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ABSTRACT

We present the discovery and high-cadence follow-up observations of SN 2018ivc, an unusual Type

II supernova that exploded in NGC 1068 (D = 10.1 Mpc). The light curve of SN 2018ivc declines

piecewise-linearly, changing slope frequently, with four clear slope changes in the first 30 days of evo-

lution. This rapidly changing light curve indicates that interaction between the circumstellar material

and ejecta plays a significant role in the evolution. Circumstellar interaction is further supported by

a strong X-ray detection. The spectra are rapidly evolving and dominated by hydrogen, helium, and

calcium emission lines. We identify a rare high-velocity emission-line feature blueshifted at ∼ 7800

km s−1 (in Hα, Hβ, Pβ, Pγ, He i, Ca ii), which is visible from day 18 until at least day 78 and could

be evidence of an asymmetric progenitor or explosion. From the overall similarity between SN 2018ivc

and SN 1996al, the Hα equivalent width of its parent H ii region, and constraints from pre-explosion

archival Hubble Space Telescope images, we find that the progenitor of SN 2018ivc could be as massive

as 52 M� but is more likely < 12 M�. SN 2018ivc demonstrates the importance of the early discovery

and rapid follow-up observations of nearby supernovae to study the physics and progenitors of these

cosmic explosions.

Keywords: supernovae: individual (SN 2018ivc) – supernovae: general

1. INTRODUCTION

Single stars with masses greater than ∼ 8 M� are

thought to explode as core-collapse supernovae (SNe).

Type II SNe, those with hydrogen in their spectra,

are empirically classified by the shape of their light

curves. The light curves of Type IIP SNe show a long

plateau, ∼ 80–120 days after explosion, before falling

by a few magnitudes over ∼ 20 days and eventually

settling on a decline powered by the radioactive de-

cay of 56Ni→ 56Co→ 56Fe. On the other hand, the

light curves of historical Type IIL SNe (e.g., SN 1979C,

SN 1980K) decline linearly (in mag day−1) before tran-

sitioning to the radioactive decay phase. While his-

torically these two classes were separated (e.g., Barbon

et al. 1979; Patat et al. 1993, 1994; Arcavi et al. 2012;

Faran et al. 2014a,b), today, with larger samples of light

curves, we see that these classes blur together: there are

intermediate objects showing a linear decline like that of

Type IIL SNe, and a clear fall onto the radioactive de-

cay tail like that of Type IIP SNe (Anderson et al. 2014;

Valenti et al. 2015; Galbany et al. 2016a). Addition-

ally, there appears to be a smooth continuum of slopes

during the hydrogen recombination phase. Throughout

this paper we will refer to this collective class as Type

IIP/IIL SNe, and we use the Type IIL-like designation

to indicate objects that are similar to the historical Type

IIL SNe and Type IIP-like to describe SNe that show a

clear plateau.

The continuity of Type IIP/IIL SN observational

properties makes sense when one considers the physical

mechanism producing the plateau in Type IIP-like SNe.

The progenitors of Type IIP/IIL SNe are massive stars

with hydrogen envelopes. This hydrogen is ionized by

the SN shock and as it cools, it recombines, producing

a receding recombination front in the expanding ejecta.

The progenitors of Type IIP-like SNe have large hydro-

gen envelopes and a recession rate which matches the

expansion rate, producing a constant luminosity. If the

progenitor has experienced more mass loss, then the hy-

drogen envelope is less massive. In this case, the canoni-

cal picture is that the photosphere recedes faster, leading

to a linearly declining light curve, the steepness of which

depends on the amount of hydrogen in the envelope

(Grassberg et al. 1971; Young & Branch 1989; Blinnikov

& Bartunov 1993; Moriya et al. 2016). We note that al-

though this is the standard explanation, the physical

mechanism that produces Type IIL-like SNe is not well

understood, and it is also possible that increased 56Ni

mass or interaction with circumstellar material (CSM)

could produce a linearly decaying light curve.

Over the course of its lifetime, the material lost via

winds from the progenitor star leads to a substantial

amount of CSM. The configuration of the CSM and its

density depend on the time of the mass loss, the rate

of the mass loss (which could be steady or episodic),

and the symmetry of the mass loss. Once the star ex-

plodes, the radiation, shock wave, and (at later times)

ejecta can interact with the material lost prior to ex-

plosion, producing observational signatures such as nar-

row emission lines, enhanced luminosity, and blue colors

(Smith 2014). When narrow or intermediate-width hy-

drogen emission lines are observed, the SN is denoted

a Type IIn SN (see, e.g., Filippenko 1997, for a review

of SNe). Historically, CSM was identified in SNe either

through narrow lines produced by unshocked, photoion-

ized CSM, intermediate-width lines created by shocked

CSM, or by light curves that deviated from the typical

Type IIP/IIL shape and color. Recently, signs of in-
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teraction have been identified beyond these traditional

diagnostics. CSM interaction has been seen in Type

IIP/IIL SNe at late phases (Andrews et al. 2010; Mauer-

han et al. 2017), early CSM interaction has been in-

voked to explain the early-time light curve of most Type

IIP/IIL SNe (Morozova et al. 2017, 2018), and the pres-

ence of CSM material very close to the progenitor has

been used to explain early, narrow, high-ionization fea-

tures (“flash spectroscopy” lines) in several Type II SNe

(e.g., Quimby et al. 2006; Gal-Yam et al. 2014; Smith

et al. 2015; Khazov et al. 2016; Hosseinzadeh et al. 2018).

Each of these signatures of interaction occurs during a

specific phase of evolution and could be missed with-

out continuous and frequent observations from explosion

through the nebular phase. In order to fully understand

the mass-loss history of their progenitors, it is important

to follow Type IIP/IIL SNe as close to explosion as pos-

sible, for as long as possible, with the highest cadence

available.

Here, we present observations of SN 2018ivc, a Type

IIL-like SN that exploded in a complex CSM environ-

ment in the well-studied Seyfert 2 galaxy NGC 1068

(M77; see Figure 1), and was discovered by the D <

40 Mpc SN Survey (DLT40; Tartaglia et al. 2018). We

adopt a distance of D = 10.1 Mpc (µ = 30.02 mag;

Tully et al. 2008) and a recessional velocity of 1037

km s−1 (z=0.003793; Huchra et al. 1999) for NGC 1068

in this work. Our near-daily observations of the SN

show the presence of several rapid changes, both in the

spectra and in the light curve, which could be easily

missed in undersampled observations of other Type IIL-

like SNe. In Section 2 of this paper, we discuss re-

cent improvements to the DLT40 pipeline that enabled

the very rapid discovery and follow-up observations of

SN 2018ivc. We then describe the photometric and spec-

troscopic observations in Section 3, determine the prop-

erties of SN 2018ivc and its host galaxy in Section 4, and

discuss the spectroscopic and photometric evolution of

SN 2018ivc in Section 5. In Section 6, we present our

search for a progenitor in archival images from the Hub-

ble Space Telescope (HST) and our identification of a

SN in the literature with a similar evolution. Properties

of the progenitor system are considered in Section 7 and

the paper is summarized in Section 8.

2. DLT40 DISCOVERY AND RAPID FOLLOW-UP

CAMPAIGNS

2.1. DLT40 Survey and Recent Improvements

We briefly summarize the relevant aspects of the high-

cadence DLT40 SN survey, the mechanics of which are

described in more detail in Yang et al. (2017), Tartaglia

et al. (2018), and Yang et al. (2019). DLT40 is a

∼ 12 hr cadence search for SNe, targeting galaxies within

D . 40 Mpc, designed with the goal of discovering ∼ 10

SNe per year within a day of explosion. Since December

2017, DLT40 has operated two nearly identical 0.41 m

telescopes, one at Cerro Tololo Inter-American Obser-

vatory (CTIO) in Chile and the other at Meckering Ob-

servatory in western Australia. Each telescope strives to

observe the same set of ∼ 400–600 galaxies each night,

providing the effective ∼ 12 hr search cadence. The ex-

posure time is 45 s per field, in a Clear or Open filter,

with a typical limiting magnitude of r ≈ 19 mag in good

sky conditions. As we describe below, the search for SNe

happens in real time, nearly 24 hours a day.

Several recent improvements to the DLT40 pipeline

led to the immediate identification of SN 2018ivc as

a true SN, and enabled the rapid follow-up campaign.

First, DLT40 SN candidates are scored in real time us-

ing a version of the pixel-based, random forest machine

learning algorithm used by the Pan-STARRS1 survey

(Wright et al. 2015). Once a new, strong SN candidate

is identified by the DLT40 algorithm, an email alert is

immediately sent to the team, and a follow-up observa-

tion with a DLT40 telescope can be urgently requested

at the click of a button to verify the new transient. If the

response to the automated email alert is immediate, the

entire process from data taking to automated discovery

to confirmation imaging takes approximately five min-

utes, and truly brings follow-up response into real time.

