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FRACTIONAL ORDER ELLIPTIC PROBLEMS WITH

INHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

FERENC IZSÁK AND GÁBOR MAROS

Abstract. Fractional-order elliptic problems are investigated in case of inho-
mogeneous Dirichlet boundary data. The boundary integral form is proposed
as a suitable mathematical model. The corresponding theory is completed
by sharpening the mapping properties of the corresponding potential opera-
tors. Also a mild condition is provided to ensure the existence of the classical
solution of the boundary integral equation.

1. Introduction

Analytic and numerical study of space-fractional diffusion problems became an
important research area in the past twenty years. A large number of real-life ob-
servations confirmed the presence of the of the so-called anomalous (or fractional)
diffusion. The fractional Laplacian, which can be given in many equivalent ways
in R

d, seems to be the most adequate differential operator for modeling this phe-
nomena. At the same time, on a bounded domain, the incorporation of boundary
conditions into a true mathematical model is by far not easy. Even to deal with
homogeneous Dirichlet boundary data is non-trivial [5]: the most meaningful [8]
approach is given by the power of the Dirichlet-Laplacian. A similar approach
can be performed for the case of the homogeneous Neumann (no-flux) boundary
conditions.

At the same time, only a few attempts [1] and [4] were made to incorporate
inhomogeneous boundary conditions into a partial differential equation, which is
given on a bounded domain (corresponding to the real-life situation).

In any case, we should use fractional order differential operators, which are non-
local. At the same time, in real-life situations, we do not have any data outside
of a physical domain. This basic difficulty motivates us to find an appropriate
extension, which is formulated on R

d. Such an approach was successfully applied
in [11] but the corresponding extension can not be used for arbitrary domains in
R

d. Also, the simple choice in [7] and [3] can not be applied to inhomogeneous
boundary data. Another difficulty in the analysis is that no generalization of the
Green formula is available for the fractional Laplacian.
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It was pointed out in [6] that the fractional order elliptic equations with inho-
mogeneous boundary conditions can be succesfully analyzed in the framework of
boundary integral equations. Our aim is to extend this result in the following sense:

• the well-posedness is stated in two space dimensions,
• the mapping properties of the corresponding single layer operator are gen-

eralized,
• a condition is given for the existence of a classical (pointwise) solution.

An important motivation of this study is to prepare a numerical simulation in 2D,
where the boundary integral form reduces the problem to compute one-dimensional
integrals.

1.1. Mathematical preliminaries. The main problem in this study is the precise
statement and the analysis of the elliptic boundary value problem

(1.1)

{
−(−∆)αu(x) = f(x) x ∈ Ω

u(x) = g(x) x ∈ ∂Ω,

where Ω ⊂ R
d is a bounded Lipschitz domain (d = 2, 3), α ∈ (12 , 1) and f, g are given

real functions. At this stage, the differential operator (−∆)α is not yet defined. In
any case, it should be linear, such that u can be given as u = u1 + u2, where

(1.2)

{
−(−∆)αu1(x) = f(x) x ∈ Ω

u1(x) = 0 x ∈ ∂Ω

and

(1.3)

{
−(−∆)αu2(x) = 0 x ∈ Ω

u2(x) = g(x) x ∈ ∂Ω.

To deal with these problems, we recall that the fractional Dirichlet Laplacian
(−∆D)

α is defined as a power of

−∆D : L2(Ω) → L2(Ω), Dom(−∆D) = H1
0 (Ω) ∩H2(Ω).

This makes sense since (−∆D)
−1 : L2(Ω) → L2(Ω) is compact, positive and self-

adjoint.
Accordingly, u1 in (1.2) can be given as u1 = −(−∆D)

−αf . Therefore, we shall
focus to rewrite the problem in (1.3) for u2.

The fractional Laplacian on R
d has many equivalent definitions [9]. This operator

can be defined pointwise as

(1.4) − (−∆Rd)αu(x) = lim
r→0+

22αΓ(d2 + α)

π
d
2 Γ(−α)

∫

B(0,r)C

u(x+ z)− u(x)

|z|d+2α
dz,

whereB(x, r)C = R
d\B(x, r). Accordingly, the weak fractional Laplacian (−∆Rd)αu

can be given as the function for which
∫

Rd

v(−∆Rd)αu =

∫

Rd

u(−∆Rd)αv

is satisfied for all v ∈ C∞
0 (Rd).

