

This is a pre print version of the following article:

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Circulating and endometrial cell oxidative stress in dairy cows diagnosed with metritis

Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/1893692	since 2023-02-22T14:37:40Z
Published version:	
DOI:10.1016/j.theriogenology.2022.12.045	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the of all other works requires consent of the right holder (author or protection by the applicable law.	terms and conditions of said license. Use

(Article begins on next page)

- 1 Use of Creatine kinase as marker for endometritis and infertility in beef cattle.
- A. Ricci^a, S. Gallo^{ab}, P. Banchi^{a*}, M Santhia^b, A. Starvaggi Cucuzza^a, L. Vincenti^a
- 3 a Dpt. Veterinary Science, University of Torino, Italy
- 4 b Large Animal Practitioner, Piemonte, Italy

*corresponding author: penelope.banchi@unito.it

ABSTRACT

7

- 8 In beef cows, a complete uterine involution requires about 30 days post-partum (pp) and a total
- 9 resumed estrous cycles is expected within 50 days pp, but uterine pathologies can delay these
- processes, causing economic damage. In general, uterine pathologies delay the partum to
- conception of 30 to 50 days than healthy cows. In double muscles breeds, uterine pathologies are
- still present. Creatine kinase (CK) serum concentrations have been investigated in dairy cows as a
- marker for endometritis, showing different values between healthy and diseased cows. The first
- objective of this study is to define the basal CK serum concentrations for healthy beef cows, the
- second consists in the evaluation of the accuracy of CK serum concentrations in detecting clinical
- endometritis. Sixteen pregnant Piedmontese beef cows were used to determine the basal serum CK
- concentration. Furthermore, another group of 264 non-pregnant Piedmontese cows were used to
- assess CK performances as a diagnostic tool for clinical endometritis.
- Healthy cows didn't show different concentration of CK mean than RB cows (216±186 vs 268±191
- 20 U/L, P>0.05) and PREG cows (189 \pm 135 U/L P>0.05); whereas Endometritis 449 \pm 263 showed a
- significant higher CK mean of 449±263 U/L (P=0.0001). In non-pregnant cows, 77% (203/264)
- were healthy (HEALTHY) without any disease and 12.5% (33/264) were classified as repeat
- breeding (RB). The total percentage of cows negative for endometritis was 89.4% (236/264),
- 24 whereas 10.6% (28/264) of the examined cows was diagnosed with clinical endometritis.
- 25 The PC for diseased cows resulted higher than healthy ones (144±30 vs 87±40 dpp; P=0.006) but
- shorter than the PC of repeat breeder cows (191±65 dpp; P=0.003). The same was for number of AI
- per pregnancy. Diseased cows show higher number of insemination than healthy ones (3.1±0.8 vs
- 28 1.9 \pm 1.2), but not than RB cows, that shows 5.2 \pm 1.3 insemination per pregnancy (Table 1).
- 29 The CK mean cut-off to predict endometritis from ROC curve was 241 U/L, showing good
- accuracy (Se 92%, Sp 69%, AUC 0.81). Furthermore, CK wasn't accurate for infertility at 120, 150
- 31 days pp. This study underlines the potentiality of CK as a marker for endometritis. This could lead
- 32 to a preventive and not invasive on-field diagnostic method which could be implemented in the
- 33 health check routine of postpartum cows.

34 35

Key words: Creatine kinase, Piedmontese cow, Endometritis

36 37

1. INTRODUCTION

- 38 Beef cattle breeding is much less standardized than that of dairy cattle, in fact there are many
- different breeds and crossbreed and farming systems, ranging from intensive to extensive [1].
- 40 Although the characteristics of some breeds are little investigated, the mistakes and low

