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2Dept. of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

We study the quantum interference (QI) effects in three-terminal Andreev interferometers based on
polyaromatic hydrocarbons (PAH’s) under non-equilibrium conditions. The Andreev interferometer
consists of a PAH coupled to two superconducting and one normal conducting terminals. We
calculate the current measured in the normal lead as well as the current between the superconducting
terminals under non-equilibrium conditions. We show that both the QI arising in the PAH cores and
the bias voltage applied to a normal contact have a fundamental effect on the charge distribution
associated with the Andreev Bound States (ABS’s). QI can lead to a peculiar dependence of the
normal current on the superconducting phase difference that was not observed in earlier studies of
mesoscopic Andreev interferometers. We explain our results by an induced asymmetry in the spatial
distribution of the electron- and hole-like quasiparticles. The non-equilibrium charge occupation
induced in the central PAH core can result in a π transition in the current-phase relation of the
supercurrent for large enough applied bias voltage on the normal lead. The asymmetry in the spatial
distribution of the electron- and hole-like quasiparticles might be used to split Cooper pairs and
hence to produce entangled electrons in four terminal setups.

INTRODUCTION

Quantum interference (QI) is ubiquitous in nature.
Constructive quantum interference (CQI) leads to the
formation of energy levels in atoms or molecules and en-
ergy bands in crystals, whereas destructive quantum in-
terference (DQI) leads to energy gaps in molecules and
band gaps in solids. The energy scale for these QI phe-
nomena can be up to a few eV and therefore these quan-
tum effects control the properties of molecules and solids
at room temperature, for which kBT ≈ 25meV � 1eV.
In addition to these high temperature manifestations of
QI, many low-temperature interference phenomena are
well known, such as superfluidity and superconductivity,
which occur on energy scale of order a few meV or less.

Investigations of QI in condensed systems are often
driven by the desire to harness QI and deliver useful
function. For example, when a molecule is placed into the
nanogap between two metallic electrodes, it is known that
electron transport from the source to the drain electrode
is phase coherent at room temperature, provided the
length of the molecule is less than approximately 3nm.
Consequently, if the interference pattern created by elec-
tronic de Broglie waves passing through the molecule can
be controlled, then useful room-temperature devices such
as molecular-scale switches, transistors and sensors could
be realised. Single-molecule electronics is the sub-field
of nanoelectronics1–7, which aims to deliver such struc-
tures and in pursuing this goal, many groups have demon-
strated that electrons can be injected into (and collected
from) the core of a molecule with atomic accuracy8–11.
Furthermore, it has been demonstrated that an ability to
vary the atomic-scale connectivity to molecular cores is
an effective way of controlling room-temperature QI12,13.
On the other hand, at lower temperatures, quantum en-
gineers strive to utilise QI in superconducting structures

such as SQUIDs and Andreev interferometers, which rely
on controlling the interplay between a superconducting
condensate and charge-carrying quasi-particles14–22. In
such devices, QI is controlled by the phase of the super-
conducting order parameter, which describes a macro-
scopic collective degree of freedom, which has no coun-
terpart at room temperature.

In this article, we examine the interplay between the
high-energy-scale QI found in molecules and the low-
temperature QI present in superconductors. Our aim is
to determine how an ability to control the connectivity
to molecular cores with atomic accuracy can be used to
engineer the properties of Andreev interferometers and
SQUIDS.

From the viewpoint of connectivity, a fundamental
manifestation of QI is illustrated in Fig. 1 top and mid-
dle panels, which shows an anthanthrene molecular core
(consisting of 6 six-membered rings) connected by triple
bonds to external electrodes. The connectivity of the
triple bonds to the core is fixed by chemical synthe-
sis. Fig. 1 shows two examples of molecules with dif-
ferent connectivities. Following the numbering scheme
of the lattice shown at the bottom of Fig. 1, molecule 1
has triple bonds connected to atoms 12 and 3, whereas
molecule 2 has triple bonds connected to atoms 9 and
22. The triple bonds are connected to terminal aryl rings,
which in turn are connected to thioacetate anchor groups,
which bind the molecules to source and drain electrodes.
Since the triple bonds form weak links to the central core,
it is conceptually convenient to consider the combination
of an aryl ring, anchor group and external electrode as
a single “compound electrode”, (coloured blue in Fig. 1)
which injects or collects electrons to or from the central
core, via the triple bonds. Remarkably, when the ex-
ternal electrodes are normal (i.e., not superconducting),
the room-temperature electrical conductance of setup 1
is both measured and predicted to be almost two orders
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of magnitude higher than that of 2. This is a clear mani-
festation of room-temperature QI, since the conductance
of a corresponding classical resistor network formed from
six rings of resistors would show a much lower dependence
on connectivity. From the viewpoint of superconductiv-
ity, our aim is to replace one or more of the normal elec-
trodes by superconducting electrodes and examine how
electron transport though such molecular cores is con-
trolled by a combination of connectivity and by the phase
of the superconducting order parameter.

In ballistic normal-superconductor (N-S) hybrid sys-
tems the fundamental transport process is Andreev re-
flection, whereby an incoming electron is reflected back
as a hole at the N-S interface. A rich set of physical phe-
nomena that follow from this scattering process was real-
ized in Andreev interferometers, which are devices with
two (or more) superconducting and one (or more) normal
leads attached to a central region14,15. For example, due
to the extraordinary sensitivity of the Andreev current
to the superconducting phase difference, Andreev inter-
ferometers may provide a faster and more precise alter-
native to superconductor quantum interference devices
(SQUIDs)16 to measure properties of quantum systems
or even detecting Majorana bound states17. Importantly,
the presence of a normal lead allows one to change the
equilibrium occupation of Andreev bound states formed
in multi-terminal N-S systems. It was suggested that
such a non-equilibrium effect can be used to engineer π-
Josephson junctions18,19, where the fundamental relation
Is = Ic sin(δφ) between the phase difference δφ of the
order parameters of two superconductors and the super-
current Is can be changed to Is = Ic sin(δφ+π) (Ic is the
critical current). This effect has indeed been measured
in diffusive meso-scopic multi-terminal N-S systems20–22.

Recently, the superconducting properties of
molecular-scale junctions have also started to at-
tract experimental23–26 as well as theoretical27–29

interest. In Ref.29 we discussed the equilibrium prop-
erties of various multiterminal N-S systems where, in
particular, QI effects in the core of the molecule play an
important role. Here we show how such QI effects and
non-equilibrium charge injection can lead to interesting
effects in molecular Andreev interferometers. Namely,
the non-equilibrium occupation of the Andreev bound
states (ABS’s) which are formed in superconductor-
molecule-superconductor (S-M-S’) Josephson junctions
can be driven via the third, normal lead attached to
the Josephson junction, thus realizing a non-equilibrium
N-M-SS’ system. As already mentioned, one of the
key ingredients in our work is QI which arises in the
molecular core of N-M-SS’ systems that are based on
PAHs12,13,30. We find that in these systems one may
observe effects that were not attainable is previously
studied mesoscopic Andreev interferometers. Based on
the “magic number theory of connectivity in Refs.12,29,30

we show that conductive channels through the molecular
core can give rise to interfering paths contributing to
the total ABS wave function with the same or with

an opposite sign for electron and hole-like degrees of
freedom. This rich set of interfering paths is provided
by the conductive channels opened by the insertion of a
substituent heteroatom into the molecular core13. Under
specific circumstances the interplay of the interfering
amplitudes may even lead to the total suppression of the
electron-like (or hole-like) degrees of freedom on certain
molecular sites and, at the same time, to a constructive
interference for the hole-like (or electron-like) charge
carriers. Since the charge current through the normal
lead is closely tied to the Andreev reflection process, its
magnitude is highly influenced by the density of both
the electron- and hole-like particles in the vicinity of
the normal contact. Thus, by measuring the charge
current through the normal lead one can also probe the
electron-hole separation in the molecular junction.

