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Abstract

We study the most famous example of a large financial market: the
Arbitrage Pricing Model, where investors can trade in a one-period setting
with countably many assets admitting a factor structure. We consider the
problem of maximising expected utility in this setting. Besides establish-
ing the existence of optimizers under weaker assumptions than previous
papers, we go on studying the relationship between optimal investments in
finite market segments and those in the whole market. We show that cer-
tain natural (but nontrivial) continuity rules hold: maximal satisfaction,
reservation prices and (convex combinations of) optimizers computed in
small markets converge to their respective counterparts in the big market.

Keywords: Arbitrage Pricing Theory, Large markets, Maximisation of ex-
pected utility.

MSC classification:Primary 93E20, 91B70, 91B16; Secondary 91G10, 46B09.

1 Introduction

Arbitrage Pricing Theory (APT) was conceived by [20] in order to derive the
conclusions of Capital Asset Pricing Model (see [15, 22]) from alternative as-
sumptions. These remarkable conclusions had a huge bearing on empirical work
but they somehow overshadowed the highly inventive model suggested in [20].

Mathematical finance subsequently took up the idea of a market with count-
ably many assets and the theory of large financial markets was founded in [10]
and further developed in e.g. [11, 13, 14, 12, 5], just to mention a few. For
the sake of generality, continuous trading was assumed in the overwhelming
majority of related papers which, again, eclipsed the original setting of [20].

While the arbitrage theory of the large financial markets has been worked out
in [10, 11] satisfactorily in continuous time, other crucial topics – such as utility
maximization or superreplication – brought about only dubious conclusions and
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unsettled questions. Portfolios in finitely many assets were considered in the
above references and a natural definition for strategies involving possibly all the
assets was missing. Generalized portfolios were introduced (see [7, 5, 16]) as
suitable limits of portfolios with finitely many assets. They lacked, however,
a clear economic interpretation. In the APT (and, for the moment, only in
that model) [18] introduces a straightforward concept of portfolios in infinitely
many assets which we will use in the present paper. In [4] it is proved that
assuming absence of arbitrage in all of the small markets and under integrability
conditions, the no arbitrage condition stated with infinitely many assets also
holds true. In the same paper, the authors obtain a dual representation of the
superreplication cost of a contingent claim.

In this paper, we investigate the existence of optimizers for utility functions
on the whole real line (the positive real axis case was treated in [4]) and we relax
some rather stringent conditions imposed in [18, 19]. From both a theoretical
and a computational viewpoint it is crucial to clarify the relationship between
optimal investment in the finite markets and those in the whole market.

In our setup, it is expected that the value functions in finite markets perform
asymptotically as well as the value function in the large market. Considering
utility indifference prices, these should also converge as the number of assets
increases. While these facts are intuitive, no formal justification has been pro-
vided so far. We prove these facts in Theorem 3.9 and Corollary 3.11 below. We
also prove that certain convex combinations of the optimal portfolios in finite
markets perform asymptotically as well as the overall optimizer.

Asymptotic results for superhedging and mean-variance hedging have been
obtained in [2, 3]. In the utility maximization context the first such result is
Theorem 5.3 of [18] where it was shown that there exists a sequence of strategies
in finite markets whose values converge to the optimal value. That paper,
however, assumed that asset price changes may take arbitrarily large negative
and positive values which is a rather strong requirement. Under the more relaxed
conditions of the present work we also show the existence of such sequence,
moreover, they can be chosen to be averages of finite market optimizers, see
Theorem 3.9 below.

Section 2 presents the model and recalls some useful results from [4]. Section
3 contains the main contributions: existence of utility maximization and the
asymptotics from small markets to big markets.

2 The large market model

Let (Ω,F , P ) be a probability space. We consider a two stage Arbitrage Pricing
Model. For any i ≥ 1, let the return on asset i be given by

Ri = β̄i(εi − bi), 1 ≤ i ≤ m;

Ri =

m∑

j=1

βj
i (εj − bj) + β̄i(εi − bi), i > m,

2



where the (εi)i≥1 are random variables and (β̄i)i≥1, (bi)i≥1, (β
j
i )i>m,1≤j≤m are

constants. We refer to [10, 17, 19] for further discussions on the model.

Assumption 2.1. The (εi)i≥1 are square-integrable, independent random vari-
ables satisfying

E(εi) = 0, E
(
ε2i
)
= 1, i ≥ 1.