- 41 reproductive performances are often caused by failure of information about nutritional
- 42 requirements, breeding and farming management. Current knowledge allows us to state that in beef
- cows, a complete uterine involution requires about 30 days post-partum (pp) and a total resumed
- estrous cycles is expected within 50 days pp [1]. Uterine pathologies can delay these processes,
- 45 causing economic damage to the farm. Piedmontese beef cow is a high-quality double-muscled
- breed, due to a mutation of the myostatin gene [2] causing a muscular hypertrophy. Even if genetic
- 47 selection is trying to contain this phenomenon, Piedmontese cows are affected by a higher rate of
- 48 difficult delivery and dystocia with subsequent lower fertility [3, 4]. In our experience early and
- 49 non-invasive diagnosis of uterine pathologies is a key point to reduce partum to conception days
- 50 (PC), in order to decrease the number of inseminations per pregnancy and improve reproduction
- 51 performances.
- 52 Clinical endometritis is a common inflammatory condition of the uterus associated with bacterial
- infection with purulent or muco-purulent uterine discharge with no systemic signs from 21 days
- after calving [5]. It affects around 15-35% of cows at 4-6 weeks postpartum [6, 7] and it has severe
- effects on fertility, causing poor reproductive performances with relevant consequences such as
- reduction in pregnancy rate, increased time to conception and increased culling rate [6, 8].
- 57 Inflammation of the genital tract is a common condition in dairy and beef cows, but not all of the
- cows affected by uterine contamination post-partum will develop uterine diseases.
- Assessment of uterine discharge through vaginoscopy, manual examination of the vagina, or
- Metricheck is the main diagnostic tool for endometritis [9]. Transrectal palpation of the uterus has
- lower predictive value for the reproductive performances of the animal [5, 10]. Uterine cytology
- 62 performed by uterine lavage or cytobrush and endometrial biopsy are considered more reliable and
- accurate diagnostic techniques [8, 9] but they are more invasive and not easy to perform on field.
- The presence of vaginal exudate is referred as 'purulent vaginal discharge' (PVD) and it is
- generally assumed that PVD is the result of endometritis, cervicitis/vaginitis or the combination of
- 66 both [11, 12].
- The detrimental effects of endometritis and cervicitis/vaginitis on reproductive performance are
- additive [13]. In general, cows affected with PVD need about 30 days more to become pregnant
- than unaffected cows [6, 11, 14].
- 70 Beef cows lack the interference of milk production. Therefore, they have a simpler post-partum
- 71 management than dairy cows and a generally better fertility. Although, in double muscles breeds,
- 72 uterine pathologies are still present [15].
- Acute phase proteins (APPs) are a very large family of inflammatory mediators and are considered
- as markers for general acute response, such as inflammation, tissue damage and infection [16, 17].

- Furthermore, APPs have been proposed to be markers for stress in cattle and other species [18-22].
- 76 Specifically, haptoglobin has been suggested to serve as indicator of endometritis [23]. However,
- the use of such diagnostic biomarker is still controversial [3, 24].
- 78 Creatine kinase (CK) serum concentrations have been investigated as a marker for endometritis,
- showing different values between healthy and diseased cows [25, 26]. CK is an intracellular
- 80 cytosolic enzyme that catalyzes the reaction of creatine and adenosine triphosphate (ATP) to
- phosphocreatine and adenosine diphosphate (ADP) [27]. It is a dimeric molecule composed of two
- 82 subunits (M and B). Combinations of these subunits form the isoenzymes CK–MM, CK–MB, and
- 83 CK–BB. CK is abundant in tissues with elevated energy transfer such as skeletal muscle,
- myocardium, and brain. In other visceral tissues [28], noticeable CK concentrations can be found in
- 85 the uterine tissue and in every inner organ [25]. The serum of healthy cows contains almost entirely
- 86 CK-MM, while inner organs contain mostly CK-BB. Mechanical and metabolic stress of the uterine
- 87 tissue is known to cause elevated CK activities before and after normal parturition in cows [29].
- 88 Furthermore, serum concentrations of CK 3 days after parturition are lower in healthy Holstein
- 89 cows (median of 121 U/l) than in cows with retained placenta (median 175 U/l), dystocia (median
- 90 310 U/l), milk fever (median of 385 U/l) [2], and abomasal displacement. [25]. However, elevated
- 91 CK serum concentrations can be expected whenever recumbency occurs, due to the neuromuscular
- 92 damage [30]. Weber et al. (2019) pointed out that recumbent Holstein cows show higher CK serum
- 93 concentrations than healthy ones at day 5 after parturition (mean of 5011.28 ± 13386.53 vs 666.44 ± 13386.53
- 94 1645.44) [31]. As for endometritis, CK has been assessed in dairy cows [25] and in Iraqi buffalo
- cows [24]; results showed that animals with endometritis had higher CK activity than healthy ones.
- However, higher CK blood concentration were found in estrous beef cows than in non-estrous ones
- 97 [32].

