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The costs incurred by cloud providers towards operating their data centers are often determined in large part
by their peak demands. The pricing schemes currently used by cloud providers to recoup these costs from their
tenants, however, do not distinguish tenants based on their contributions to the cloud’s overall peak demand.
Using the concrete example of peak-based pricing as employed by many electric utility companies, we show
that this “gap” may lead to unfair attribution of costs to the tenants. Simple enhancements of existing cloud
pricing (e.g., analogous to the coincident peak pricing (CPP) used by some electric utilities) do not adequately
address these shortcomings and suffer from short-term unfairness and undesirable oscillatory price-vs.-
demand relationships offered to tenants. To overcome these shortcomings, we define an alternative pricing
scheme to more fairly distribute a cloud’s costs among its tenants. We demonstrate the efficacy of our scheme
under price-sensitive tenant demand response using a combination of (i) extensive empirical evaluation
with recent workloads from commercial data centers operated by IBM and (ii) analytical [modeling] through
non-cooperative game theory for a special case of tenant demand model.
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1. INTRODUCTION

Cloud computing is turning information technology (IT) into a utility wherein cloud
providers hide the complexity of building and operating data centers from their cus-
tomers (“tenants”) and supply them with virtualized IT resources. Inevitably, this vir-
tualization creates a “gap” between how cloud providers incur costs for operating their
data centers and how they recoup these costs from their tenants, the latter typically
in terms of virtualized IT resources such as virtual machines (VMs). One important
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example of this gap is the difference that often exists between pricing schemes underly-
ing costs incurred by cloud providers versus those used by cloud providers themselves
to sell virtualized IT resources [Nasiriani et al. 2015].

The Problem: Several important components of a cloud provider’s costs are signifi-
cantly affected by the peak of its resource usage. Arguably, the most explicit example of
this—our focus in this article—is found in the form of electric bills using “peak-based
pricing” that certain electric utility companies employ, for example, see SCEG [2014]
and Duke [2014]. In this pricing, the consumer’s electric bill contains a separate com-
ponent for its peak power draw over the billing cycle (“peak charge”) in addition to the
usual component based on energy consumed (“energy charge”). It is well known that
the peak-related component can contribute a lot to the overall electric bill of the cloud
provider [hamiltonblog 2014; Wang et al. 2012b]. As an example, if the peak draw is
24% more than average demand, then 50% of overall electricity bill will be due to its
demand charge component.

Whereas demand response (DR) for optimizing costs under such pricing has received
a lot of attention recently [Chase 2014; Wierman et al. 2014; Wang et al. 2012b], we iden-
tify a novel and complementary concern that we find useful to think of as a “fairness”
problem. Notions of fair pricing of tenants in our problem are more complex than simple
notions of proportional or max/min fairness due to a plurality of quantities used (mean
and peak) for pricing and the complex statistics of the coincident/aggregate peak itself.

Our problem is most clearly understood by posing the following question in a revenue-
neutral cloud environment: How should a cloud provider subject to peak-based pricing
for its electric power consumption recoup these costs from its tenants? Whereas the
answer is straightforward for the energy charge making up the bill (simply charge
each tenant for its own total energy consumption), it becomes less clear when one
considers recouping the peak charge. It is easily seen that existing pricing schemes
employed by cloud providers amount to distributing the peak charge among tenants in
proportion to their resource allocations (e.g., VMs) or, as a first-order approximation,
in proportion to their energy consumption. We find such a pricing scheme to be “unfair”
since it charges two tenants identically even if one of them contributes more to the
cloud’s overall peak power draw than the other (Figure 2 shows a simple example).
In fact, as we show in Section 2, even other pricing schemes that do incorporate the
tenants’ contributions to the cloud’s peak draw into their decision-making continue
to suffer from such unfairness. This motivates us to explore an alternative pricing
scheme that attributes peak-related costs more carefully, leading to fairer charging of
tenants. We assume a revenue-neutral cloud that, by definition, ensures that the costs
it recoups from its tenants are exactly what it incurs due to its own operation. However,
it should be noted that our focus on a revenue-neutral cloud is a modeling choice for
ease of explanation but the ideas apply to non-revenue neutral cloud providers, too. In
particular, for-profit clouds may charge their tenants proportionate to their attributed
operational expenditures (and possibly amortized capital expenditures).

Why Study This Problem? We find our problem worth studying for two main rea-
sons. First, energy-related costs are already significant components of overall costs for
many data centers and, correspondingly, of their tenants. It is likely that the relative
contribution of energy costs will only continue to grow due to increasing trend of energy
prices since the early 1990s, especially those for peak draw.

Second, one may wonder if our fairness1 concern can be alleviated simply by replacing
peak-based pricing [Duke 2014] with real-time pricing. In fact, many providers and

1In this work, “fairness” is used to refer to set of criteria that we claim to be desirable for our proposed pricing
scheme. This set of criteria is sketched based on what we claim to be unfairness attributes of existing/possible
baseline pricing approaches cf. Section 2.
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consumers do find peak-based pricing more appealing due to the lower associated
uncertainty compared to spot prices. Generally speaking, since spot prices can be highly
dynamic, it may be desirable for certain energy consumers to hedge their electricity
costs by buying from a third party an energy future whose form may be very similar
to peak-based pricing or to explore a tradeoff between higher upfront costs vs. lower
variability in subsequent spot prices. The choice of an electricity pricing structure for a
cloud provider depends on its demand properties (predictability, flexibility, variability,
etc.) as well as the variation of the spot price, compared with the hedged rate and
the peak penalty. As an example, a data center whose demand is not flexible and less
variable might choose a flat rate with peak power penalty; whereas another data center
with highly flexible demand, might prefer real-time energy price, if the price variation
is large enough for it to do arbitrage.

A Note on Generality: Although we focus only on energy-related operational ex-
penses, there are several other data center costs that also have a peak usage-based
component (although perhaps more indirectly). Internet Service Providers (ISPs) often
employ tariff schemes for bandwidth, based on a high percentile that closely resemble
peak charging (e.g., 95th or 99th percentile of the empirical distribution of bytes sent
per measurement window over the billing cycle). In certain multi-homed settings, a
cloud provider may employ a mixture of ISPs, some that charge based on raw bytes
sent (like energy charge) while others based on a high percentile (similar to peak
charge) [Adler et al. 2011]. Obviously, in some cases, other costs, for example, real
estate can outweigh energy-related operational costs (where rents are very high, e.g.,
urban areas). However major data centers are located in rural areas, and, hence, en-
ergy costs are dominant. In this study, we focus on cloud providers with power costs as
major contributor to their recurrent costs. Finally, many cloud providers (e.g., public
clouds such as amazon-ec2 [2014]) are perhaps best modeled as being interested in
profit maximization, and the fairness concerns we discuss may seem not to be directly
applicable to them. However, there are many cloud computing environments where fair
cost attribution may be a valid concern. Private clouds catering to departments/groups
within an enterprise are an example. Moreover, with public cloud providers becom-
ing indispensable utility providers to many large and small customers, fairness and
neutrality-related mandates will likely emerge to ensure a level playing field among
their tenants. An analogy with net neutrality can be drawn to show the likely rise of this
issue in near future public cloud. Hence, if neutrality becomes a regulation, fairness
attribution of prices will be mandated by law. This is an open problem, though, and it
has started to gain attention of some researchers [Kesidis et al. 2016; Renda 2012] and
also some cloud providers. For example, Interxion, a European provider defines a cloud-
neutral “colo” data center as follows: “A truly neutral data centre provider is one that is
independent of the companies colocating in the data centre, does not compete with them
in any way, and offers no packaged services as part of colocation. . .” [Interxion 2016].