In what follows, we first describe the main char-
acteristics of interference effects in Andreev interfer-
ometers based on PAHs12,13,30 in equilibrium condi-
tions. Our choice is justified by the peculiar mid-
gap transport properties of these molecules accompanied
by inner quantum interference effects within the core
of the molecule12,13,29,31–42. We outline an illustrative
connectivity-based theory that can be used to understand
the current-phase relations at non-equilibrium conditions
as well. Then we present our numerical results obtained
for the normal and for the supercurrent at finite bias
applied on the normal lead. We interpret our results
in terms of connectivity arguments. We examine how
the electrical properties of the Andreev interferometers
would be influenced by tuning the inner QI effects of
the molecular core. We demonstrate how QI can lead
to a suppression of the normal current which is a clear
evidence of the spatial separation of the electron- and
hole-like particles. Finally, we present a summary of our
most important results and give a brief outlook.

THEORETICAL BACKGROUND: EQUILIBRIUM
MOLECULAR ANDREEV INTERFEROMETERS

From a conceptual viewpoint the key ingredients of
our theoretical model are based on weak coupling,
connectivity-driven, mid-gap transport and phase coher-
ence. A detailed explanation of these assumptions is
given in Refs.12,29,30. Here we only mention that the
term “weak coupling” means that the central aromatic
molecule is weakly coupled to the contacts resulting in
a small level broadening and self energy correction to
the HOMO and LUMO levels compared to the HOMO-
LUMO gap. Thus, provided the Fermi level lies within
the gap (resulting in near mid-gap transport), the quan-
tum interference effects in the phase coherent trans-
port processes are characterized by the properties of the
molecular core alone. (The Coulomb interactions can
be included at the level of a self-consistent mean field
description such as Hartree, or Hartree-Fock.) Taken
together, these conditions ensure that when computing
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the Green’s function of the core, the contribution of
the electrodes can be ignored. Consequently, the prob-
ability of the propagation of the charged particles be-
tween sites k and l of the molecule is described by the
“magic number” matrix element12,29,30 Mkl ∼ gkl, where
g(EF ) = (EF −Hmol)

−1
is the Green’s function of the

isolated molecule described by Hamiltonian Hmol. In
particular, the electrical conductance corresponding to
connectivity k, l is proportional to |Mkl|2. In the sim-
plest theoretical description an integer valued connectiv-
ity matrix Hmol captures the complexity of the inner CQI
and DQI effects within the core of the molecule and when
EF coincides with the middle of the HOMO-LUMO gap,
the resulting magic number matrix Mkl is simply a ta-
ble of integers. In particular, for the bipartite lattice of
Fig. 1, when EF coincides with the middle of the HOMO-
LUMO gap, destructive quantum interference arises be-
tween sites k and l that have the same parity (i.e., both
are odd or both are even) and therefore the matrix ele-
ment Mkl is zero. In contrast, when the sites k and l have
different parity, Mkl may be finite giving a non-zero prop-
agation amplitude of the charged particles between sites
k and l. For the anthanthrene core of Fig. 1, M3,12 = 1
and M9,22 = 9. Hence their conductance ratio is pre-
dicted to be |M9,22|2/|M3,12|2 = 81, which is close to the
measured value of the conductance ratio, both for single
molecules and for self-assembled monolayers12,30,43.

In order to understand the unconventional non-
equilibrium Andreev interference effect described in the
next sections, following Ref.29 we first give a brief
overview of the considerations that explain the interfer-
ence pattern in the current IN flowing through the nor-
mal lead as a function of the superconducting phase dif-
ference δφ = φ1 − φ2 between the S1 and S2 leads (see
Fig. 1) in equilibrium. Under equilibrium conditions, the
limit eV → 0 is understood, where V is the applied bias
on lead N with respect to the chemical potential of the
superconductors. Note that the imposition of a phase
difference δφ also generates a Josephson current Is flow-
ing between the superconducting leads. Experimentally,
as shown in Refs44,45, δφ can be controlled, thus allowing
the measurement of the current-phase relation (CPR) of
the supercurrent Is and the phase dependence of IN .

Let us investigate IN in a device consisting of an an-
thanthrene central molecular core, as shown in Fig. 1.
The δφ dependence of IN can be understood as a result
of an interference effect between the possible transport
paths of electrons and holes. The arms of the inter-
ferometer are formed by the trajectories N → mol →
S1 → mol → N and N → mol → S2 → mol → N.
Let us consider the setup in which the normal lead N
is attached to site labeled by 22, and the superconduct-
ing leads S1 and S2 are attached to sites 9 and 15, re-
spectively and examine the transmission amplitude t9,22
related to the process N → mol → S1 → mol → N.
Since the normal reflection on the superconductors does
not give a contribution to the charge current, only An-
dreev reflection46 can cause a net charge current. During

Figure 1. The top and middle panels show molecules 1 and 2,
with connectivities 12, 3 and 9, 22 to the anthanthrene molec-
ular core. The lower panel shows an Andreev interferometer
consisting of an anthanthrene molecule, two superconduct-
ing leads and one normal lead. The “sites” of the associated
tight-binding model represent pz orbitals of the anthanthrene
molecule and are labelled according to the figure. The cou-
pling of the molecule to the normal (superconducting) lead
is denoted by WN (WS), for details see the text. The su-
perconducting leads are characterized by a superconducting
order parameter ∆eiφ1 and ∆eiφ2 . The transport processes
responsible for the conventional interference effect are indi-
cated by solid lines for the electron-like (blue) and hole-like
(red) propagation.

Andreev reflection, an incoming electron-like quasipar-
ticle is converted into a hole-like quasiparticle and vice
versa at the normal-superconductor interface. Due to
the Andreev reflection, an extra e−iφ1 phase factor mul-
tiplies the transmission amplitude (φ1 is the phase of the
superconductor S1). Then, the reflected hole-like state
propagates back to the normal lead, a process which can
be described by −M9,22 according to the Bogolioubov-de
Gennes equation29. Based on these considerations, the
transmission amplitude can be written in the following
form:

t9,22 ∼ −M2
9,22e

−iφ1 . (1)

Similar considerations can made for the transmission am-
plitude t15,22. Since there are two interfering arms in the
interferometer, one needs to sum up both transmission
amplitudes associated with the two propagation paths to
calculate the total transmission amplitude:

ttot ∼ t9,22 + t15,22 = −M2
9,22e

−iφ1 −M2
15,22e

−iφ2 , (2)
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From this expression the Andreev current IN at small
bias voltage (eV � ∆) can be approximated as:

IN ∼ |ttot|2 = M4
9,22+M4

15,22+2·M2
9,22·M2

15,22·cos(φ1−φ2).
(3)

As one can see, the Andreev current IN is indeed ex-
pected to show a simple dependence on the supercon-
ducting phase difference δφ = φ1 − φ2 with a minimum
at π. Regarding the supercurrent Is flowing between S1
and S2, in first approximation, this can be understood
as a consequence of Andreev bound states (ABS), al-
though a continuum of unbound states can also add a
finite contribution47.