We consider strategies using potentially infinitely many assets and belonging
to

ℓ2 :=

{
(hi)i≥1, hi ∈ R, i ≥ 1,

∞∑

i=1

h2
i < ∞

}

which is an Hilbert space with the norm ||h||ℓ2 :=
√∑∞

i=1 h
2
i .

Let L2(Ω,F , P ) := {X : Ω → R, E|X |2 < ∞} (denoted by L2(P ) from now on),
which is again a Hilbert space with the norm ||X ||L2 :=

√
E(|X |2). For h ∈ ℓ2,

let Φ(h) :=
∑∞

i=1 hiεi, where the infinite sum in Φ(h) has to be understood as
the limit in L2(P ) of the finite sequences (

∑n
i=1 hiεi)n≥1. Then Φ is an isometry

from ℓ2 to L2(P ).

Assumption 2.2. We have ‖b‖ℓ2 < ∞.

Under Assumption 2.2, we have (see (5) in [4]) that

E



(

∞∑

i=1

hi(εi − bi)

)2

 ≤ (1 + ‖b‖2ℓ2)‖h‖

2
ℓ2 < ∞, (1)

and we may consider again the infinite sum 〈h, ε− b〉 :=
∑∞

i=1 hi(εi − bi). Note
that

E(|〈h, ε− b〉|) ≤

√
E (〈h, ε− b〉)2 ≤

√
1 + ‖b‖2ℓ2‖h‖ℓ2.

The (self-financed) value at time 1 that can be attained starting from x and
using a strategy h in ℓ2 with infinitely many assets is given by

V x,h := x+ 〈h, ε− b〉.

Assumption 2.3. For all i ≥ 1,

P (εi > bi) > 0 and P (εi < bi) > 0.

Fix N ≥ 1. Using Lemma 3.4 in [4], under Assumptions 2.1 and 2.3,
there exists some αN ∈ (0, 1) such that for every (h1, . . . , hN ) ∈ R

N satisfy-

ing
∑N

i=1 h
2
i = 1 we have

P

(
N∑

i=1

hi(εi − bi) < −αN

)
> αN . (2)
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This condition is the so called quantitative no-arbitrage condition on any “small
market” with N random sources and it is well-known that this condition is
equivalent to the existence of a equivalent martingale measure for the finite
market with assets R1, . . . , RN (see [6] and [8]).

However, we need the existence of martingale measures for the whole market
and even sufficient integrability of the martingale density. We say that EMM2
holds true if

M2 :=

{
Q ∼ P,

dQ

dP
∈ L2(P ), EQ(εi) = bi, ∀i ≥ 1

}
6= ∅. (3)

Unfortunately, Assumptions 2.1, 2.2 and 2.3 are not known to be sufficient
for ensuring that EMM2 holds true (see Proposition 4 of [17]). Hence we also
need the following technical condition.

Assumption 2.4. We have that

sup
i≥1

E
[
|εi|

3
]
< ∞. (4)

Lemma 2.5. Under Assumptions 2.1, 2.3 and 2.4,

Assumption 2.2 ⇐⇒ EMM2. (5)

Proof. This is Corollary 1 of [17].

Lemma 2.6 below asserts that the quantitative no arbitrage condition, men-
tioned above, holds true in the large market, too.

Lemma 2.6. Assume that Assumptions 2.1, 2.2, 2.3 and 2.4 hold true. Then
there exists some α > 0, such that for all h ∈ ℓ2 satisfying ‖h‖ℓ2 = 1

P (〈h, ε〉 < −α) > α.

Proof. This is Proposition 3.14 in [4].

Remark 2.7. If Q ∈ M2 is such that dQ/dP ∈ L2 and if Assumption 2.2 holds
true then EQ

(
V 0,h

)
= 0 for all h ∈ ℓ2, see Remark 3.4 of [4].

Lemma 2.8 below will be used in the proofs of Theorems 3.8 and 3.9 in order
to show uniform integrability.

Lemma 2.8. Assume that Assumptions 2.1 and 2.2 hold true and that supi≥1 E|εi|γ <
∞ for some γ ≥ 2. Then there is a constant Cγ such that, for all h ∈ ℓ2

E|〈h, ε− b〉|γ ≤ Cγ‖h‖
γ
ℓ2
(1 + ‖b‖γℓ2).