Contributions: For a future revenue-neutral cloud’s operational costs under peak-
based pricing, we define an alternative pricing scheme to more fairly distribute these
costs among its tenants. Our contributions are both in terms of empirical performance
evaluation methodology and theoretical results. Our proposed pricing scheme uses the
first- and second-order statistics of tenant’s workloads as an effective proxy for ten-
ants’ contribution to the cloud peak. This pricing is considered for cases without and
with tenants’ engagement in DR. Particularly, we studied the case when tenants ac-
tively engage in DR to maximize their net utility by shedding demand. We empirically
evaluate both cases, using stationary and non-stationary workloads (the former syn-
thesized from the latter) from IBM production data centers. Here is a summary of our
contributions:
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Fig. 1. An example of peak-based pricing. Tariff rates from Duke Energy.

—The performance of this pricing scheme is empirically compared against a baseline
scheme through the use of recorded tenant demands from a real-world commercial
data center (IBM), made challenging by the highly variable and non-stationary as-
pects of the workload data.

—The alternative pricing scheme under DR is studied analytically through non-
cooperative game theory for a special case of tenant demand model. We show a
kind of “incentive compatibility” result where tenants with higher contributions to
aggregate demand variation (and hence to peak charges incurred by the cloud) pay
more.

Outline: The rest of this article is organized as follows. In Section 2, we present some
background and motivation using some straw-man pricing schemes. In Section 3, we
define our alternative pricing scheme and carry out an empirical evaluation of its
efficacy. In Section 4, we explore the impact of tenant demand-response (by demand
shedding) by game-theoretic analysis and through empirical evaluation using real-
world workload traces. We discuss related work in Section 5 and identify directions for
future work in Section 6.

2. BACKGROUND AND MOTIVATION

We assume that our cloud provider procures electric power from an electric utility
company that it uses to power its data centers (both IT equipment and non-IT infras-
tructure like cooling). We will use the terms “demand” and “power” interchangeably
throughout the article. The cloud provider pays the electric utility company a bill at
the end of dth billing period of discrete length K that has the following form:

Pd = αKMd + βX(k∗
d), (1)

where α and β are the energy price and peak power price from the electric utility in
units of $/kWh and $/kW, respectively. X(k) denotes the cloud’s power consumption
during the kth time slot, Md = 1

K

∑Kd
k=1+K(d−1) X(k) is the mean power consumption over

the dth billing period, and k∗
d = arg maxk{X(k), 1 + K(d − 1) ≤ k ≤ Kd} is the time slot

in which the cloud’s peak power demand over this billing cycle occurs. Figure 1 shows
an example of such pricing. This is a simplified form of the tariff scheme employed
by several electric utility companies for their large consumers. Although we choose
to work with this specific pricing scheme between the utility and the data center, the
problems we identify and the insights we develop likely apply more generally. For
example, instead of peak-based pricing, much shorter-term (e.g., day ahead or hour
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Fig. 2. Pricing based on p(1)
i,d and p(2)

i,d. k∗: Cloud’s peak time. k∗
1, k∗

2: Tenants’ local peak time.

ahead) spot prices are often employed by electric utilities [ComEd 2014; PJM 2014].
Since such prices can be highly dynamic, it is natural for the consumer to hedge its
electricity costs based on its demand properties (e.g. less variation over time) and to
avoid highly uncertain spot prices. This could be through some third-party entity or
directly from a power utility company that offers (presumably lower) a flat rate price
and a peak penalty. The cloud provider in turn presents tenant i with a bill pi,d where
1 ≤ i ≤ N and all N tenants are “long-lived” in the sense of existing for the entire billing
period (or several such periods).2 We assume revenue neutrality, that is, Pd = ∑

i pi,d.
Our interest is in notions of fairness in how the provider divides Pd into pi,d.

We make the simplifying assumption that the cloud provider has accurate power
metering and accounting techniques that it can accurately partition its overall power
consumption X(k) during the kth time slot into xi(k), the contribution of the ith tenant.
This is a complimentary problem on power metering of the VMs which uses utiliza-
tion of resources such as Central Processing Unit (CPU), memory, and disk usage by
the VMs [Kansal et al. 2010]. We assume the solution exists for power metering and
calculating each VM contribution to the whole power consumption. We discuss three
intuitively appealing “straw-man” pricing schemes and their pros and cons. Our dis-
cussion of these baseline pricing schemes helps us identify desirable features that we
would like our alternative pricing scheme to possess. We propose such an alternative
pricing scheme in Section 3.1.

Existing Pricing. In current cloud environments, tenants are charged based on their
usage/allocation of virtualized IT resources such as VMs without distinguishing contri-
butions to the cloud’s peak demand. Our first baseline represents such pricing (hence
we call it “existing pricing”) and operates by dividing Pd among tenants in proportion
to their mean demands over the billing cycle. That is,

p(1)
i,d = αKμi(d) + βX(k∗

d)
μi(d)∑
j μ j(d)

, (2)

where μi(d) is tenant i’s mean power demand over the dth billing period. To appreciate
a key shortcoming of this scheme, consider the example shown in Figure 2, where

2The problem of fleeting customers is not addressed in this work. We think fleeting tenants can be considered
extraneous to the fairness problem because they might not adopt contracts spanning multiple billing periods
but rather prefer spot prices. These tenant will not be around for multiple billing cycles. Hence, in this work,
our focus is on long-lived tenants from which accurate first- and second-order statistics are easy to calculate.
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tenant 1 has higher mean demand μ and have different demand variations (and hence
different contributions to the cloud’s overall peak power consumption). Existing pricing
results in tenant 1 being charged higher for peak contribution. However, one might find
this unfair since tenant 2 contributes much more to the peak-based component of the
cloud’s overall costs than tenant 1.

Local-Peak Based. A second baseline scheme charges each tenant in proportion to its
own “local” peak that occurs during time slot k∗

i,d = arg maxk{xi(k), 1+K(d−1) ≤ k ≤ Kd}
for the ith tenant,

p(2)
i,d = αKμi(d) + βX(k∗

d)
xi(k∗

i,d)∑
j x j(k∗

j,d)
. (3)

This pricing scheme may seem appealing at first glance in that it allows a tenant to
feel “isolated” from others.

However, such isolation holds only when all the tenants’ local peaks occur together. In
practice, different tenants may peak at different times, either due to inherent workload
properties or due to their DR. In such cases, local peak-based pricing may be unfair to
tenants that peak in a way that does not contribute to the overall peak. In Figure 2,
tenants 1 and 2 have the same local peak and hence will be charged equally under this
pricing; however, tenant 2 contributes much more to cloud overall peak than tenant 1.
Equally problematic is that this pricing has the potential of not discouraging DR by
load shifting that actually worsens the peak of the cloud’s overall demand.

Contribution to Actual Peak. Alternatively, the cloud could split the peak power costs
among tenants according to their contribution to the its overall peak. That is,

p(3)
i,d = αKμi(d) + βX(k∗

d)
xi(k∗

d)∑
j x j(k∗

d)
. (4)

This closely resembles the “coincident peak pricing” (CPP) employed by many electric
utilities wherein they employ a higher-than-usual energy price during periods of high
aggregate demand [coincidentPeak 2013; Liu et al. 2013]. Similarly to CPP, one simple
implementation in our ecosystem could be based on the cloud sending warnings of
possible coincident peaks and the tenants incorporating these warnings into their DR.
One expects this pricing scheme to fairly reflect the tenant’s contributions to peak power
in the long term (i.e., lasting multiple billing periods). That is, in an asymptotic sense,
this scheme remedies the fairness problems of the last two baselines 2. Consequently,
we will use this scheme as the baseline against which we will compare our proposal in
the remainder of the article.