NON-EQUILIBRIUM NUMERICAL
CALCULATIONS

To avoid time-dependent order parameter phases vary-
ing at the Josephson frequency, we assume that the su-
perconductors S1 and S2 share a common condensate
chemical potential µ. A finite bias voltage V (with re-
spect to µ) can be then applied to the normal lead. This
bias voltage will affect both the normal current IN and,
by changing the equilibrium occupation of the ABSs, the
supercurrent Is as well.

In order to describe the transport properties at finite
bias voltage one has to use a theoretical framework ca-
pable of describing non-equilibrium transport processes.
We calculate the currents IN and Is = (IS1 − IS2)/2
by using a tight binding approach and the Keldysh non-
equilibrium Green’s function techniques48–50:

IN(Si) = −2e

h
Re

[∫
dE Tr

(
τ3ΓN(Si)G

<(E)
)]
, (4)

with ΓN(Si) being the coupling from the molecule to the
normal (superconducting) lead labeled by N (Si) includ-
ing the electron-hole degrees of freedom and τ3 is the
third Pauli matrix acting on the electron-hole space. The
current IN(Si) describes the current flowing through lead
N (Si) into the central molecule. In the steady state
limit the currents flowing through the individual leads
satisfy the charge conservation rule IN + IS1

+ IS2
= 0

leading to two independent currents IN and Is charac-
terizing the electrical properties of the junction. Finally,
the lesser Green’s functionG< in Eq.(4) can be calculated
within the Keldysh non-equilibrium framework using the
Keldysh equation (see details in the electronic supporting
information). The calculations were performed using the
tight-binding framework implemented in the EQuUs51

package. The relevant electronic states in the molecu-
lar core were described by a single orbital tight-binding
model where the nearest neighbor sites are connected
by a hopping amplitude γ0. As shown in Fig. 1, the
hopping amplitude between the molecule and the nor-
mal N (superconducting S1, S2) lead is given by WN

(WS1, WS2). In our calculations, unless indicated oth-
erwise, we used WN = 0.1γ0 and WS = 0.3γ0. The

normal and superconducting contacts were modeled by
a one-dimensional tight-binding chain. The magnitude
of the superconducting order parameter in the leads S1
and S2 was ∆ = 3 · 10−3γ0. The results that we are
going to discuss do not depend on the actual value of γ0
and ∆. This simple model is justified by previous studies
of connectivity driven transport processes through PAH
molecules12,29,30. Following these works, our aim is to
highlight the role of connectivity in the transport prop-
erties of these molecular cores leading to new interference
phenomena. We give the remaining details of the tight
binding-model used in our calculations in the electronic
supplementary material.

NON-EQUILIBRIUM MOLECULAR ANDREEV
INTERFEROMETERS

As a first example of non-equilibrium effects in
Andreev-interferometers it is instructive to consider the
system shown in Fig.2. With respect to Fig. 1, we
changed the connecting sites of the leads in order to “dis-
arm” one of the interfering arms. This can be achieved
by choosing connecting sites such that the magic number
matrix elements between the sites connected to the nor-
mal lead and to one of the superconducting leads becomes
zero, as shown in Fig. 2. Therefore one may expect IN
to be independent of the superconducting phase. Note,
however, that the magic number M6,9 between the su-
perconducting leads is finite. Therefore, as we will show
later, an ABSs is formed in this system and it has an
important effect on IN . The results for δφ and eV de-
pendence of IN can be seen in Fig.3(a). The current IN
remains very small for applied voltages eV � ∆ on the
normal lead. As eV is increased, a finite IN starts to
flow, but in contrast to the ∼ cos δφ dependence given in
Eq(3), IN exhibits a maximum at superconducting phase
difference δφ = π.

Figure 2. Anthanthrene molecule attached to two supercon-
ductive and one normal lead. The connectivity matrix ele-
ment between the sites 6 and 22 is zero, while the connectiv-
ity between sites 9 and 22 and between sites 9 and 6 is finite.
Solid lines indicate the propagation of the electron-like (blue)
and hole-like (red) quasiparticles.

These results can be explained by the effect of an
ABS. As pointed out in earlier studies on multitermi-
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Figure 3. The currents IN (a) and Is (b) as a function of the
phase difference δφ between the superconducting leads for the
system depicted in Fig. 2 for several bias voltage eV . a) a
robust peak in IN appears around the phase the difference π
when the bias voltage is comparable to the superconducting
gap ∆. b) the supercurrent shows a π transition for eV > ∆.

nal normal-superconductor mesoscopic systems18,19, the
voltage eV sets the effective electrochemical potential for
the ABSs and those with energy En,ABS(δφ) ≤ eV are
filled. The ABS energy En,ABS(δφ) depends on the phase
difference δφ. A change in the occupation of the ABSs
directly affects IS1 and IS2 and therefore the current dis-
tribution in the Andreev-interferometer junction will de-
pend on both the voltage eV and on the phase difference
δφ. To illustrate these effects we show the supercurrent
Is = (IS1 − IS2)/2 in Fig3(b). As eV is increased, a de-
viation from the simple Is = Ic sin(δφ) relation can be
clearly seen and for eV > ∆ a π-transition takes place in
Is, similarly to what was obtained in Refs.18,19.

One can give a heuristic argument of why the presence
of ABSs can affect IN . This argument draws on analogies
with the discussion given for the equilibrium case, i.e.,
it is based on interfering quasiparticle trajectories. Al-
though in the system depicted in Fig.2 the connectivity
between the normal lead and the superconducting lead
S2 is zero, the charge carriers can still probe the phase
of lead S2 when they propagate along a path that also
includes an Andreev reflection from the lead S1. Namely,
as illustrated in Fig. 2, both M22,9 and M6,9 are finite.

We denote the amplitude of such propagation by t
(9)
6,22,

where the upper index (9) indicates that the propaga-
tion between the sites 6 and 22 takes place via site the 9.

To approximate the amplitude t
(9)
6,22 one can make similar

considerations as in the previous section. Thus,

t
(9)
6,22 ∼ (−M22,9) ·e−iφ1 ·M9,6 ·eiφ2 ·(−M6,9) ·e−iφ1 ·M9,22.

(5)
This amplitude describes a (a) propagation from the nor-
mal lead to the superconducting electrode S1 (M9,22),
(b) Andreev reflection from electrode S1 (e−iφ1), (c)
propagation of the hole-like state from contact S1 to S2
(−M6,9), (d) Andreev reflection of the hole-like particle
on the contact S2 (eiφ2), (e) electron-like propagation be-
tween the superconducting electrodes S1 and S2 (M9,6),

(f) a third Andreev reflection on the superconducting
electrode S1 (e−iφ1), (g) and a hole-like propagation from
the contact S1 to the normal lead (−M22,9). Finally, we
also take into account in our minimal model the ampli-
tude t9,22 describing the direct propagation between the
normal lead and the lead S1 according to Eq.(1). The
observed interference effect can be explained as the in-
terplay between these two amplitudes:

IN ∼ |t9,22+t
(9)
6,22|2 = M4

9,22·
(
1 +M4

9,6 − 2 ·M2
9,6 · cos(φ1 − φ2)

)
(6)

The normal current IN in Eq(6) has a maximum at phase
difference φ1 − φ2 = π. The minus sign appearing in
front of the cos(φ1 − φ2) term in Eq(6) is due to the
peculiar properties of the Bogolioubov-de Gennes quasi-

particles. Namely, the amplitude t
(9)
6,22 contains one more

hole-like propagation compared to the amplitude t9,22,
which brings in an extra minus sign needed for the forma-
tion of the unconventional interference effect. Note, that
this argument does not explain why the increase in IN
appears only above a certain bias voltage. Moreover, the

transport process associated to the amplitude t
(9)
6,22 con-

tains four more tunnelings between the superconducting
leads and the molecular core compared to the amplitude
t9,22. Thus, the amplitude t9,22 might be expected to be

much larger than the amplitude t
(9)
6,22 which would sup-

press the interference effect between these two interfering
paths.