Proof. This is Lemma 3.10 in [4].
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Remark 2.9. Let 0 < λ < γ and c > 0. Fix h ∈ ℓ2, ‖h‖ℓ2 ≤ c. Using
Assumption 2.4, Holder inequality and Lemma 2.8, we get that for any A ∈ F ,

E(|V x,h|λ1A) ≤ 2λ−1|x|λP (A) + 2λ−1E(|〈h, ε− b〉|λ1A)

≤ 2λ−1|x|λP (A) + 2λ−1(E(|〈h, ε− b〉|γ))λ/γ(P (A))1/q

≤ 2λ−1|x|λP (A) + 2λ−1cλ(Cγ(1 + ‖b‖γℓ2))
λ/γ(P (A))1/q ,

where q is the conjugate of γ/λ. So an important consequence of Assumption
2.4 is that for any c > 0 and 0 < λ < 3 {|V x,h|λ, h ∈ ℓ2, ‖h‖ℓ2 ≤ c} is uniformly
integrable.

We finally recall an important concept of functional analysis. A Banach
space B has the Banach-Saks property if, for every norm-bounded sequence
ξn ∈ B, n ∈ N, there exists a subsequence nk, k ∈ N such that the corresponding
arithmetic means

ξn0
+ . . .+ ξnk−1

k
converge in the norm of B. It was proved in [1] that Lp spaces have this property.
In the present paper we will apply this result in the Hilbert space ℓ2.

3 Utility maximisation

It is standard (see [21]) to model economic agents’ preferences by concave in-
creasing utility functions U . So suppose that U : R → R is a concave strictly
increasing differentiable function and that for some x0 ∈ R

U(x0) = 0 and U ′(x0) = 1. (6)

For a claim G ∈ L0 and x ∈ R, we define

A(U,G, x) :=
{
h ∈ ℓ2, EU−(V x,h −G) < +∞

}
.

Define the supremum of expected utility at the terminal date when delivering a
contingent claim G, starting from initial wealth x ∈ R, by

u(G, x) := sup
h∈A(U,G,x)

EU(V x,h −G). (7)

The following assumptions will be needed in Theorems 3.8 and 3.9.

Assumption 3.1. There exists some constants C1 ∈ (0,∞), C2 ∈ R+ and
β > 1 such that for all x ≤ x0

|U(x)| ≥ C1|x|
β − C2.

Assumption 3.2. There exists some constants C3 ∈ (0,∞), C4 ∈ R+ and
γ ≥ max(β, 2) such that for all x ∈ R

U−(x) ≤ C3|x|
γ + C4

and
sup
i≥1

E [|εi|
γ ] < ∞. (8)

5



Assumption 3.3. We have G ≥ 0 a.s. and it satisfies |E(U(x − G))| < +∞,
for all x ∈ R.

Remark 3.4. Assumption 3.3 is satisfied whenever G is nonnegative, measur-
able and bounded. Define

U(x) := −
1

δ
[(x + 1)−δ − 1]1{x>0} −

1

β
[(1− x)β − 1]1{x≤0}

for some β ≥ 2 and δ > 0. Then U is concave, strictly increasing, contin-
uously differentiable and it satisfies both Assumptions 3.1 and 3.2 whenever
supi≥1 E

[
|εi|β

]
< ∞. Note that Assumption 2.4 implies (8) when 2 ≤ β ≤ 3.

Remark 3.5. Let U be concave, strictly increasing and differentiable, satisfying
Assumptions 3.1, 3.2 and 3.3. Then (6) actually imposes no restriction on U .
Indeed, as U cannot be constant, there exists x0 ∈ R such that U ′(x0) > 0.
Define

V (x) :=
U(x)

U ′(x0)
−

U(x0)

U ′(x0)
,

which obviuosly satisfies (6). Moreover,

|V (x)| ≥
C1

U ′(x0)
|x|β −

C2

U ′(x0)
−

|U(x0)|

U ′(x0)
, x ≤ x0

V −(x) ≤
C3

U ′(x0)
|x|γ +

C4

U ′(x0)
+

U+(x0)

U ′(x0)
, x ∈ R

|E(V (x −G))| ≤
|E(U(x−G))|

U ′(x0)
+

|U(x0)|

U ′(x0)
< ∞.