This baseline continues to exhibit fairness problems in the short term. For a given
billing period, a particular tenant may “by chance” have an unusually large xi(k∗).
Such short-term unfairness may be undesirable if workload characteristics change
frequently/abruptly (as we will demonstrate in Section 3.2).

3. AN ALTERNATE PRICING SCHEME

3.1. Arguments and Design

The previous discussion helps us identify two desirable features we would like to see in
our alternative pricing scheme. First, it should fairly incentivize tenant behavior that
reduces overall costs. For example, if a tenant tends to reduce its offered demand when
an overall peak occurs (either inherently or via its DR), its costs should be lower than
if it behaved otherwise. Second, we would like it to offer more stable demand vs. price
relation to a tenant than the baseline does—tenants tend to prefer lower price fluc-
tuations between billing periods as within billing periods. For example, a tenant with
roughly the same demand during two different time slots should not see very different
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prices, as this would complicate its decision-making. The baseline is susceptible to such
behavior due to atypical events involving coincident peak occurrences only by chance.

We find two complementary design guidelines useful in achieving these desirable
features.

—Guideline A: Our pricing scheme should fairly incorporate into a tenant’s costs an
explicit measure of how this tenant’s demands contribute to the costs of the cloud, for
example, this measure should be a reasonably accurate proxy for contribution to the
cloud’s peak. That is, tenant pricing should be similar to how Shapley values divide
among participants the revenue gained by their coalition [Ma et al. 2008].

—Guideline B: A tenant’s peak-related costs should be determined not merely by its
contribution to the most recent billing period’s peak demand (or other such poten-
tially only “chance events”) but rather by a statistical measure that can be assessed
with greater confidence.

We develop our alternate pricing policy with assumptions of workload stationarity
for all the tenants. Subsequently, we consider the adaptation of these basic ideas to
pricing for tenants with more complex real-world workloads that are not stationary.
Dropping the subscript d in the notation from Section 2 (based on our stationarity
assumption), recall that over a given billing period of (discrete) time of length K, we
denote as xi(k) the demand at time k ∈ {1, 2, . . . , K} of tenant i, i ∈ {1, . . . , N}. Let us
denote its mean as μi = Exi(k) and variance σ 2

i = E(xi(k) − μi)2 ∀k. Let us also assume
that the demands at the same time k of tenants i and j, xi(k) and xj(k), are correlated
and define

ci, j = E((xi(k) − μi)(xj(k) − μ j)).

As such, the cloud’s aggregate demand X := ∑
i xi has mean M = ∑

i μi and variance
S2 = 1TC1, where the co-variance matrix C = [ci, j], 1 is a N-vector of 1’s. In this
manner, our model accounts for correlated demand variation among the tenants at the
same time and thus provides a simple way to explain “coincident peak” demands.

To define an alternative pricing policy, first define the (N − 1) × (N − 1) co-variance
matrix C−i without the tenant i and let 1−i be the (N − 1)-vector of 1’s. Also consider
the aggregate demand variance without tenant i (based on guideline A above), that is,
the variance of X − xi,

S2
−i = 1T

−iC−i1−i.

So, tenant i’s contribution to the variance of the aggregate demand X is

S2
i = S2 − S2

−i.

Let G(μ, σ ) be the expected peak over the billing period {1, 2, . . . , K} for the demand
process parameterized by mean μ > 0 and standard deviation σ > 0 (based on guideline
B above). Our proposed pricing policy is that tenant i be charged

p(4)
i = αμi K + βX(k∗)

G(μi, Si)∑
j G(μ j, Sj)

. (5)

Essentially, we propose that each tenant be charged based on its mean demand and its
weighted contribution to the cloud’s peak, where the weight is a function of all tenants’
expected peaks as expressed above.

Note that it is possible through negatively correlated demand that S2
i < 0, and this

was observed in synthetically generated traces with negative correlation and our real-
world datasets, for the latter, cf. Figures 5 and 9 in subsequent sections. In this case,
a tenant may expect a discount for reducing coincident-peak power costs. So, in the
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Fig. 3. Individual tenants’ power demands.

above pricing formula we define

Si = −
√

−S2
i when S2

i < 0. (6)

3.2. Empirical Evaluation

In this section, we evaluate the alternative pricing design using real-world workload
traces. A part of our empirical study is based on synthetic “sub-tenants” whose demands
are created based on a real tenant but with special statistical behaviors to more clearly
illustrate certain benefits of alternate pricing.

3.2.1. Workload Datasets. We use a set of eight tenant workload traces chosen from a
production data center operated by IBM for its enterprise-scale customers. The data
used for IBM real-world tenants constitute a small portion of the whole data-center
tenants’ power usage. We have chosen these eight tenants because of their special
characteristics that gave us the most interesting insights. The datasets contain CPU
utilization time-series for the servers allocated to these tenants. Each time-series spans
61 days and reports the average utilization over successive 15min intervals for a total
of 96 samples per day. We convert these CPU utilization traces into power demands by
xi(t) = EPUni(t)x(dyn) fi(t), where ni(t), fi(t), and x(dyn) are the number of servers, average
CPU utilization of tenant i at time t, and dynamic power, respectively. The power usage
effectiveness (EPU) of a data center is the ratio of the total power delivered to it and
the power used by its IT equipment. Based on measurements from these data centers,
we choose the dynamic power x(dyn) = 127.7W and EPU = 1.8. We ignore idle power
in this study but discuss possible extensions involving it as future work in Section 6.
Herein we assume power metering is possible. However, this is an open problem with
certain challenges. For example, capturing shared power usage like cooling systems
is hard, and ground truth is hard to measure, if at all possible. The other challenging
aspect of power metering is dealing with errors, again because of absence of ground
truth. These are all complexities associated with power metering, which is out of scope
of this work.

We show the dynamic power consumed by each tenant in Figure 3. We take a billing
period to be a single day implying 61 successive billing periods for our dataset. Although
billing periods are longer in practice (e.g., a month [Duke 2014]), we choose this shorter
billing period to have a large number of periods in our experiments.
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Fig. 4. Our cloud’s overall power demand (summation of the tenants’ demands).

Fig. 5. μi + 2Si vs. xi(k∗) from eight tenants over 61 days. Statistics are obtained on a daily basis.

We first make the following observations about individual tenants’ demands: (i) some
of the tenants’ demands exhibit strong daily/weekly patterns, (ii) some of the tenants’
demands have high fluctuations and might contribute much to the cloud’s peak demand,
(iii) most of the tenants’ local peaks do not coincide, and (iv) some tenants’ demands
exhibit significant changes (e.g., tenants 3 and 6, whose demands changes abruptly
after the 40th day and the 54th day, respectively). We also observe that their aggregate
demand exhibits non-stationary behavior and large variations, as seen in Figure 4.

3.2.2. Experimental Setup. At the end of each day (billing period) d, each tenant i
assesses its “true” mean demand μi(d) and demand variation σ 2

i (d) over d, and the
revenue-neutral cloud divides among the tenants its total cost as stated in (1) where
M(d) can be defined as Md = ∑

i μi(d), K = 96, where X(k) = ∑
i xi(k) is the total

tenant demand at time k of day d, and k∗
d is the time of the coincident (aggregate) peak

demand of day d. We choose α and β according to Duke Energy tariff [Duke 2014]:
α = 0.0284$/kWh as energy price and β = 16.193$/kW as the peak power price.