We will make use of the fundamental solution φα of (−∆Rd)α, which is given
with

φα = F−1 1

|Id|2α = 2α−
n
2

Γ
(
α
2

)

Γ
(
n−α
2

) |Id|2α−d.
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In the analysis, we use the notation Hs(Ω) ⊂ L2(Ω) for the classical Sobolev
spaces with arbitrary positive indices. Recall that the corresponding norms on R

d

can be defined by using the Fourier transform F as follows:

(1.5) ‖u‖2Hs(Rd) =

∫

Rd

(1 + |r|2)s|Fu|2(r) dr.

For stating the well-posedness, we need also the Sobolev space

Ḣs(Rd) =

{
u ∈ L2,loc(Ω) :

∫

Rd

|r|2s|Fu|2(r) dr <∞
}

with the corresponding norm. If the underlying domain (Ω, ∂Ω or R
d) is obvious,

simply the notation ‖ · ‖s will be used for the corresponding norms.
An important tool in the analysis is the trace operator γ. For a bounded Lipschitz

domain Ω,

(1.6) γ : Hs(Ω) → Hs− 1
2 (∂Ω)

is continuous for s ∈ (12 ,
3
2 ), see [10], Theorem 3.38. Also, one can define its Banach

adjoint as a continuous operator with

(1.7) γ∗ : H
1
2
−s(∂Ω) → H−s(Ω).

We use the conventional notation 〈·, ·〉−β,β for the duality pairing betweenH−β(∂Ω)
and Hβ(∂Ω) with some positive exponent β.

We also recall that the Bessel function J0 : R+ → R of first kind is given with

(1.8) J0(s) =
1

2π

∫ π

−π

e−is sin τ dτ.

In the estimations, the relation K1 . K2 means that K1 ≤ CK2 for some domain-
dependent constant C ∈ R

+.

1.2. The main objective, comparison with earlier achievements. In [6], the
problem in (1.3) for u2 was transformed to a boundary integral equation and the
following result was established.

Theorem 1.1. For any bounded Lipschitz domain Ω ⊂ R
d with d ≥ 3 and g ∈

Hα− 1
2 (∂Ω) with α ∈ (12 , 1), the problem

(1.9)






−(−∆)αũ(x) = 0 x ∈ (∂Ω)C

ũ(x) = g(x) x ∈ ∂Ω

|ũ(x)| . |x|2α−d x ∈ B(0, 1)C

has a unique weak solution ũ ∈ Ḣα(Rd).

Observe that (1.9) with the definition u2 := ũ|Ω delivers a precise setting for
the second problem in (1.3). Our aim is to sharpen this result and prove that the
unique solution of (1.9)

(i) exists also in case of d = 2 provided that α ∈ (12 ,
3
4 ),

(ii) satisfies −(−∆)αũ(x) = 0 also pointwise for any x ∈ (∂Ω)C under some
weak condition.
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2. Main results

2.1. Estimates for single layer potentials. We first investigate the fractional
version Rα of the classical Newton potential, which is defined with

(2.1) Rα(u)(x) =

∫

Rd

φα(x− y)u(y) dy,

and also called the Riesz potential.

Lemma 2.1. Assume that α ∈ (0, 1) for d = 3 or α ∈ (12 ,
3
4 ) for d = 2. The

mapping Rα in (2.1) defines then a continuous linear map between Hs−2α(Ω) and

Hs(Ω), i.e. we have

(2.2) ‖Rα(u)‖s . ‖u‖s−2α.

Proof. We first define an extension of Rα(u) with

R̃α(u)(x) =

∫

Rd

λ(|x − y|)φα(x− y)u(y) dy,

where λ ∈ C∞
0 [0,∞) with λ|[0,2diam Ω] = 1 and 0 ≤ λ ≤ 1. Since R̃α(u) is an

extension of Rα(u), we obviously have

(2.3) ‖R̃α(u)‖s ≥ ‖Rα(u)‖s.
Since this is a convolution, we can give its Fourier transform as

(2.4)

F
[
R̃α(u)

]
(r)

= F [u] (r) · F [λ(|z|)φα(z)] (r) =
Cα

4π

∫

Rd

e−i〈r,z〉λ(|z|)|z|2α−d dz.