The role of the ABSs can be shown explicitly by us-
ing Green’s function theory to calculate the differential
conductance dIN

deV . The details of the this calculation are
presented in the electronic supplementary information.
For simplicity, let us assume that there is only one ABS
in the system (the general case of more than one ABS
is discussed in the electronic supplementary). Then the
differential conductance can be approximated as52

dIN
deV

≈ 16e

h

ΓABS,eΓABS,h
(eV − EABS)2 + Γ2

ABS

, (7)

where Γn = Γen + Γhn is the level broadening of the
ABS due to the presence of the normal lead, ΓABS,e =

〈ABS, e|W †N Im(ge
N)WN|ABS, e〉 with WN being the cou-

pling between the normal lead and the central molecule,
geN standing for the electron-like block of the surface
Green’s function of the normal contact evaluated at en-
ergy EABS , and |ABS, e〉 represents the electron-like
components of the wave function of the ABS. The def-
inition of ΓABS,h is analogous to ΓABS,e involving the
hole-like degrees of freedom instead of the electron-like
components. According to Eq(7), the ABS leads to a
resonant peak of Lorentzian lineshape in the differential
conductance for eV ≈ EABS(δφ). The half-width of the
resonance is determined by the finite lifetime of the ABS
which is due to the coupling to the normal lead given by
ΓABS,e and ΓABS,h. We note that a similar result can
be obtained for a system hosting multiple ABSs. The to-
tal differential conductance in this case would be a sum
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of resonances centered on the energies of the individual
ABSs’. However, the “cross-talk” between the ABSs has
an additional influence on the shape of the resonances,
i.e., they start to deviate from the regular Lorentzian
shape. (For details see the electronic supplementary ma-
terial.)

Looking back to Eq. (6), one may now say that the

interfering amplitude t
(9)
6,22 can be increased due to the

Fabry-Perot-like resonant oscillations of the charged par-
ticles between the superconducting contacts. These os-
cillations lead to the formation of ABSs of finite lifetime,
which, in turn, affect the current IN at finite eV , as in-
dicated by Eq. (7). The ABSs can be visualized by cal-
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Figure 4. (a) and (b): density of states of the molecular
junction shown in Fig. 2 for two different coupling WN of the
normal lead to the molecule. The bright areas indicate the
dispersion of the ABS as a function of δΦ. The ABS energy
level is broadened by increasing WN . c) A resonance occurs
in the differential conductance when the bias voltage eV is
close to the energy En(δφ) of the ABS in a). d) As the ABS
is broadened, the width of the resonance broadens as well.

culating the density of states of the junction (see the
electronic supplementary information for details). The
results of such calculations for the system in Fig. 2 are
shown in Fig. 4. In Figs. 4a) and b) we show the density
of states for two different coupling WN . The large values
of the density of states (bright region) indicate the ABS.
In this particular case, for eV = 0 and zero tempera-
ture there is only one occupied ABS (at energy −E, not
shown) and one unoccupied ABS [at energy E, Figs.4(a)
and (b)]. By applying a finite eV > 0 the occupation
of these ABSs can be changed, leading to the peculiar
dependence of both IN and Is on δΦ in Fig. 3 that we
noted earlier. Because of the normal lead, the ABSs have
a finite lifetime, which is determined by the escape rate
of the particles through the normal lead. Therefore, the
ABS lifetime (and consequently the width of the resonant

peaks in the differential conductance) is expected to be
sensitive to the coupling between the normal lead and
the central molecule. This can be clearly seen in Fig. 4c)
and d), where the peak of the differential conductance
calculated for WN = 0.1γ0 is considerably wider than the
peak calculated for WN = 0.3γ0. Notice, that for higher
values of WN the resonant peak starts to deviate from
the Lorentzian shape. This is because by increasing the
coupling between the contacts and the central molecule
one can no longer neglect the energy dependence of the
Green’s function of the normal contact in the calculation
of ΓABS,e and ΓABS,h, see the electronic supplementary
information. Since the ABS’s energy EABS depends on
the phase difference δφ, the peaks in dIN

deV are also sen-
sitive to the superconducting phase difference. This is
also shown in Figs. 4(c) and (d). Therefore, by measur-
ing dIN

deV as a function of δφ one may obtain spectroscopic

information about the ABSs18.
The role of ABSs and QI in the molecular core can be

further illustrated by studying the finite bias properties
of the system shown already in Fig. 1, bottom panel. For
this configuration of the leads the magic number van-
ishes between the two sites where the superconducting
electrodes are attached. One may therefore expect that
there is no ABS present in the system. According to our
calculations this is not exactly the case: one can find an
ABS whose energy is very close to the value of the pair
potential ∆ in the leads, but it is nearly independent of
δφ and therefore it can carry only a small supercurrent.
This explains that for a finite bias eV the δφ dependence
of IN remains qualitatively the same as in the zero bias
case discussed in Eqs(1)-(3) and shows a minimum at
δφ = π for all bias voltages [Fig. 5(a)]. The supercur-
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Figure 5. The currents IN (a) and Is (b) as a function of the
phase difference δφ between the superconducting leads for the
system depicted in Fig. 1 for several bias voltage eV . a) the
Andreev current IN shows a minimum at δφ = π. b) The
current-phase dependence of supercurrent is Is ∝ sin δφ.

rent Is shows the conventional ∝ sin δφ dependence for
eV < ∆ [Fig. 5(b)]. By comparing Figs.5(a) and (b),
one can see that although a small Is can flow for finite
eV , the critical current Ic is smaller than IN . This is the
opposite of what we found in the previous case [Fig. 3].
Overall, one may also notice that both IN and Ic are
much smaller than previously, c.f. Figs. 3 and 5.

These results underpin the importance of ABSs in An-
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dreev interferometers and are also a consequence of mid-
gap transport. Namely, the propagation amplitude de-
scribed by the Green’s function elements decay with the
energy difference between the chemical potential and the
energy of the eigenstates. Since the energy levels of the
molecule are much further from the chemical potential
than the ABS levels, their contribution to the Green’s
function elements will be also much smaller than the
contribution of the ABSs. Thus, in the mid-gap energy
regime, the transport processes would indeed be domi-
nated by the interference effects related to the ABSs.

We now discuss the most general situation, where
ABSs can be found in the system and, in contrast with
the case in Fig. 1, the connectivity from the normal lead
to both superconducting terminal is finite. In what fol-
lows we shall examine the unconventional interference ef-
fects as the connectivity in the interferometer is changed.
We consider a setup similar to the one shown in Fig. 1
and tune the asymmetry of the molecular interferom-
eter by inserting a substitutional heteroatom into the
molecular core13, i.e. a carbon atom is replaced by
a substituent heteroatom, as indicated schematically in
Fig. 6(a). Due to the presence of the heteroatom, new
conductive channels open up in the molecular core that
were originally closed via destructive QI effects. In our
theoretical model we account for the presence of a sub-
stitutional heteroatom by a modified on-site energy on a
specific site in the molecule. By changing e.g., the on-site
energy ε3 in the tight-binding Hamiltonian of the molec-
ular core [see Fig. 6(a)], the normal conductance between
sites labeled by even numbers also becomes finite13. As-
suming that instead of S1 and S2 we have normal con-
ducting leads N1 and N2 as in Fig. 6(a), the evolution
of the ratio of the zero-bias normal conductances σN,N1

and σN,N2 as a function of the on-site energy ε3 is demon-
strated in Fig. 6(b). As one can see, by varying ε3 one
can gradually open a conductive channel between leads
N and N2.