103

104

- To the best of our knowledge, CK has never been investigated as a diagnostic tool for endometritis
- 99 in beef cows. The first objective of this study is to define the basal CK serum concentrations of
- 100 healthy Piedmontese beef cows, the second consists in the evaluation of the accuracy of CK serum
- 101 concentrations in detecting clinical endometritis.

2. MATERIAL AND METHODS

2.1 Animals enrollment

- The present study was carried out in two farms of similar size (approximately 100 breeding cows)
- with similar management and nutrition. All animals were vaccinated for bovine viral diarrhea
- 107 (BVD) and infectious bovine rhinotracheitis (IBR); all farms were officially free from tuberculosis

- and brucellosis. The cows were housed in free stalls with free access to food and water.
- Sixteen Piedmontese beef cows >100 days-pregnant (PREG), that were used to determine the basal
- serum concentration for CK in Piedmontese cows out of the post-partum period. Furthermore,
- another group of 264 non-pregnant Piedmontese cows were used to assess CK performances as a
- diagnostic tool for clinical endometritis.
- 113 Two-hundred and three (203/264) cows belonging to the latter group were deemed as healthy
- 114 (HEALTHY), 33 cows (33/264) required a number of artificial insemination (AI) higher than 3,
- without presenting any uterine pathologies and were defined as repeat breeding cows (RB), whereas
- another group included 28 (28/264) cows diagnosed with clinical endometritis (ENDO). These
- cows were examined at 30±5 days post-partum and sorted into the HEALTHY or ENDO group
- according to the result of the physical examination, which was always performed by the same
- 119 veterinarian.

134

- Vaginal discharge was categorized as described by Williams et al. (2005), using a 4-point
- classification system: 0 = no or clear mucus, 1 = mucus containing few flecks, 2 = discharge
- containing less than 50% pus, 3 = discharge containing more than 50% pus. A blood sample was
- 123 collected from each animal during the clinical examination. All cows were submitted to AI based
- on heat detection at 60 ± 5 days postpartum.

2.2 Blood samples collection and biochemical analysis

- Blood samples were collected by venipuncture from the coccygeal vein using an 8 ml evacuated
- serum collection tube and a 20 G needle (Vacutainer® Venoject, Terumo, Leueven, Belgium); the
- samples were immediately refrigerated and transported to the laboratory within 4 hours. The blood
- was centrifuged at 2,000 rpm for 10 minutes and the serum was separate and stored at -20°C in 1 ml
- 130 SafeLock tubes (Eppendorf®, Hamburg, Germany).
- 131 CK was measured with a clinical chemistry analyzer KUADRO® BPC (Biosed s.r.l, Rimini, Italy)
- with Creatine Kinase immunologic kinetic UV-test (MTD Diagnostics, Caserta, Italy) in accord
- with International Federation of Clinical Chemistry (IFCC).

2.3 Statistical analysis

- A simple descriptive statistical analysis was performed to calculate the CK mean and ds for PREG
- cows to set the basal serum concentration for CK in Piedmontese beef cows.