To evaluate the alternative pricing, we choose G(μi, Si) = μi + 2Si for our pricing
formula. In spite of many possible distribution for a cloud’s peak, such as Weibull
or Gumbel distribution, μi + 2Si is used as a proxy for tenant i’s contribution to the
cloud’s peak for the following several reasons. First, we notice on plotting μi + 2Si
vs. xi(k∗) for IBM real tenants, in Figure 5, that most of the sample points are scat-
tered closely around the line xi(k∗) = μi + 2Si, where μi was observed to be the larger
component of μi + 2Si. Second, we find that although the tenants’ contribution to
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Fig. 6. Comparing baseline and alternate (′) pricing φi(d) without tenants’ DR, 60 days, 100 sample paths,
thicker lines show the average, thin-dotted lines show the width of the confidence bars (± one sample
standard deviation): (a) all sub-tenants statistically identical and uncorrelated, (b) only tenants 2 and 3 are
statistically identical positively correlated, and (c) only tenants 2 and 3 statistically identical negatively
correlated.

the cloud’s (tenant-aggregate) peak could be high in certain billing cycles, their con-
tribution to peak costs in the statistical sense may be relatively low (e.g., tenant 1),
even negatively correlated (e.g., tenants 5 and 6). Third, we expect a tenant to have
greater confidence in estimating μi +2Si than xi(k∗), which is the case, for example, for
tenant 1.

3.2.3. Discussion of Performance Expectations. To evaluate the alternative pricing, we
compare it with our baseline p(3)

i . We expect the tenants’ costs under alternative pricing
to have lower fluctuations initially, due to estimating tenant i’s contribution to the next
day’s peak based on the previous day’s μi + 2Si than by xi(k∗) (the former estimated
with greater confidence). To see this, we define φi(d) = ∑d

t=1 pi(t)/d as the cumulative
average cost of tenant i after the dth billing cycle. We expect φi(d) to have lower
fluctuations with alternative pricing than with the baseline CPP.

3.2.4. Cyclo-Stationary Workloads with Synthetic Sub-Tenants. In this section, we consider
the demand profile of tenant 1 in Figure 3 as the aggregate demand of a hypothetical
data center. This demand is modeled using estimated μ and σ of the tenant over
its approximate stationary cycles, which is a week. This deterministic behavior of
the tenant over time of day and time of week can be observed even visually in the
same figure. Using this model, we break down the aggregate demand into synthetic
demand time-series for three sub-tenants of tenant 1’s real-world trace. This process
is explained in detail in Appendix 7.1. We numerically compare the performance of
baseline vs. alternative pricing defined in Sections 2 and 3.1.

Figure 6 depicts the cumulative average price over time for three statistical cases.
The left column (case (a)) of Figure 6 is for the case of uncorrelated sub-tenants with
identical workload statistics, that is, ∀i, j, μi = μ j , and σi = σ j . Figure 6(a) is under
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Fig. 7. One sample path for 12h (48 samples). Case (c). Two time slots with visible contribution to negative
correlation are highlighted.

baseline pricing and Figure 6(a′), is under alternative pricing, as with the other two
cases. For all plots: The curves of statistically identical tenants mostly overlap. It can
be seen that φi(t) under baseline pricing has higher variation, especially in the initial
billing periods. Moreover, the steady state is more quickly achieved by an alternative
approach. This is consistent with the greater statistical confidence of the quantities
used in alternative pricing. Again, tenants desire lower pricing fluctuations at all
time-scales (including between billing periods), and baseline pricing can result in
perceived “unfairness” in the short term, particularly by fleeting customers.

In case (b), sub-tenants have the same average demand, sub-tenant 1 has a higher
variance than sub-tenants 2 and 3, but sub-tenants 2 and 3 are positively correlated
and statistically identical such that σ1 > σ2, σ3 but S1 < S2, S3. So one expects that the
positively correlated sub-tenants are charged more under alternative pricing, which is
the case considering the greater gap in steady state.

In case (c), the sub-tenants have the same average demand, sub-tenants 2 and 3
are negatively correlated, sub-tenant 1 is again uncorrelated, and σ1 < σ2, σ3 but
S1 > S2, S3. One sample path of this scenario can be observed in Figure 7 with time
intervals contributing to negative correlation highlighted. As stated before, if two ten-
ants are collaborating (even unintentionally) in reducing overall incident peak (through
negative demand correlation), then they should be credited through a smaller peak-
component cost, which is seen in Figures 6(c) and (c′): The sub-tenants with negative
correlation are charged less under alternative pricing.

Key insights: (i) alternative pricing results in less variation in customers’ cumulative
average cost, (ii) the tenants reach their steady-state costs faster, and (iii) alternative
pricing appropriately incentivize tenants behavior, including discounts for negative
demand correlation.

3.2.5. Non-stationary Tenant Workloads. As in Section 3.2.4, we show φi(d) of each tenant
under baseline vs. alternative pricing schemes over 61 days in Figure 8 here for the
different recorded tenant workloads in full. For most of the tenants, we observe more
fluctuations under baseline than under alternative pricing, which is consistent with our
findings in Section 3.2.4. This observation is also verified by calculating the coefficient
of variation over the first 20 days w.r.t. tenants’ costs on the 40th day (pi(40)) for
each tenant,3 which is defined as cvi = 1

19

∑20
t=1(pi(t) − pi(40))2/pi(40). Recall that

p(3)
i = αμi K + βxi(k∗) for the baseline, and we use (μi + 2Si) to approximate xi(k∗).

Statistically, we expect that (μi +2Si) is a good approximate and has fewer fluctuations

3After 40 days, tenant 3’s demand changes abruptly.
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Fig. 8. φi(d) over 61 days (w/o tenants’ DR). “bl”: Baseline. See the full version in Appendix 7.3.

Fig. 9. S2
i over 61 days.

than the xi(k∗) over time, which results in less variation under the alternative than
under the baseline.

We do observe one exception: Tenant 5 has more fluctuation under alternative than
under baseline. This is due to the fact that S2

5 is almost always negative for the first
15 days (as shown in Figure 9), and x5(k∗) is always positive and does not vary much

(uniquely for tenant 5). Consequently, μ5 − 2
√

−S2
5 is not as good an approximation for

x5(k∗). However, consistent with the desirable properties of alternative pricing men-
tioned in Section 2, Tenant 5’s demand is negatively correlated with others, which
helps reduce cloud’s aggregate peak demand, and samples x5(k∗) or μ5 + 2σ5 do not
capture such desirable negative-correlation behavior.

Figure 10 shows a comparison of some tenants’ costs (tenants 1, 2, 3, and 5) for the
two different pricing schemes.

We observe that tenant 1 is charged much less under the alternative than under
baseline, which is because some tenants (e.g., tenant 3) might have contributed more
to the cloud’s peak power costs by having positive demand correlations with others,
although their instantaneous share of the cloud’s peak power might be relatively low.
Note that tenant 5 under alternative pricing has negative costs (possibly rewards) by
having negative contribution to the cloud’s peak power. We also observe that after the
40th day, tenant 3’s demand changes abruptly, and so does its cost. However, tenant 3’s
costs under alternative pricing after the 40th day has much less variation than under
baseline pricing (again, this is desirable). Also, as shown in Figure 9, S2

5 < 0 for the
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Fig. 10. Tenants’ costs under baseline vs. alternative. “bl”: Baseline.

first 15 days, which results in greater cost discounts for tenant 5 under alternative
compared to baseline pricing, as described above.

