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The model dependence of mρ/ fπ
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Should a strongly coupled composite Higgs boson scenario be realized in Nature the most easily

accessible experimental signal would be new particles made up of the same ingredients as the

Higgs but with different quantum numbers. The lightest of these hypothetical new particles would

probably be the vector mesons. In this contribution we report results on mρ/ fπ in the chiral-

continuum limit with SU(3) gauge group and N f = 2,3,4,5,6 flavors of fundamental fermions.

In addition we compare mρ/ fπ results from various models with different gauge groups and

fermion content. The main conclusion seems to be that the experimental measurement of this

vector meson mass will be able to distinguish between gauge groups but less so between the

fermion content.
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1. Introduction

It may very well be the case that the experimentally discovered Higgs boson is the elementary

spin-0 particle of the Standard Model and the theoretical description is valid up to very high ener-

gies beyond the scope of the LHC or any new accelerator in the near future. If on the other hand

the Higgs boson turns out to be a composite particle the bare minimum experimental signal should

be the discovery of new particles made up of the same ingredients as the composite Higgs itself

but with different quantum numbers. The lightest candidates in a large class of strongly interacting

electro-weak models would be the vector mesons in the non-abelian gauge theory responsible for

the composite Higgs. The physical scale in these technicolor inspired class of models is given by

the decay constant of the Goldstone bosons fπ = 246 GeV . Lattice calculations are ideal to obtain

the massless ratio mρ/ fπ in the chiral-continuum limit from first principles. Conceptually it is a

simple task: pick a gauge group G, representation R and flavor number N f (or potentially several

representations and several flavor numbers if not all fermions transform in the same representa-

tion), make sure that finite volume effects are small, make sure ρ-decay is handled properly, obtain

amρ and a fπ in lattice units for various lattice spacings and fermion masses and finally perform a

chiral-continuum extrapolation to obtain the ratio. Thus traditional meson spectroscopy will lead

to mρ/ fπ for every choice (G,R,N f ). If experiments do detect a new particle in the TeV range the

next task would be to find which (G,R,N f ) combination(s) may give rise to that particular mass

and quantum number hence it is important to have scanned as many models as possible 1.

Recent lattice studies of the meson spectrum with SU(3) indicate that the fermion content

dependence might be very mild for the ratio mρ/ fπ . Even though many of the results are at finite

lattice spacing, occasionally finite fermion mass and finite volume effects are not always fully

controlled the indications are mρ/ fπ ∼ 8.0 from a broad range of studies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

As long as the gauge group is fixed, it seems then, that the experimental measurement of mρ will

not be able to distinguish the various models as long as the gauge group is SU(3).

In this contribution we report fully controlled simulation results in the infinite volume, chiral

and continuum limits with SU(3) and N f = 2,3,4,5,6 reinforcing the above indications [11]. We

obtain mρ/ fπ = 7.95(15) and no statistically significant N f -dependence.

The ratio mρ/ fπ however is expected to change rapidly with the gauge group based on large-N

arguments. More precisely if the fermionic degrees of freedom scale as O(N) which is the case

with fundamental fermions, we have mρ ∼ O(1) and fπ ∼ O(
√

N) hence the natural combination

to consider is
√

N mρ/ fπ . In the large-N limit this combination is finite. Motivated by this we will

be comparing various models via the combination
√

dim(R)mρ/ fπ where dim(R) is the dimension

of the representation; see [12, 13, 14] and references therein.

In the next section the details of the SU(3) calculations with N f = 2,3,4,5,6 fundamen-

tal fermions will be given. In section 3 we will compare results from the literature for various

(G,R,N f ) by collecting
√

dim(R) mρ/ fπ if possible in the chiral-continuum limit, or at finite lat-

tice spacing and/or finite fermion mass if chiral-continuum limit results are not available. In section

4 we end with notes on possible future studies.