Once a new SN has been verified with follow-up imaging,

we often trigger a sequence of intranight DLT40 images,

which can elucidate rapid light-curve evolution, as was

the case for SN 2018ivc. Links in the internal DLT40

web pages allow for nearly automated photometric and

spectroscopic triggers of new SNe with the Las Cumbres

Observatory network of telescopes (Brown et al. 2013),

and we always request a target of opportunity (ToO) se-

quence of multiband Swift images to probe the early ul-

traviolet (UV) light-curve evolution. The DLT40 team

also announces all verified SN candidates immediately

through the Transient Name Service1 (TNS) – there are

no proprietary candidates.

2.2. SN 2018ivc Discovery and Rapid Follow-up

Observations

The initial DLT40 discovery image of SN 2018ivc

(which was given an internal DLT40 designation of

DLT18aq) was taken 2018 Nov. 24.04 (UT dates are

used throughout this paper) by the PROMPT5 tele-

scope on CTIO, with a magnitude of r = 14.65 ±

1 https://wis-tns.weizmann.ac.il
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0.02. The DLT40 machine-learning algorithm identi-

fied a strong SN candidate in the initial image of the

NGC 1068 field, and an email alert was sent out two

minutes later. One of us (R. C. A.) quickly inspected

the SN candidate on the DLT40 internal web site and

triggered a second observation, which was taken 14 min

after the discovery image. Once the SN candidate was

confirmed, we took a sequence of PROMPT5 images of

the field over the next ∼ 2.5 hr, during which the SN

brightened from the initial r = 14.65 mag to 14.61 mag.

During this time period, we reported the SN candidate

to the community (Valenti et al. 2018) and also trig-

gered the Las Cumbres Observatory network of robotic

telescopes to obtain multiband observations (UBV gri)

as soon as possible (first images on 2018 Nov. 24.11,

2 hr after discovery). We obtained our first spectrum

with the FLOYDS spectrograph on 2018 Nov. 24.28

and a second spectrum with the BFOSC spectrograph

on 2018 Nov. 24.70 (Zhang et al. 2018).

The last nondetection in the NGC 1068 field by the

DLT40 team was on 2018 Nov. 19. The field of

NGC 1068 had not been observed in the days just

prior to the discovery of SN 2018ivc owing to the lu-

nar angle constraint DLT40 places on its target fields

(θMoon > 25◦).

3. OBSERVATIONS

The photometric and spectroscopic follow-up obser-

vations of SN 2018ivc were obtained and coordinated

through Las Cumbres Observatory’s Global Supernova

Project (GSP; PI: D. A. Howell), a key project to col-

lect densely sampled optical light curves and spectra of

nearby and bright SNe (e.g., Szalai et al. 2019; Andrews

et al. 2019).

In addition to the extensive optical dataset, we also

obtained early UV and near-infrared (NIR) photometry

and NIR spectroscopy throughout the first ∼ 50 days,

and an early X-ray observation2.

3.1. Photometry

Starting within hours of discovery, high-cadence op-

tical photometric data from the Las Cumbres Observa-

tory telescope network were acquired in the UBV gri

bands for SN 2018ivc; all data were reduced using the

lcogtsnpipe software suite (Valenti et al. 2016) on dif-

ference images. Photometric monitoring with the Las

Cumbres Observatory was stopped when we were no

longer able to detect the SN against the bright host

2 We also obtained Giant Metrewave Radio Telescope observations.
However, we found issues with the calibration which rendered the
observations unusable.

background, on 2019 Jan. 21.18 (day 60). These ob-

servations were supplemented with high-cadence pho-

tometry from the DLT40 survey, observed with the

Open/Clear filters and calibrated to the r band. These

observations were reduced using the DLT40 pipeline

(Tartaglia et al. 2018) and photometry was performed

on difference images. DLT40 monitoring was stopped

when the SN disappeared behind the Sun.

We augment these observations with data from the

1.04 m Sampurnanand Telescope in the BVRI bands

(Sagar 1999), the 1.3 m Devasthal Fast Optical Tele-

scope in the BVRI bands (Sagar et al. 2012), the

2.01 m Himalayan Chandra Telescope (HCT) in the

BVRI bands (Prabhu & Anupama 2010), the Mont4K

instrument on the 1.55 m Kuiper Telescope in the UBV

bands, and the 0.6 m Super-LOTIS telescope (Williams

et al. 2008) in the BVRI bands. Point-spread-function

(PSF) photometry was performed on the original images

using the DAOPhot (Stetson 1987) PyRAF3 package. As

the photometry of these observations was not performed

on difference images, imperfect background subtraction

produces more scatter in the light curves. The optical

light curve is presented in Figure 2.

Late-time optical observations were obtained with

HST on 2019 July 1 using the Wide Field Camera 3

(WFC3) UVIS channel (F555W and F814W), as part

of the ToO program GO-15151 (PI: S. Van Dyk). We

used Dolphot (Dolphin 2000, 2016) to extract the pho-

tometry from the FLC frames. A list of all photometric

observations is available in the electronic version of Ta-

ble 1.

SN 2018ivc was also observed with the Neil Gehrels

Swift Observatory (Gehrels et al. 2004). Observa-

tions with the Ultra-Violet Optical Telescope (UVOT;

Roming et al. 2005) were reduced and analyzed using

the pipeline for the Swift Optical Ultraviolet Super-

nova Archive (SOUSA; Brown et al. 2014), which in-

cludes an arithmetic subtraction of the underlying host-

galaxy flux measured from pre-explosion imaging. The

magnitudes use the updated calibration from Breeveld

et al. (2010) and are on the UVOT/Vega system. Opti-

cal magnitudes are not reported because the underlying

host galaxy was too bright to correct for the coincidence

loss. Upper limits in uvw2 and uvm2 and detections in

uvw1 are included in Table 1 and plotted in Figure 2.

3.2. Spectroscopy

Spectroscopic observations from a variety of telescopes

and instruments were obtained almost daily in the op-

3 PyRAF is a product of the Space Telescope Science Institute, which
is operated by AURA, Inc., for NASA
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Figure 1. A color image of SN 2018ivc and its host galaxy NGC 1068 composed of multiband observations obtained with Las
Cumbres Observatory. The inset shows a close-up image of the nuclear region of NGC 1068. SN 2018ivc is indicated with the
red guider lines northeast of the nucleus.

tical, starting within 5 hr of discovery and continuing

through day 35. Less frequent monitoring with larger

telescopes was performed until SN 2018ivc disappeared

behind the Sun ∼ 80 days post-discovery. A single neb-

ular spectrum was obtained with Keck/DEIMOS on day

279 (see Figure 3).

Similarly, NIR observations began on day 3 and con-

tinued almost weekly through day 53. A selection of

spectra is shown in Figure 4 and all spectroscopic obser-

vations are listed in Table 3. All of the spectra pre-

sented in this work were obtained at the parallactic

angle to minimize atmospheric refraction (Filippenko

1982). These spectra will be made available on WIS-

eREP4 (Yaron & Gal-Yam 2012).

4 http://wiserep.weizmann.ac.il

Optical spectra were reduced using standard tech-

niques, including bias subtraction, flat fielding, and

cosmic-ray rejection. SN 2018ivc is embedded in

NGC 1068; given this complex background, local sky

subtraction was very important for the spectral extrac-

tion. Despite the care taken, some narrow emission lines

are still visible in the final reduced spectra. In these

cases, after visual inspection of two-dimensional spectra

and our highest resolution data (see Section 5.2 for a

detailed discussion), we believe these originate from the

host galaxy.

Flux calibration was performed using standard-star

observations. For the NIR spectra, the data were re-

duced in a similar manner as by Hsiao et al. (2019),

using the standard ABBA technique; observations were

taken of nearby A0V stars adjacent to the science expo-

sures to facilitate telluric corrections and flux calibration

(e.g., Vacca et al. 2003).
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Table 1. An example of the photometric observations of SN 2018ivc. A complete machine readable table is included in the
online materials.