Key insights: (i) The cumulative average costs under alternative pricing have lower
variation, and (ii) alternative pricing can help the cloud motivate desirable tenant
behavior by discounting tenants’ with negative demand correlations.

4. COST ATTRIBUTION WHEN TENANTS ENGAGE IN DEMAND RESPONSE

We now consider the effects of tenant workload control/acutation via perfect demand
shedding.4 By supposing that each tenant handles a large and diverse job arrival pro-
cess, demand shedding can be accomplished by choosing a certain proportion of incident
jobs at random (in unbiased fashion) to reject, resulting in the same proportionate re-
duction in overall workload and power consumption of the tenant on average over a
long period of time. Alternatively, a workload taxonomy can be developed and employed
to classify incident jobs (and their expected workloads) and decide which ones to shed.

4In future work, we will consider imperfect load shedding and demand response by Dynamic Voltage and
Frequency Scaling (DVFS) or load deferral as well, the latter used to desychronize tenant demands and
reduce coincident peak-power consumption. Also, techniques of workload migration, leading to workload
consolidation and server shutdown, have been proposed to reduce idle power in a data center [Mathew et al.
2015; Verma et al. 2010], objectives not addressed in this article.
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In this section, we first prove under simplifying assumptions in an idealized setting 5

that at Nash equilibrium, a tenant whose demand has greater positive correlation with
the aggregate other tenants will experience greater charges under the alternative pric-
ing strategy. This simplifying assumption is made to facilitate the analysis. To study
the efficacy of our proposed pricing in realistic scenarios, we relax this assumption
by looking at real-world data where second-order statistics change as a result of de-
mand shedding. Subsequently, under a more realistic setting (relaxed the simplifying
assumptions) using the real-world workload traces described above, we numerically
explore the effects of demand response.

4.1. A Game-Theoretic Analysis

4.1.1. Simplifying Assumptions. To develop a game-theoretic model, suppose tenant i will
optimize net utility

vi(μ) = ui(μi) − pi(μ) (7)

over their mean demand μi, where pi is the “alternative” pricing scheme (5) with the
aggregate peak X(k∗) replaced by the “statistical aggregate peak” M + 2S, μ is a vector
of all tenants’ mean demands, and the utility ui is continuous, increasing, concave, and
bounded. Note that Brouwer’s theorem gives existence of a Nash equilibrium [Border
1985]. We make the following assumptions to simplify our analysis in this subsection:

—Observation: The tenants have perfect information regarding the statistics of their
demand in the next billing cycle; in particular, the second-order statistics are used to
predict contribution to coincident peak-power consumption on which the utility bases
its electricity charges to the data center.6 In the numerical experiments described
in the following, second-order correlations among tenant demands were assumed
estimated by the cloud based on previous demand activity; in practice, these may be
noisy.

—Control: We also assume shedding load does not affect the second-order statistics
(demand variation) of the tenants and that tenant-demand cross-correlations are
non-negative.

Again, in the following numerical study, we relax these assumptions. Given the above
assumption on control, we intend to prove that the Nash equilibrium prices increase
with demand variation and (positive) demand correlation.

4.1.2. When Demands Are Uncorrelated. We first consider demands that are uncorrelated
(∀i �= j, ci, j = 0). Given this, our pricing policy in Equation (7) is taken as

pi(μ) = αμi K + β(M + 2S)
μi + 2σi

M + 2
∑

j σ j
,

where we note that

0 < ε := 2

(∑
i

σi − S

)
:= 2

⎛
⎝∑

i

σi −
√∑

i

σ 2
i

⎞
⎠ . (8)

5In particular, that demand shedding does not affect demand co-variances.
6Each tenant could instead formulate direct estimators of contribution to peak workload in the next billing
cycle t, x̂i(k∗(t)), based on these quantities from past billing cycles, xi(k∗(s)) for s < t, but the statistical
confidence associated of such estimators is much lower than those for (μi + 2Si) in non-stationary settings
and even in stationary ones because estimates are informed by farfewer data.
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The following two claims present the conditions for Nash equilibrium and the tenants’
demands at Nash equilibrium.

CLAIM 1. If C is diagonal, all utilities ui(μi) are concave in μi , and

∀i,
∑
j �=i

(μ j + 2σ j) > μi + 2σi, (9)

then there exists a unique Nash equilibrium to which “continuous best-response” (i.e.,
better response) dynamics,

∀i, μ̇i = γi∂vi/∂μi, (10)

converge for any positive parameters γi > 0.

PROOF. Rosen’s conditions [Rosen 1965] for uniqueness of the Nash equilibrium and
convergence to it by continuous best response is that the symmetric matrix with (i, j)
entry

∂2

∂μi∂μ j
(γivi + γ jv j)

is everywhere strictly negative definite. One can directly show that ∀i, j,

∂2vi

∂μi∂μ j
< 0,

where the claim’s hypothesis implies, ∀i �= k, ∂2 pi/∂μi∂μk > 0.

Note that Equation (9) requires that the number of tenants N > 2. Also, Equation (9)
needs to hold for all μ in a neighborhood of the unique Nash equilibrium μ∗, which
we’ll see from the following result is such that μ∗

i + 2σi = c for a positive constant c,
that is, Equation (9) will indeed hold when N > 2.

Let

c := (N − 1)β
N2(−a + αK + β)

ε and

z := β

N2 · Na − αK − β

−a + αK + β
.

The following claims how tenant charges at Nash equilibrium, p∗, (fairly) increase
with tenant demand variation, σ 2.

CLAIM 2. If C is diagonal, then

∃a > 0 s.t. ∀i, ui(μi) = aμi, (11)

that is, linear utilities with common parameter a,

2 max
i

σi ≤ c (12)

and

∀i, (1 − σi S−1)z > αK, (13)

then the prices at Nash equilibrium μ∗
i = c − 2σi satisfy

∀i,
∂p∗

i

∂σi
> 0.
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PROOF. The solution of the first-order necessary conditions for the (unique) Nash
equilibrium, ∀i,

0 = ∂vi

∂μi

= a − αK − β + βε

∑
j �=i(μ j + 2σ j)

(
∑

j(μ j + 2σ j))2

=: a − αK − β + βε
−μi − 2σi + y

y2 .

Thus, at Nash equilibrium, μi + 2σi is a constant over tenant-index i satisfying

(μi + 2σi)βε =: (a − αK − β)y2 + βεy

⇒ yβε = N(a − αK − β)y2 + Nβεy

⇒ y = (N − 1)βε

N(−a + αK + β)
=: Nc.

So, the Nash equilibrium is given by

∀i, μ∗
i = c − 2σi ≥ 0,

recalling that σi is assumed fixed in this section. where non-negativity is, by assump-
tion, Equation (12). Thus, ∀i, the price at Nash equilibrium for tenant i, is

p∗
i := αK(c − 2σi) + β(M + 2S)

c
Nc

:= αK(c − 2σi) + β(Nc − ε)
c

Nc
= ((αK + β)cε−1 − βN−1)ε − 2αKσi

=: zε − 2αKσi

⇒ ∂p∗
i

∂σi
= z2(1 − σi S−1) − 2αK.

Note that, according to the proof, μi+2σi = (a−αK−β)y2/(βε)+y at Nash equilibrium
for all tenants i, that is, each tenant’s μi + 2Si will be the same.

