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MONADIC VS ADJOINT DECOMPOSITION

ALESSANDRO ARDIZZONI AND CLAUDIA MENINI

Abstract. It is known that the so-called monadic decomposition, applied to the adjunction
connecting the category of bialgebras to the category of vector spaces via the tensor and the
primitive functors, returns the usual adjunction between bialgebras and (restricted) Lie algebras.
Moreover, in this framework, the notions of augmented monad and combinatorial rank play a
central role. In order to set these results into a wider context, we are led to substitute the
monadic decomposition by what we call the adjoint decomposition. This construction has the

advantage of reducing the computational complexity when compared to the first one. We connect
the two decompositions by means of an embedding and we investigate its properties by using
a relative version of Grothendieck fibration. As an application, in this wider setting, by using
the notion of augmented monad, we introduce a notion of combinatorial rank that, among other
things, is expected to give some hints on the length of the monadic decomposition.
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Introduction

Let A be a category with all coequalizers and let L ⊣ R : A → B be an adjunction with unit
η : Id → RL and counit ǫ : LR → Id. Consider the Eilenberg-Moore category B1 of algebras
over the monad (RL,RǫL, η) . Then the comparison functor R1 : A → B1 has a left adjoint L1,
with unit η1 : Id → R1L1 and counit ǫ1 : L1R1 → Id, and we can compute the Eilenberg-Moore
category B2 of algebras over the monad (R1L1, R1ǫ1L1, η1) . Going on this way we obtain a tower

A

R
��

A

R1

��

IdAoo A

R2

��

IdAoo · · · · · ·
IdAoo A

RN

��

IdAoo

B

L

OO

B1

L1

OO

U0,1oo B2

L2

OO

U1,2oo · · · · · ·
U2,3oo BN

LN

OO

UN−1,Noo

where Un,n+1 denotes the forgetful functor and Un,n+1 ◦Rn+1 = Rn. If this process stops exactly
after N steps, meaning that N is the smallest positive integer such that UN,N+1 is a category
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2 ALESSANDRO ARDIZZONI AND CLAUDIA MENINI

isomorphism, then R is said to have a monadic decomposition of monadic length N . For relevant
outcomes of this notion we refer to [AGTM, AGM2, AM2]. We just mention here how our interest

in this construction stems from the case when (L,R) is the adjunction (T̃ , P ), where P is the
functor that associates to any bialgebra, over a base field k, its space of primitive elements and

its left adjoint T̃ associates to a vector space V its tensor algebra TV endowed with the usual
bialgebra structure in which the elements of V are primitive. One of the outcomes of the papers
quoted above is the existence of an equivalence Λ between the category Vec2 and the category Lie
of either Lie algebras, if char(k) = 0, or restricted Lie algebras, if char(k) > 0. Moreover one has
Λ ◦P2 = P and H ◦Λ = U0,1U1,2. Here (U ,P) is the usual adjunction between Bialg and Lie given
by the (restricted) universal enveloping algebra functor and the primitive functor.

Bialg

P

��

Bialg

P1

��

Idoo Bialg

P2

��

Idoo

Id
❧❧
❧

vv❧❧❧
Bialg

P

��

Id

ll❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩

Vec

T̃

OO

Vec1

T̃1

OO

U0,1oo Vec2

T̃2

OO

U1,2oo

Λuu❦❦❦❦
❦❦
❦❦

Lie

U
OO

H

mm❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩

The starting functor P comes out to have monadic decomposition of monadic length at most 2
and this reflects the fact that the functor U is fully faithful, or equivalently the unit Id → PU
of the adjunction (U ,P) is invertible, which is part of the so-called Milnor-Moore theorem. Thus

if the input (L,R) of the monadic decomposition procedure is the adjunction (T̃ , P ), then the
corresponding output, when the iteration stops, is the adjunction (U ,P) up to equivalence.

We point out that unit η̃ of the adjunction (T̃ , P ) splits via a suitable natural retraction γ :

P T̃ → Id, i.e. an augmentation for the associated monad, that allows to define a functor Γ1 :

Vec → Vec1, V 7→ (V, γV ). The composite functor S1 := T̃1Γ1 : Vec → Bialg associates to a vector

space V the tensor bialgebra T̃ V factored out by the ideal generated by its homogeneous primitive

elements of degree at least two. If η̃1 denotes the unit of (T̃1, P1), it comes out that η̃1Γ1V is
invertible for every V (this is equivalent to ask that V has combinatorial rank at most one) and
this plays a central role in proving that the iteration stops after two steps.

