
Duplicated Control Unit Based Embedded Fault-

masking Systems

György Györök, Bertalan Beszédes

Óbuda University/ Alba Regia Technical Faculty, Székesfehérvár, Hungary

e-mail: {gyorok.gyorgy, bertalan.beszedes}@amk.uni-obuda.hu

Abstract— Fault-masking architectures are classified into a

few major categories. The first is the multiplication of the

microcontroller, the other is a CON-MON architecture (not

a full-fledged fault-masking system), there is of course, the

multiplication of frequently failing units. In this article, the

focus is on the different kind of solutions, how can a

duplicated microcontroller based system, monitoring itself,

and increasing the fault-tolerance level of the embedded

system.

I. INTRODUCTION

A control unit – as any other physical component
(typically, the power supply unit [1]) [2] – can suffer a
malfunction, and the consequences can range from
discomfort to disaster. For example, an error in a phone
line controlling unit can cause temporary line dripping,
while an error in a transport vehicle’s controlling unit can
cause a serious accident. For this reason, the reliability of
computers, is an important viewpoint during the
development.

In a fault-tolerant system, which contains, redundant –
for example, multiplicated – modules, to increase the fault
tolerance level, need to contain a supervisor control. This
can be a microcontroller, but this element should be more
reliable, than the supervised modules – it need to be
completely fault-tolerant, also called as hard-core. Let us
see a few methods, how to ensure this feature.

II. THEORY

A. Fault-tolerant solutions

At the beginning of the fault tolerance history, the
passive physical hardware solutions were the limit of a
redundant system. The most common solution was to
multiply the physical parts of the device, and hence
increase the fault tolerance level.

The OAO (Orbiting Astronomical Observatory)
satellites and controlling units of the early Apollo program
was one of the last computers which had been built by
discrete transistors. All of the units, four serially parallel
connected transistors were used instead of one, to mask
the fault if one transistor could cause if it is get out of
order. [3] (OAO’s are NASA satellites, they are made
observations in UV range mainly at the 60s. With this,
they are laid the basis of the astronomical observation in
space, so that they are regarded as the predecessor of the
Hubble Space Telescope.) Nowadays, there are more
sophisticated solutions. A redundant system has added
resources against a simple system.

Hardware redundancy is when extra hardware is added
to the system, it is typically used for fault detection and in
fault tolerant solutions. For example, multiplicated
modules where each type of module has their well
delimited task.

Software redundancy means that, the added extra
software routines, giving the possibilities to detect the
faults, next to the default functions of the original
software. If it is possible, they should fix the faults. For
example, timeout monitoring assigned to waitings.

Information redundancy is the extra information what is
used to fault detection or fault correction, which would not
be absolutely necessary for the default functions of the
device. If it is possible, the added function should fix the
faults. For example, using error detecting- or error
correcting bits.

Time redundancy is the extra time what is used for fault
detection or a fault tolerant feature. For example, running
identical calculations multiple times and checking the
consistency of the outcome.

From the above-stated it seems, depending on what
kind of redundancy had been used, it has significantly
impact to system performance, required power, weight,
price and reliability. It is important to review the various
methods to assess – the perspective of – the possibilities
how to increase the reliability.

B. Hardware redundancy

Hardware redundancy is the most common form of
redundancy. Electronic components become increasingly
smaller and cheaper, therefore it is more and more
acceptable compromise the use of hardware redundancy.
[4]

Hardware redundancies can be divided into three
groups:

• During passive redundancy is meant the
procedures, which do not require intervention
from the operator or the system, in case of fault,
it is simply masking the faults.

• In case of active redundancy, it is used fault
detection and fault correction methods, to
increase reliability. The latter term is often
referred to reconfiguration, and it meant the
removal of the faulty hardware or an application
with adaptive methods. The system is tries to
adapt to the changed circumstances, so as to keep
up or to improve the operation.

• The hybrid redundancy is combines the
advantages of the two method. Hybrid
redundancy is using commonly the tools of error

µC #1 µC #2

Digital & Analog Inputs

µC #3

Digital & Analog Outputs

Voting
element

Figure 1. TMR architecture Main
µC

Monitoring
µC

Digital & Analog I/O and User Interface

Serial interface

WDT from Main µC to Monitoring µC

Figure 3. CON-MON architecture

Input A

Input B

Input C Output

Figure 2. One-bit voter built by logic gates

masking, error detecting and error recovery, to
increase the fault tolerance feature of the system.