Observation Date MJD Phase Source Filter Magnitude Magnitude Error

UT (day) (mag) (mag)

2018-11-13 02:16:15.16 58435.09 -9.16 CTIO-Prompt5 Open < 15.26 -

2018-11-14 02:33:08.64 58436.11 -8.14 CTIO-Prompt5 Open < 15.29 -

2018-11-15 02:24:00.86 58437.10 -7.15 CTIO-Prompt5 Open < 15.79 -

2018-11-15 05:56:24.00 58437.25 -7.00 ZTF g < 19.82 -

2018-11-15 07:29:16.80 58437.31 -6.94 ZTF g < 20.16 -

2018-11-16 03:03:18.72 58438.13 -6.12 CTIO-Prompt5 Open < 15.66 -

2018-11-17 02:50:24.57 58439.12 -5.13 CTIO-Prompt5 Open < 15.75 -

2018-11-18 02:02:48.19 58440.09 -4.16 CTIO-Prompt5 Open < 15.57 -

2018-11-19 02:39:18.43 58441.11 -3.14 CTIO-Prompt5 Open < 19.36 -

2018-11-20 10:14:52.00 58442.43 -1.82 ATLAS o < 18.60 -

2018-11-24 00:52:16.32 58446.04 1.79 CTIO-Prompt5 Open 14.65 0.01

2018-11-24 01:14:37.24 58446.05 1.80 CTIO-Prompt5 Open 14.66 0.01

2018-11-24 01:06:45.50 58446.05 1.80 CTIO-Prompt5 Open 14.68 0.01

2018-11-24 01:33:23.90 58446.06 1.81 CTIO-Prompt5 Open 14.63 0.01

2018-11-24 02:14:47.04 58446.09 1.84 LCO LSC 1m U 14.35 0.02

The UVW1, UVW2, UVM2, U, B, and V filters are given in the Vega magnitude system; the g, r, and i filters are given in
the AB magnitude system.

3.3. X-ray Observations

The Chandra X-ray Observatory observed SN 2018ivc

on 2018 Dec. 05.7 for 10.0 ks (ObsID 20306) with the

telescope aimpoint on the Advanced CCD Imaging Spec-

trometer (ACIS) S3 chip as part of a program to fol-

low up possible X-ray detections from other facilities

(PI: D. Pooley). The host galaxy, NGC 1068, has

been observed many times previously with Chandra,

often but not always with the High Energy Transmis-

sion Gratings (HETG) in place. For a straightforward

comparison to our observation, we selected the longest

ACIS-S3 observation with no grating in the Chandra

data archive: ObsID 344 (PI: A. Wilson) began on

2000 Feb 21.7 and had an exposure time of 47.4 ks.

Data reduction was performed with the chandra repro

script, part of the Chandra Interactive Analysis

of Observations (CIAO) software (Fruscione et al.

2006). We used CIAO version 4.11 and calibration

database (CALDB) version 4.8.3.

The source is clearly detected (Figure 5) with 207 total

counts recorded in a 1.′′5 radius source extraction region

in the 0.5–8 keV band. The background contribution to

this X-ray flux is non-negligible but difficult to estimate

given the non-spatially-uniform X-ray emission immedi-

ately surrounding the location of SN 2018ivc in its host

galaxy. One estimate of the background comes from an

annular background region of inner radius 2′′ and outer

radius 4′′ centered on the SN. Based on the 80 counts

in this background region, there are 192± 14 net counts

from SN 2018ivc in the 0.5–8 keV band.

To assess the spectral properties of the SN and deter-

mine its X-ray flux, we extract and simultaneously fit

source and background spectra in the 0.5–8 keV band

using Sherpa (Freeman et al. 2001) with the modi-

fied Cash (1979) statistic cstat and the simplex opti-

mization method. Our model components in all cases

are absorbed hot plasmas (APEC model). We use

the Tuebingen-Boulder Interstellar Medium absorption

model (Wilms et al. 2000) with a minimum column den-

sity equal to the Galactic value of nH = 1.55×1019 cm−2.

We separately use two options for the background spec-

trum: the first is the annulus mentioned above in ObsID

20306 and the second is a 1.′′5 radius circle (identical to

the source extraction region) in ObsID 344.

The first choice of background spectrum (annular ex-

traction region from ObsID 20306) is well fit by two

hot plasmas (temperatures of kT1 = 0.01 keV and

kT2 = 0.85 keV) absorbed by a column of density

3.2× 1020 cm−2. The second choice of background

spectrum (circular extraction region from ObsID 344)

is also well fit by two hot plasmas (temperatures of

kT1 = 0.21 keV and kT2 = 0.95 keV) absorbed by a col-

umn of density 1.6×1019 cm−2. Using each of these

background spectra separately, we fit the SN spectrum

with an absorbed plasma.

With the first choice of background, we obtain a

good fit (reduced cstat of 0.63) with best-fit param-
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Figure 2. The light curve of SN 2018ivc at UV (square
symbols) and optical (circles and pentagons) wavelengths.
Difference-image photometry is indicated by a black outline.
Upper limits are denoted with arrows. All phases are calcu-
lated with respect to the inferred explosion epoch (2018 Nov.
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by a constant (denoted in the legend) for ease of viewing.
The black dashed line shows the V-band slope expected if
the light curve is fully powered by the radioactive decay of
56Co.

eters for the SN of nH = (4.4+0.7
−0.9)× 1022 cm−2 and

kT = 17+63
−7 keV with the upper limit representing the

model maximum. All uncertainties are 68% confidence

intervals. The intrinsic X-ray flux of the SN in this

model is (8.2± 0.8)×10−13 erg cm−2 s−1. For a dis-
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Figure 3. The Keck/DEIMOS nebular spectrum, observed
on day 279 (black; pink is smoothed by 25 pixels) with a
zoom-in on the Hα region in the inset. A single Gaussian
fit is shown in the inset in blue. Although the spectrum has
a low signal-to-noise ratio, there is no evidence of multiple
components in the Hα feature.

tance of 10.1 Mpc, this corresponds to a luminosity of

Lx = (1.0± 0.1)×1040 erg s−1.

With the second choice of background, we also ob-

tain a good fit (reduced cstat of 0.59) with best-fit pa-

rameters for the SN of nH = (3.6+0.8
−0.6)×1022 cm−2 and

kT = 43+37
−31 keV with the upper limit representing the

model maximum. The intrinsic X-ray flux of the SN in

this model is (7.5± 0.7)×10−13 erg cm−2 s−1. For a

distance of 10.1 Mpc, this corresponds to a luminosity

of Lx = (9.2± 0.9)×1039 erg s−1.

Although the different choices for background extrac-

tion give slightly different results, they are consistent

with each other within the uncertainties. In each case,

the reported fluxes are integrated from the unabsorbed

models. Uncertainties on those fluxes are calculated

as the 68%-confidence bounds of the integrated, unab-

sorbed fluxes from Monte Carlo realizations (1000 sam-

ples) of the best-fit models, taking into account the un-

certainties in the best-fit parameters (using the sam-

ple flux command in Sherpa)

4. PROPERTIES OF THE SUPERNOVA AND ITS

HOST GALAXY

4.1. Supernova Parameters

The DLT40 survey identified SN 2018ivc on 2018 Nov.

24.07, 4.96 days after the last observation of the field

on 2018 Nov. 19.11. After the DLT40 team’s prompt

reporting of the SN to TNS, the Asteroid Terrestrial-

impact Last Alert System (ATLAS) identified a more

recent nondetection in their data on 2018 Nov. 20.42

with a limiting magnitude of 18.6 mag in the orange-



8 Bostroem et al.

3000 5000 7000 9000
Rest Wavelength (Å)

lo
g(

f)
 +

 o
ffs

et
 (1

0
16

 e
rg

 c
m

2  s
1  Å

1 )

2
3

3 55
5

6
79
11

12
13

15
16

18
22

2424
25

28
29

30
31323334
34

38
49

50

61

75
78

HHH He
 I

He
 I

He
 I

Na
 I

Ca
 II

O 
I

1000012000140001600018000

3

10

15

21

27

34

44

53

PPP
He

 I

Figure 4. Left : the spectroscopic evolution of SN 2018ivc at optical wavelengths. SN 2018ivc shows strong emission lines and
very little absorption. Imperfect background subtraction may create artificially blue continua and/or strong narrow lines in
the broad Hα emission. The phase of each spectrum is given on the right. High resolution observations are resampled with
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annulus on the right were each used to extract background spectra. See text for details.

ATLAS filter. As an explosion epoch we adopt 2018

Nov. 22.25± 1.8, the midpoint of the last nondetection

(by ATLAS) and the first detection (by DLT40).

We adopt Milky Way extinction values of E(B−V ) =

0.0289± 0.0004 mag from Schlafly & Finkbeiner (2011).

Unfortunately, SN 2018ivc exploded in a region of high

extinction within NGC 1068, which prevented us from

deriving the extinction in the host galaxy from the

Na i D lines (Poznanski et al. 2012). Instead, we es-

timate an extinction of E(B − V ) = 0.5 ± 0.15 mag by

matching the color evolution of SN 2018ivc over the first

20 days with that of other Type II SNe (SN 1980K: Bar-

bon et al. 1982; Buta 1982; Tsvetkov 1983; SN 1998S:

Fassia et al. 2000; Liu et al. 2000; Li et al. 2011; Pozzo

et al. 2004; SN 1996al: Benetti et al. 2016; SN 2012A:

Tomasella et al. 2013a, SN 2013by: Valenti et al. 2015,

SN 2013ej: Valenti et al. 2014). While the light curves

of these SNe have varying slopes, the colors are consis-

tent during the first 20 days, which is why we choose

this period to constrain the extinction. A conservative

error of 0.15 mag is adopted to take into account the

large uncertainty of the method. This is consistent with

the extinction derived in the next section from spec-

troscopy of the parent H ii region and we adopt it as the

host-galaxy extinction for our analysis. Throughout this

paper, unless otherwise noted, we use the extinction law

of Cardelli et al. (1989) with RV = 3.1.