We estimate the second component, which, using polar coordinates in 3D, can be
rewritten as

F [λ(|z|)φα(z)] (r) =
Cα

2

∫ ∞

0

r2α−1λ(r)

∫ π

0

e−ir|r| cos θ sin θ dθ dr

=
Cα

2

∫ ∞

0

r2α−1λ(r)
sin(r|r|)
r|r| dr.

For |r| ≥ 1, we introduce w = r|r| and use that λ is compactly supported and
2α− 2 ≤ 0 to get
(2.5)

F [λ(|z|)φα(z)] (r) =
Cα

2|r|2α
∫ ∞

0

w2α−1λ

(
w

|r|

)
sinw

w
dw .

1

|r|2α .
1

|1 + r2|α .

For |r| ≤ 1, we only use again use that λ is compactly supported and 2α−1 > −1
to have

(2.6) F [λ(|z|)φα(z)] (r) =
Cα

2

∫ ∞

0

r2α−1λ(r)
sin(r|r|)
r|r| dr . 1.

In the 2D case, the polar transformation and the definition of J0 in (1.8) gives

F [λ(|z|)φα(z)] (r) =
Cα

2

∫ ∞

0

r2α−1λ(r)

∫ 2π

0

e−ir|r| cos θ dθ dr

= Cαπ

∫ ∞

0

r2α−1λ(r)J0(r|r|) dr.
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For |r| ≥ 1 with w = r|r|, we apply the estimate J0(w)
√
w . 1 (see 9.2.1 in [2]),

which implies that
(2.7)

F [λ(|z|)φα(z)] (r) =
Cα

2|r|2α
∫ ∞

0

w2α−1λ

(
w

|r|

)
J0(w) dw .

∫ ∞

0

w2α− 3
2λ

(
w

|r|

)
dw

.
1

|1 + r2|α .

provided that 2α− 3
2 ∈ (−1, 0], i.e. α ∈ (14 ,

3
4 ].

For |r| ≤ 1, we again only use 2α− 1 > −1 and the boundedness of the remaining
components to have

(2.8) F [λ(|z|)φα(z)] (r) = Cαπ

∫ ∞

0

r2α−1λ(r)J0(r|r|) dr . 1.

Using (2.3) together with (1.5) and the estimates (2.5), (2.6), (2.7) and (2.8) in
(2.4), we finally obtain that

‖Rα(u)‖2s ≤ ‖R̃α(u)‖2s =

∫

Rd

(1 + |r|2)s
∣∣∣F

[
R̃α(u)

]
(r)

∣∣∣
2

dr

=

∫

|r|≤1

|F [u] |2(r)(1 + |r|2)s |F [λ(|z|)φα(z)]|2 (r) dr

+

∫

|r|≥1

|F [u] |2(r)(1 + |r|2)s |F [λ(|z|)φα(z)]|2 (r) dr

≤
∫

|r|≤1

|F [u] |2(r)(1 + r2)sC̃2
R(r) dr+

∫

|r|≥1

|F [u] |2(r)(1 + |r|2)s 2CR

|1 + r2|2α dr

≤ CR

∫

Rd

|F [u] |2(r)(1 + |r|2)s−2α dr = ‖u‖2s−2α,

as stated in the lemma. �

We need, however, the surface potential corresponding to Rα on ∂Ω, which is
given for any x ∈ R

d with

(2.9) Sα(u)(x) =

∫

∂Ω

φα(x− y)u(y) dy.

In precise terms, we state the following generalization of (4.1) in [6].

Theorem 2.2. For any indices s, α satisfying the assumptions in Lemma 2.1 and

2α − s ∈ (12 ,
3
2 ), the mapping Sα defines a continuous linear operator between

Hs−2α+ 1
2 (∂Ω) and Hs(Ω), i.e. for all ψ ∈ Hs−2α+ 1

2 (∂Ω), we have

(2.10) ‖Sα(ψ)‖s . ‖ψ‖s−2α+ 1
2
,∂Ω.