We now consider the finite bias properties of the An-
dreev interferometer shown in Fig. 6(c), which can be
obtained be replacing the normal leads N1 and N2 by su-
perconducting ones S1 and S2 in Fig. 6(a). First, we cal-
culate IN for several values of ε3 and fixed eV = 0.95∆.
Remarkably, as shown in Fig. 7(a), IN takes on a hat-
like shape with two maxima around phase the differ-
ence π for such values of ε3, where σN,N1 and σN,N2

are comparable. This is clearly different from the re-
sults in Fig. 3(a) and we are not aware of similar results
in mesoscopic NS systems. Regarding Is [Fig. 7(b)], for
smaller values of ε3 where σN,N1 � σN,N2, it is qualita-
tively similar to the results shown in Fig. 3(b). On the
other hand, the current-phase relation of Is becomes sim-
ilar to the conventional Is = Ic sin δφ as the conductive
channel gradually opens between N and S2 and conse-
quently σN,N1 ≈ σN,N2 [see e.g., the case ε3 = −0.50γ0
in Fig. 7(b)]. Note that in this case the Is(δφ) depen-
dence for δφ ≈ π is different from the corresponding
eV = 0.94∆ result shown in Fig. 3(b). In Fig. 7(c) and

Figure 6. a) Schematics of Anthanthrene molecule with a
heteroatom denoted by green. b) Ratio of the normal con-
ductance between contacts N-N2 and N-N1 as a function of
the on-site energy ε3 in Fig. 6. At ε3 = 0 the conductance
σN,N1 between contacts N and N1 is much larger than the
conductance σN,N2 between contacts N and N2, in agreement
with Refs.12,30. For finite ε3 the conductance σN,N2 increases
and can be comparable to σN,N1. c) Andreev interferometer
setup obtained by replacing the normal leads N1 and N2 in
a) by superconducting ones S1 and S2.

(d) we show IN and Is, respectively, as a function of δφ
for several biases eV . Here we fixed ε3 = −0.50γ0, i.e.,
σN,N1 ≈ σN,N2. As one can see, for small eV , when
the occupation of the ABS is not yet modified, IN shows
qualitatively the same behavior as in Fig.5(a), i.e., when
there was no current-carrying ABS in the system. For
larger eV , however, there is a clear difference with re-
spect to both Fig. 3(a) and Fig. 5(a), since IN adopts a
hat-like dependence on δφ. The non-equilibrium popula-
tion of the ABSs also affects Is [see Fig. 7(d)] which starts
to deviate from the ∝ sin δφ dependence for eV > 0.95∆.

According to our calculations the presence of a het-
eroatom does not modify the ABS spectrum significantly
[Fig.8(a)]. As shown in Fig. 8(b), when IN nearly van-
ishes for ε3 = −0.50γ0, δφ = π [Fig. 7(a)], the differential
conductance dIN

deV vanishes, too. According to Eq. (7), the

vanishing of dIN
deV can be explained only if the coupling

between the normal lead and the ABS vanishes. There-
fore we turn our attention to the electron- and hole-like
broadening terms Γen and Γhn in the numerator of Eq. (7).
In Figs8(c) and (d) we show the local density of states
(LDOS) on the molecular site connected to the normal
contact separately for the electron- and hole-like degrees
of freedom. Note that Γen and Γhn are proportional to
the corresponding LDOS. As one can see, the electron-
like component of the LDOS becomes highly suppressed
at phase difference δφ = π, while the hole-like compo-
nents has a maximum there. In turn, we found that on
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Figure 7. The currents (a) IN and (b) Is (b) as a function of
the phase difference δφ between the superconducting leads for
the system depicted in Fig. 6(a) for several values of the on-
site energy ε3 and fixed bias eV = 0.95∆. IN starts to show
a double peak structure as a function of δφ for ε3 & −0.20γ0.
(c) IN and (d) Is as a function of the bias voltage eV for
ε3 = −0.50γ0.
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Figure 8. a) The density of states of the ABS for the case
shown in Fig. 6(c). b) The differential conductance corre-
sponding to a). The local density of states for electron (c)
and hole (d) quasiparticles as a function of δΦ. In these cal-
culations we used ε3 = −0.50γ0.

other sites of the molecule the hole-like component of
the LDOS can be suppressed and the electron-like LDOS
enhanced (an example is shown in the Supplementary
information).

The surprising result in Figs.8(c) and (d) can be un-
derstood as a peculiar interference effect that acts in
a different way on the electron- and the hole-like par-

ticles. (Note, that due to electron-hole symmetry, the
same feature can be observed for negative energies with
a constructive interference in the electron-like part of the
LDOS and with a destructive interference in the hole-like
part of the LDOS.) One can give the following simple ar-
gument in terms of new quasiparticle paths. In Fig. 9 we
show two quasiparticle trajectories. The first describes
the process N → S2 → S1 → N and the last segment S1
→ N is made possible by the fact that the substitutional
heteroatom opened a new conductive channel. Using a
similar argument as in the case of Eq. (5), one can ar-
gue that the amplitude of the path contributing to the
electron-like part of the wave function can be expressed
as

teodd ∼MN,S1 · eiφ1 · (−MS1,S2) · e−iφ2 ·MS2,N

∼ −MN,S1 ·MS1,S2 ·MS2,Ne
i(φ1−φ2). (8)

Since teodd contains an odd number of propagations
through the molecule, and the sign of the propagation
depends on whether one considers electron- or hole-like
particles, the amplitude thodd contributing to the hole-like
component of the wave function would differ by a minus
sign compared to teodd. Now consider the process N→ S2
→ S1 → S2 ⇒ N depicted in Fig. 9(b). The last propa-
gation indicated by S2⇒ N describes a normal reflection
(without electron-hole conversion) at the site connected
to S2 and a forthcoming propagation to the normal con-
tact. (Since we are working in the weak coupling limit,
the normal reflection at sites connected to the contacts
has a finite probability.) The amplitude corresponding
to this path can be expressed as follows:

teeven ∼MN,S2 ·MS2,S1 · eiφ1 · (−MS1,S2) · e−iφ2 ·MS2,N

∼ −M2
N,S2 ·M2

S1,S2 · ei(φ1−φ2) (9)

Since teeven depends on the square of the connectivity
matrix elements, the corresponding hole-like amplitude
theven would have the same sign as teeven. One can see
that because of the sign difference, there is a destruc-
tive interference in total amplitude te = teeven + teodd and
a constructive one in th = theven + thodd. This example
shows how differences can appear in the processes that
determine the electron-like and the hole-like LDOS. Note
that, strictly speaking, in the calculation of te and th one
would need to take into account all possible scattering
paths and not only those discussed above. We expect,
however, that the described interference effect would not
be affected significantly.