In Type IIP/IIL SNe, the amount of 56Ni synthesized

in the explosion can be calculated from the luminos-

ity of the SN after the fall from plateau (∼ 80–100

days post explosion), when the light curve is powered

by the radioactive decay of 56Ni→ 56Co→ 56Fe. We

measure the pseudo-bolometric luminosity of SN 2018ivc

from the HST observations on day 220.9 by first trans-
forming the F555W filter and the F814W filter to

the Landolt V and I filters, respectively, using the

relations of Harris (2018). This first step is neces-

sary as SN 1987A was not observed in the WFC3

F555W and F814W filters. Following Valenti et al.

(2008), we find the pseudo-bolometric luminosity by in-

tegrating the apparent magnitude at the effective wave-

length of each filter, using Simpson’s rule. We cal-

culate the pseudo-bolometric luminosity for SN 1987A

from the V and I filters in the same way. Then,

following Spiro et al. (2014), we calculate the nickel

mass as M(56Ni) = 0.075M� × L18ivc(t)/L87A(t). We

find M(56Ni) = 0.0056+0.0036
−0.0022 M�. Uncertainties in the

nickel mass were calculated using a Monte Carlo simu-

lation taking into account normal uncertainties in the

explosion epoch, distance modulus, Galactic extinc-

tion, host galaxy extinction, and apparent magnitude



10 Bostroem et al.

of SN 2018ivc and SN 1987A. We caution that to cal-

culate this value we assumed that there was complete

γ-ray trapping, that we could convert HST filter mag-

nitudes to Landolt filter magnitudes using relations de-

rived from stellar spectral energy distributions (SEDs),

and that SN 1987A and SN 2018ivc have the same SED.

The uncertainties associated with each of these assump-

tions are not included in the reported uncertainties.

4.2. Host Properties

We searched in the ESO Science Portal5 for MUSE in-

tegral field unit (IFU) observations of SN 2018ivc’s host

galaxy, NGC 1068. It was observed on 2014 Dec. 14

under program 094.B-0298(A), in four pointings which

we combined for a total exposure time of 1180 s. All

observations were reduced with the standard MUSE

pipeline (Weilbacher et al. 2014) using default parame-

ters through reflex (Freudling et al. 2013).

For each spaxel, we performed a similar analysis to

that of Galbany et al. (2014, 2016b,c). Briefly, using a

modified version of STARLIGHT (Cid Fernandes et al.

2005; López Fernández et al. 2016, priv. comm.), we

model the stellar component of the continuum by esti-

mating the fractional contribution of simple stellar pop-

ulations (SSP) from the Bruzual (2007) base adding dust

attenuation effects as a foreground screen with a Fitz-

patrick (1999) reddening law and RV = 3.1. Our basis

set is composed of 66 SSPs with 17 ages, ranging from

1 Myr to 18 Gyr, and four different metallicities (0.2, 0.4,

1.0, and 2.5 Z�).

By subtracting the best SSP fit from each observed

spectrum, we obtained a pure gas emission spectrum for

each spaxel. From the pure gas spectrum, we estimated

the flux of the most prominent emission lines after cor-

recting for dust content with a correction derived from

the Balmer decrement (assuming case B recombination;

Osterbrock & Ferland 2006, the same extinction law,

and RV = 3.1). From the pure gas models for each

spaxel, we create an extinction-corrected Hα map.

We use our extinction-corrected Hα map to identify

the H ii region containing SN 2018ivc (its “parent” re-

gion) and derive environmental and progenitor proper-

ties. Following Galbany et al. (2016d, 2018a), the Hα

maps are used to select star-forming H ii regions across

the galaxy with a modified version of HIIexplorer6

(Sánchez et al. 2012), a package that detects clumps of

higher intensity in a map by aggregating adjacent pix-

els. This procedure selected 1801 H ii clumps with an

average radius of 140 pc. Once the H ii regions were

5 http://archive.eso.org/scienceportal/home
6 http://www.caha.es/sanchez/HII explorer/

identified, the same analysis described above was per-

formed on the extracted spectra. The observed spec-

trum and the best-fit STARLIGHT spectrum of the

H ii region containing SN 2018ivc can be seen in the

bottom-left panel of Figure 6. From this analysis and

using the Cardelli et al. (1989) extinction law, we find

E(B − V ) = 0.37 ± 0.04 mag for the parent region of

SN 2018ivc, consistent with the value derived in the pre-

vious section.

We use oxygen abundance as a proxy for metallicity as

oxygen is produced at the beginning of the enrichment

process by massive stars and, by mass, comprises 50%

of the heavy elements in the Universe (López-Sánchez

et al. 2012). Using the pure gas emission spectrum of

the H ii region, we determine metallicity from the O3N2

empirical calibrator (Pettini & Pagel 2004). This same

spectrum is used to find the equivalent width of Hα

(EWHα). The upper-left panel of Figure 6 shows the

EWHα values for each H ii region in NGC 1068. We

find the metallicity to be 12 + log10(O/H) = 8.6± 0.26

and the EWHα= 38.58± 0.26 Å. These host properties

will be put in the context of other SNe in Section 7.

5. SUPERNOVA EVOLUTION

The detailed evolution of SN 2018ivc was caught in

the almost daily photometric and spectroscopic obser-

vations. These revealed a rapidly evolving SN with a

steeply declining light curve and spectra with broad

emission.

5.1. Light-Curve Evolution

The light curve of SN 2018ivc rose rapidly, peaking

around day 3, only 5 days after the last nondetection. It

then showed a rapid, linear decline typical of Type IIL-

like SNe. Figure 7 displays a comparison of SN 2018ivc
and other well-studied SNe with a variety of slopes.

While the global trend is linear with a similar decline

rate to SNe 1979C and 1980K, our high-cadence obser-

vations quickly revealed that there are, in the first 50

days, several changes in the slope rarely seen in other

Type IIL-like SNe. SN 2018ivc is also relatively faint

compared to other SNe with similar slopes.

The light curve of SN 2018ivc changes slope approx-

imately every 10 days over the first 30 days. We fit a

continuous piecewise linear function to the r -band obser-

vations, leaving the slopes, initial intercept, and break-

points as free parameters (8 free parameters). This fit

is shown in Figure 2. The initial decline ending at day

7.57± 0.41 has a slope of 0.1068± 0.0094 mag day−1.

This is followed by a plateau until day 18.07± 0.45 with

a slope of 0.0056± 0.0031 mag day−1. The light curve

begins to decline steeply on day 18.07, with a slope of
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Figure 6. Upper left : the map of the H ii regions in NGC 1068 identified by HIIexplorer; the parent H ii region of SN 2018ivc
is marked with a red point. The map is colored by Hα equivalent width (EWHα), which is a proxy for regions with young
stellar populations. A close-up view of a 10 ′′region around the SN is shown in the inset. Lower left : the MUSE spectrum of the
parent H ii region of SN 2018ivc (black) and the STARLIGHT fit to the spectrum in pink. Upper right : the cumulative fraction
of SNe from the PISCO sample (Galbany et al. 2018b) as a function of metallicity for Type IIP/IIL SNe (black) and Type IIn
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blue vertical line.

0.0811± 0.0077 mag day−1. After day 27.55± 1.37, the

slope changes again to 0.0355± 0.0014 mag day−1. At

no point is the slope of SN 2018ivc consistent with the

slope expected for cobalt decay (0.008 mag day−1 in R).

Searching among other Type IIP/IIL SNe, we were only

able to find one light curve in the literature that resem-

bled the evolution (although ∼ 1 mag brighter): that of

SN 1996al (see Section 6.1).

We searched the DLT40 difference images in the

months leading up to SN 2018ivc for a pre-explosion

outburst similar to SN 2009ip (Mr ≈ −14.5 mag; Foley

et al. 2011; Mauerhan et al. 2013; Pastorello et al. 2013;

Margutti et al. 2014). However, these observations do

not reveal any hint of a pre-outburst eruption, with ∼ 90

images of the field take in the ∼ 150 days prior to the SN

explosion, with a typical limiting magnitude of r ≈ 19.3

(Mr ≈ −12 mag).

5.2. Spectroscopic Evolution

The spectroscopic evolution of SN 2018ivc shows

strong H and He i emission and very shallow (if any)

absorption. The full evolution can be seen in Figure 4,

where prominent spectroscopic features are labeled.

The optical and NIR spectra obtained at 2.04 and 2.95

days (respectively) show a featureless blue continuum.