Proof. We first use the definitions in (2.1), (2.9) and the adjoint trace operator γ∗

in (1.7) to rewrite Sα(ψ) as

Sα(ψ)(x) =

∫

∂Ω

φα(x− y)ψ(y) dy =

∫

Ω

φα(x− y)(γ∗ψ)(y) dy = Rαγ
∗(ψ)(x).

The smoothness of φα(x− ·) also implies that Sα(ψ) ∈ Hs(Ω). Accordingly, using

also (2.2), (1.6) and (1.7), we have for any φ ∈ H−s(Ω) and ψ ∈ Hs−2α+ 1
2 (∂Ω) that

|〈φ, Sα(ψ)〉−s,s| = |〈φ,Rαγ
∗(ψ)〉−s,s| ≤ ‖Rαγ

∗ψ‖s‖φ‖−s . ‖γ∗ψ‖s−2α‖φ‖−s

. ‖ψ‖s−2α+ 1
2
,∂Ω‖φ‖−s.
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Therefore, we arrive at the estimate

‖Sα(ψ)‖s . ‖ψ‖s−2α+ 1
2
,∂Ω,

which completes the proof. �

Theorem 2.3. The map γSα is a coercive operator between H1/2−α(∂Ω) and

Hα−1/2(∂Ω) in the sense that

(2.11) 〈u, γSαu〉 1
2
−α,α− 1

2
=

∫

∂Ω

(Sαu)(x)u(x) dx & ‖u‖21/2−α,∂Ω.

Proof. We first recall that according to the proof of Theorem 4.1. in [6], the left
hand side of (2.11) can be given as

(2.12) 〈u, γSαu〉 1
2
−α,α− 1

2
=

∫

Rd

|r|4−2α|F(S1u)|2(r) dr.

In concrete terms, see (5.2) in [6]. Also, according to Theorem 4.1. in [6], for any
v ∈ H1(Rd) and u ∈ H1/2−α(∂Ω), we can rewrite 〈u, γv〉 1

2
−α,α− 1

2
as

〈u, γv〉 1
2
−α,α− 1

2
=

∫

Rd

∇S1u(x)∇v(x) dx.

The basic step for proving our statement is to rewrite the fractional order norm as
follows:

(2.13) ‖u‖1/2−α,∂Ω = sup
φ∈Hα−1/2(∂Ω)
‖φ‖α−1/2=1

|〈u, φ〉 1
2
−α,α− 1

2
| = sup

φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

|〈u, φ〉 1
2
−α,α− 1

2
|,

where in the second equality, we have used the density of H1/2(∂Ω) in Hα−1/2(∂Ω).
Let ε : Hs(∂Ω) → Hs+1/2(Rd) denote the right inverse of the trace operator γ,
which is continuous for s ∈ (0, 1), see [10], Theorem 3.37. Using (2.13), convert-
ing everything to the Fourier space, applying the Cauchy–Schwarz inequality, the
formula in (1.5) with the continuity of ε, we finally have
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‖u‖1/2−α,∂Ω = sup
φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

∫

Rd

∇S1u(x)∇εφ(x dx)

= sup
φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

∫

Rd

|r|2F(S1u)(r)F(εφ)(r) dr

= sup
φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

∫

Rd

|r|2
(1 + |r|)αF(S1u)(r) · (1 + |r|)αF(εφ)(r) dr

≤ sup
φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

[∫

Rd

|r|4
(1 + |r|)2α |F(S1u)|2(r) dr

]1/2 [∫

Rd

(1 + |r|)2αF(εφ)(r)(r) dr

]1/2

≤ sup
φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

[∫

Rd

|r|4−2α|F(S1u)|2(r) dr
]1/2

‖εφ‖α,Rd

. sup
φ∈H1/2(∂Ω)
‖φ‖α−1/2=1

[∫

Rd

|r|4−2α|F(S1u)|2(r) dr
]1/2

‖φ‖α−1/2,∂Ω

=

[∫

Rd

|r|4−2α|F(S1u)|2(r) dr
]1/2

.

Therefore, using (2.12), we get

〈u, γSαu〉 1
2
−α,α− 1

2
=

∫

Rd

|r|4−2α|F(S1u)|2(r) dr & ‖u‖21/2−α,∂Ω,

as stated in the theorem. �

We are ready now to prove the main statement of the article.