It is natural to wonder what happens to monadic decomposition if we substitute the category
of vector spaces over k and the category of bialgebras over k by an arbitrary braided monoidal
category M and the category Bialg(M) of bialgebras in M respectively, once we made the proper

assumptions on M to have an analogue of the adjunction (T̃ , P ). Partial results have been obtained
in [AM2] giving rise to the notion of Milnor-Moore Category. It is worth to notice that, to the best
of our knowledge, even in the more restrictive case when M is a symmetric monoidal category it
is an open problem whether the monadic length is still at most 2.

In order to look at the problem from a more general perspective, unconstrained by the particular
features of the examples considered above, we think one has to investigate the stationarity of
monadic decomposition at the level of an arbitrary adjunction (L,R). The notions of augmented
monad and of combinatorial rank, mentioned above, are expected to play a relevant role in the
picture. Moreover, since the procedure may, in principle, stop at some level higher than 2, the
functor Γ1, arising from the augmentation, should be extended to some functor Γn : B → Bn. A
first attempt to define such a functor shows how it is inconvenient to prove that the candidate
object ΓnB belongs to Bn for every B in B. This is due to the fact that to test if an object belongs
to this category several equalities have to be checked. The first aim of this paper is to reduce
drastically the number of equalities to verify by replacing the category Bn by a new category B[n].
More precisely, we construct a kind of monadic decomposition that we call an adjoint decomposition
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as follows,

A

R
��

A

R[1]

��

Idoo A

R[2]

��

Idoo · · · · · ·
Idoo A

R[n]

��

Idoo

B

L

OO

B[1]

L[1]

OO

U[0,1]oo B[2]

L[2]

OO

U[1,2]oo · · · · · ·
U[2,3]oo B[n]

L[n]

OO

U[n−1,n]oo

where (L[n], R[n], ǫ[n], η[n]) is a suitable adjunction. Denote by U[a,b] : B[b] → B[a] the composite
functor U[a,a+1]◦U[a+1,a+2]◦· · ·◦U[b−2,b−1]◦U[b−1,b] for all a ≤ b. An object in B[n] is a pair B[n] :=
(B[n−1], b[n−1]) where B[n−1] is an object in B[n−1] and b[n−1] : RL[n−1]B[n−1] → U[0,n−1]B[n−1] is
a morphism in B. Thus it can be regarded as a datum B[n] := (B[0], b[0], b[1], . . . , b[n−1]), where
b[t] : RL[t]B[t] → B[0] and B[t] := U[t,n]B[n], for each t ∈ {0, . . . , n− 1}. A morphism f[n] : B[n] →
B′

[n] in B[n] is a morphism f[n−1] : B[n−1] → B′
[n−1] in B[n−1] such that U[0,n−1]f[n−1] ◦ b[n−1] =

b′[n−1] ◦RL[n−1]f[n−1].

For every n ≥ 1, we can construct a fully faithful functor Λn : Bn → B[n] which satisfies the
equalities Λn ◦Rn = R[n] and U[n−1,n] ◦Λn = Λn−1 ◦Un−1,n i.e. that makes commutative the solid
faces of the following diagram.

(1)

A
Id❤

❤❤
❤❤
❤

tt❤❤❤❤❤
❤

Rn−1��

A

Rn

��

Idoo

Id
❥❥
❥❥
❥

tt❥❥❥❥
❥

A

R[n−1]

��

A

R[n]

��

Idoo

Bn−1

Λn−1
❥❥
❥

tt❥❥❥

Ln−1

OO

Bn

Ln

OO

Un−1,n

oo

Λn
❦❦
❦❦

uu❦❦❦❦
B[n−1]

L[n−1]

OO

B[n]

L[n]

OO

U[n−1,n]

oo

Furthermore we have an isomorphism λn : L[n]Λn → Ln. By means of a relative version of
Grothendieck fibration, we are able to give sufficient conditions for an object in B[n] to be the
image through Λn of an object in Bn. As an instance of how this strategy works we construct,
under appropriate conditions, involving an augmentation for the monad RL, a family of functors
Γ[n] : B → B[n], n ∈ N, that factor through Λn returning the desired functor of Γn : B → Bn.