4.1.3. When Tenant Demands Are Correlated. More generally for correlated tenant de-
mands (i.e., C is not diagonal), consider the pricing policy (5)

pi(μ) = αμi K + β(M + 2S)
μi + 2Si

M + 2
∑

j Sj
. (14)

In this section, we assume S2
i ≥ 0 for all i (again, in the numerical section we show

instances of negatively correlated tenants).
We now provide conditions for the existence of Nash equilibrium in Corollary 1 and

then show that the Nash equilibrium prices increase in both their demand standard

deviation σi as well as their demand cross-correlation
√

S2
i − σ 2

i in Corollaries 2 and 3,
respectively.

By the same argument for Claim 1, we get Corollary 1.
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COROLLARY 1. If all utilities ui are concave, then

∀i,
∑
j �=i

(μ j + 2Sj) > μi + 2Si

and ∑
i

Si > S, (15)

then there exists a unique Nash equilibrium to which “continuous best-response” (i.e.,
better response) dynamics,

∀i, μ̇i = γi∂vi/∂μi, (16)
converge for any positive parameters γi > 0.

LEMMA 4.1.

S2 =
∑

i

σ 2
i + 1

2

∑
i

(S2
i − σ 2

i ).

PROOF. Note that in
∑

i S2
−i, the terms ci, j , for i �= j, appear N − 2 times, while the

diagonal terms ci,i = σ 2
i appear N − 1 times. Thus,(∑

i

Si

)2

=
∑

i

S2
i + 2

∑
j<i

Sj Si

=
∑

i

(S2 − S2
−i) + 2

∑
j<i

Sj Si

= NS2 −
∑

i

S2
−i + 2

∑
j<i

Sj Si

= NS2 −
(

(N − 2)S2 +
∑

i

σ 2
i

)
+ 2

∑
j<i

Sj Si

= S2 +
(

S2 −
∑

i

σ 2
i

)
+ 2

∑
j<i

Sj Si

= 2S2 −
∑

i

σ 2
i + 2

∑
j<i

Sj Si

⇒ S2 = 1
2

(∑
i

S2
i +

∑
i

σ 2
i

)
.

Again, note that for the case of uncorrelated demands, Si = σi and S2 = ∑
i σ 2

i . By
Equation (17), Equation (15) holds when tenant demands are only positively correlated,
that is, ∀i, j, ci, j ≥ 0. Because ∂S2

j /∂σ 2
j = 1, Claim 2 also generalizes by using this

lemma.

COROLLARY 2. If Equation (15), then utilities are linear with common slope a > 0,

2 max
i

Si ≤ c

and
∀i, (1 − Si S−1)z > 2αK, (17)
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and then the prices at Nash-equilibrium satisfy

∀i,
∂p∗

i

∂σi
> 0.

COROLLARY 3. If Equation (15), then utilities are linear with common slope a > 0,

2 max
i

Si ≤ c,

∀i,
(

1 − 1
2

Si S−1
)

z > 2αK, (18)

and

∀i, S2
i > σ 2

i ,

and then the prices at Nash-equilibrium satisfy

∀i,
∂p∗

i

∂

√
S2

i − σ 2
i

> 0.

In summary, Corollary 3 gives conditions under which the Nash equilibrium prices
increase with the degree to which tenant i’s demand correlates with the other tenants√

S2
i − σ 2

i to create coincident peaks in demand.

4.2. Evaluation with Tenants’ Demand Response

4.2.1. Workload Forecasting Overview. In this section, we will use demand response for
tenants. Causal DR will require accurate workload forecasting. Forecasting short-term
(e.g., day ahead) behavior for similar such datasets has an extensive literature. For
example, deterministic cyclic/seasonal components can be assessed (based on prior
observations) and removed from the raw data, leaving what may be a stationary resid-
ual. Given that, one can employ standard time-invariant ARMA-type estimators [Poor
1998] whose meta-parameters (particularly lags) can also be determined by optimizing
over prior observations. However, it’s often unclear how much “detrending” is required
(e.g., which moments) and the residual may ultimately have time-varying statistics
(i.e., is non-stationary) requiring ARMA estimators with time-varying/adapted coeffi-
cients and lags. In these cases, techniques of adaptive filters such as LMS and RLS,
and associated heuristics, are commonly used [Haykin 2001], often with short lags. In
this article, we use first-order auto-regressive estimators, or even more simply take the
previous days’ data as a proxy for the next (i.e., a kind of zeroth-order estimator), and
leave more sophisticated workload forecasting in this context for future work.

4.2.2. Tenants’ DR under Alternative Pricing. We assume that the cloud estimates the inter-
tenant demand correlations S2

i (d) over the previous day and communicates these esti-
mates only to the corresponding tenants. At the end of day d in an alternative scenario,
tenant i is charged

p(4)
i = αμi K + βX(k∗

d)
μi(d) + 2Si(d)∑
j(μ j(d) + 2Sj(d))

,

again recalling we set Si = −
√

−S2
i when S2

i < 0.
For purposes of determining at the start of day d the fraction 1−λi(d) of its demand it

will shed (λi(d) is the control variable), we assume tenant i will rely on a simple AR(1)
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estimate of its incident demand mean,

μ̂i(d) = 0.5μ̂i(d − 1) + 0.5μi(d − 1)/λi(d − 1),7

taking μi(0) = 0 = μ̂i(0) and λi(0) = 1. The same model is used for estimating tenant’s
incident demand variation,

σ̂ 2
i (d) = 0.5σ̂ 2

i (d − 1) + 0.5σ 2
i (d − 1)/λ2

i (d − 1),

taking σi(0) = 0 = σ̂i(0). We also assume that each tenant will forecast inter-tenant
demand correlations for day d as that computed by the cloud for day d − 18, also
considering the effect of demand-shedding and assuming that other tenants will not
change their shedding strategy.9 More specifically, tenant i takes as its causal estimate
of S2

i (d):

Ŝ2
i (d) = (S2

i (d − 1) − σ 2
i (d − 1))

λi(d)
λi(d − 1)

+ λ2
i (d)σ̂ 2

i (d).

Again, to determine its load shedding for day d at the start of day d, tenant i will
optimize its net utility over λi(d). Since the tenant does not have the information
of X(k∗

d) at the beginning of day d, it may simply take X(k∗
d) ≈ ∑

j(μ j(d) + 2Sj(d)).
Therefore, the net utility of tenant i can be assumed of the form

ai log
(
biμ̂i(d)λi(d) + 1

) − (αKμ̂i(d) + βμ̂i(d))λi(d) − β2Ŝi(d).

4.2.3. Discussion of Performance Expectations. For our experiments, we used the same
utility coefficients,10 that is, ∀i, j, ai = aj = a, bi = bj = b. The correlation between
tenants will still exist after DR. Therefore by the results of Section 4.1, we expect to
see prices increase with tenant correlations Si. Moreover, we expect demand shedding
by tenant i will have amplified effect by reducing Si when Si > 0.

4.2.4. Cyclo-Stationary Workloads of Synthetic Sub-Tenants. In this section, we look at ef-
fects of demand response under alternative pricing for three synthetic sub-tenants.
Recall from Section 3.2.4 that these sub-tenants are generated for three different cases
each using time-of-day and time-of-week detrending of μ and σ derived from a real-
world trace (of tenant 1 in Figure 3), as explained in Appendix 7.1.