Theorem 2.4. Assume that α ∈ (12 , 1) for d = 3 or α ∈ (12 ,
3
4 ] for d = 2. Then

for any g ∈ Hα− 1
2 (∂Ω), there is a unique function G ∈ H

1
2
−α(∂Ω) such that

u = Sα(G) ∈ Ḣα(Rd) solves the problem in (1.9).
If, we have additionally G ∈ L1(∂Ω), then the pointwise equality −(−∆)αũ = 0 in

(∂Ω)C is also satisfied.

Proof. Taking the special case α = s in Theorem 2.2, we have that

γSα : H
1
2
−α(∂Ω) → Hα− 1

2 (∂Ω).

is continuous. Also, according to Theorem 2.3, γSα is coercive. Consequently, this

constitutes a bijection between H
1
2
−α(∂Ω) and Hα− 1

2 (∂Ω), so that for any given

g ∈ Hα− 1
2 (∂Ω), there is a unique function G ∈ H

1
2
−α(∂Ω) such that

γSα(G) = g.

Also, as pointed out in [6], Sα(G) ∈ Ḣα(Rd) and

−(−∆Rd)αSα(G) = 0 on ΩC
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in weak sense, so that (1.9) with the conditions in the present theorem has a unique
solution.

To prove the pointwise identity −(−∆)αũ = 0 in (∂Ω)C , we use the definition in
(1.4) so that

−(−∆Rd)αSα(G)(x) = lim
r→0+

22αΓ(d2 + α)

π
d
2 Γ(−α)

∫

B(0,r)C

Sα(G)(x + z)− Sα(G)(x)

|z|d+2α
dz.

Therefore, by the definition in (2.9), we have to verify that

(2.14) lim
r→0+

∫

B(0,r)C

1

|z|d+2α

∫

∂Ω

(φα(x + z− y)− φα(x− y))G(y) dy dz = 0.

We may assume that here r ≤ r∗ := 1
2d(x,Ω) and note that |z| . |x − y + z| on

B(0, r)C \B(y − x, r∗), which, along with the definition of φα, imply that
∫

B(0,r)C

φα(x+ z− y)

|z|d+2α
dz =

∫

B(0,r)C\B(y−x,r∗)

φα(x− y + z)

|z|d+2α
dz

+

∫

B(y−x,r∗)

φα(x− y + z)

|z|d+2α
dz

.

∫

B(0,r)C

|z|2α−d

|z|d+2α
dz+

∫

B(0,r∗)

φα(z0)

|z0 − (x− y)|d+2α
dz0

.

∫ ∞

r

s−2dsd−1 ds+

∫ r∗

0

s2α−dsd−1 ds . K <∞,

which can be used to get the following inequality:

(2.15)

∫

B(0,r)C

|φα(x+ z− y) − φα(x− y)|
|z|d+2α

dz dy . K +

∫ ∞

r

φα(r
∗)
sd−1

sd+2α
ds

. K̃ <∞,

where K does not depend on y. Therefore, we also have the following estimate:
∫

∂Ω

|G(y)|
∫

B(0,r)C

|φα(x+ z− y) − φα(x− y)|
|z|d+2α

dz dy . ‖G‖L1(Ω)K̃ <∞,

such that we can apply Tonelli’s theorem in (2.14) together with (2.15) to obtain

(2.16)

∫

B(0,r)C

1

|z|d+2α

∫

∂Ω

(φα(x+ z− y)− φα(x− y))G(y) dy dz

=

∫

∂Ω

G(y)

∫

B(0,r)C

φα(x+ z− y) − φα(x− y)

|z|d+2α
dz dy.

Using the equality (−∆)αφα(x− y) = 0, we have that here

lim
r→0

G(y)

∫

B(0,r)C

φα(x+ z− y)− φα(x− y)

|z|d+2α
dy dz = 0

and by (2.15), we also obtain that
∣∣∣∣∣G(y)

∫

B(0,r)C

φα(x+ z− y)− φα(x− y)

|z|d+2α
dz

∣∣∣∣∣ . K̃1|G(y)|

such that we can use the dominated convergence theorem in (2.16) to obtain the
desired equality in (2.14). �
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