By day 5, broad Hα and He i λ5876 emission begin to

develop with similar profiles. While the presence of Hβ

in absorption cannot be completely ruled out (because

of possible contamination from other lines), an absorp-

tion component is clearly missing from both Hα and
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SN 1979C (pink circles, V band; Balinskaia et al. 1980; de
Vaucouleurs et al. 1981; Barbon et al. 1982) and SN 1980K
(blue squares, V band; Barbon et al. 1982; Buta 1982;
Tsvetkov 1983) represent the historical Type IIL-like class.
SN 2017eaw (sea foam green points, V band; Szalai et al.
2019) represents the Type IIP-like SNe. SN 2013ej (light
blue triangles, V band; Valenti et al. 2014) and SN 2014G
(maroon arrows, V band; Terreran et al. 2016) are transi-
tional Type IIL-like objects, with a clear fall from the plateau
onto the radioactive decay tail. We plot two SNe that will
be discussed later in the text in comparison to SN 2018ivc:
SN 2010jp (green arrows, R band; Smith et al. 2012) and
SN 1996al (yellow pentagons, R band; Benetti et al. 2016).

He i λ5876. This is typical of Type IIn SNe and some

Type IIL-like SNe (Gutiérrez et al. 2014). Although

the physical mechanism for the lack of absorption is

still unclear, possible explanations include a low-density

(possibly low-mass) envelope and scattering off of CSM

(Schlegel 1996).

The Ca II λλ8498, 8542, 8662 emission triplet begins

to develop at day 12 and strengthens through day 78.

On day 30 the He i λ7065 line begins to show in emission.

By day 75, the He i λ6678 line is visible in the red wing of

the Hα emission; this feature may be blended in earlier

spectra. The shape of the emission around Hα in the

two spectra from days 75 and 78 is very boxy, which we

will discuss more in later sections. We obtained a low

signal-to-noise ratio (S/N) spectrum at day 279 which

shows a broad Hα profile, similar to that seen on day

78.

The NIR spectra are dominated by hydrogen and He i

emission features. The blue continuum at day 3 gives

way to Paschen emission features by day 10. The He i

λ10830 line is blended in the Pγ feature. In both the

optical and the NIR, the widths of the emission lines

decrease with time as the speed of the ejecta decreases.

The spectra of SN 2018ivc show potential narrow

emission lines on top of the broad Hα emission. This

region is heavily contaminated by the host-galaxy emis-

sion which is challenging to separate from the Hα SN

emission in all but the highest resolution observations.

We searched for a SN component in our highest reso-

lution spectrum: the MMT/Binospec observation from

2018 Dec. 14. In this spectrum we fit a Gaussian profile

to night-sky lines, galaxy emission lines, and Hα. We

find the full width at half-maximum intensity (FWHM)

of the narrow Hα emission (∼ 130 km s−1) to be consis-

tent with that of the other galaxy emission lines ([N II]

λλ6548, 6583; [S II] λλ6716, 6731).

We measure the velocity evolution using the half width

at half-maximum intensity (HWHM) of Gaussian fits

to the Hα, He i λ5876, and Pβ emission lines and the

minimum of the Fe ii and Hβ absorption features. The

velocities are shown in Figure 8, with velocities mea-

sured from emission features in the left panel and ve-

locities measured from absorption features in the right

panel. We note that while there is asymmetry, substruc-

ture, and host contamination in individual features, the

trends are consistent across features, giving us confi-

dence in the overall velocity evolution. However, we

caution that there may be significant scatter in individ-

ual measurements. The Hα velocity can be compared

to the average of 112 Type IIP/IIL SNe, calculated by

Gutiérrez et al. (2017). We find that the velocities are
similar to those found in Type IIP/IIL SNe and higher

than the velocities of SN 1996al. However, the evolu-

tion is more rapid, with the initial velocity higher than

average and the final velocities lower than average. The

Fe ii lines are also broadly consistent with the average

Type IIP/IIL evolution although there is considerable

scatter. We simultaneously fit Fe ii λλ4924, 5018, but

we were unable to simultaneously fit Fe ii λλ4924, 5018,

5169 and therefore fit Fe ii λ5169 separately. Velocities

from both fits are shown in Figure 8.

On day 18 an emission feature begins to develop in

the blue wing of the emission-line profile of Hα, Hβ, He i

λ5876, Ca ii triplet, He i λ10830, and Pβ (see the first

five panels of Figure 9). This feature gains strength un-

til day ≈ 35, after which it fades until it is barely visible

on day 78. We identify the emission line that appears
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squares) and Fe ii (blue and yellow circles). The average Hα velocity (left) and Fe ii (right) of the Gutiérrez et al. (2017) sample
of Type IIP/IIL SNe is shown in black with the standard deviation in gray.

blueward of the rest wavelength of these features as a

high-velocity (HV) component owing to its presence at

the same velocity in each feature (see right panel of Fig-

ure 9). From the blueshifted peak of the emission we

find the velocity of the emitting material to be ∼ 9000

km s−1 at day 18, slowing down to ∼ 7000 km s−1 by

day 78.

6. ANALYSIS

6.1. Comparison to 1996al

Figure 10 (left panel) shows the DLT40 r -band light

curve of SN 2018ivc in black compared with the R-band

light curve of SN 1996al in pink, shifted by 1.0 mag.

Since there are no stringent detection limits to constrain

the explosion epoch for SN 1996al, we use an explosion

epoch of 1996 July 19, which is 18 days later than the

reference epoch suggested by Benetti et al. (2016). They

compare the light curve to that of other Type IIL-like

SNe and estimate 1996 July 1 as the V -band maximum,

which they adopt as the reference epoch. However, given

the similarity between SN 1996al and SN 2018ivc, using

the latter to constrain the explosion of SN 1996al may

be more appropriate. While SN 2018ivc is very well

sampled, the sparse sampling of SN 1996al, especially

after the initial decline, makes a detailed comparison

challenging. Nevertheless, the light curve of SN 1996al

does show a relatively steep decline, at a similar rate

as SN 2018ivc that, like SN 2018ivc, is interrupted by a

short plateau.

A spectroscopic comparison of SN 1996al (gray) and

SN 2018ivc (color) is shown in the right panel of Fig-

ure 10. As described above, the phases are with re-

spect to a reference time of 1996 July 19 for SN 1996al.

There is broad agreement in the spectral evolution of

both SNe, with H and He i emission lines dominating

the spectra and little to no absorption. The width of

the emission features of SN 1996al are smaller than

those of SN 2018ivc, implying a higher ejecta velocity

for SN 2018ivc. This is quantified in the left panel of

Figure 8, which shows that the velocity of Hα is slower

in SN 1996al than in SN 2018ivc and that the Hα veloc-

ity declines more rapidly than that of SN 1996al.

Given the overall similarity between SN 2018ivc and

SN 1996al, we will here summarize the main results of

Benetti et al. (2016) for SN 1996al and compare these

two objects more closely. SN 1996al was identified as a

transition SN between a Type IIL-like and Type IIn with

a linearly declining light curve and a week-long plateau

starting around day 15. The spectra show broad hydro-

gen and He i emission with narrow P Cygni lines super-
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imposed. From ground-based pre-explosion Hα images,

a 25 M� luminous blue variable (LBV) progenitor was

identified. Light-curve modeling of the 15-year evolution

showed that the light curve is dominated by ejecta-CSM

interaction. The linear decline of the light curve, the ve-

locity evolution, and the evolution of the Hα flux a year

after explosion indicated a low ejecta mass and that the

ejecta were predominantly helium. Benetti et al. (2016)

interpret the similarity in shapes of the hydrogen and

helium emission-line profiles as evidence that both these

lines originate in the interaction region during at least

the first 50 days of evolution. The low velocities and

multicomponent emission lines point to a dense, asym-

metric CSM, while the narrow P Cygni lines indicate a

patchy, symmetric CSM at a larger radius. The asym-

metric CSM is confirmed in a multicomponent Hα pro-

file in a nebular spectrum from day 142.

Given the peculiarity of the light curve and spectro-

scopic evolution of SN 2018ivc, the qualitative similarity

to SN 1996al during the first 80 days of evolution (be-

fore it disappeared behind the Sun) is striking. The

light curves decline at similar rates and show similar

changes in slope, including a short plateau. Addition-

ally, their spectra are dominated by emission lines from

the same species. The steeply declining light curve and

short plateau of SN 2018ivc could be a sign of a low mass

of hydrogen in its ejecta. Benetti et al. (2016) model

the light curve of SN 1996al and find that the light from

the ejecta is significantly fainter than the light from the

CSM. The fact that SN 2018ivc is less luminous than

SN 1996al indicates that the majority of the light may

be coming from the SN ejecta, although the frequent

changes in slope demonstrate that CSM-ejecta interac-

tion is significant at some phases.

Additionally, the similarity of the hydrogen and He i

emission profiles indicates that they originate in the

same part of the ejecta and that perhaps, like SN 1996al,

the ejecta of SN 2018ivc are predominantly helium.