These constructions apply to the adjunction T̃ ⊣ P : Bialg(M) → M. In the particular case when
M is the category H

HYD of Yetter-Drinfeld modules over a Hopf algebra H , we obtain an explicit

description of the functors S[n] := T̃[n]Γ[n]
∼= T̃nΓn =: Sn, which extend the functor S1 mentioned

above. The combinatorial rank of an object V in H
HYD, regarded as a braided vector space through

the braiding of HHYD, is exactly the smallest n such that the canonical projection S[n]V → S[n+1]V
is invertible and in this case S[n]V is isomorphic to the Nichols algebra of V . Since the previous
projection makes sense also if we start from a general adjunction L ⊣ R : A → B and an object B
in B, we are led to a notion of combinatorial rank in this wide setting that, among other things,
is expected to give some hints on the length of the monadic decomposition. Finally we propose
possible lines of future investigation.

Description of main results and applications. The paper is organized as follows.
In Section 1 we recall the notion of monadic decomposition and the definition of inserter category

together with its properties needed in the paper.
In Section 2 we revise the notion of Adjoint triangle introduced by Dubuc. In Proposition 2.5,

we give a procedure to associate a new adjoint triangle to a given one. By means of this result, we
construct iteratively the adjoint decomposition.

In Section 3 we compare monadic and adjoint decompositions. More explicitly, we construct a
fully faithful functor Λn : Bn → B[n], which is injective on objects, connecting the two decomposi-
tions. This is obtained in Remark 3.7 by applying iteratively Proposition 3.6.

In Section 4, we investigate a relative version of Grothendieck fibrations. As a byproduct,
we deduce other properties of the functor Λn. In particular, in Theorem 4.19, we prove it is an
M

(
U[n]

)
-fibration, where M

(
U[n]

)
stands for the class of morphisms in B[n] whose image in B via
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the forgetful functor U[n] : B[n] → B are monomorphisms. As a consequence, in Theorem 4.20, we
give conditions guaranteeing that an object B[n] ∈ B[n] is the image of an object in Bn through
Λn. These conditions enable to reduce the number of equalities to check in order to establish that
an object lives inside Bn. In Corollary 4.21 we are able to prove that if L[N ] is fully faithful for
some N, then R has a monadic decomposition of monadic length at most N.

In Section 5 we connect these results to the notion of augmented monad. Explicitly, given a
suitable diagram involving two adjunctions (L,R) and (L′, R′), in Theorem 5.1, we prove that
under certain assumptions, if the monad R′L′ is augmented, then so is RL and we can construct a
family of functors Γ[n] : B → B[n], n ∈ N. Any object of the form Γ[n]B ∈ B[n], with B ∈ B, fulfills
the conditions mentioned above and hence it belongs to the image of Λn. As a consequence Γ[n]

factors through Λn, see Proposition 5.2.
In Section 6, we study our prototype example for Theorem 5.1 which also explains the relevant

role played by the functors Γ[n]. Given a preadditive braided monoidal category M having equal-
izers, denumerable coproducts and coequalizers of reflexive pairs of morphisms and such that all
of them are preserved by the tensor products, we construct a diagram, as in Theorem 5.1,

Bialg(M)
℧+

//

P
��

Alg+(M)

Ω+

��
M

Id //

T̃

OO

M

T+

OO

where Bialg (M) is the category of bialgebras in M, Alg+ (M) is the category of augmented

algebras in M, T̃ is the tensor bialgebra functor, P is the primitive functor, T+ is essentially the
tensor algebra functor and Ω+ associates to an augmented algebra (A, ε) the kernel in M of its
augmentation ε. The functor ℧+ is just the forgetful functor. By the foregoing we get a family of
functors Γ[n] : M → M[n], n ∈ N, that factor through Λn, as desired.

In Section 7 we describe explicitly these functors Γ[n] in the case when M is the category H
HYD

of Yetter-Drinfeld modules over a finite-dimensional Hopf algebra H, the particular case of the
category Vec of vector spaces being obtained by taking H = k. Concurrently we are lead to define
a possible analogue of the notion of combinatorial rank κ (V, c) of a braided vector space (V, c) as
defined in [Ar2, Section 5] by mimicking V. K. Kharchenko’s definition in [Kh2, Definition 5.4].
We refer to [Kh1] for an overview on the notion of combinatorial rank and its importance. Recall
that a braided vector space (V, c) is a vector space V endowed with a braiding c : V ⊗V → V ⊗V.
The tensor algebra TV can be endowed with a braided bialgebra structure (this means to have
a braided vector space endowed with an algebra and a coalgebra structure suitably compatible
with the braiding), arising from the braiding of V, that we denote by T (V, c) . If we divide out
T (V, c) by the ideal generated by its homogeneous primitive elements of degree at least two we
obtain a new braided bialgebra, say S[1] (V, c). We can repeat the same procedure on this braided
bialgebra obtaining a new quotient braided bialgebra S[2] (V, c) and go on this way. At the limit
this procedure yields the so-called Nichols algebra B (V, c) and the number of steps occurred is
exactly κ (V, c) .