We also mention that according to our numerical re-
sults the interference effect can be swapped between the
electron- and hole-like components by changing the sign
of the on-site energy ε3 of the heteroatom. According Eq.
(8) of Ref.13 the connectivity matrix element MN,S1 can
change a sign for sufficiently large heteroatom on-site en-
ergy. Consequently, teodd would also change sign resulting
in a constructive interference for the electron-like and de-
structive interference for the hole-like components in the
LDOS.
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Figure 9. An example for interfering paths having an am-
plitude of opposite sign for the electron- and hole-like parti-
cles. These kinds of paths have an odd number of propagation
through the molecular core. b) A representative of trajecto-
ries consisting of even number of propagations through the
molecular core. The amplitude of these kinds of trajectories
have the same sign for the electron- and hole-like quasiparti-
cles.

Opening of new conductance channels can affect the
properties of the molecular Andreev interferometer not
only in the case discussed in Figs. 6 and 7, where the
conductance between the leads N and S1 was tuned. As
noted earlier for the system in Fig. 1, for this configura-
tion of the leads the connectivity matrix element is zero
between the two sites where the superconducting elec-
trodes are attached. However, this connectivity matrix
element can also be made finite by adding a heteroatom
as indicated in Fig. 10(a). This means changing the on-
site energy ε12 in the tight-binding Hamiltonian of the
molecular core. We found that the dependence of the
supercurrent on ε12 and eV is qualitatively similar to the
behavior in Fig. 7(b) and (c). Therefore we only show
the calculations for IN in Fig. 10(b). As the connec-
tivity grows for larger values of ε12, the δΦ dependence
of IN also undergoes a drastic change and, interestingly,
adopts a qualitatively similar behavior to the one shown
in Fig. 7(a), i.e., there are two maxima in the current
around δΦ = π.

Figure 10. a) Anthanthrene molecule with a heteroatom (de-
noted by green) and the same configuration of leads as in
Fig. 1. b) The normal current IN as a function of the phase
difference δΦ between the superconducting leads for the setup
in (a).

CONCLUSIONS AND OUTLOOK

In this article, we have investigated the interplay be-
tween two quantum interference phenomena that take
place on hugely different energy scales; QI within
molecules, which takes place on the scale of electron volts
and QI associated with superconductivity, which takes
place on the scale of milli-electron volts. We studied
the interplay between connectivity-driven QI in molec-
ular cores and non-equilibrium charge distribution in
three-terminal Andreev interferometers based on PAH
molecules. We showed that QI determines certain funda-
mental properties of the ABS in the system, while their
energies can be tuned by the phase difference between the
superconducting probes. Consequently, QI and the non-
equilibrium ABS occupation in the molecular core, which
can be modified by a bias voltage applied to the normal
lead, affects both the normal current and the supercur-
rent in the system. We gave a simplified explanation of
some of the complicated interference effects in terms of
electron and hole trajectories and point out when such
explanation breaks down under non-equilibrium condi-
tions. We found that the dependence of the normal cur-
rent on the superconducting phase difference can exhibit
a double-peak structure, while the supercurrent can show
a π transition when the bias eV on the normal lead is
larger than the superconducting gap. We also showed
that adding a heteroatom to the PAH core can signif-
icantly change the QI and can induce an asymmetry in
the spatial distribution of the electron- and hole-like par-
ticles, which has a direct impact on the phase dependence
of the normal current. This indicates that the properties
of molecular Andreev interferometers can be tuned by
engineering QI in the molecular core.

For the future one may envisage a system similar to
the one shown in Fig. 6 but with two normal leads (N1
and N2) attached to different sites of the molecular core.
Assume now that lead N1 would be coupled to a site
where, e.g., the electron LDOS is enhanced and the hole
suppressed, whereas lead N2 to a site where the oppo-
site is true, i.e., the electron LDOS is suppressed and the
hole LDOS is enhanced. Then the so-called non-local An-
dreev reflection (N1 → N2), where an incoming electron
from lead N1 is Andreev reflected into lead N2, would
be enhanced with respect to local Andreev reflection (N1
→ N1) and normal electron transmission (N1 → N2).
Therefore, in such four-terminal device the asymmetry
between the electron- and hole-like degrees of freedom
on certain sites of the molecular core could be translated
into a spatial separation of electron pairs originating from
the superconducting condensate. This process is called
Cooper pair splitting and it provides entangled electron
pairs that may play an important role in quantum in-
formation processing. Most of the proposed Cooper pair
splitters to-date relied on Coulomb blockade transport
through quantum dots53–56, or on peculiar properties of
novel low-dimensional materials57–59. Our results indi-
cate that Cooper pair splitting may also be achieved in
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multi-terminal molecular systems where the spatial sep-
aration of the Cooper pairs would rely on the inner QI
effects of the molecule. The detailed study of such four-
terminal molecular Cooper pair splitters is an interesting
problem which we leave to a future work.
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Appendix A: Theoretical background to calculate
the differential conductance

In this section we give the technical details to cal-
culate and analyze the differential conductance on the
normal lead connected to an Andreev interferometer.
The aim of this section is twofold. Firstly we obtain a

closed formula which can be evaluated numerically. Sec-
ondly, we answer the questions raised in the discussion
of the results in Fig.3 of the main text. Namely, the re-
ported unconventional interference effect is manifested
only above a certain bias voltage applied on the nor-
mal lead. Secondly, the amplitude of the interfering path
N → mol → S2 → mol → S1 → mol → S2 → mol → N
depicted in Fig. 3. of the main text is expected to be
much smaller than the amplitude of the interfering path
N → mol → S2 → mol → N , yet the resulting inter-
ference pattern in the Andreev current seem to be quite
robust (see Fig. 4 in the main text). (The interfering path
N → mol → S2 → mol → S1 → mol → S2 → mol → N
depicted in Fig. 3. of the main text involves four extra
tunnelings between the leads and the central molecule
compared to the interfering path N → mol → S2 →
mol→ N .)

The Andreev current can be evaluated using Eq. (4)
of the main text. In this equation the lesser
Green’s function G< can be calculated within the
Keldysh non-equilibrium framework using the Keldysh
equation48–50,60,61:

G< = GRΣ<GA, (A1)

where GR(E) [GA(E)] is the retarded [advanced] Green’s
function and Σ<(E) = Σ<S1(E) + Σ<S2(E) + Σ<N (E, V )
contains the lesser self energies of the leads.

The differential conductance can be derived from
Eq. (4) of the main text utilizing the relation given by
Eq. (A1):

dIN
deV

= −2e

h
Re

{
d

deV

∫
dE Tr

[
τ3WNG

R

(
Σ<S1 + Σ<S2 + Σ<N (eV )

)
GA
]}

(A2)

This expression can be further simplified by applying the
derivation with respect to the bias voltage V on the in-
tegrand. Notice that only the self energy of the normal

lead depends on eV . Hence

dIN
deV

= −2e

h
Re

{∫
dE Tr

[
τ3WNG

R d

deV
Σ<N (E, eV )GA

]}
(A3)

Furthermore, the lesser self energy Σ<N (E, eV ) depends
on the bias voltage via the thermal occupation number.
In the electron-hole space the lesser self energy can be
given as48

Σ<N =

(
fe(Σ

R
N,e − ΣAN,e) 0

0 −fh(ΣRN,h − ΣAN,h)

)
(A4)

=

fe
((

gAN,e
)−1 − (gRN,e)−1) 0

0 fh

((
gAN,h

)−1
−
(
gRN,h

)−1)
 , (A5)



11

where fe = f(E − eV ) [fh = f(E + eV )] is the ther-
mal occupation number for the electrons [holes] given by
the Fermi-distribution function and ΣRN,e [ΣAN,e] and ΣRN,h
[ΣAN,h] are the retarded [advanced] self energies of the
electron-like and hole-like particles in the normal lead,
uncoupled from the rest of the system. Similarly, gRN,e/h
and gAN,e/h stand for the retarded and advanced Green’s

functions of the electron/hole-like particles in the nor-
mal lead. To calculate the retarded and advanced self
energies and Green’s functions we followed the numeri-
cal procedure described in Ref.62. Also, we assume the
uncoupled leads to be in thermal equilibrium.