III. HARDWARE REDUNDANCY

A. Triplication and voting system

For mission-critical systems, like automotive, avionics,
railway-signaling controllers, medical devices and nuclear
plant systems, a failure may be life-threatening [5][6].
These systems have multiple controlling unites (three or
more – running parallelly) and use a complex, majority
logic based voting system, to implement the fault-tolerant
system. [7][8]

An implementation of this kind of static hardware
redundancy is the TMR (Triple Modular Redundancy) [9].
The system also contains a majority voting element, able
to detect errors (Fig. 1.). If there is a difference between
the output of controllers, the voting element will choose
the two matching result, as a correct outcome, and mark
the different controller as unreliable. [10]

Majority voters are critical parts of a redundant system
[11]. A simple voting circuit is can be formed by four
logic gates, – see Figure 2. – where, any two inputs are in
high logic level, the output will become logical ‘1’, and
any two inputs are in low logic level, the output will
become logical ‘0’ – independently from the third input’s
logic value.

This solution is reliable because of its simplicity and it
is also easy to use. With parallel circuits, the voter’s word-
width can be extended, but if the input signals are not
arriving at the same time, it can cause a false output, so it
need to handle as a synchronous network. If in the
operation area have high background radiation, the logic
can be made by simple switching devices, like transistors,
MOSFETs – called as RadHard (Radiation Hardened)
solution. In the case of analogue signals, the logic can be
made by using an operational amplifier in comparator
mode. It could be a good solution, where the voting need
to be done of multiple analogue sensors.

B. CON-MON architecture

The previous solution is an expensive architecture, but
there is a cheaper way, which could be very useful and
well usable for most areas, for a much lower price, the
CON-MON architecture.

This is one of the unique architectures, frequently used

in automotive, avionics and other systems. The name

CON-MON stands for control-and-monitor

microcontroller architecture. This architecture is not as

fault-tolerant as the duplicated controller architecture, but

it can make an alarm, when the main uC fails. It uses two

uCs — the main controller, which fully handle the

function of the system, and a small microcontroller,

which monitors the main controller through a serial

interface, especially when the WDT overflows (Fig. 3.).

The main advantage of this architecture is, to let

developers and maintainers know, what circumstances the

fault is generated. Imagine that the small microcontroller

– the logging microcontroller – is not part of the system.

When the main uC restarts due to a fault, the details about

the environment, like the exact time, I/O states, system

status, the actual subroutine, etc., are lost, and failure is

known only when the main uC stops working again.

Otherwise, in the CON-MON architecture, the smaller

controller will log this data, apart from raising the alarm.

C. Duplicated control unit based fault-tolerant systems

When the system has to be completely fault-tolerant,
the Test and Intervener Controller still need to be
redundant. In the duplicated controller architecture,
microcontrollers are duplicated, so if one microcontroller

µC #1 µC #2

Digital & Analog I/O and User Interface

Interlink

WD from µC #1 to µC #2

WD from µC #2 to µC #1

Figure 4. How duplicated uC based FT systems are implemented

Figure 7. The model of the circuit

fails, the other microcontroller takes over. Duplicated
controller based fault-tolerant systems are based on a
combination of hardware and software. [12]

The fault-tolerant mechanism works on two essential
features that the controllers have. The one is the watchdog
timer and the second is a high-speed serial link between
two microcontrollers. Fig. 4. shows how duplicated
microcontroller based fault-tolerant systems are
implemented. [13]

One of the simplest cases of the self-diagnostic feature,
is the watchdog timer (WDT). It does not require
significant hardware and modern processors are including
in an integrated form. It is a great advantage of the WDT,
that it can be successfully used against both software and
hardware failures.

The WDT The watchdog timer is usually much simpler
as the units that is monitored with it, therefore it is more
reliable as well.

The watchdog timer is an electronic hardware timer,
that is used to detect controller malfunctions. During
normal operation, the uC regularly restarts the WDT to
prevent it from timing-out. If – due to a hardware fault or
a program error – the controller fails to clear the content
of the watchdog timer (which is incrementing
automatically), the timer will overflow and will generate a
time-out signal and an interrupt to initiate corrective
action.

The watchdog timer does not detect all the problems,
only confirms the unit's "viability". Therefore, in
combination with other solutions. [14]

In applying the watchdog, the counter resetting
instructions should be placed in the main cycle. And the
length of the counting period should always be adapted to
the specific characteristics of the application, for example:
response time, tasks running time.