While multipeaked emission profiles are not observed in

the early-time spectra of SN 2018ivc, asymmetry is seen

spectroscopically in the HV feature that appears around

day 18. The broad Hα profile in the day 279 spectrum

of SN 2018ivc does not show multiple components. It is

possible the SN 2018ivc has a multi-component Hα pro-

file, like the one clearly visible in SN 1996al, but that

the two components are blended to the point of being

indistinguishable from a single profile. Given the simi-

larity between SN 2018ivc and SN 1996al, it is possible

that they have similar progenitors as we will discuss in

Section 7.

6.2. Progenitor from HST Pre-Imaging

High-resolution images taken prior to explosion can be

used to identify and characterize the properties of a SN

progenitor (e.g. Crockett et al. 2011; Elias-Rosa et al.

2010, 2011; Fraser et al. 2010, 2011, 2014; Kochanek

et al. 2012; Li et al. 2007; Mattila et al. 2008; Maund

& Smartt 2005, 2009; Maund et al. 2013, 2014a; Smartt

et al. 2004; Smartt 2009; Tomasella et al. 2013b; Maund

et al. 2014b; Kochanek et al. 2017; Kilpatrick & Foley

2018; Van Dyk et al. 2019; Van Dyk 2017). We located

pre-explosion HST observations in the Mikulski Archive

for Space Telescopes (MAST) and analyzed them for

the presence of a progenitor. The SN site is located

in Advanced Camera for Surveys/Wide Field Channel

(ACS/WFC) data in bands F658N and F814W from

program GO-9788 (PI: L. Ho) and in F550M from GO-

9503 (PI: N. Nagar), as well as Wide Field Planetary

Camera (WFPC2) images in F606W from both GO-5479

(PI: M. Malkan) and GO-8597 (PI: M. Regan) and in

F450W from GO-11128 (PI: D. Fisher); see Table 2.

To precisely pinpoint the SN location in the archival

data, we subsequently obtained higher spatial resolu-

tion HST images of the SN with the Wide Field Cam-

era 3 (WFC3) on 2019 July 1. We identify 69 sources

in common between between the F814W WFC3 image

of the SN to the GO-9788 F814W ACS exposure and

use these identify the SN location in the pre-explosion

ACS image. To do this, we randomly select 34 sources

and use these to compute the astrometric transforma-

tion from the WFC3 image to the ACS image the PyRAF

task geomap. We then measure the location of the SN in

the pre-explosion image using the PyRAF task geoxytran

and the astrometric transformation from geomap. To

understand the error introduced by the sources used

to find the astrometric transformation, we calculate the

root-mean-square (RMS) uncertainty of the 35 stars not

used to determine the transformation. We repeat this

process 1000 times and find the SN to be located at pixel

(3546.990± 0.011± 0.062, 4069.583± 0.008± 0.049) in

the ACS F814W image, where the first uncertainty re-

ported is the standard deviation of the measured SN

location over the 1000 trials and the second uncertainty

corresponds to the median RMS uncertainty of the stars

not used to calculate the astrometric transformation. No

source is detected within five sigma of this location, as

indicated in Figure 11.

We then processed the individual archival FLC and

C0F frames through AstroDrizzle (Hack et al. 2012)

to flag cosmic-ray hits, and then extracted photome-

try from these frames using Dolphot (Dolphin 2000,

2016). Given that the prognitor is not detected in the

pre-explosion HST images, we place upper limits on the

progenitor detection which we list in Table 2.



16 Bostroem et al.

0 20 40 60 80
Phase (day)

17.5

17.0

16.5

16.0

15.5

15.0

14.5

14.0

13.5

Ab
so

lu
te

 M
ag

ni
tu

de
 (m

ag
)

SN 2018ivc (DLT40 r)
SN 1996al (R)+1.0
piece-wise linear fit

4000 5000 6000 7000 8000 9000
Rest Wavelength (Å)

f 
+ 

of
fs

et
 (e

rg
 c

m
2  s

1  Å
1 )

2.64.0

6.0
10.0

13.2

13.0 23.5
24.0

28.9

35.0

34.2

44.0
38.2

53.0
50.1

75.0

77.9

Figure 10. Comparison of the photometric and spectroscopic evolution of SN 2018ivc to the similar event SN 1996al. Left:
The r -band light curve of SN 2018ivc (black) compared with the R-band light curve of SN 1996al (pink). The light curve of
SN 1996al has been shifted down by 1.0 mag to align with the SN 2018ivc light curve and the explosion epoch is set to 1996
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phase of the spectra plotted on the right. Right : The spectroscopic evolution of SN 2018ivc (colored spectra) compared with
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visible in Figure 4 has been masked out of the spectra of SN 2018ivc), SN 2018ivc and SN 1996al are spectroscopically similar
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We note in passing that, owing to the relative proxim-

ity of SN 2018ivc to the active nucleus of NGC 1068, the

various pre-explosion data of the host galaxy obtained

by the Spitzer Space Telescope, even at the shortest

wavelength IRAC band at 3.6 µm, are of little value for

progenitor identification, since the image of the nucleus

was too luminous and effectively saturated the detectors.

Given the comparatively low Spitzer spatial resolution,

the pixels at the SN site were heavily affected by this

saturation.

7. DISCUSSION

The immediate identification and high-cadence pho-

tometric and spectroscopic follow-up observations offer

us a detailed picture of the evolution of SN 2018ivc that

would not otherwise be possible. Although the declin-

ing light curve indicates that this is a Type IIL-like SN,

there is evidence that the progenitor is more complicated

than that of the typical Type IIL-like SN. The strong

He i lines, not always visible in Type IIL-like SNe, could

indicate that the progenitor lost most of its hydrogen en-

velope. The rapidly declining light curve corroborates

this picture of mass loss. The frequent change in slope

suggests that, in addition to the linear decay of the small

hydrogen envelope, the shock is encountering shells of

different densities that were ejected from the star dur-

ing its lifetime. This would imply that some interaction

between the SN and the CSM is also partially powering

the light curve of SN 2018ivc, even though narrow lines

typical of some interacting SNe (IIn) are not detected.

The narrow lines (∼ 102 km s−1) of Type IIn SNe are

formed by the recombination of unshocked CSM that

has been ionized by photons from the forward-shock

front. CSM can also produce intermediate-width lines

(∼ 103 km s−1) from the recombination of gas after the

shock wave has passed through it. In SN 2018ivc, we

observe broad emission from the SN ejecta and narrow

emission from the host galaxy, but find no evidence that

a narrow line SN component exists (see Section 5.2).

This lack of narrow lines may indicate a clumpy CSM

that has been enveloped by the SN ejecta (Smith et al.

2015; Andrews & Smith 2018). We note, however, that

Type IIn SNe do not always exhibit narrow lines at all

epochs and it is possible that we do not have a high-

resolution observation during the time that narrow lines

were visible. Additionally, it is possible that the nar-

row lines from the CSM are not strong enough to show

above broad lines of the ejecta or are too narrow and

weak to be distinguished from the significant host con-

tamination.

Despite the lack of narrow lines, there are several other

indications that the ejecta of SN 2018ivc are interacting

with CSM. The boxy profiles of the Hα and He i λ6678

complex could also be indicative of interaction with a

shell of CSM (Andrews et al. 2010; Inserra et al. 2011).

The strong X-ray detection likely originates from the

shocked CSM. Together, the light curve and spectro-

scopic observations demonstrate the presence of inter-

action in SN 2018ivc.

The HV features seen in SN 2018ivc are unusual. The

presence of these features indicates that hot, dense,

asymmetric material is moving with the speed of the

ejecta (if the material is in the line of sight) or faster.

Given that the HV features are present in hydrogen, he-

lium, and calcium emission, this feature may be due to

material that was ejected in the explosion. It is possible

that a bullet of 56Ni was ejected early in the explosion

at high speed and that its the radioactive decay powers

these features.

Searching the literature, we find that while multicom-

ponent hydrogen features are seen in Type IIP/IIL SNe,

they are most often during the nebular phase and at

significantly lower velocity. Two notable exceptions to

this are SN 2014G (Terreran et al. 2016) and SN 2010jp

(Smith et al. 2012). SN 2014G was a Type IIL-like SN

which showed narrow flash spectroscopic features dur-

ing the first 10 days of evolution. Around day 100,

SN 2014G developed a narrow feature blueward of Hα

that could not be associated with any other species

and thus was identified as a HV hydrogen feature, with

an initial velocity of ∼ 7600 km s−1. Terreran et al.

(2016) explain this feature as being caused by the spher-

ically symmetric SN ejecta interacting with a bipolar

lobe CSM with a 40◦ angle between the CSM axis and

the observer’s line of sight. SN 2010jp was a low lu-

minosity, linearly declining Type IIn SN which showed

a triple-peaked Hα emission line. The red and blue Hα

peaks (−12, 000 and 15,000 km s−1, respectively) are ex-

plained by a jet-powered explosion. The HV features in

SN 2018ivc, at comparable speeds to those of SN 2014G

and SN 2010jp, could originate from a disk or jet-like

structure.