For simplicity we will consider the zero temperature
limit in our calculations. Consequently, the derivative of
the Fermi distribution function is the Dirac delta function
and the integral in Eq. (A3) simplifies to

dIN
dV

= −2e

h
Re

{
Tr

[
τ3WNG

R(eV )

((
gAN,e(eV )

)−1 − (gRN,e(eV )
)−1

0
0 0

)
GA(eV )

]}

+
2e

h
Re

{
Tr

[
τ3WNG

R(−eV )

(
0 0

0
(
gAN,h(−eV )

)−1
−
(
gRN,h(−eV )

)−1)GA(−eV )

]}. (A6)

As we can see from Eq. (A6), the key element to calcu-
late the differential conductance is the retarded and ad-
vanced Green’s functions GR and GA. Eq. (A6) then can
be directly used to calculate numerically the differential
conductance in the studied three-terminal junctions.

To get further insight into the physics of the transport
process we follow the logic of Ref.52 to evaluate these
Green’s functions in terms of the Dyson’s equation. Let
us denote the retarded Green’s function of the unified
system of the two superconducting contacts and the cen-
tral molecular core by gRmol. Then the retarded Green’s
function of the whole Andreev interferometer can be eval-

uated in terms of the Dyson’s equation:

GR =

( (
gRmol

)−1 −W †N
−WN

(
gRN
)−1

)−1
, (A7)

where

gRN =

(
gRN,e 0

0 gRN,h

)
(A8)

is the Green’s function of the normal lead containing both
the electron and hole-like components. Equation (A7)
yields for the individual components of the Green’s func-
tion:

GR =

(
GRmol,mol G

R
mol,N

GRN,mol GRN,N

)
=

 gRmol

(
1−W †NgRNWNg

R
mol

)−1
gRmol

(
1−W †NgRNWNg

R
mol

)−1
W †Ng

R
N

gRN

(
1−WNg

R
molW

†
Ng

R
N

)−1
WNg

R
mol gRN

(
1−WNg

R
molW

†
Ng

R
N

)−1
 . (A9)

Considering the rules of the matrix multiplication, and
that the only non-zero elements of the lesser self energy
of Eq. (A5) are the block diagonal parts related to the
leads, in order to evaluate the differential conductance

(A6) it is enough to consider the GRmol,N block of the

retarded Green’s function and the GAN,N part of the ad-
vanced Green’s function. According to the structure of
Eq. (A9) one finds:

GRN,N = gRN

∞∑
n=0

(
WNg

R
molW

†
Ng

R
N

)n
= gRN + gRNWNg

R
mol

∞∑
n=0

(
WNg

R
molW

†
Ng

R
N

)n
W †Ng

R
N

= gRN + gRNWNg
R
mol

(
1−W †Ng

R
NWNg

R
mol

)−1
W †Ng

R
N = gRN + gRNWNG

R
mol,molW

†
Ng

R
N ,

(A10)

and

GRmol,N = GRmol,molW
†
Ng

R
N . (A11)

We now return to the evaluation of the differential con-
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ductance given by Eq. (A6). For simplicity we continue
our calculations focusing on the first (electron-like) part
of Eq. (A6). (Due to the electron-hole symmetry of

the Bogoliubov-de Gennes equations, the hole-like part
would give the same result.) Inserting Eqs. (A10) and
(A11) into Eq. (A6) yields:

dIeN
dV

= −2e

h
Re

{
Tr

[
τ3WNG

R
mol,N

((
gAN,e

)−1 − (gRN,e)−1 0
0 0

)
GAN,N

]}
= −4e

h
Im

{
Tr

[
τ3WNG

R
mol,molW

†
N

(
Im
(
gRN,e

)
0

0 0

)(
1 +WNG

A
mol,molW

†
Ng

A
N

)]}
.

(A12)

In Eq. (A12) we applied the identity gRN,e − gAN,e =

2i Im
(
gRN,e

)
. For simplicity let’s suppose we have only

one Andreev bound state (ABS) formed in the super-
conductor – molecular core – superconductor (S-mol-S)
junction described by the Green’s function gRmol. In the
presence of the normal lead, the ABS’s starts to leak out
via the normal lead resulting in the broadening of the
ABS energy levels. Since our main interest are the trans-
port properties close to the mid of the HOMO-LUMO
gap, in the relevant energy regime we do not expect any
further bound states in GRmol,mol besides the ones cor-
responding to the ABS’s. Thus, we might approximate
GRmol,mol as:

GRmol,mol(E) ≈ |ABS〉〈ABS|
E − EABS + iΓABS

. (A13)

Here the state |ABS〉 represents the wave function of
the ABS in the molecule of energy EABS , and ΓABS =〈
ABS

∣∣∣W †N Im
(
gRN
)
WN

∣∣∣ABS〉 is the level broadening

originating from the escape rate of the particles through

the normal lead.52 The mathematical expression for
ΓABS calculates the overlap between the ABS wave func-
tion and the self energy of the normal lead. Thus, ΓABS
can be divided into two distinct terms, one related to
the escape rate of the electron-like and the second one
to the escape rate of the hole-like particles. Namely,
ΓABS = ΓABS,e + ΓABS,h, where:

ΓABS,e =

〈
ABS

∣∣∣∣W †N (Im
(
gRN,e(EABS)

)
0

0 0

)
WN

∣∣∣∣ABS〉 ,

(A14)
and

ΓABS,h =

〈
ABS

∣∣∣∣∣W †N
(

0 0

0 Im
(
gRN,h(EABS)

))
WN

∣∣∣∣∣ABS
〉
.

(A15)
Using the (A13) expression of GRmol,mol and the invari-

ance of the Tr(. . . ) function against the cyclic permu-
tation of its arguments one obtains for the differential
conductance:

dIeN
dV
≈− 4e

h
Im

〈
ABS

∣∣∣∣W †N (Im
(
gRN,e

)
0

0 0

)
WN

∣∣∣∣ABS〉
eV − EABS + iΓABS

− 4e

h
Im


〈
ABS

∣∣∣∣W †N (Im
(
gRN,e

)
0

0 0

)
WN

∣∣∣∣ABS〉
eV − EABS + iΓABS

〈
ABS

∣∣∣W †NgANτ3WN

∣∣∣ABS〉
eV − EABS − iΓABS

 .