- Afterwards, HEALTHY (including RB) and ENDO cows were analyzed with a one-way ANOVA
- statistical method between healthyRB (HEALTHY + RB) and diseased (ENDO) animals and also
- by each status (HEALTHY, RB, ENDO) to point-out any difference in CK serum concentrations.
- 140 Furthermore, a one-way ANOVA statistical method was used to evaluate reproductive
- performances such as partum-to-conception interval (PC) and number of AI among groups.
- Bonferroni pot-hoc test was used for pairwise comparison.
- A receiver operating characteristic (ROC) curve model (pROC) and the area under the curve
- 144 (cvAUC) were calculated to find the optimal CK cut-off point for evaluating clinical endometritis at
- 30 days pp and infertility (PC at 120 and 150 days and number of AI).
- Data were indicated as mean \pm ds. P values \leq 0.05 were considered significant, and trends were
- considered to be present at P values between 0.06 and 0.08. Statistical analyses were performed
- using R statistical software (ver. 2.15.2).

3. RESULTS

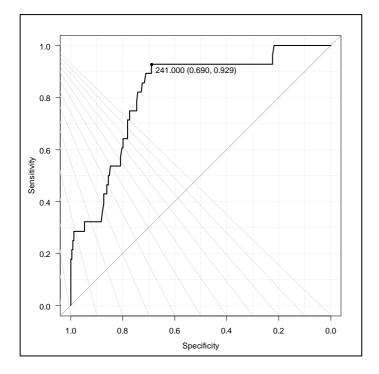
149

166

- 150 Statistical analysis on the 16 pregnant cows (PREG) showed a mean CK concentration of 189±135
- 151 U/L. As shown in *Table 1*, Healthy cows didn't show different concentration of CK mean than RB
- cows PREG cows ((216±186 vs 268±191 U/L vs 189±135 U/L P>0.05)and in general HealthyRB
- 153 (233±239 U/L, P>0.005); whereas Endometritis 449±263 showed a significant higher CK mean of
- 154 449±263 U/L (P=0.0001).
- In non-pregnant cows, 77% (203/264) was healthy (HEALTHY) without any disease and 12.5%
- 156 (33/264) was classified as repeat breeding (RB) after three IA. Therefore, the total percentage of
- cows negative for endometritis (healthyRB) was 89.4% (236/264), whereas 10.6% (28/264) of the
- examined cows was diagnosed with clinical endometritis.
- The PC of cows with endometritis resulted higher than healthy cows (144±30 vs 87±40 dpp;
- P=0.006) but shorter than the PC of RB cows (191±65 dpp; P=0.003); this applies to the number of
- AI per pregnancy too, as endometritis cows show higher number of insemination than healthy ones
- 162 (3.1 \pm 0.8 vs 1.9 \pm 1.2), but not than RB cows, that shows 5.2 insemination per pregnancy (Table 1).
- As showed in *Figure 1*, the ROC curve indicates a cut-off of 241 U/L for CK to predict
- endometritis, showing good accuracy (Se 92%, Sp 69%, AUC 0.81). According to results showed in
- 165 Table 2, CK cannot be used as marker of infertility at 120, 150 days pp.

4. DISCUSSION

- The aims of this study were to determine a CK range in heathy Piedmontese cows out of the post-
- partum period and to investigate the CK as a marker for uterine pathologies.