Based on the upper limits we derive from the HST

pre-explosion images (see Table 2 and Figure 12) and

the fact that hydrogen is visible and strong throughout

the spectroscopic evolution, we evaluate what we can

infer about the progenitor. Referring to the single-star

evolutionary tracks at solar metallicity from the MESA

Isochrones & Stellar Tracks (MIST v1.2; Choi et al.

2016; Dotter 2016; Paxton et al. 2011, 2013, 2015), we

exclude stars whose photometry would exceed our up-

per limits or with less than 0.1 M� of hydrogen in the

envelope. With these criteria we find we can eliminate

all stars with initial masses between 9 M� and 48 M�
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SN 2018ivc. No source is identified at the SN location, indicated by the red ticks. Right: HST WFC3/UVIS image at F814W
of SN 2018ivc, obtained on 2019 July 1. The SN is indicated with the red ticks.

Table 2. HST Upper Limits to the SN 2018ivc Progenitor Detection

Date Instrument Filter Apparent Mag Absolute Mag Program ID PI

Limit (3σ) Limit (3σ)

2007-08-16 WFPC2 F450W > 25.8 > −6.2 GO-11128 D. Fisher

2003-01-08 ACS/WFC F550M > 25.0 > −6.5 GO-9503 N. Nagar

1994-12-03 WFPC2 F606W > 25.0 > −6.4 GO-5479 M. Malkan

2001-06-30 WFPC2 F606W > 25.4 > −6.0 GO-8597 M. Regan

2003-10-26 ACS/WFC F658N > 23.4 > −7.9 GO-9788 L. Ho

2003-10-26 ACS/WFC F814W > 24.4 > −6.5 GO-9788 L. Ho

and above 52 M� as the progenitor (see left panel of Fig-

ure 12). We conservatively include stars between 49 M�
and 52 M� although we note that the largest hydrogen

envelope mass in this range is 0.5 M�, which could pos-

sibly be excluded with detailed spectroscopic modeling

that is beyond the scope of this paper. Additionally, we

caution that this limit is highly dependent on the evolu-

tionary models used. For instance, if we adopt the STARS

models (Eggleton 1971; Pols et al. 1995; Eldridge & Tout

2004; on which the BPASS binary evolution models are

based, e.g., Eldridge et al. 2017), we find that the hydro-

gen mass in the envelope drops below 0.1M� at a lower

mass and redder SED, resulting in the exclusion of all

stars with masses greater than 8 M� (see right panel of

Figure 12).

The majority of massive stars form in binary systems

(Sana et al. 2012). For this reason, we also consider pos-

sible binary progenitor systems by examining the end-

points of the BPASS v2.2 models and the light from

each combined system. Again, considering the HST up-

per limits and the mass of hydrogen in the envelope, we

find a maximum progenitor mass of 11 M�, with the

majority of progenitors between 8 M� and 9 M� (see

Figure 13). Most progenitor systems are in a wide bi-

nary with log(Period[day]) = 2.75 for masses between 8

M� and 11 M� and a broader range of log(Period) (2.5-

4) for an 8 M� progenitor. The few short-period pro-

genitors occur when the secondary mass is much smaller

than the primary mass (M2/M1 ≤ 0.2; see Figure 14).

To better understand the nature of SN 2018ivc and its

progenitor, we compare the host properties derived in
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Figure 12. Upper limits on the detection, as given in Table 2, of the SN 2018ivc progenitor in archival HST images (black
squares and arrows). In color are model SEDs derived from the endpoint of the solar-metallicity MIST (Choi et al. 2016; Dotter
2016; Paxton et al. 2011, 2013, 2015) single-star evolutionary tracks (left) and the STARS models (Eggleton 1971; Pols et al.
1995; Eldridge & Tout 2004 (right) for masses spanning the range of allowed masses for each evolutionary model code. Allowed
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connected by a dashed line. Models that are ruled out by a lack of hydrogen in their envelope (MH,env < 0.1 M�) are denoted
with open circles and connected by a dotted line. The HST upper limits and strong hydrogen features in the spectra imply that
that progenitor of SN 2018ivc, if single, was likely 8 M�. The MIST models allow additional progenitors in the range 49-52 M�,
although these have small hydrogen envelopes which may not be able to produce the features seen in the spectra of SN 2018ivc.

Section 4.2 with those of all Type IIP/IIL SNe (85) and

Type IIn SNe (16) from the PMAS/PPak Integral-field

Supernova hosts COmpilation (PISCO) sample (Gal-

bany et al. 2018b)7. The metallicity of the parent H ii

region of SN 2018ivc is near the median of the Type

IIP/IIL SN distribution and slightly below the median of

the Type IIn SN distribution (see the upper-right panel

of Figure 6). Similarly, the EWHα falls near the median

of both Type IIP/IIL SN and Type IIn SN distributions.

7 Updated with all new observations obtained through May 2019.

EWHα is an indicator of the age of the cluster. Kun-

carayakti et al. (2013) show a theoretical relationship

between EWHα and the age of the stellar population

assuming a Salpeter initial mass function (IMF) and an

instantaneous burst of star formation. The age of the

stellar population can then be used to estimate the age

of the SN progenitor. Using the EWHα derived from the

parent H ii region and Figure 1 from Kuncarayakti et al.

(2013), we find the age of the progenitor of SN 2018ivc

to be 6.75–7.75 Myr (depending on the slope and up-

per value of the IMF), corresponding to a progenitor

mass of 25–28 M�. This value is similar to the 25 M� of

SN 1996al found by Benetti et al. (2016). We note, how-
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Figure 13. The range of progenitor masses and periods
of the solar metallicity model binary systems from BPASS
(Eldridge et al. 2017) that are allowed by the pre-explosion
upper limits. Models that also contain more than 0.1 M�
of hydrogen in their envelopes are marked as black circles,
while models that contain less hydrogen are marked as pink
points. The model parameters are marginalized over the ra-
tio of the secondary to primary star mass (see Figure 14 for
an animation of the three-dimensional distribution). The
opacity of the markers indicates the density of models at a
given location. The distribution of progenitor masses, fur-
ther marginalized over the period, is shown in the top panel,
with allowed progenitors in black and eliminated progeni-
tors in pink. Similarly, the distribution of periods, further
marginalized over progenitor mass, is shown in the right
panel with the same color scheme. Consistent with the single
stars, we find that the progenitor was less than 12 M� and
most probably 8 M�.

ever, that this agreement may be coincidental owing to

limitations in our ability to isolate a single stellar popu-

lation at this distance as well as simplifying assumptions

made in mapping of the EWHα modeling to progenitor

age (see Schady et al. 2019 for a detailed explanation).

Specifically, the EWHα-age relation used assumes that

massive stars are the ionizing source producing the Hα

emission, that we recover all of the photons ionizing the

surrounding gas (i.e., there is no leakage), and that there

are no binaries in the stellar population. The inclusion

of these effects could yield an older age and therefore

a lower mass progenitor, which is more consistent with

the constraints from pre-explosion imaging.

8. SUMMARY
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Figure 14. An animated version of this figure is available
in the online version of this paper. The range of progenitor
mass, period, and mass ratio of the secondary to the pri-
mary star of the solar metallicity model binary systems from
BPASS (Eldridge et al. 2017) that are allowed by the pre-
explosion upper limits. Models that are allowed by both the
HST upper limits and the hydrogen in their envelopes are
shown in black, models that are ruled out are shown in pink.
Most mass ratios are possible for allowed log(Period[days])
and progenitor masses, although there are 6 models that only
occur at specific combinations of all three parameters.

In this paper we have described the early discovery

and prompt follow-up observations of SN 2018ivc by the

DLT40 team and high-cadence monitoring by the GSP

over the first 80 days of evolution. The DLT40 survey

observed SN 2018ivc, identified it as a SN candidate

using automated software, and confirmed the SN with

follow-up observations within 15 min of the discovery ob-

servation. This discovery triggered a comprehensive set

of photometric and spectroscopic observations by the

DLT40 team and the GSP for the duration of visibility,

∼ 80 days.

The light curve of this SN changed slope every ≈ 10

days for the first 30 days before settling onto a linear

decline. The spectroscopic evolution is rapid and the

spectrum is dominated by H and He i emission lines with

shallow or no P Cygni absorption. These characteristics

combined with the X-ray detection suggest that the SN

ejecta are interacting with CSM. We find HV emission in

hydrogen, helium, and calcium, indicating an asymmet-

ric progenitor or explosion. We analyze pre-explosion

IFU observations of NGC 1068 and find that SN 2018ivc

exploded in a region of typical metallicity and star for-

mation with respect to other Type II SNe. By analyzing

the EWHα of the SN’s parent H ii region, we find evi-
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dence that the progenitor of SN 2018ivc had an initial

mass of ≤ 25 M�.