So Assumptions 3.1, 3.2 and 3.3 hold true for V . One may apply Theorems 3.8,
3.9 and Corollary 3.11 below to V and then these same results can be deduced
for U , too.

The following lemmata will be used in the proofs of Theorems 3.8 and 3.9.

Lemma 3.6. Let Assumption 2.2 hold true and assume G ≥ 0 a.s. Then for
all y ∈ R and h ∈ ℓ2

U+(y + 〈h, ε− b〉 −G) ≤ |x0|+ |y + 〈h, ε− b〉|. (9)

Proof. As U is increasing, concave and differentiable, recalling (6), we get for
all y ∈ R,

U(y) ≤ U(max(x0, y)) ≤ U(x0) + max(y − x0, 0)U
′(x0)

≤ max(y − x0, 0) ≤ |y − x0| ≤ |y|+ |x0|.

Let h ∈ ℓ2, we get that

U+(y + 〈h, ε− b〉 −G) ≤ U+(y + 〈h, ε− b〉)

≤ U+(y + 〈h, ε− b〉)1y+〈h,ε−b〉≥x0
+ U+(x0)1y+〈h,ε−b〉<x0

= U(y + 〈h, ε− b〉)1y+〈h,ε−b〉≥x0
≤ |x0|+ |y + 〈h, ε− b〉|.
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Lemma 3.7 asserts that an optimal solution for (7) must be bounded.

Lemma 3.7. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1 and 3.3 hold
true. Let x ∈ R. There exists some constant Mx,G > 0 such that if h ∈ ℓ2
satisfies

‖h‖ℓ2 > Mx,G

then the 0 strategy performs better than h, that is,

EU(x−G) > EU(x+ 〈h, ε− b〉 −G).

Proof. Let x ∈ R and h ∈ ℓ2. Recall α > 0 from Lemma 2.6. As b ∈ ℓ2, there

exists some nα ≥ 1 such that
(∑

i≥nα+1 b
2
i

)1/2
≤ α/2. Let

h := (h1, . . . , hnα
, 0, . . . , ) and b =: (b1, . . . , bnα

, 0, . . . , )

h := (0, . . . , 0, hnα+1, . . . , ) and b =: (0, . . . , 0, bnα+1, . . . , ).

From the no-arbitrage condition in the market with nα assets (see (2)) there
exits αnα

such that P (A) > αnα
, where A := {

∑nα

i=1 hi(εi − bi) < −αnα
‖h‖ℓ2}.

Let B :=
{∑

i≥nα+1 hiεi ≤ −α‖h‖ℓ2

}
then P (B) > α (recall Lemma 2.6). As

the (εi)i≥1 are independent, we get that P (A ∩ B) = P (A)P (B) > αnα
α. On

A ∩B,

〈h, ε− b〉 = 〈h, ε− b〉+ 〈h, ε− b〉 ≤ −αnα
‖h‖ℓ2 − α‖h‖ℓ2 − 〈h, b〉

≤ −αnα
‖h‖ℓ2 − α‖h‖ℓ2 + ‖b‖ℓ2‖h‖ℓ2

≤ −αnα
‖h‖ℓ2 − α‖h‖ℓ2 + α/2‖h‖ℓ2 ≤ −α(‖h‖ℓ2 + ‖h‖ℓ2),

where α = inf(αnα
, α/2). Thus P (〈h, ε − b〉 < −α(‖h‖ℓ2 + ‖h‖ℓ2)) > αnα

α.

Assume that ‖h‖ℓ2 + ‖h‖ℓ2 ≥ max
(

x−x0

α , |x|
α

)
. Then applying Lemma 3.6 and

Assumption 3.1, we get that

EU(V x,h −G) ≤ EU(x+ 〈h, ε− b〉)

≤ E
(
U(x+ 〈h, ε− b〉)1〈h,ε−b〉<−α(‖h‖ℓ2

+‖h‖ℓ2
)

)
+

E
(
U+(x+ 〈h, ε− b〉)1〈h,ε−b〉≥−α(‖h‖ℓ2

+‖h‖ℓ2
)

)