In this case, there are a few aspects that need to be
know, to be fulfilled:

• It takes time for the good controller to take over
the control from the faulty one (known as switch-over
time)

• The system data and the user data need to be
consistent between of the two controllers (data integrity)

• It need to provide a common bus for the two
controllers (redundant controller bus interface)

• A built-in diagnostic, to identify and isolate
problems in the system (built-in self-test)

Let us see how the system is implemented. Meanwhile,
the faulty controller after a watchdog timer overflow,
restarts and runs self-diagnostics to identify whether the
problem is related to hardware or software. If the problem
connected with hardware, it generates the error code and
notify the supervisor system. Meanwhile, the redundant
controller will take over the control and runs the system as
usual, so that the main functionality of the system does not
suffer from a shortage, as Figure 5 and Figure 6 shows.

It is the system software’s responsibility to maintain the
log [15], after the faulty unit has been replaced by a
maintenance man with a good one and the system has
returned to duplex mode. [16]

At this stage, it need to mention that dual uC
implementation has two variations in their working, based
on software implementation.

D. Swapping microcontrollers

At the first case, the system is fully-controlled by one of
the uC and the other uC takes over the control when the
active one fails. This is known as hot-stand-by
architecture. At this solution, the software is simple. There
is two critical part, that need to be handled. One is the
take-over part of the software, the other is the notification
of the supervisor system or the user. In both cases, last
task is logging and updating the data.

E. Parallel tracking

The second case is a more complex in software, and a
more precise solution, the parallel tracking. In this
implementation, both uCs parallel execute the tasks in the
system, but only the active uC controls the system. The
status of the system is almost identical. This architecture
helps in mission-critical systems for faster take-over.

Of course, there is the possibility that two of the
controllers make the same mistake, and only one gives the
correct result, but for this, the probability is much lower,
than the previous mentioned case. The only case that
causes a problem if two of the three controller makes a
fault, and these ones are different. At this situation the
voting element, cannot decide which is the correct one.
One solution to secure the system is to use more than three

uC #1
Active

uC #2
Standby

Digital & Analog I/O and User Interface

Interlink

WD from µC #1 to µC #2

WD from µC #2 to µC #1

µC #1
Fail

µC #2
Active

Digital & Analog I/O and User Interface

Interlink

WD from µC #1 to µC #2

WD from µC #2 to µC #1

Figure 6. Sequence of events 2nd case

uC #1
Active

uC #2
Standby

Digital & Analog I/O and User Interface

Interlink

WD from µC #1 to µC #2

WD from µC #2 to µC #1

µC #1
Fail

µC #2
Active

Digital & Analog I/O and User Interface

Interlink

WD from µC #1 to µC #2

WD from µC #2 to µC #1

Figure 5. Sequence of events 1st case

parallel running controllers, but it will significantly
increase the price.

Reliability is the probability that the system is operating
correctly in a defined period [t0; t] – if the system is
operating correctly in t0. In practice, it is estimating the
chance, that the unit is functioning well, during that time.
The failure willingness Ft, the reliability Rt, these are
complementary events, i.e. the sum of these two is always
one:

 1 tt FR , (1)

 tt RF 1 , (2)

  RRRRduplex  122
, (3)

    VTMR RRRRR  13 23
, (4)

where, RV is the reliability of the voting element.

The reliability of the voting element is crucially
important for the proper functioning, it need to be
especially reliable – that is why so called hard core. This
solution is well protects against static and permanent
errors, but it is expensive.

IV. REALIZATION

The realization (Fig. 7.) is approaching the hard core
solution, the block diagram is shown in Fig 4. The
controllers are swappable, so the code is need to be
independent from the devices. At the time only one of the
controller – the main controller – supervises the system,
the safety one’s task are to follow the main controllers
program, recalculate the actual subroutine’s results,
comparing the results, sending back the compared results
to the main controller, logging and take over the control if
necessary. To take over the control, the triggering event is
the watchdog overflow signal.

The microcontroller’s program is separated to
subroutines. Each subroutine starts with the question “Am
I the Master controller?”, and continuing depends of the
answer. The master always in charge, he is who starting
the communication with the Slave, the Slave need to wait
with his program till the Master asks the results or giving
an order.