- To define CK concentration range in healthy cows, animals >100 days pregnant were selected, in
- order to be out of the post-partum period that could influence CK serum concentrations and to avoid
- the influence of the estrus, that it was showed to be associated with higher mean CK serum
- 172 concentrations by Crane *et al.* (2016).
- 173 PVD has been indicated detrimental on the reproductive performances of dairy cows with
- percentage around 30% at 4-6 weeks postpartum [6], Although, very little information has been
- 175 reported about beef cows. Our group has previously demonstrated that Sub-Clinical Endometritis
- 176 (SCE) causes a 40-days delay in conception, compared to healthy cows [15] In the present study,
- 177 11% (28/264) of cows showed clinical endometritis. This is slightly lower percentage than the 15-
- 178 35% reported in dairy cows at 30 days [6, 7, 12], but no precise data about uterine disease in beef
- cows are present in literature. It can be speculated that beef cows are not affected by a remarkable
- metabolic imbalance and immunosuppression during the first postpartum and the transition period.
- Therefore, beef cows are expected to show a lower incidence of uterine pathologies than dairy
- 182 cows.
- Various acute phase proteins have been used in dairy and beef cows and in other species as
- inflammatory and stress response markers but are not accurate markers for uterine disease. As
- matter of fact, haptoglobin increases during the third week postpartum regardless of the health
- status of the cow [33, 34]. Furthermore, it increases in many stress situations and clinical conditions
- other than in uterine pathologies [35]. In accordance to other authors [24, 25], in our study CK
- concentrations increase more in cows with uterine pathologies than in healthy and repeat breeding
- cows. It is noticeable that although Piedmontese cows is a double muscle breed, CTRL and healthy
- 190 cows did not show any higher CK, and the basal CK concentration in of this study did not differ
- 191 from literature of dairy cows [24].
- According to literature, 52.7% of RB cows showed to be positive to SCE [36]. In our study no
- 193 further cytology has been carried out to investigate the presence of SCE in RB cows, but all cows
- that showed infertility (increased PC and number of AI per pregnancy) have been considered as RB.
- 195 Furthermore, since no data about CK values for SCE are available and RB cows in our study did not
- show CK differences form healthy ones, we speculated that SCE does not influence the CK
- 197 concentration in beef cows.
- No data about blood CK concentration in beef cows are available in literature, therefore a ROC
- curve was used, and a cut-off value of 241 U/L was set as a reference for a precise diagnosis of
- 200 uterine pathology in postpartum, because of the high specificity and the good AUC.
- The sensitivity of a test (also called the true positive rate) is defined as the proportion of individuals
- with the disease who will have a positive result. Therefore, a highly sensitive test can be useful for

203	ruling out a disease if an individual has a negative result [37]. A highly specific test can be useful
204	for ruling in patients who have a certain disease. Unfortunately, this use of CK has some
205	limitations, since an external laboratory is necessary to process the samples, delaying the diagnosis
206	of at least 24-48 hours.
207	
208	5. CONCLUSION
209	
210	The results of this study underline the potentiality of CK as a marker for uterine disease, with the
211	final goal to use CK as a good and fast method for the diagnosis of uterine pathologies. This could
212	lead to a preventive and not invasive on-field diagnostic method which could be implemented in the
213	health check routine of postpartum cows. Further study should be carried out to better analyze the
214	best CK cut-off values also in dairy cows and to implement a quick tool to measure CK in order to
215	use it as a diagnostic marker for uterine pathologies on field.
216	
217	AKNOWLEDGEMENTS
218 219	This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
220	•
220	
221	REFERENCES
222	
223	[1] Diskin MG, Kenny DA. Managing the reproductive performance of beef cows. Theriogenology
224	2016;86(1):379-87. https://doi.org/10.1016/j.theriogenology.2016.04.052.
225	[2] Kleiser L, Fürll M. Screening zur Früherkennung einer Disposition für die Dislocatio abomasi
226	bei Kühen. In: Fürll, M. (Hrgb.), Stoffwechselbelastung, -diagnostik und –stabilisierung beim
227	Rind, pp. 95–104 1998
228	[3] Santos NR, Lamb GC, Brown DR, Gilbert RO. Postpartum endometrial cytology in beef cows.
229	Theriogenology 2009;71:739-45. https://doi.org/10.1016/j.theriogenology.2008.09.043.
230	[4] Sheldon IM, Williams EJ, Miller AN, Nash DM, Herath S. Uterine diseases in cattle after
231	parturition. Vet J 2008;176(1):115-21. https://doi.org/10.1016/j.tvjl.2007.12.031.
232	[5] Ernstberger M, Oehl H, Haessig M, Hartnack S, Bollwein H. Predicting the probability of
233	conception in dairy cows with clinical endometritis based on a combination of anamnestic
234	information and examination results. Theriogenology 2019;138:127-136.
235	https://doi.org/10.1016/j.theriogenology.