≤ U(x− α(‖h‖ℓ2 + ‖h‖ℓ2))αnα
α+ |x0|+ E|x+ 〈h, ε− b〉+ 〈h, ε− b〉|

≤ U(x− α(‖h‖ℓ2 + ‖h‖ℓ2))αnα
α+ |x0|+ |x|+ ‖h‖ℓ2

√
1 + ‖b‖2ℓ2

+‖h‖ℓ2

√
1 + ‖b‖2ℓ2

≤
(
−C1

∣∣α(‖h‖ℓ2 + ‖h‖ℓ2)− x
∣∣β + C2

)
αnα

α+ |x0|+ |x|

+(‖h‖ℓ2 + ‖h‖ℓ2)
√

1 + ‖b‖2ℓ2

≤
(
−C1α

β(‖h‖ℓ2 + ‖h‖ℓ2)
β + C2

)
αnα

α+ |x0|+ |x|

(‖h‖ℓ2 + ‖h‖ℓ2)
√
1 + ‖b‖2ℓ2.
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because U(x− α(‖h‖ℓ2 + ‖h‖ℓ2)) ≤ U(x0) = 0 and

∣∣α(‖h‖ℓ2 + ‖h‖ℓ2)− x
∣∣β ≥

∣∣α(‖h‖ℓ2 + ‖h‖ℓ2)− |x|
∣∣β =

(
α(‖h‖ℓ2 + ‖h‖ℓ2)− |x|

)β

≥ αβ(‖h‖ℓ2 + ‖h‖ℓ2)
β .

Assume that

(‖h‖ℓ2 + ‖h‖ℓ2)
√
1 + ‖b‖2ℓ2 −

C1

2
αnα

ααβ(‖h‖ℓ2 + ‖h‖ℓ2)
β < 0

−
C1

2
αβαnα

α(‖h‖ℓ2 + ‖h‖ℓ2)
β + |x0|+ |x|+ C2αnα

α < −|EU(x−G)| ≤ EU(x−G),

which is true if ‖h‖ℓ2 + ‖h‖ℓ2 > Mx,G, where

Mx,G := max



(
2
|x0|+ |x|+ C2αnα

α+ |E(U(x−G))|

C1αnα
ααβ

) 1

β

,


2

√
1 + ‖b‖2ℓ2

C1αnα
ααβ




1

β−1


 .

Then, setting Mx,G := max
(

x−x0

α , |x|
α ,Mx,G

)
, if ‖h‖ℓ2 + ‖h‖ℓ2 > Mx,G,

EU(V x,h −G) < EU(x−G) (10)

so the strategy 0 performs better than h. It follows that ‖h‖ℓ2 > Mx,G implies
(10) since

‖h‖ℓ2 =
(
‖h‖2ℓ2 + ‖h‖2ℓ2

) 1

2 ≤ ‖h‖ℓ2 + ‖h‖ℓ2 .

Now we present our first main result. We establish the existence of an op-
timizer for the utility maximization problem. In [19] this was shown assuming
uniformly bounded exponential moments for the εi. In [18] the moment condi-
tion was weak but it was assumed that all the εi take arbitrarily large negative
and positive values. Here we do not need the latter assumption and merely
assume (4) and (8).

Theorem 3.8. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2 and 3.3
hold true. Let x ∈ R. There exists h∗ ∈ A(U,G, x) such that

u(G, x) = EU(V x,h∗

−G).

Proof. Let x ∈ R and let hn ∈ A(U,G, x) be a sequence such that

EU(V x,hn −G) ↑ u(G, x), n → ∞.

If ‖hn‖ℓ2 > Mx,G, then using Lemma 3.7, we can replace hn by 0 and still have
a maximising sequence. So one can assume that supn∈N

‖hn‖ℓ2 ≤ Mx,G < ∞.

8



Hence as ℓ2 has the Banach-Saks Property, there exists a subsequence (nk)k≥1

and some h∗ ∈ ℓ2 such that for h̃n := 1
n

∑n
k=1 hnk

‖h̃n − h∗‖ℓ2 → 0, n → ∞.

Using (1), we get that

E〈h̃n − h∗, ε− b〉2 ≤ ‖h̃n − h∗‖2ℓ2(1 + ‖b‖2ℓ2) → 0,

when n → ∞. In particular, 〈h̃n − h∗, ε− b〉 → 0, n → ∞ in probability. Hence

also U(V x,h̃n −G) → U(V x,h∗

−G) in probability by continuity of U . We claim

that the family U+(V x,h̃n −G), n ∈ N is uniformly integrable. Indeed, from (9)

U+(V x,h̃n −G) ≤ |x0|+ |V x,h̃n |.