Start subroutine

Define
variables

Sendin system
status and

variables to slave

Calculating the
result

Sending and
geting the results

Ask the slave
about matching

R
er

u
n

 s
u

b
ro

u
ti

n
e

Compare the
results

Figure 8. Subroutine validating

Start communication

Communication
trough I2C
channel 1

Communication
trough I2C
channel 2

Sending and
geting the results

Ask the slave
about matching

R
er

u
n

 s
u

b
ro

u
ti

n
e

Compare the
results

Figure 9. Communication with I2C channels

Controller

Watchdog
timer

Clock

Reset

Restart

Timeout

Figure 11. External watchdog timer architecture

In every subroutine, in the end – after the main function
of the subroutine, when the results available –, there is the
comparing function (Fig. 8.). If the results of the
controllers are not matching, they need to recalculate the
subroutine from the beginning. They can do this multiple
time, until the results are matching. Beside logging the
events, it is possible to decide, which controller is more
reliable. If, the results are not matching, after multiple
recalculation, the correct result will be the more reliable
controller’s result – and a supervisor system need to be
notified (also if, there is a lot of mismatching result). If the
controllers are equally reliable, the program is continuing
with the results of the controller who is actually the
master.

The microcontrollers have got two hardware I2C
peripheries, the hard core interlink connection is
implemented with these two separated channel. I2C is a

Master-Slave based protocol, the algorithm is built on the
basis of criteria, the flow chart is shown in Fig. 9.

In the communication, every time, the controllers are
sending the messages three times. If the three identical
message is not the same, the receiver asks the other side to
resend the message. It is also using an error detecting code
under the I2C protocol, if the receiver found an error in
the message, it asks the other side to resend the message,
the flow chart is shown in Fig. 10. This method is
executed on both channels, the sent messages are
compared to each other, and if they are matching, then it
can be acceptable as a correct message – it can be a data
or a command.

For the definition of Wto, it is the maximum amount of
time, that the watchdog timer can count before it needs to
be reset [17]. Most of the microcontroller models, the Wto
is not long enough for the tasks. In practice, often have
serial processes that run longer than the maximum of the
Wto. It is possible to use incorporate patting into the code,
but when using external libraries, it could be cumbersome.
Figuring out all of the possibilities and putting wdt_reset()
calls in the right spot is difficult and with some serial
routines, impossible, so to use an internal watchdog timer
is problematic.

External watchdog timer is an independent timer that is
separate from the controller entirely, as Fig. 11. shows. An
external watchdog timer has a much higher reliability,
than an internal one. There is no way that the controller’s
internal software, shut off an external watchdog timer
from doing its job, but an internal watchdog timer can be
easily shut off by software [18]. (Of course, if the external
WDT need to be shut off via software, it could be done
using a GPIO pin to control a transistor, but generally, it is
not needed.)

In brownout conditions an internal WDT cannot work
correctly, an external WDT can keep hitting the device
until it does come back or the power levels are less brown.
With an external WDT also can stretch out the Wto to a

Start Master
communication

Open I2C
channel

Send the coded
datas, three times

Ask Slave:
Is it OK?

Is communication
successfully?

Logging

I

Wait for the
response

Logging

N

I

Communication
failing less times than

it is allowed?

End Master
communication

Use the more
reliable results

N

Start Slave
communication

End Slave
communication

Wait for the
Master

Save the datas

Check parity of the
individual datas

Check consistency
of the datas

Is it everything OK
with the datas?

Wait for the
Master

Response to the
Master

Logging

I

N

Figure 10. I2C communication

lot more than 16 seconds, to cover all the possible – for
example bootup – sequences.

Watchdog timers can improve the reliability of an
embedded system [20]. Internal watchdogs have
limitations, but can still improve the system’s reliability.
As a better solution an external watchdog timer can handle
well the trouble-maker issues, such as brownouts, power
loss, coding errors and radio frequency interferences.

CONCLUSION

In this paper, is showed a realization of a redundant
microcontroller based system, with different reliable
levels. By the mentioned solutions, the error-free running
time and error detecting features can be increased, as
showed in the implementation of the system. We believe
that the presented methods can be used in several
applications.

REFERENCES

[1] Gy. Györök. A-class amplifier with FPAA as a predictive supply
voltage control. In: 9th International Symposium of Hungarian
Researcherson Computational Intelligence and Informatics
(CINTI2008). 2008. 361–368. p.

[2] Györök György, Bertalan Beszedes Fault tolerant power supply
systems In: Orosz Gábor Tamás 11th International Symposium on
Applied Informatics and Related Areas (AIS 2016). Konferencia
helye, ideje: Székesfehérvár, Magyarország, Budapest: Óbudai
Egyetem, 2016. 68-73. pp. (ISBN:978-615-5460-92-0)

[3] David A. Rennels. Fault-tolerant Computing – Concepts and
Examples. In: IEEE Transactions on Computers. December 1984.
1116-1129 pp.