We show that SN 2018ivc resembles SN 1996al both

photometrically and spectroscopically, indicating that

the progenitor of SN 2018ivc may have been similar to

the 25 M� progenitor inferred for SN 1996al, although

this is in tension with the progenitors derived from pre-

explosion observations. Finally, we use HST archival

observations of NGC 1068, taken prior to explosion and

ToO HST observations of the SN to derive photomet-

ric upper limits on the progenitor. From these limits

and the strong presence of hydrogen in the spectra, we

infer a probable low-mass progenitor (M < 12 M� for

binary models and M < 8 M� for single-star models)

although the MIST models do allow for a massive pro-

genitor (49 ≤M ≤ 52 M�).

It is only with the early discovery, immediate response,

and high-cadence monitoring of SNe, like those provided

by the DLT40 and GSP teams, that the complex and

rapid evolution of interacting SNe like SN 2018ivc can be

observed and characterized. It is possible that the inter-

action in other Type IIL-like SNe, lacking narrow lines

and without early identification and sufficient follow-up

observations, has not been identified. For a clear and de-

tailed understanding of the progenitor systems of Type

II SNe, specifically the role of mass loss in stellar evolu-

tion and its observational signatures, we must continue

to identify SNe early, announce the discovery immedi-

ately, and combine our resources for high-cadence obser-

vations of the full SN evolution.
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Table 3. Log of Spectroscopic Observations

Observation MJD Phase Telescope Instrument Wavelength Exposure Resolution

Date (day) Range (Å) Time (s) λ/∆λ

2018-11-24 58446.29 2.04 FTN FLOYDS 3499-10000 2700 400-700

2018-11-24 58446.50 2.25 2.16m XLO BFOSC 3852-8696 3000 250-800

2018-11-24 58446.70 2.45 2.4m LJT YFOSC 3400-9100 1200 240

2018-11-24 58446.81 2.56 SALT RSS 3494-9392 1793 600-2000

2018-11-25 58447.20 2.95 Gemini-S FLAMINGOS-2 9852-18075 720 900

2018-11-25 58447.38 3.13 FTN FLOYDS 3499-10000 1200 400-700

2018-11-25 58447.52 3.27 2.16m XLO BFOSC 3852-8696 3300 250-800

2018-11-25 58447.60 3.35 HCT-IIA HFOSC 3500-8998 1200 1200

2018-11-26 58448.57 4.32 2.16m XLO BFOSC 3852-8697 3300 250-800

2018-11-27 58449.16 4.91 HET lrs2 3640-10298 606 1140-1920

2018-11-27 58449.32 5.07 LBT MODS 3290-5549 2400 1850-2300

2018-11-27 58449.32 5.07 LBT MODS 5800-9572 2400 1850-2300

2018-11-27 58449.61 5.36 2.16m XLO BFOSC 3853-8701 3300 250-800

2018-11-28 58450.23 5.98 FTN FLOYDS 3499-10000 1200 400-700

2018-11-29 58451.25 7.00 Bok SPOL 4001-7549 2400 430

2018-12-01 58453.40 9.15 FTN FLOYDS 3499-10000 1200 400-700

2018-12-02 58454.00 9.75 Gemini-S FLAMINGOS-2 9851-18077 1080 900

2018-12-03 58455.69 11.44 HCT-IIA HFOSC 3500-8998 1200 1200

2018-12-04 58456.59 12.34 HCT-IIA HFOSC 3500-8998 1200 1200

2018-12-05 58457.44 13.19 Keck I LRIS 3136-10220 119 750-1475

2018-12-07 58459.20 14.95 Gemini-S FLAMINGOS-2 9849-18077 1080 900

2018-12-07 58459.55 15.30 HCT-IIA HFOSC 3500-8998 1800 1200

2018-12-08 58460.36 16.11 FTN FLOYDS 3500-9999 1200 400-700

2018-12-10 58462.32 18.07 3.5m APO DIS 3374-5607 2400 2450

2018-12-10 58462.32 18.07 3.5m APO DIS 5263-9404 2400 3150

2018-12-11 58463.81 19.56 HCT-IIA HFOSC 3500-8998 2400 1200

2018-12-13 58465.00 20.75 Gemini-S FLAMINGOS-2 9850-18077 1440 900

2018-12-14 58466.30 22.05 MMT Binospec 5072-7541 720 3590

2018-12-15 58467.76 23.51 HCT-IIA HFOSC 3500-8998 2400 1200

2018-12-16 58468.65 24.40 HCT-IIA HFOSC 3500-8998 2400 1200

2018-12-17 58469.23 24.98 FTN FLOYDS 3500-10000 1800 400-700

2018-12-18 58470.51 26.26 2.16m XLO BFOSC 4358-8690 2400 250-800

2018-12-19 58471.10 26.85 Gemini-S FLAMINGOS-2 9852-18076 1800 900

2018-12-21 58473.15 28.90 SOAR GHTS 3500-7000 780 1050

2018-12-21 58473.15 28.90 SOAR GHTS 5000-9000 780 1050

2018-12-22 58474.35 30.10 FTN FLOYDS 3499-9999 3600 400-700

2018-12-23 58475.21 30.96 FTN FLOYDS 3499-9999 3600 400-700

2018-12-24 58476.63 32.38 HCT-IIA HFOSC 3500-8998 2400 1200

2018-12-24 58476.78 32.53 HCT-IIA HFOSC 3500-8998 1200 1200

2018-12-24 58476.85 32.60 SALT RSS 6057-7010 2464 2200-5500

2018-12-26 58478.10 33.85 Gemini-S FLAMINGOS-2 9849-18077 1800 900

2018-12-26 58478.48 34.23 FTS FLOYDS 4800-10000 3600 400-700

2018-12-26 58478.83 34.58 SALT RSS 3497-9393 2093 600-2000

2018-12-30 58482.49 38.24 FTS FLOYDS 4800-9999 3600 400-700

2019-01-03 58486.30 42.05 FTN FLOYDS 3500-10000 3600 400-700

2019-01-05 58488.00 43.75 Gemini-S FLAMINGOS-2 9851-18075 1800 900
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Table 3. Log of Spectroscopic Observations

Observation MJD Phase Telescope Instrument Wavelength Exposure Resolution

Date (day) Range (Å) Time (s) λ/∆λ

2019-01-06 58489.54 45.29 2.16m XLO BFOSC 3851-8692 3600 250-800

2019-01-10 58493.33 49.08 FTN FLOYDS 3499-10000 3600 400-700

2019-01-11 58494.30 50.05 Keck I LRIS 3137-10197 420 750-1475

2019-01-13 58496.49 52.24 2.16m XLO BFOSC 4095-8810 3000 250-800

2019-01-14 58497.10 52.85 Gemini-S FLAMINGOS-2 9850-18079 2160 900

2019-01-22 58505.26 61.01 FTN FLOYDS 3499-9999 3600 400-700

2019-01-28 58511.44 67.19 2.16m XLO BFOSC 3869-8822 3600 250-800

2019-02-05 58519.25 75.00 Keck I LRIS 3138-10244 1200 750-1475

2019-02-08 58522.13 77.88 MMT Binospec 5062-7522 960 3590

2019-08-28 58723.59 279.34 Keck II DEIMOS 4480-9510 1200 1875
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Quimby, R., Höflich, P., Kannappan, S. J., et al. 2006, The

Astrophysical Journal, 636, 400

Roming, P. W. A., Kennedy, T. E., Mason, K. O., et al.

2005, SSRv, 120, 95.

https://doi.org/10.1007%2Fs11214-005-5095-4

Sagar, R. 1999, Current Science, 77, 643

Sagar, R., Kumar, B., Omar, A., & Pand ey, A. K. 2012, in

Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 8444, Proc. SPIE, 84441T

Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science,

337, 444

Sánchez, S. F., Rosales-Ortega, F. F., Marino, R. A., et al.

2012, A&A, 546, A2

Schady, P., Eldridge, J. J., Anderson, J., et al. 2019, arXiv

e-prints, arXiv:1907.12260

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103.

https:

//doi.org/10.1088%2F0004-637x%2F737%2F2%2F103

Schlegel, E. M. 1996, AJ, 111, 1660

Smartt, S. J. 2009, ARA&A, 47, 63

Smartt, S. J., Maund, J. R., Hendry, M. A., et al. 2004,

Science, 303, 499

Smith, N. 2014, ARA&A, 52, 487

Smith, N., Cenko, S. B., Butler, N., et al. 2012, Monthly

Notices of the Royal Astronomical Society, 420, 1135

Smith, N., Mauerhan, J. C., Cenko, S. B., et al. 2015,

MNRAS, 449, 1876

Spiro, S., Pastorello, A., Pumo, M. L., et al. 2014, MNRAS,

439, 2873

Stetson, P. B. 1987, PASP, 99, 191
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