We know that supn∈N ‖h̃n‖ℓ2 ≤ Mx,G < ∞. Hence from Assumption 2.4 (see

Lemma 2.8 and Remark 2.9), we get that {U+(V x,h̃n −G), hn ∈ ℓ2, ‖h̃n‖ℓ2 ≤
Mx,G} is uniformly integrable. Fatou’s lemma used for −U− implies that

E
(
−U−(V x,h∗

−G)
)
≥ lim sup

n→∞
E
(
−U−(V x,h̃n −G)

)
,

and uniform integrability guarantees that

lim
n→∞

E
(
U+(V x,h̃n −G)

)
= E

(
U+(V x,h∗

−G)
)
.

Thus, by concavity of U

EU(V x,h∗

−G) ≥ lim sup
n→∞

EU(V x,h̃n −G) ≥ lim
n→∞

EU(V x,hn −G) = u(G, x),

and the proof will be finished as soon as we show h∗ ∈ A(U,G, x). From
Assumption 3.2 and Lemma 2.8,

EU−(V x,h̃n −G) ≤ C3E|V x,h̃n −G|γ + C4

≤ C3

(
2γ−1(|x|γ + E| < h̃n, ε− b > |γ)

)
+ C4

≤ C3

(
2γ−1

(
|x|γ + CγM

γ
x,G

(
1 + ‖b‖γℓ2

)))
+ C4 =: K.(11)

Fatou’s lemma used for U− implies that

E
(
U−(V x,h∗

−G)
)

≤ lim inf
n→∞

E
(
U−(V x,h̃n −G)

)
≤ K.

We consider now the problem of optimization in the small market n with
only the random sources (εi)1≤i≤n. Let

An(U,G, x) :=
{
h ∈ ℓ2, hi = 0, ∀i ≥ n+ 1, EU−(V x,h −G) < +∞

}
.

9



Note that An(U,G, x) ⊂ An+1(U,G, x) ⊂ . . . ⊂ A(U,G, x). We set for n ∈ N

un(G, x) := sup
h∈An(U,G,x)

EU(V x,h −G). (12)

Now we arrive at the principal message of our paper: optimization problems
in the small markets behave consistently with those on the big market, in a
natural way.

Theorem 3.9. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2 and 3.3
hold true. Then for each x ∈ R, we have un(G, x) ↑ u(G, x), n → ∞.
Let h∗

n be an optimal solution for (12) 1. Then there exists a subsequence

(nk)k≥1 and some ĥ ∈ ℓ2, optimal solution of (7), such that for ĥn := 1
n

∑n
k=1 h

∗
nk
,

‖ĥn − ĥ‖ℓ2 → 0, n → ∞.

Proof. The sequence un(G, x), n ∈ N is clearly non-decreasing and it is bounded

from above by u(G, x). Let h̄n := (h̃0, . . . , h̃n, 0, . . .), n ∈ N where h̃ is the

optimizer constructed in Theorem 3.8. Using (1) and h̃ ∈ ℓ2, we have

E〈h̄n − h̃, ε− b〉2 → 0, n → ∞

hence also 〈h̄n, ε− b〉 → 〈h̃, ε− b〉, n → ∞ in probability. The Fatou-lemma for
U+ shows that

EU+(V x,h̃ −G) ≤ lim inf
n→∞

EU+(V x,h̄n −G).

Now we show that the family U−(V x,h̄n − G), n ∈ N is uniformly integrable.
Assumption 3.2 implies that

U−(V x,h̄n −G) ≤ C3|V
x,h̄n −G|γ + C4

≤ C3

(
2γ−1(|x|γ + | < h̄n, ε− b > |γ)

)
+ C4.

As h̃ is optimal, ‖h̄n‖ℓ2 ≤ ‖h̃‖ℓ2 ≤ Mx,G (see Lemma 3.7) and as in Remark

2.9, U−(V x,h̄n −G), n ∈ N is uniformly integrable. We also get as in (11) that

EU−(V x,h̄n −G) ≤ K

and h̄n ∈ An(G,U, x) follows. Uniform integrability implies that

EU−(V x,h̃ −G) = lim
n→∞

EU−(V x,h̄n −G).

It follows that

u(G, x) = EU(V x,h̃ −G) ≤ lim inf
n→∞

EU(V x,h̄n −G) ≤ lim
n→∞

un(G, x) ≤ u(G, x).