1Throughout this contribution the normalization of the decay constant is such that fπ = 93 MeV in QCD.
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2. Results with SU(3) and fundamental fermions

The lattice discretization is via the tree level improved Symanzik gauge action and stout

improved staggered fermions with 4 steps of stout smearing and ρ = 0.12 smearing parameter

[15]. Ensembles are generated at four lattice spacings with four fermion masses at each, for every

N f . The parameters were chosen such that the ρ is stable and the finite volume corrections from

Luscher’s formalism [16, 17] predict small finite volume effects. Furthermore, exponential finite

volume effects are ensured to be small as well by having mπL > 3.10+0.35N f which was shown

to lead to less than 1% corrections in low energy observables for 2 ≤ N f ≤ 6.
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Figure 1: Chiral-continuum extrapolation of the topological susceptibility. The ratio 2N f χ/(m2
π f 2

π ) is shown

which, at leading order of chiral perturbation theory, is expected to be constant 1. The shaded black region

is the result of the chiral-continuum extrapolation. The various colors correspond to various lattice spacings

labeled by the bare coupling β in the legend.
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Topology change is frequent enough in all runs so that the topological susceptibility can be

measured accurately enough. In fact the topological susceptibility was used to test for taste break-

ing effects via the tree level relation [18],

〈Q2〉
V

= χ =
1

2N f

f 2
π m2

π + . . . . (2.1)

More precisely, f 2
π m2

π/(2χ) can be considered an effective flavor number and if in the chiral-

continuum limit the actual flavor number is obtained within errors, one can be sure that the taste

broken Goldstones of the staggered formulation are scaled to zero as O(a2) as expected [19]. This

test is far easier to perform than the full spectroscopy of all taste broken Goldstones directly al-

though relatively long runs are required as the autocorrelation time of the topological charge is

typically longer than other quantities. At the same time the topological susceptibility needs to

be monitored anyway in order to avoid frozen topology simulations. More precisely, the chiral-

continuum extrapolation is via,

χw4
0 =C0m2

π f 2
π w4

0 +C1
a2

w2
0

+C2
a2

w2
0

(m2
π f 2

π w4
0) , (2.2)

where w0 is the gradient flow scale [20]. In figure 1 the quantity 2N f χ/(m2
π f 2

π ) is shown for each

N f for all lattice spacings and masses, together with the chiral-continuum limit, which ought to be

consistent with 1. The deviation from 1 is at most 1.5σ .

The 16 simulation points at each N f allow for controlled chiral-continuum fits of the quantities

fπ and mρ as well. The 4 parameter fits we use are,

Xw0 =C0 +C1m2
πw2

0 +C2
a2

w2
0

+C3
a2

w2
0

m2
πw2

0 (2.3)

where X is either mρ or fπ . Each fit has thus 12 degrees of freedom. The statistical uncertainty of

fπ is negligible compared to mρ and the latter will dominate the final result for the ratio mρ/ fπ .

With our action both cut-off effects and finite fermion mass effects are rather small for the ratio

[11].

The final results are shown in figure 2 as the left most set of points. Interestingly, a constant

fit leads to mρ/ fπ = 7.95(15) with χ2/do f = 0.26 i.e. the observed N f -dependence is statistically

insignificant.

3. Dependence on the gauge group, representation and flavor number

Quite a large number of models were studied recently, partially or completely motivated by a

strongly coupled composite Higgs scenario. Another set of motivations useful for our purposes is

the study of the systematics of the large-N expansion because in this context the gauge group de-

pendence can be displayed. The large-N limit is instructive because the observed pattern at SU(3)

namely no statistically significant dependence on N f is in line with large-N expectations. As long

as the fermionic degrees of freedom scale with O(N), which is the case in the fundamental, one

expects exactly no dependence on N f in the large-N limit. With the fundamental representation

fπ scales as
√

N. If the representation is other than the fundamental it is natural to consider
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Figure 2: Top: comparison of
√

dim(R) mρ/ fπ for various models. Bottom: similar comparison of mρ/ fπ

directly, the labeling of the models is the same as at the top. The SU(3) fundamental N f = 2,3,4,5,6 are in

the chiral-continuum limit [11], the N f = 8 result is at finite lattice spacing and finite fermion mass [10], the

SU(3) sextet N f = 2 is at finite lattice spacing and finite fermion mass [7], the SU(N) fundamental quenched

results are at finite lattice spacing in the chiral limit [12], the SU(N) fundamental N f = 4 are at finite lattice

spacing and finite fermion mass [21, 22], the SU(4) fundamental N f = 2, sextet N f = 2 (both are in the sea

simultaneously) results are in the chiral-continuum limit [23], the SU(2) fundamental N f = 2 is in the chiral-

continuum limit [24, 25], the SU(2) fundamental N f = 4 is at finite lattice spacing and finite fermion mass

[26] and finally with Sp(4) both the quenched [27] and the fundamental N f = 2 are in the chiral-continuum

limit [28, 29]. Results at finite lattice spacing and/or finite fermion mass should be interpreted with caution

as they naturally contain further systematic errors.