- 236 [6] Ricci A, Bonizzi G, Sarasso G, Gallo S, Dondo A, Zoppi S, Vincenti L. Subclinical endometritis
- in beef cattle in early and late postpartum: Cytology, bacteriology, haptoglobin and test strip
- efficiency to evaluate the evolution of the disease. Theriogenology 2017;94:86-93.
- 239 https://doi.org/10.1016/j.theriogenology.2017.02.006.
- [7] Plöntzke J, Madoz LV, De la Sota RL, Heuwieser W, Drillich M. Prevalence of clinical
- 241 endometritis and its impact on reproductive performance in grazing dairy cattle in Argentina.
- Reprod Domest Anim 201;46(3):520-6. https://doi.org/10.1111/j.1439-0531.2010.01700.x.
- [8] LeBlanc SJ, Duffield TF, Leslie KE, Bateman KG, Keefe GP, Walton JS, Johnson WH.
- Defining and diagnosing postpartum clinical endometritis and its impact on reproductive
- performance in dairy cows. J Dairy Sci 2002;85(9):2223-36. https://doi.org/10.3168/jds.S0022-
- 246 0302(02)74302-6.
- [9] LeBlanc SJ. Postpartum uterine disease and dairy herd reproductive performance: a review. Vet
- 248 J 2008;176(1):102-14. https://doi.org/10.1016/j.tvjl.2007.12.019.
- [10] Biswal SS, Das S, Balasubramanian S, Mohanty DN, Sethy K, Dasgupta M. Serum amyloid A
- and haptoglobin levels in crossbred cows with endometritis following different therapy. Vet
- 251 World 2014;7(12):1066-1070. https://doi.org/10.14202/vetworld.2014.1066-1070.
- 252 [11] Dubuc J, Duffield TF, Leslie KE, Walton JS, Leblanc SJ. Randomized clinical trial of
- antibiotic and prostaglandin treatments for uterine health and reproductive performance in dairy
- 254 cows. J Dairy Sci 2011;94(3):1325-38. https://doi.org/10.3168/jds.2010-3757.
- 255 [12] Deguillaume L, Geffré A, Desquilbet L, Dizien A, Thoumire S, Vornière C, Constant F,
- Fournier R, Chastant-Maillard S. Effect of endocervical inflammation on days to conception in
- dairy cows. J Dairy Sci 2012;95(4):1776-83. https://doi.org/10.3168/jds.2011-4602.
- 258 [13] Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO. Defining postpartum uterine disease in cattle.
- 259 Theriogenology. 2006 May;65(8):1516-30.
- 260 https://doi.org/10.1016/j.theriogenology.2005.08.021.
- 261 [14] Dubuc J, Duffield TF, Leslie KE, Walton JS, LeBlanc SJ. Risk factors for postpartum uterine
- diseases in dairy cows. J Dairy Sci 2010;93(12):5764-71. https://doi.org/10.3168/jds.2010-
- 263 3429.
- 264 [15] Ricci A, Gallo S, Molinaro F, Dondo A, Zoppi S, Vincenti L. Evaluation of subclinical
- endometritis and consequences on fertility in piedmontese beef cows. Reprod Domest Anim
- 266 2015;50(1):142-8. https://doi.org/10.1111/rda.12465.
- [16] Baumann H, Gauldie J. The acute phase response. Immunol Today 1994;15(2):74-80.
- 268 https://doi.org/10.1016/0167-5699(94)90137-6.