1which exists by the argument of Theorem 3.8.
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Let h∗
n ∈ An(U,G, x) be an optimal solution for (12). Using Lemma 3.7,

‖h∗
n‖ℓ2 ≤ Mx,G. We proceed as in the proof of Theorem 3.8. By the Banach-Saks

Property, there exists a subsequence (nk)k≥1 such that for ĥn := 1
n

∑n
k=1 h

∗
nk
,

‖ĥn − ĥ‖ℓ2 → 0, n → ∞

for some ĥ ∈ ℓ2. The arguments of the proof of Theorem 3.8 apply verbatim
and show that ĥ is an optimizer for the utility maximization problem (7) in the
large market.

Remark 3.10. When U is strictly concave then the optimizer is unique and
hence h∗ of Theorem 3.8 equals ĥ of Theorem 3.9.

The corollary below addressees the problem of convergence of the reservation
prices pn, p. These latter were introduced in [9].

Corollary 3.11. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2 and 3.3
hold true. The reservation price pn (resp. p) of G in the market with the random
sources (εi)1≤i≤n (resp. with (εi)i≥1) is defined as a solution of

un(G, x + pn) = un(0, x) and u(G, x+ p) = u(0, x).

These quantities are well-defined and we have pn → p, n → ∞.

Proof. We justify the definition of p, the case of pn being completely analogous.
We show that the set {u(G, x), x ∈ R} is the same as {u(0, x), x ∈ R}.

We claim that u(G, x), u(0, x) are finite for all x. Indeed, Assumption 3.3,
Lemmata 3.6 and 3.7 imply that −∞ < u(G, x) ≤ u(0, x) < ∞. As u is
monotone, furthermore it is concave and thus continuous on its effective domain,
it suffices to show that

u(G,−∞) = u(0,−∞) = −∞, u(G,∞) = u(0,∞) = U(∞) (13)

and that u(G, x), u(0, x) < U(∞) for all x because in this case {u(G, x), x ∈
R} = {u(0, x), x ∈ R} = (−∞, U(∞)).

We first concentrate on the latter claim. If U(∞) = ∞ then this is obvious.
Otherwise denote h′, h′′ the strategies attaining u(0, x), u(G, x), respectively.
Then, by the strictly increasing property of U , we have

u(0, x) = EU(x+ 〈h′, ε− b〉) < EU(∞) = U(∞) (14)

and
u(G, x) = EU(x+ 〈h′′, ε− b〉 −G) < EU(∞) = U(∞).

Now we turn to showing (13). It is clear that u(G,∞), u(0,∞) ≤ U(∞) and

u(0,∞) = lim
x→∞

u(0, x) ≥ lim
x→∞

U(x) = U(∞). (15)

Assumption 3.3 and Fatou’s lemma also imply that

u(G,∞) ≥ lim inf
x→∞

u(G, x) ≥ lim inf
x→∞

EU(x−G) ≥ U(∞).
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Since u(G, x) ≤ u(0, x), it is enough to establish limx→−∞ u(0, x) = −∞.
By concavity, this is clearly the case if u(0, ·) is not the constant function. But if
u(0, ·) = c then we would necessarily have c ≥ U(∞) by (15) which contradicts
(14).

We now turn to proving convergence. Arguing by contradiction let us assume
that, along a subsequence (which we continue to denote by n), one has pn → p
for some p < p (the case of a limit p > p is analogous). It follows that there
is N such that, for n ≥ N , pn < (p + p)/2 < p. Using Theorem 3.8, let

h† ∈ A(G,U, x+ (p+ p)/2) ⊂ A(G,U, x+ p) satisfy

u(G, x+ (p+ p)/2) = EU(x+ (p+ p)/2 + 〈h†, ε− b〉 −G).

Then, the definition of the reservation prices and Theorem 3.9 imply that

lim sup
n→∞

un(G, x+ pn) ≤ lim sup
n→∞

un(G, x+ (p+ p)/2)

= u(G, x+ (p+ p)/2) = EU(x+ (p+ p)/2 + 〈h†, ε− b〉 −G)

< EU(x+ p+ 〈h†, ε− b〉 −G) ≤ u(G, x+ p)

= u(0, x) = lim
n→∞

un(0, x) = lim
n→∞

un(G, x+ pn),

a gross contradiction.
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