√

dim(R) mρ/ fπ where dim(R) is the dimension of the representation. If the fermionic degrees

of freedom scale as O(N2) then of course the usual large-N arguments do not apply.

Starting from SU(2), chiral-continuum results are available with N f = 2 fermions in the fun-

damental representation [24, 25], N f = 4 at finite lattice spacing and fermion mass [26], and of

course the pure gauge case. The aforementioned large-N studies led to results with SU(N), still

in the pure gauge case, with N = 2,3,4,5,6,7,17 and the N = ∞ in the chiral limit, at finite lat-

tice spacing [12, 13]. Note that with SU(2) all irreducible representations are real. Increasing the

gauge group to SU(3) we have of course QCD results (or Nature) and the N f = 2,3,4,5,6 results

of our work in the chiral-continuum limit [11] as well as N f = 8 at finite lattice spacing and finite

fermion mass [10]. Still with SU(3) results are available with N f = 2 sextet fermions at finite

lattice spacing and finite fermion mass. Further, SU(4) was studied with two species of fermions
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simultaneously in the sea, N f = 2 fundamental together with N f = 2 sextet (which is real) [23];

see also [30] for results with N f = 2 sextet fermions only. In this case the two species of fermions

lead to two different decay constants and two different vector meson masses. Results are available

in the chiral-continuum limit [23]. The large-N limit was investigated with N f = 4 fundamen-

tal fermions and N = 3,4,5,6, the results are currently at finite lattice spacing and finite fermion

mass [21, 22]. Going beyond the unitary groups, the symplectic group Sp(4) (which is sometimes

denoted by Sp(2), in any case it is the double covering group of SO(5)) was investigated in the

quenched case with both fundamental and 2-index-antisymmetric representation fermions [27] and

N f = 2 fundamental fermions [28, 29]; all the Sp(4) results are in the chiral-continuum limit.

A summary of all of these results are shown in figure 2 via the scaled ratio
√

dim(R) mρ/ fπ

in the top panel. In order to better display the dependence on the gauge group the unscaled mρ/ fπ

is also shown in the bottom panel of figure 2. Clearly, the dependence on the fermion content

is much less pronounced than the dependence on the gauge group. However when the leading

gauge group dependence is factored out, i.e.
√

dim(R) mρ/ fπ is considered, even the gauge group

dependence is rather small. Only SU(2) shows considerable deviation from large-N scaling and

large N f -dependence (although the N f = 4 results are at finite lattice spacing and finite fermion

mass). Interpretation of results at finite fermion mass and/or finite lattice spacing should be done

with care of course.

If one envisions an experimental signal for mρ the gauge group can perhaps be narrowed down

using figure 2 however the information on the fermion content must come from other experimen-

tally accessible quantities unless the gauge group is SU(2).

4. Conclusion and outlook

A strongly interacting composite Higgs boson is clearly an exciting possibility. The best case

scenario would be the detection of new particles in the TeV range by the LHC. In order to make full

use of this result it would be desirable to obtain fully controlled (volume, lattice spacing, fermion

mass) lattice results on the masses of the new particles for as many promising models as possible.

Currently the set of fully controlled results is rather limited and even where they are available often

the errors are too large for an experimental result to differentiate between models. It does not seem

out of reach to obtain fully controlled results with ∼ 3−5% errors with SU(2) and N f = 2,3,4 and

possibly N f = 5 fundamental fermions if the latter is chirally broken. With SU(3) and fundamental

fermions N f = 7,8,9,10 seems possible and it is conceivable that the Sp(4) with N f = 2 results

[28, 29] can be extended to N f = 3,4. The closer a model is to the conformal window the more

difficult the calculation becomes because of large systematic uncertainties. This is the reason why

SU(2) with N f = 5,6 is difficult and so is SU(3) with N f = 2 sextet [3, 7]. Fixing N f and increasing

N on the other hand is moving the model away from the conformal window so should be relatively

straightforward. In this direction mρ/ fπ is decreasing and can be arbitrarily small for large enough

N. Presumably the largest value will occur for SU(2) although this is currently an open question.
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