[4] Bray W. Johnson. Design and Analysis of Fault-Tolerant Didital
Systems. 1989. Addison-Wesley Publishing

[5] Gy Györök, M Seebauer, T Orosz, M Makó, A Selmeci
Multiprocessor Application in Embedded Control System In:
Szakál A (szerk.) 2012 IEEE 10th Jubilee International
Symposium on Intelligent Systems and Informatics, SISY 2012,
Subotica, 2012, September, 20-22. Konferencia helye, ideje:
Subotica, Szerbia, 2012.09.20-2012.09.22. Piscataway: IEEE,
2012. pp. 305-309. (ISBN:978-1-4673-4751-8)

[6] Gy Györök, T Orosz, M Makó, T Treiber To Achieve Circuit
Robustness by Co-operation of FPAA and Embedded
Microcontroller In: Szakál Anikó (szerk.) IEEE 8th International
Symposium on Applied Computational Intelligence and
Informatics: SACI 2013. Konferencia helye, ideje: Timisoara,
Románia, 2013.05.23-2013.05.25. (IEEE) New York: IEEE, 2013.
pp. 315-320. (ISBN:978-1-4673-6397-6)

[7] Gy. Györök. Embedded hybrid controller with programmable
analog circuit. In: Intelligent Engineering Systems (INES), 2010
14th International Conference on. IEEE, 2010.

[8] Gy. Györök. The FPAA realization of analog robust electronic
circuit. In: Computational Cybernetics, 2009. ICCC 2009. IEEE
International Conference on. IEEE, 2009.

[9] Subhasish Mitra, Edward J. McCluskey. WORD VOTER: A New
Voter Design for Triple Modular Redundant Systems. In: VLSI
Test Symposium. 465-470 pp. 2000.

[10] Behrooz Parhami. Voting Algorithms. In: IEEE Transactions on
Reliability. Vol. 43. No. 4. 1994. December

[11] Triple Module Redundancy Design Techniques for Virtex FPGAs.
In: Xilinx Corporation Application Notes. 2006.
http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf

[12] Gy Györök Embedded hybrid controller with programmable
analog circuit In: Szakál A (szerk.) 14th International Conference
on Intelligent Engineering Systems: Proceedings. Konferencia
helye, ideje: Las Palmas, Spanyolország, 2010.05.05-2010.05.07.
Budapest: IEEE Hungary Section, 2010. pp. 1-4. (ISBN:978-1-
4244-7651-0)

[13] Gy. Györök. Self configuration analog circuit by FPAA. In: 4th
Slovakien – Hungarien Joint Symposium on Applied Machine
Intelligence (SAMI2006), 2006. 34–37. p.

[14] Behrooz Parhami. Hardware Design Methodes. In: Fault-Tolerant
Computing UCSB egyetemi jegyzet. 2006.
http://www.ece.ucsb.edu/Faculty/Parhami/pres_folder/f33-
ftcomputing-lec13-hardw.pdf

[15] Gy. Györök, L. Vokorokos, L. Hluchý. Crossbar network for
automatic analog circuit synthesis. In: 12th International
Symposium on Applied Machine Intelligence and Informatics
(SAMI 2014). IEEE Computational Intelligence Society. Szerk.: J.
Fodor. Budapest. 2014. ISBN:978-1-4799-3441-6, 263–267. p.

[16] K. Lamár, J. Neszveda. Average probability of failure of
aperiodically operated devices. In: Acta Polytechnica Hungarica,
10.(8.). 2013. 153–167. p.

[17] György Györök, Bertalan Beszédes Artificial Education Process
Environment for Embedded Systems In: Orosz Gábor Tamás
(szerk.) 9th International Symposium on Applied Informatics and
Related Areas - AIS2014. Konferencia helye, ideje:
Székesfehérvár, Magyarország, 2014.11.12 Székesfehérvár:
Óbudai Egyetem, 2014. pp. 37-42. (ISBN:978-615-5460-21-0)

[18] Gy. Györök, M. Makó. Configuration of EEG input-unit by
electric circuit evolution. In: 9th International Conference on
Intelligent Engineering Systems (INES2005), 2005. 1–7. p.

[19] Gy. Györök, M. Makó, J. Lakner. Combinatorics at electronic
circuit realization in FPAA. In: Acta Polytechnica Hungarica,
Journal of Applied Sciences, 2009. 6(1). 151–160. p.

[20] Gy. Györök. The function-controlled input for the IN CIRCUIT
equipment. In: 8th Intelligent, Engineering Systems
Conference(INES2004), 2006. 443–446. p.