(A16)

Now making use of the definition of the broadening pa-
rameters ΓABS,e and ΓABS,h we end up with the following
expression for the differential conductance:

dIeN
dV
≈ 8e

h

ΓABS,eΓABS,h
(eV − EABS)2 + Γ2

ABS

. (A17)

In the above expression we neglected the energy depen-
dence of the Green’s function of the normal lead in a

ΓABS wide vicinity of the energy EABS . Accounting also
for the hole-like part of the differential conductance (A6)
gives an additional factor of two in the final result due
to the electron-hole symmetry. Thus, the total differen-
tial conductance would be given by Eq. (7) of the main
text. In case we have more than one ABS in the junc-
tion, the first term of Eq. (A16) would turn into a sum
of Lorentzian resonances, while the second term evolves
into a more complex mathematical expression:
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−
∑
p,q

Im


〈
p

∣∣∣∣W †N (Im
(
gRN,e

)
0

0 0

)
WN

∣∣∣∣ q〉
eV − Ep + iΓpp

〈
q
∣∣∣W †NgANτ3WN

∣∣∣ p〉
eV − Eq − iΓqq

 = Im
∑
p,q

Γpq,e
eV − Ep + iΓpp

Γqp,e − Γqp,h
eV − Eq − iΓqq

(A18)

where |q〉, Eq and Γq represents the wave function, the
energy and the broadening of the qth ABS, and the quan-
tities Γqp,e and Γqp,h are defined similarly to Eqs. (A14)
and (A15), but the scalar product is taken between wave
functions corresponding to different ABS’s. Besides reg-

ular Lorentzian resonances [p = q terms of Eq. (A18)] we
see that the differential conductance is heavily influenced
by the cross-talk of the individual ABS’s. Mathemati-
cally the product of two fractions on the right hand side
of Eq. (A18) can be rewritten to a sum

Γpq,e
eV − Ep + iΓpp

Γqp,e − Γqp,h
eV − Eq − iΓqq

=
λ

eV − Ep + iΓpp
+

δ

eV − Eq − iΓqq
, (A19)

where λ and δ are in general complex numbers. (Individ-
ually both of them have singularity at eV = (ΓppEq +
ΓqqEp)/(Γpp + Γqq), but these singularities cancel each
other in the sum of the two fractions.) Consequently,
the imaginary part of these fractions would differ from
the regular Lorentzian function and the total differential
conductance in the presence of multiple ABS’s would be
the sum of asymmetric Lorentzian resonances centered to
the energies of the ABS’s. The asymmetry in the reso-
nances is a signature of the cross-talk between the ABS’s.

Appendix B: Resonant oscillation

As discussed in the main text, we try to explain the
unconventional interference pattern by the interplay of
the two paths depicted in Fig. 2 of the main text. How-
ever the amplitude t9,22 (defined by Eq. (1) of the main
text) might be expected to be much larger than the am-

plitude t
(9)
6,22 (defined by Eq. (5) of the main text) which

would suppress the interference effect between these two
interfering paths.

The physical picture behind the small magnitude of

t
(9)
6,22 relative to t9,22 is associated to the particle transfer

between the two superconducting banks. The four tun-
neling processes between the molecular core and the su-
perconducting electrodes significantly decreases the mag-

nitude of the interfering amplitude t
(9)
6,22. On the other

hand, a resonant oscillation realized by the ABSs over-
writes this physical picture. In this case the charge trans-
port between the superconducting banks becomes reso-
nantly amplified via the ABS and thus the amplitudes

t
(9)
6,22 and t9,22 becomes comparable. In summary, for en-

ergies close enough to the energy of an ABS the differen-
tial conductance shows an interference effect due to the
resonant amplification of the interfering amplitude t

(9)
6,22,

while for other energies the interference would be sup-
pressed.

Appendix C: Density of states

In this subsection we give the technical details to calcu-
late the density of states of the three-terminal molecular
junction, which can be used to physically interpret the
numerical results obtained by Eqs. (4) of the main text
and by Eq. (A6). We calculate the density of statesρ from
the equilibrium Green’s function of the three-terminal
molecular junction labeled by GRmol,mol in the calculations

above. To be precise, GRmol,mol labels only that block
of the whole Green’s function which contains only the
molecular degrees of freedom. Then the density of states
can be defined as:

ρ(E) = − 1

π
Tr
[
Im
(
GRmol,mol(E)

)]
. (C1)

As for the differential conductance, GRmol,mol can be cal-

culated via the Dyson’s equation (A7) which is evaluated
using the Eötvös Quantum Utilities (EQuUs)51 software
package.

Appendix D: The tight-binding model of the
molecular junctions

To describe the electrical transport processes in the
studied molecular junctions we use a nearest neighbor
tight binding model catching the dynamics of the pz elec-
trons of the molecular core. The tight binding parame-
ters describing the molecular core are chosen following
the philosophy in Refs.12,30, where the aim is to high-
light the role of connectivity in determining the trans-
port properties of these molecular cores. For this reason,
the hopping integrals γii′ = γ0 are set to unity and the
on-site energies εi are set to zero. With other words, the
unit of energy is the hopping integral and the site energy
is the energy origin. This means that the Hamiltonian of
the molecule is simply a connectivity matrix and there-
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Figure 11. The tight binding model of the Anthanthrene
molecule attached to two superconductive and one normal
lead. The sites in the molecular core are labeled by primed
and unprimed numbers, while the hopping amplitude be-
tween the sites are characterized by a single number. The
normal and superconducting contacts are modeled by a one-
dimensional conductive channels.

fore all predicted effects are a result of connectivity alone.
The normal and superconducting contacts are modeled
by a one-dimensional tight-binding chain. The transport
properties of the junction have a weak dependence on the
actual physical parameters of the leads as far as the leads
remains metallic in the studied energy regime. Thus, we
chose the physical parameters of the leads to increase the
density of states in the leads and have the bandwidth of
the conductive larger than the studied energy regime.
In particular, we set the hopping amplitude in the con-
tacts to 0.05γ0 and the on-site energy parameter to 0.
The superconducting contacts are modeled by an s-type
superconducting pair potential ∆ = 0.001γ0. (The pair-
ing potential is zero anywhere else in the system.) In
the particular case the tight binding model of the An-
thanthrene molecule connected to the superconducting
and normal electrodes is shown in Fig. 11. Remarkably,
as demonstrated in Refs.12,30, this approach yields the
experimentally-measured conductance ratios of a range
of PAHs.

Finally, as we explained in the main text, we tuned the
transport properties of the molecular core by an insert-
ing a substitutional heteroatom into the molecular core.
According to Ref.13, the presence of the heteroatom have
a strong influence on the inner quantum interference ef-
fects in the molecular core, even new conductive chan-
nels may open up in the molecular core. In our theoreti-
cal model we account for the presence of a substitutional
heteroatom by a modified on-site energy on a specific site
in the molecule.

Appendix E: Comparison of the local density of
states on two molecular sites

As shown in Fig.8(c) and (d) of the the main text,

which is reproduced below in Fig. 12, the local density of
states (LDOS) is suppressed for electron-like quasiparti-
cles and enhanced for hole-like quasiparticles on molecu-
lar site 22 (for the numbering of the molecular sites, see
Fig. 11). We have calculated the LDOS for the other
sites of the molecular core as well and found that due to
QI the LDOS of the electron and hole quasiparticles is
different on each site. In particular, it can happen that,
in contrast to Fig. 12, the electron LDOS is larger than
the hole LDOS. An example shown in Fig. 13, where this
asymmetry of LDOS can be clearly seen.

Figure 12. The LDOS for electron (a) and hole (b) quasi-
particles as a function of δΦ on molecular site 22 of the An-
dreev interferometer shown in Fig.6(c) of the main text and
in Fig. 11. In these calculations ε3 = −0.50γ0.

Figure 13. The LDOS for electron (a) and hole (b) quasi-
particles as a function of δΦ on molecular site 8 of the An-
dreev interferometer shown in Fig.6(c) of the main text and
in Fig. 11. In these calculations we used ε3 = −0.50γ0.

As mentioned in the “Conclusions and Outlook” sec-
tion of the main text, by attaching normal leads N1 and
N2 to molecular sites 8 and 22 and may enhance the
non-local Andreev reflection N1 → N2 with respect to
the local Andreev reflection N1→ N1.
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