For case (a), with uncorrelated and statistically alike tenants, the cumulative average
costs (φi) and fraction of admitted demand (λi) under demand response for alternative
pricing is given in Figure 11 (with confidence-interval outlines). The plots overlap as
the tenants are statistically identical. Compared to the case without demand response
in Section 3.1, steady state is reached in greater time due to the action of demand
response. The sub-tenants shed on average 30% of their demand, resulting in lower
prices over time. The oscillation of λ are due to a weekly pattern of raw demand used
to generate the synthetic sub-tenants’ demand.

For case (b), statistically identical sub-tenants 2 and 3 have positive correlation
while sub-tenant 1 is uncorrelated with lower μ1 + 2S1 = μ1 + 2σ1. Sub-tenants 2
and 3 contribute more to aggregate demand variation (M + 2S) and so alternative

7Generally, take 0
0 = 0.

8Alternatively, the tenants could use even earlier days’ estimates for this purpose.
9As consideration of only unilateral defection of a collective play action in the definition of a Nash equilib-
rium of a non-cooperative game. Indeed, were the tenant demands stationary, such daily play-actions could
eventually lead to a Nash equilibrium, cf. Section 4.2.4.
10The effects of differences among tenant utility-parameters are straightforward, see Appendix 7.2.
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Fig. 11. φi(d) and λi(d) (′) after tenants’ DR, 60 days, 100 sample paths; thicker lines show the average and
thinner-dotted lines show the confidence bars: (a) all sub-tenants statistically identical and uncorrelated,
(b) only sub-tenants 2 and 3 are statistically identical and positively correlated, and (c) only sub-tenants 2
and 3 are statistically identical and negatively correlated.

pricing charges them more than sub-tenant 1 than without demand response. How-
ever, sub-tenants 2 and 3 shed less demand than sub-tenant 1, because demand-
shedding will be amplified through reducing (positive) correlation between their
demands.

For case (c) in which sub-tenants 2 and 3 have negative correlation, sub-tenants 2
and 3 are charged less than without demand response. Additionally sub-tenants 2 and
3 shed more because demand shedding increases their (negative) correlation. We also
observe that demand response affects S2

i roughly proportionate to λi, so the financial
benefit of demand shedding in this case will depend on the relative size of mean-power
and peak-power costs.

Key insights: (i) Overall S2
i values as main contributors to the peak-component

charges are decreased considerably after demand response. (ii) Correlated tenants’
shedding has a significant effect on their correlations.

4.2.5. Non-Stationary Tenant Workloads. The numerical results for the cyclo-stationary
workloads of sub-tenants of tenant 1 under DR with alternative pricing are similar
to those of the full (unmodified) non-stationary tenants shown in Figure 12. First
note that tenant 1’s control actions has less fluctuation than tenant 2, which can be
explained by the fact that tenant 1’s incident workload statistics (μ1, μ1 + 2S1) have
less variance. Tenant 3 begins to shed load after its demand ramps up on the 40th day,
whereas other tenants’ demands are not shed at all. Also note that in Figure 12(b),
the admitted demands of tenant 1 and tenant 2 after load shedding become more
similar than their incident demands; similarly for tenant 3 after the 40th day, in part
due to the assumption of the same net-utility/revenue parameters (ai, bi) and that the
proportion of incident mean demand μi to Si is roughly the same for these tenants
(and this proportion does not change significantly with demand shedding). Moreover,
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Fig. 12. Non-stationary tenants’ DR.

Fig. 13. Cumulative average costs with tenants DR. “*”: Game with synthetic tenant 1, real tenants 2, 3,
and 5.

although tenant 1 has much larger mean than tenant 2 (as shown in Figure 3), it has
to shed much of its demand to maximize profit due to the log form utility function and
diminishing marginal returns of increasing mean demand. Thus, these effects of DR
are intuitive.

In a comparative study, we create a synthetic tenant 1 with greater demand variation
as follows: We estimate the (short-term moving) average m1(t) of x1(t) (the real tenant
1’s demand) and define the synthetic tenant 1’s demand as x̃1(t) := m1(t)+θ (x1(t)−m1(t))
for θ = 4. We conduct two sets of DR experiments: one with real tenants 1, 2, 3, and
511 and the other with synthetic tenant 1 and real tenants 2, 3, and 5. The cumulative
average costs of each tenant in both experiments are shown in Figure 13. We find that
synthetic tenant 1 has much higher costs than real tenant 1 since the former’s demand
has much higher incident variance (and higher c1, j henceforth if c1, j > 0) which does
not change under DR. This is consistent with Equation (17) and Corollary 2 (obtained
at Nash equilibrium in far more idealized settings). Furthermore, we observe that the
other (real) tenants suffer from higher costs in the presence of synthetic tenant 1. This

11We choose real tenant 5 since it has little correlation or sometimes even negative correlation with
tenant 1.
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is because the positive demand cross-correlations increase when we increase tenant 1’s
demand variance. In other words, if a tenant is willing to reduce its demand variation
(and cross-correlation) by DR, other tenants whose demands are positively correlated
can benefit from it and have lower costs.

We observe that, compared to Figure 5, μi + 2Si is more aligned with xi(k∗) after
tenants’ DR (as shown in Figure 15 in Appendix 7.3 ). Tenants who have larger μi +2Si
before DR (e.g., tenant 1 in Figure 5) shed more demands than others, which is also
consistent with our observations from Figure 12(b).

Key insights with DR: (i) Tenants’ load shedding exhibits lower fluctuation when the
workloads have less variance. (ii) Tenants are likely to have the same/similar mean
demand (but with different variance possibly) when they have the same parameters
for utility functions. (iii) Even with load shedding, tenants with higher variance will
have higher costs. (iv) Tenants with positively correlated demands can benefit from
each other’s load shedding.

5. RELATED WORK

Pricing design in clouds. The first line of related work on cloud pricing design is
driven by energy costs. In particular, a large body of work has explored dynamic pricing
under time-varying electricity prices. In Zhan et al. [2015], a game-theoretic setting
is proposed, considering cloud green generation, to maximize revenue and incentivize
tenants’ cooperation in response to the electricity charges reflected in cloud prices.
In another recent work [Zhao et al. 2014], dynamic pricing for a geo-distributed data
center is suggested to maximize cloud’s overall profit (being charged by spot prices
for power) using an online algorithm. In Ren and Mihaela [2014], dynamic pricing
and scheduling for batch jobs are proposed for cloud’s profit maximization based on
Lyapunov optimization technique. In Wang et al. [2015], a leader/follower game-based
cloud pricing framework is devised to recoup dynamic energy costs from tenants. How-
ever, our focus on the impact of electric utility tariff structure (especially the impact
of peak-based pricing) on the cloud’s pricing strategies (and the tenants’ DR in terms
of power thereafter) is novel. Recent work has also looked at cloud’s DR and related
pricing design given that electric utility might motivate load shedding/peak shaving
during high load periods in the form of rewards. In Ren and Islam [2014] and Zhang
et al. [2015b] a reverse-auction framework is proposed for co-location data centers to
incentive tenant’s DR for cloud’s profit optimization with utility’s rewards. Similarly,
in Liu et al. [2014], a prediction-based pricing scheme is proposed to encourage tenant’s
load shedding in order to meet a certain peak shaving target specified by the electric
utility. The key distinguishing aspect of our work is its focus on notions of fairness.
The pricing schemes developed in all these works are likely to suffer from the unfair-
ness problems and oscillatory costs for tenants that we identified for our baseline. Our
work distinguishes by considering peak-based pricing as a less risky approach for cloud
providers’ electric bills and also considering fairness and stability of the costs incurred
to the tenants.