- 269 [17] Petersen HH, Nielsen JP, Heegaard PM. Application of acute phase protein measurements in
- veterinary clinical chemistry. Vet Res 2004;35(2):163-87.
- 271 https://doi.org/10.1051/vetres:2004002.
- 272 [18] Alsemgeest SP, Lambooy IE, Wierenga HK, Dieleman SJ, Meerkerk B, van Ederen AM,
- Niewold TA. Influence of physical stress on the plasma concentration of serum amyloid-A
- 274 (SAA) and haptoglobin (Hp) in calves. Vet Q 1995;17(1):9-12.
- 275 https://doi.org/10.1080/01652176.1995.9694521.
- 276 [19] Deak T, Meriwether JL, Fleshner M, Spencer RL, Abouhamze A, Moldawer LL, Grahn RE,
- Watkins LR, Maier SF. Evidence that brief stress may induce the acute phase response in rats.
- 278 Am J Physiol 1997;273(6):R1998-2004. https://doi.org/10.1152/ajpregu.1997.273.6.R1998.
- [20] Hicks TA, McGlone JJ, Whisnant CS, Kattesh HG, Norman RL. Behavioral, endocrine,
- immune, and performance measures for pigs exposed to acute stress. J Anim Sci
- 281 1998;76(2):474-83. https://doi.org/10.2527/1998.762474x.
- 282 [21] Arthington JD, Eichert SD, Kunkle WE, Martin FG. Effect of transportation and commingling
- on the acute-phase protein response, growth, and feed intake of newly weaned beef calves. J
- 284 Anim Sci 2003;81(5):1120-5. https://doi.org/10.2527/2003.8151120x.
- 285 [22] Hickey MC, Drennan M, Earley B. The effect of abrupt weaning of suckler calves on the
- plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro
- interferon-gamma production. J Anim Sci 2003;81(11):2847-55.
- 288 https://doi.org/10.2527/2003.81112847x.
- 289 [23] Yasui T, McCann K, Gilbert RO, Nydam DV, Overton TR. Associations of cytological
- endometritis with energy metabolism and inflammation during the periparturient period and
- early lactation in dairy cows. J Dairy Sci 2014;97(5):2763-70. https://doi.org/10.3168/jds.2013-
- 292 7322.
- 293 [24] Azawi OI, Omran SN, Hadad JJ. A study of endometritis causing repeat breeding of cycling
- iraqi buffalo cows. Reprod Domest Anim 2008;43(6):735-43.
- 295 https://doi.org/10.1111/j.14390531.2007.00981.x.
- 296 [25] Sattler T, Fürll M. Creatine kinase and aspartate aminotransferase in cows as indicators for
- endometritis. J Vet Med A Physiol Pathol Clin Med 2004;51(3):132-7.
- 298 https://doi.org/10.1111/j.1439-0442.2004.00612.x.
- 299 [26] McDougall S, Macaulay R, Compton C. Association between endometritis diagnosis using a
- 300 novel intravaginal device and reproductive performance in dairy cattle. Anim Reprod Sci
- 301 2007;99(1-2):9-23. https://doi.org/10.1016/j.anireprosci.2006.03.017.