Now it is well-known that under some finiteness conditions, a braided vector space (V, c) can be
realized as an object in the category H

HYD for some Hopf algebraH and c becomes the braiding cV,V
of HHYD applied to V, see [Scha, 3.2.9]. On the other hand H

HYD is a braided monoidal category
and any bialgebra in it becomes in a natural way a braided bialgebra in the above sense if we
forget the Yetter-Drinfeld module structure and we just keep the underlying braiding, algebra and

coalgebra structures. In particular T̃ V ∈ Bialg
(
H
HYD

)
becomes the braided tensor algebra T (V, c)

mentioned above. Define the functors S[n] := T̃[n]Γ[n] :
H
HYD → Bialg

(
H
HYD

)
. In Example 7.1,

we shows that S[n]V ∈ Bialg
(
H
HYD

)
becomes the braided bialgebra S[n] (V, c) mentioned above,

for each n ∈ N. As a consequence the combinatorial rank of V, regarded as braided vector space
through the braiding c = cV,V of HHYD as above, is the smallest n such that the canonical projection
S[n]V → S[n+1]V is invertible, if such an n exists, and in this case we have S[n]V = B (V, c).
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Since, in the setting of Theorem 5.1, we can always define S[n] := L[n]Γ[n] : B → A, for every
B ∈ B we are lead to define (see Definition 7.3) the combinatorial rank of an object B ∈ B,
with respect to the adjunction (L,R), to be the smallest n such that the canonical projection
S[n]B → S[n+1]B is invertible (see Lemma 5.3), if such an n exists. Thus a concept of combinatorial
rank can be introduced and investigated in this very general setting in which there is neither a
bialgebra nor a braided vector spaces but just an adjunction (L,R) as in Theorem 5.1. In the

case when M is the category Vec of vector spaces and the adjunction is (T̃ , P ), every object
in Vec has combinatorial rank at most one (Example 7.7), but this is not true for an arbitrary
M, e.g. the category H

HYD, see Example 7.7. In Theorem 7.5, we prove that, if the adjunction
(LN , RN ) is idempotent for some positive integer N (e.g. R has a monadic decomposition of
length N), then every object in the domain of R has combinatorial rank at most N with respect to
the adjunction (L,R) . As a corollary we obtain that every symmetric MM-category in the sense
of [AM2, Definition 7.4] has all objects of combinatorial rank at most one, with respect to the

adjunction (T̃ , P ), see Corollary 7.6.
A possible idea for a future investigation is to establish whether the general framework, in which

the notion of combinatorial rank is settled here, can give new hints on the existence of some bound
for the combinatorial rank of objects in a proper category B with respect to an adjunction (L,R)

(or more specifically in a category M with respect to the adjunction (T̃ , P )) as it happens in Vec.
The fact that all objects in Vec have combinatorial rank at most one constitutes one of the main
ingredients in [AGTM] to prove that the monadic decomposition of P : Bialg(Vec) → Vec has
length at most two. A natural question, that we also leave to future investigations, is to determine
whether a similar result still holds in the setting of B as above for the functor R. Such a result would
be related to an analogue of the so-called Milnor-Moore theorem, see Remark 7.8. More generally
one can ask whether the length of the monadic decomposition of the functor R is upper-bounded
in case the combinatorial rank of objects in B with respect to (L,R) is upper-bounded.

1. Monadic Decomposition and Inserter Category

Throughout this paper k will denote a field. All vector spaces and (co)algebras will be defined
over k. The unadorned tensor product ⊗ will denote the tensor product over k if not stated
otherwise. We denote either by M or Vec the category of vector spaces.

Definition 1.1. Recall that a monad on a category A is a triple Q := (Q,m, u) , where Q : A → A
is a functor, m : QQ→ Q and u : A → Q are functorial morphisms satisfying the associativity and
the unitality conditions m ◦mQ = m ