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ABSTRACT
We study the dynamical evolution of eccentric massive black hole binaries (MBHBs)
interacting with unbound stars by means of an extensive set of three body scattering
experiments. Compared to previous studies, we extend the investigation down to a
MBHB mass ratio of q = m2/m1 = 10−4, where m1 and m2 are the masses of the primary
and secondary hole respectively. Contrary to a simple extrapolation from higher mass
ratios, we find that for q . 10−3 the eccentricity growth rate becomes negative, i.e., the
binary circularises as it shrinks. This behaviour is due to the subset of interacting stars
captured in metastable counter-rotating orbits; those stars tend to extract angular
momentum from the binary, promoting eccentricity growth for q > 10−3, but tend
to inject angular momentum into the binary driving it towards circularisation for
q < 10−3. The physical origin of this behaviour requires a detailed study of the orbits
of this subset of stars and is currently under investigation. Our findings might have
important consequences for intermediate MBHs (IMBHs) inspiralling onto MBHs (e.g.
a putative 103 M� black hole inspiralling onto SgrA∗).

Key words: galaxies: nuclei – stars: kinematics and dynamics – black hole physics
– gravitational waves

1 INTRODUCTION

Massive black holes (MBHs) are among the fundamental
building blocks of cosmic structures (e.g. Hopkins et al. 2006;
Kormendy & Ho 2013, and references therein). Residing
in the centre of galaxies, they are surrounded by a dense
gaseous and stellar environment, which naturally promotes
strong dynamical interactions with other massive objects.
This is mostly because dynamical friction (DF) tends to
bring massive objects together at the centre of dense sys-
tems (Chandrasekhar 1943). Examples of this mechanism
are the pairing of two MBHs into a binary (MBHB) follow-
ing a galaxy merger (Begelman et al. 1980), or the inspiral
of dense stellar clusters onto a galactic nucleus (Capuzzo-

Dolcetta & Miocchi 2008). In the latter case, if the cluster
contains an intermediate MBH (IMBH) (Miller & Hamil-
ton 2002; Portegies Zwart & McMillan 2002; Fragione et al.
2018a,b), the eventual tidal disruption of the cluster will
leave behind an IMBH-MBH binary (Portegies Zwart et al.
2006; Arca-Sedda & Gualandris 2018). MBHs with mass
∼ 106 − 107 M�, residing in Milky Way-type galaxies, are
therefore expected to form binaries with companions as light
as ∼ 102-103 M�, thus covering a range of mass ratios down
to q = m2/m1 = 10−4 (where m1 is the mass of the primary
hole). Understanding the dynamical evolution of these bi-
naries is of paramount importance as they are anticipated
to be the loudest gravitational wave (GW) sources for the

© 2020 The Authors

ar
X

iv
:2

00
1.

02
23

1v
2 

 [
as

tr
o-

ph
.G

A
] 

 4
 F

eb
 2

02
0
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Laser Interferometer Space Antenna (LISA Amaro-Seoane
et al. 2017).

The dynamics of MBHBs in stellar environments have
been studied by means of either semi-analytic models based
on scattering experiments or full N-body simulations. Scat-
tering experiments of unbound stars on MBHBs down to
q ∼ 0.004 (Quinlan 1996; Sesana et al. 2006; Rasskazov &
Merritt 2017) predict that the binary eccentricity in non-
rotating stellar environments grows as the binary shrinks,
which has been verified in N-body simulations of compara-
ble mass binaries (i.e. down to q ∼ 0.1, see e.g., Preto et al.
2011; Khan et al. 2012; Gualandris & Merritt 2012; Leigh
et al. 2014). Lower mass ratios, down to q = 10−4, have been
recently investigated by Rasskazov et al. (2019, R19 here-
inafter) in the context of hypervelocity star production in
the Galactic centre. They report an unexpected feature in
the MBHB evolution for low mass ratios; at q < 10−3, three-
body interactions appear to circularize the binary, contrary
to the higher mass ratio cases. Since the GW decay time
of circular binaries is longer (Peters & Mathews 1963), this
finding can affect the overall merger rate of IMBH-MBH bi-
naries in the Universe, promoting the formation of multiple
IMBH systems orbiting a MBH, with interesting dynamical
consequences.

In this letter, we carry an extensive series of three-body
scattering experiments of initially unbound stars onto an
eccentric MBHB with e = 0.6 and 10−4 ≤ q ≤ 1. The setup
of the experiments is described in Section 2. In Section 3,
we report hardening and eccentricity growth rate as a func-
tion of q confirming that, contrary to naive expectations,
the MBHB tends to circularize for q < 10−3. We dissect
the energy and angular momentum exchange between the
MBHB and the incoming stars in Section 3.1, identifying
the counter-rotating stars captured in metastable orbits as
the subpopulation responsible for the somewhat unexpected
behaviour of the MBHB. Finally, we discuss our results and
future work in Section 4.

2 SCATTERING EXPERIMENTS: THE
METHOD

Due to the lack of a general analytical solution to the three-
body problem, any systematic investigation on this topic
necessarily leverages on the numerical integration of the
equations of motion. Employing a C++ implementation of
the Bulirsch-Stoer (Bulirsch & Stoer 1966) algorithm to
evolve in time the three-body Newtonian equations of mo-
tion,1 we perform three-body scattering experiments of a
MBHB interacting with a star coming from infinity with
positive energy (i.e. unbound to the binary). We consider
several MBHB mass ratios in the range q ∈ [10−4, 1], while
fixing m1 = 106 M�, the binary eccentricity to e = 0.6 and
the stellar intruder mass to m3 = 1 M�. Simulation units
are such that the initial binary semi-major axis is fixed to
a = 1 and the velocity of the intruder is rescaled accordingly,

1 See Bonetti et al. (2016) for additional details about the code
implementation. We stress that in the present work we do not

consider general relativity corrections (through Post-Newtonian
formalism), since on the scales typical for stellar hardening they

are usually too weak to play an influential role.

following the procedure employed in Sesana et al. (2006)
and R19. The initial conditions, appropriate for a spherical,
isotropic distribution, are set as follows:

• the binary is initialised in the x−y plane with pericentre
along the positive x axis; 2

• the velocity at infinity of the incoming star, v, is sam-

pled with 80 log-uniform values in the range 3×10−3
√

q
1+q <

v/vbin < 30
√

q
1+q , with v2

bin = GM/a, being M = m1 + m2 (see

Section 3 for the motivation of such choice);
• the impact parameter, b, is sampled assuming b2 uni-

formly distributed in the range
[
0, 25

(
1 + 2GM

5v2

)]
, i.e. the

pericentre rp lies between 0 and 5a;
• all angular variables are uniformly sampled in [0, 2π],

except for the inclination which is chosen such that its cosine
is uniformly distributed in [−1, 1].

For each value of v we perform 5× 104 runs, for a grand
total of 4 × 106 simulations for each mass ratio. Numerical
integration starts with the incoming star at separation of
50 a from the MBHB centre of mass (CoM). Following R19,
we consider three similar stopping criteria:

1. the star leaves the sphere with radius 50a with positive
total energy;

2. the final time of the three-body integration, Tf , exceeds
a maximum allowed value, dependent on the binary proper-
ties, but always larger than the Hubble time at z = 0;

3. the total time spent inside the 50a-sphere exceeds 2×104

binary orbital periods.

Every time the star leaves the 50a-sphere with negative en-
ergy, we stop the integration and we collapse the MBHB
into a single object of mass m1 +m2. We then evolve the sys-
tem star-MBHB assuming two-body Keplerian motion until
the star re-enters the sphere, updating the MBHB orbital
phase to the corresponding re-entrance time and finally re-
suming the three-body integration.3 In the following analysis
we consider only “resolved scatterings”, i.e., those matching
condition 1, which amounts to more than 99% of the cases
considered.

3 HARDENING AND ECCENTRICITY
GROWTH RATES: H AND K

Considering a fixed isotropic spherically symmetric non-
rotating stellar background with density ρ and velocity
dispersion σ, the evolution of a MBHB can be described
through the determination of two dimensionless quantities,
i.e., the hardening rate H and the eccentricity growth rate
K (Quinlan 1996) defined as

2 This means that when the binary is at pericentre m1 lies along
positive x axis, m2 along the negative x axis.
3 During the three-body direct integration energy and angular
momentum are conserved at the level of machine precision (10−16),

with only a subdominant sample of simulations showing larger

numerical errors up to ∆Etot/Etot, ∆Ltot/Ltot ≈ 10−9. Still this is
much lower than the actual E? (or L?) fractional change due to

three-body interactions which is of the order of m3/M ∼ 10−6.
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Figure 1. Left panels: hardening and eccentricity growth rates

as a function of the binary hardness for several mass ratios as
labelled. Right panels: values of H and K as a function of q for

fixed values of binary hardness. Note that below q = 0.005 the

eccentricity growth rate drops to negative values.

H =
σ

Gρ
d

dt

(
1
a

)
, (1)

K =
de

d ln(1/a) . (2)

H and K are computed as a function of the binary hardness
a/ah, where ah = Gm2/(4σ2) is the hardening radius. This
motivates the q-dependent choice of v in Section 2. Since
we are mostly interested in binaries with 0.01 < a/ah < 1,
and a = 1 in simulation units, a MBHB with a semi-major
axis of a/ah is then simulated by weighting the outcome of
the experiments over a Maxwellian distribution with σ =√

q/(1 + q)
√

a/ah. The chosen range for v ensures that the
Maxwellian distribution is well sampled down to the tails
in the whole a/ah range of interest. More details about this
procedure can be found in Quinlan (1996) and Sesana et al.
(2006).

Results for H and K as a function of a/ah and q are
shown in Fig. 1. The hardening rate is consistent with pre-
vious findings in the literature, with H ramping-up as the
binary shrinks and flattening to a value 15 . H . 20 for hard
binaries (upper left panel). Note that H tends to increase for
decreasing q, but it turns over around q ≈ 0.005. Incidentally,
this is roughly the minimum q values at which H has been
computed for unbound scatterings to date (q = 1/256 in
Quinlan 1996 and q = 1/243 in Sesana et al. 2006), so that
this turnover has not been appreciated before.

More interesting is the behaviour of K, shown in the bot-
tom panels. So long as q > 0.005, K ≈ 0 at large separation
and progressively becomes positive as the binary hardens,
consistent with the classic findings of Quinlan (1996) and
Sesana et al. (2006). However, confirming what was previ-
ously noted by R19, K plummets, becoming negative for
q . 0.003. This is particularly evident in the bottom right
panel of Fig. 1, which shows an essentially constant K for
q & 0.003, and a sudden drop to large negative values for
lower q. It is worth noticing two facts. First, the drop corre-
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Figure 2. Distribution of the final time of the orbit integration

in units of the binary period for different mass ratios. Vertical
lines mark the corresponding T = 108 yrs, the typical evolution

timescale of the binary. Color-code as in Fig. 1.

sponds to the same value of q for which the trend of H with
q is reversed (see upper right panel), suggesting a likely cor-
relation between the two. Second, it is not clear whether K
tends to zero for a � ah when q < 0.005 (lower left panel).
There seems to be a tendency towards zero for a > ah, but
K is still negative at a/ah > 10.

3.1 Dissecting H and K

An inspection of the interaction time distribution reveals
that, as q decreases, two distinct subsets of scatterings
emerge, as shown in Fig. 2 where we show the distribution
of the final integration time Tf . We label “quick-ejections”
those interactions in which the star returns to infinity after a
single pericentre passage, and “late-ejections” those in which
the star is captured by the MBHB into a loosely bound or-
bit. When q→ 1, late-ejections form a long tail in the inter-
action time distribution; the forcing quadrupolar potential
is so strong that captures typically last only a few orbits.
However for q � 1 the two populations are clearly distinct
and the K behaviour might be influenced by the relative
weight of the two sub-populations. A second obvious way
to separate the sample of interacting stars is in retrograde
versus prograde orbits. A prograde orbit is defined by the
condition LMBHB · L∗ > 0, where LMBHB is the orbital an-
gular momentum vector of the MBHB and L∗ is the initial
angular momentum of the star with respect to the CoM of
the MBHB. It has been shown both in bound (Sesana et al.
2011) and unbound (Rasskazov & Merritt 2017) scattering
experiments that initially prograde orbits tend to circularize
the binary, whereas retrograde orbits drive its eccentricity
upward. These results find confirmation in full N-body simu-
lations (see e.g. Arca Sedda et al. 2019). We thus divide the
sample of interacting stars in four sub-populations: quick-
prograde, quick-retrograde, late-prograde, late-retrograde.

In order to make our investigations cleaner we con-
sider quantities that can be defined for every single star-
MBHB interaction, instead of using H and K, that are in-
stead weighted over a Maxwellian velocity distribution. To
this end, for each sub-population, we compute the average
values of the dimensionless energy (C) and angular momen-
tum (B) exchanged during the encounter, defined as:

MNRAS 000, 1–6 (2020)
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Figure 3. Mean value of C (upper panel), B (central panel) and

B −C (lower panel) when splitting simulations among quick/late
and prograde/retrograde ejections as labelled.
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Figure 4. Mean value of B − C evaluated as a function of an
increasingly high threshold |B − C |threshold. Only late-retrograde
ejections are considered.

C =
a∆E?

Gµ m3
(3)

B =
M
µ

∆L?
hbin m3

, (4)

where hbin = Lbin/µ =
√

GMa(1 − e2) is the angular momen-
tum per unit mass of the MBHB (being µ its reduced mass),
while ∆E? and ∆L? are the stellar energy and angular mo-
mentum changes, respectively. In the above equations it is
implicitly assumed that the total energy and angular mo-

mentum are conserved, such that any change in the MBHB
energy/angular momentum is the negative of that of the
star. Finally, since the eccentricity change involves both en-
ergy and angular momentum variations, we also evaluate
the difference B − C. It is straightforward to show that this
quantity directly relates to ∆e through

∆e =
(1 − e2)

e
m3
M
(B − C). (5)

Results are shown in Fig. 3, note that 〈C〉 and 〈B〉 are
defined as the energy and angular momentum changes of the
intruding star. In the top panel, 〈C〉 shows that for q < 1 late
interactions are much more effective at extracting energy
from the binary compared to quick ones. Moreover, within
each sub-sample, prograde stars extract more energy than
retrograde ones. Note the (broad) peak at q = 0.005, which
can explain the turnover in the upper right panel of Fig. 1.
As for 〈B〉, shown in the central panel of Fig. 3, quick encoun-
ters (prograde and retrograde alike) tend to extract angular
momentum from the MBHB, whereas things are more com-
plicated for late encounters. For the latter, prograde orbits
always tend to inject angular momentum into the MBHB,
whereas retrograde orbits with q > 10−3 tend to extract it
(as discussed in Sesana et al. 2011). However, for q < 10−3

late-retrograde interactions, unexpectedly, also inject angu-
lar momentum into the MBHB. This is also more evident
in the lower panel of Fig. 3, where 〈B − C〉 (directly related
to ∆e) suddenly changes sign (green squares). In the same
figure a similar transition is shown by the quick ejected pro-
grade stars at q & 0.1. However, this does not seem to have
an appreciable impact on the overall evolution of the binary.

The physical origin of the change in K as a function of q
is most apparent in the behaviour of late-retrograde orbiters.
We emphasize, however, that the standard deviations asso-
ciated to these mean values is usually much larger than the
mean value. Therefore, the stochastic nature of this result
should definitely not be neglected when trying to draw con-
clusions. To assess the importance of the tails of the (B −C)
distribution, we focus on late-retrograde stars (i.e. those who
show the unexpected trend).

In Fig. 4, we report how the mean value 〈B−C〉 changes
by considering only simulations with |B − C | below a cer-
tain threshold, i.e., |B − C | < |B − C |threshold. The compari-
son between Fig. 3 and Fig. 4 shows that the mean value
is mostly determined by moderately strong encounters with
10 < |B − C | < 103 (except perhaps for the q = 10−3 where
the high |B − C | tail is also important), i.e., the overall be-
haviour is dictated more by the tails rather than the bulk
of the distributions (events resulting in |B − C | < 10 are the
majority), making any attempt of explaining it in terms of
simple analytical arguments quite challenging.

The circularisation or eccentricity growth critically de-
pends on the balance between changes in energy and an-
gular momentum. This is because the net value is evalu-
ated through cancellations, such that all these quantities
are strongly influenced by fluctuations. This can indeed ex-
plain why the late ejection sub-population, despite being
outnumbered by its quick counterpart, is so influential in
determining the global value of K.

MNRAS 000, 1–6 (2020)
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4 DISCUSSION AND CONCLUSIONS

By investigating the problem of the scattering of unbound
stars against an eccentric MBHB as a function of the binary
mass ratio q, we showed that below q ≈ 10−3, the interactions
tend to circularise the binary. The origin of this behaviour
has been identified as being associated with a sudden change
in the angular momentum exchange of a specific subset of
interactions, i.e., stars approaching the MBHB on retrograde
orbits, that become temporarily bound to the MBHB (late-
retrograde encounters).

Because of the chaotic nature of the interaction, and
because the eccentricity evolution is determined by a sub-
tle cancellation between energy and angular momentum ex-
change (via the B − C combination in equation 5), double
checking the robustness of this result is imperative. First
and foremost, we found qualitatively and quantitatively con-
sistent results upon comparing our integrations to those
obtained by Rasskazov et al. (2019) using the high accu-
racy N-body code ARCHAIN (Mikkola & Merritt 2008). We
checked that the bimodality in time distribution as well as
the behaviour of the different sub-populations of scatterings
defined here is the same in the scattering experiments em-
ployed for the R19 study. We then checked that results are
insensitive to several technical aspects of the integration,
e.g. tolerance of the integrator, precise radius at which the
three-body interaction is switched-on, and so on. None of
the tests performed hinted to a possible numerical artefact.

Both our runs and those in R19 integrated the full
three-body problem using m1 = 106 M� and m∗ = 1 M�.
It is therefore legit to ask whether there is also a depen-
dency of the results on the absolute mass scale of the sys-
tem. To this end, we ran a series of scattering experiments
with m1 = 107 M�, 105 M� and m∗ = 1 M� in the mass ra-
tio range 3 × 10−4 < q < 3 × 10−3, finding the same change
in 〈B − C〉 for late-retrograde encounters around q ≈ 10−3.
We thus conclude that the effect must be solely driven by
the MBHB mass ratio. Another dependence that we do not
explore here is that on the initial binary eccentricity, which
we assumed to be e = 0.6. Indeed, for this particular value,
we witness the most extreme decreasing trend for K(q) and
e = 0.6 providing the more promising testing ground to pin
down the origin of this phenomenon. Since the effect is seen
at all eccentricities (see Fig. 2 of Rasskazov et al. 2019), it
is hard to imagine that it has a different origin at different
values of e. We are currently planning to extend the study
to different eccentricities, which we defer to a future paper.

Before drawing any astrophysical conclusions from these
results, two important aspects of the problem should be
borne in mind. First, using H and K to evolve the MBHB im-
plicitly assumes that each interaction is independent. How-
ever, Fig. 2 shows that in the small q limit, late scatterings
can be extremely long lasting. The vertical lines in the figure
mark T̃ = 108yr in units of Tbin for systems with m1 = 106 M�
at a = ah. This is the typical evolution timescale of the bi-
nary. It is encouraging that the peak of late scatterings oc-
curs at T � T̃ , meaning that the MBHB is not expected to
significantly evolve during the interaction. To enforce this
point, we also checked that the binary changes in energy
and angular momentum are actually dominated by strong
encounters, rather than by weak long-lasting secular inter-
actions (however see e.g. Hamers & Samsing 2019, for situa-

10−2 10−1 100

a/ah

−1

0

1

K

100 realisations with 105 stars

q = 0.001

q = 0.1

Figure 5. Eccentricity growth rate evaluated from 100 sub-

samples of 105 stars randomly extracted from the pool of 4 × 106

stars for each q. Solid lines represent the average value over 100

realisations, while shaded areas denote 1-σ dispersion (i.e. 68%
confidence region).

tions where the secular regime is actually relevant). In fact,
limiting our analysis to the sample of simulations with peri-
centre passage satisfying rp/a ≤ 2 (thus excluding the larger
pericentre interval rp/a = [3, 5]) reveals that our results are
substantially unchanged, thus indicating that most of the bi-
nary evolution is driven by close stronger encounters. It is,
in any case, expected that several stars will be bound to the
MBHB at any time. Although star-star interactions should
be negligible, an N-body integration is ultimately warranted
to confirm the full validity of the three body approximation.

Second, the chaotic nature of the interaction implies
that the variance in the determination of K can be much
larger than its mean value. This appears to be particularly
true for small mass ratios. In fact, as q drops, rare strong
close encounters with m2 gain more weight in terms of en-
ergy and angular momentum exchange. It is interesting to
estimate what level of stochasticity the evolution has for
this relatively small number of ejections. For instance, let us
consider a potential SgrA∗ companion with q = 10−3, which
would have only m2 ≈ 4 × 103 M�. Extrapolating estimates
given in figure 5 of Merritt & Milosavljević (2005) the bi-
nary would shrink to the GW emission regime by interacting
with a mass in stars of ≈ 30 × m2, i.e., ≈ 105 stars. To this
end, we compute H and K by generating 100 sub-samples of
105 interactions randomly extracted form the pool of 4×106.
The result of this exercise is displayed in Fig. 5 for q = 0.001
and q = 0.1, which highlights the much larger dispersion
in the former case, as mentioned above. The influence of
stochasticity at low mass ratios is clearly appreciable. In
fact, K shows a remarkably high dispersion, consistent with
zero at the 1-σ level. It is worth noticing, however, that
105 scattering experiments do not directly correspond to 105

interactions. In fact K is evaluated by weighting the experi-
ments over a Maxwellian distribution, which gives different
weights to different incoming velocities. Moreover, not all
the interacting stars are eventually ejected (see e.g., Fig. 5
in R19). Nevertheless, this simple test shows that using av-
eraged quantities like K to evolve individual low-q MBHBs
is not justified and the only sensible statement that can be

MNRAS 000, 1–6 (2020)
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made is that three-body scatterings tend to circularise low
q MBHBs on average.4

Finally, we stress that circularisation causes a dramatic
increase of the gravitational wave coalescence timescale.
This might favour the accumulation of multiple IMBHs
around a MBH, with potentially interesting dynamical con-
sequences eventually affecting the global rate of such inspi-
rals observable by the future Laser Interferometer Space An-
tenna (Arca-Sedda & Capuzzo-Dolcetta 2019). Although we
identified an association between late-retrograde encounters
and the origin of low q MBHB circularisation, we still lack a
complete understanding of the underlying dynamical mech-
anism. We defer this to future work, in which we plan an
in-depth study of individual loosely bound orbits.
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