASP-18 0.942 6400 1.347 1.200 0.0951 0.0997
HAT-P-17 10.339 5246 0.839 0.920 0.0164 0.0137 | WASP-19 0.789 5500 1.028 0.970 0.0810 0.0919
HAT-P-18 5.508 4870 0.740 0.773 0.0206 0.0195 | WASP-20 4.900 5950 1.242 1.113 0.0289 0.0314
HAT-P-19 4.009 4990 0.796 0.831 0.0294 0.0254 | WASP-21 4.323 5800 1.348 1.080 0.0324 0.0374
HAT-P-20 2.875 4595 0.678 0.730 0.0268 0.0282 | WASP-22 3.533 6000 1.191 1.170 0.0387 0.0368
HAT-P-21 4.124 5588 1.256 1.000 0.0370 0.0369 | WASP-23 2.944 5150 0.887 0.840 0.0340 0.0346
HAT-P-22 3.212 5302 1.042 0.930 0.0372 0.0371 | WASP-24 2.341 6075 1.353 1.140 0.0463 0.0555
HAT-P-23 1.213 5924 1.152 1.078 0.0750 0.0747 | WASP-25 3.765 5750 0.877 1.025 0.0312 0.0272
HAT-P-24 3.355 6373 1.419 1.250 0.0453 0.0444 | WASP-26 2.757 5950 1.284 1.120 0.0355 0.0475
HAT-P-25 3.653 5500 0.908 0.993 0.0321 0.0290 | WASP-28 3.409 6150 1.114 1.160 0.0395 0.0354
HAT-P-26 4.235 5079 0.860 0.846 0.0241 0.0263 | WASP-29 3.923 4800 0.636 0.880 0.0278 0.0202
HAT-P-27 3.040 5300 0.865 0.916 0.0233 0.0321 | WASP-30 4.157 6100 1.388 1.270 0.0384 0.0375
HAT-P-28 3.257 5680 1.046 1.010 0.0412 0.0359 | WASP-31 3.406 6200 1.269 1.200 0.0324 0.0399
HAT-P-29 5.723 6087 1.231 1.141 0.0246 0.0278 | WASP-32 2.719 6100 1.028 1.300 0.0370 0.0366
HAT-P-30 2.811 6250 1.340 1.254 0.0316 0.0472 | WASP-33 1.220 7400 1.602 1.653 0.0928 0.0897

Notes. Stellar parameter are from TIC, Qobs from ETD, Qcalc from Eq. 16. See text for additional notes.
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Fig. A.5. Diagnostic plots for the new candidates. See Fig. A.1 for de-
tails.Candidates no. 13 to 15 from Table 1 are plotted.
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