A second line of prior work focuses on pricing of general computing resources/serivces
in the cloud such as VM, network bandwidth, storage, software service, and so on.
Various techniques such as dynamic pricing [Kantere et al. 2011], auction-based pric-
ing [Shi et al. 2014; Zhang et al. 2015a; Wang et al. 2012a; Baranwal and Vidyarthi
2015; Zhang et al. 2015a; Shi et al. 2014], Nash bargaining [Feng et al. 2012] with either
single or multiple strategic cloud providers [Feng et al. 2014; Anselmi et al. 2014], and
game theory [Tsai and Qi 2012] considering Cournot duopoly, Cartel and Stackelberg
models. In Valerio et al. [2013], a two-stage provisioning scheme is used wherein the
second stage uses a Stackelberg setup to determine number of flat-rate, on-demand, and
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spot-priced VMs to be procured from infrastructure as a service (IaaS). Moreover, dif-
ferent dynamic pricing approaches have been proposed by researchers, considering dif-
ferent objectives and methods, for example, targeting a power usage capacity [Polverini
et al. 2013] using an online algorithm, maximizing profit using an stochastic dynamic
programming [Xu and Li 2013], and maximizing social welfare while providing stochas-
tic guarantees of network bandwidth for cloud tenants [Niu et al. 2012]. These works
only look at the computing resource supply-vs.-demand relationship between cloud and
tenants, whereas our work focuses on cloud’s peak-based energy costs; it is non-trivial
to attribute such costs together with computing resources/services to the tenants in a
fair manner, and our method of identifying tenant’s contribution to cloud’s peak power
costs is novel in this area.

Data-center power management. Data-center power management (including DR)
has been explored extensively, and we only cite a few representative examples. We
find it useful to classify DR-related work along two dimensions. First, a variety of
power/resource control techniques have been explored. One may view these as be-
ing (often implicitly) based on demand shedding (e.g., admission control, equipment
slow/shutdown, quality-of-service reduction) [Gandhi et al. 2009; Mathew et al. 2015;
Gandhi et al. 2012; Xu and Li 2014], demand delaying (e.g., scheduling) [Zhu et al.
2014; Ge et al. 2012], demand transfer (e.g., migration) [Qureshi et al. 2009], demand
modulation using batteries [Wang et al. 2012b; Urgaonkar et al. 2011], or combinations
of these. Second, DR algorithms have been developed for a variety of pricing schemes,
including coincident peak pricing [Liu et al. 2013], peak-based pricing [Bar-Noy et al.
2008], and many forms of real-time pricing [Wang et al. 2014]. Although we have
only considered a simplified form of load shedding as our DR, we take other control
knobs as possible extensions to our work. Finally, two detailed surveys cover many of
these issues and serve as excellent resources for understanding this area [Chase 2014;
Wierman et al. 2014].

6. DIRECTIONS FOR FUTURE WORK

In future work, we will attempt to extend our analytical results to consider effects
on second-order statistics of demand shedding and to consider noisy observations and
play-actions (the latter informed by more sophisticated workload forecasting for the
next billing cycle). Also, using our real-world datasets, we will consider other types
of demand response, for example, DVFS or demand deferral via scheduling, possibly
in combination with demand shedding. Moreover, we will explore the performance
benefits of techniques of workload migration, leading to workload consolidation and
server shut-down, which have been proposed to reduce idle power in a data center.
Finally, we are pursuing more detailed workload classification that indicates work-
load of specific arriving jobs; with such data, we may be able to to formulate a job
taxonomy and classification system to predict sensitivity to deferral12 and the de-
mand footprint of specific jobs and thus improve the accuracy of workload shedding in
particular.

7. APPENDIX

7.1. Generating Synthetic Component Tenants

In this appendix, we describe how the sub-tenants demands are generated. First, let
x(t) be the raw demand of tenant 1 of Figure 3. The time interval of the trace was
approximately 8 weeks (with a sample every 15min), so there are 8 samples taken at
the same time of the same day of week. For each sample t during this 8-week period, let

12Excessive job deferral may amount to dropping.
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Fig. 14. Autocorrelation of detrended tenant demand.

δ(t) be the day of the week and τ (t) be the time of day. A pattern was observed for these
data over each week, which can be easily observed in Figure 3. Therefore, we removed
this pattern by removing the periodic time-of-day and time-of-week effect x̄(δ(t), τ (t))
from the raw trace x(t). The obtained residual after detrending is as follows:

r(t) = x(δ(t), τ (t)) − x̄(δ(t), τ (t)),

where

x̄(δ(t), τ (t)) = 1
8

∑
s:δ(s)=δ(t)

and τ (s)=τ (t)

x(s).

In Figure 14, we show the autocorrelation function of (mean zero) residual r, which is
approximately white as we subsequently assume for simplicity.13 Given this assump-
tion, we can compute the sample variance of the residual r at each time-of-day,

σ 2(δ(t), τ (t)) = 1
8

∑
s:δ(s)=δ(t)

and τ (s)=τ (t)

r(s)2.

By using this model which is based on first- and second-order statistics of the raw
data, we can model synthetic sub-tenant data. Therefore, x̄(δ(t), τ (t)) and σ 2(δ(t), τ (t))
are broken down to desired number of tenants by fixed weight matrices A and
D, respectively, over the whole period of simulation. The synthetic sub-tenant
mean weight A and covariance matrix weight D is normalized so their entries∑

j aj = 1 and
∑

i, j dij = 1. This is to achieve synthetic sub-tenants data such that
their aggregate behavior is statistically similar to the raw data. It is necessary
that

∑
j aj = 1 holds to have the same aggregate mean, and for D, considering

var(X + Y ) = var(X) + cov(X, Y ) + cov(Y, X) + var(Y ), it is desired that aggregate
demand of the synthetic sub-tenant data have the same variance as the raw tenant
data, which is satisfied by

∑
i, j dij = 1. Consequently, for sample t, we took the

covariance of the sub-tenants to be σ 2(δ(t), τ (t))D. So to generate the tth samples yj(t)
of the jth sub-tenant, we generated i.i.d. Gaussian N(0,1) samples w j(t) and set

y(t) = x̄(δ(t), τ (t))A + σ (δ(t), τ (t))Bw(t),

13A more complex representation of r could be based on an FIR approximation of its inverse whitening filter
(driven by actual white noise) [Poor 1998].
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where B is a lower triangular matrix of the Cholesky decomposition of D. B is used to
apply correlation between synthetic sub-tenant data to present specific cases for our
study.

7.2. Discussion of Experimental Variations

There are possible variations for the set of experiments done in previous sections of this
work. Some measurement and actuation errors could be introduced into the system.
The source of this error could be noisy measurement or calculation of statistics of
tenants as well as noise engaged in actuation for demand response.

The other variation is using different utility functions. In this study, we are using the
same coefficients for utility function a and b. Therefore, tenants are shedding similarly.
By adopting different a and b, sub-tenants can control the amount of their shedding. It
is obvious that increasing a and b values will increase the utility and therefore decrease
the amount of shedding.

7.3. Additional Figures

Fig. 15. μi + 2Si vs. xi(k∗) with tenants’ demand response.

Fig. 16. φi(d) =
∑d

t=1 pi (t)
d without tenants’ demand response (61 days). The solid curves are obtained under

alternative pricing while the curves with “*” represent the baseline pricing.
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Fig. 17. S2
i for each tenant over 2 months without tenants’ demand response.
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