- 302 [27] Aujla RS, Patel R. Creatine Phosphokinase. [Updated 2020 Jan 26]. In: StatPearls [Internet].
- Treasure Island (FL): StatPearls Publishing; 2020 Jan. Available from:
- 304 https://www.ncbi.nlm.nih.gov/books/NBK546624/
- 305 [28] Cabaniss CD. Creatine Kinase. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods:
- The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990.
- 307 Chapter 32.
- 308 [29] Abramov Y, Abramov D, Abrahamov A, Durst R, Schenker J. Elevation of serum creatine
- phosphokinase and its MB isoenzyme during normal labor and early puerperium. Acta Obstet
- 310 Gynecol Scand 1996;75:255-260. https://doi.org/10.3109/00016349609047097.
- 311 [30] Shpigel NY, Avidar Y, Bogin E. Value of measurements of the serum activities of creatine
- phosphokinase, aspartate aminotransferase and lactate dehydrogenase for predicting whether
- recumbent dairy cows will recover. *Vet Rec* 2003;152(25):773-776.
- 314 https://doi.org/10.1136/vr.152.25.773.
- 315 [31] Weber J, Zenker M, Köller G, Fürll M, Freick M. Clinical Chemistry Investigations in
- Recumbent and Healthy German Holstein Cows After the Fifth Day in Milk. J Vet Res
- 317 2019;63(3): 383–390. https://doi.org/10.2478/jvetres-2019-0038.
- 318 [32] Crane EM, Munro JC, Bourgon SL, Diel de Amorim M, Ventura R, Fredeen AH, Montanholi
- YR. Metabolic blood profile of beef heifers during oestrous and non-oestrous states. Reprod
- 320 Domest Anim 2016;51(5):819-26. https://doi.org/10.1111/rda.12763.
- 321 [33] Gabler C, Fischer C, Drillich M, Einspanier R, Heuwieser W. Time-dependent mRNA
- expression of selected pro-inflammatory factors in the endometrium of primiparous cows
- 323 postpartum. Reprod Biol Endocrinol 2010;8:152. https://doi.org/10.1186/1477-7827-8-152.
- 324 [34] Chapwanya A, Meade KG, Foley C, Narciandi F, Evans AC, Doherty ML, Callanan JJ,
- O'Farrelly C. The postpartum endometrial inflammatory response: a normal physiological
- event with potential implications for bovine fertility. Reprod Fertil Dev 2012;24(8):1028-39.
- 327 https://doi.org/10.1071/RD11153. PMID: 22948010.
- 328 [35] Ahmadi MR; Asghar M; Saeed N. Changes in biomarkers serum amyloid A and haptoglobin
- following treatment of endometritis in dairy cows. Comp Clin Path 2018;27(6):1659-1665.
- 330 https://doi.org/10.1007/s00580-018-2790-6.
- 331 [36] Salasel B, Mokhtari A, Taktaz T. Prevalence, risk factors for and impact of subclinical
- endometritis in repeat breeder dairy cows. Theriogenology 2010;74(7):1271-8.
- 333 https://doi.org/10.1016/j.theriogenology.2010.05.033.
- 334 [37] Petrie A, Watson P. Statistics for Veterinary and Animal Science. 3rd ed. Chichester, West
- 335 Sussex: Blackwell Pub; 2013.

 $\textbf{Fig 1.} \ ROC \ curve \ indicates \ a \ cut-off \ of \ 241 \ U/L \ for \ CK \ to \ predict \ endometritis. \ Sensitivity \ 92\%, \ Specificity \ 69\% \ and \ AUC \ 0.81.$

341 Table 1342 Serum CK concentration for healthy and pathological cows

	СК			PC			n AI/preg			
	N°	Mean	SD	P value	Mean	SD	P value	Mean	SD	P value
Healthy	203	216	186	0,0001	87	40	0,0006	1,9	1,2	0,002
Repeat breeders	33	268	191		191	65		5,2	0	
Endometritis	28	449	263		144	30		3,1	0,8	
HealthyRB	236	223	139	0,001	101	45	0,0003			
Endometritis	28	449	263		145	30				

Healthy: not diseased cows, Repeat breeders: cows without clinical uterine disease with >3 AI after parturition,

HealthyRB (Healthy cows + Repeat breeders), Endometritis: cows positive for endometritis using a 4-point

classification system: 0 = no or clear mucus, 1 = mucus containing few flecks, 2 = discharge containing less than 50%

pus, 3 = discharge containing more than 50% pus.

348

345

346

347

349

350

343

Table 2

Receiver operating characteristic curve results for Endometritis (Endo) and fertility (PC at 120 and

351 150 dpp).

352

353

354

	CK	Sp%	Se%	AUC	IC
Endo	241	69	92	0,81	0,73-0,89
Pc120	286	77	42	0,57	0,49-0,55
Pc150	341	82	34	0,59	0,47-0,65

Endo: Endometritis, Pc120: Partum to conception at 120 dpp, PC150: partum to conception 150 dpp.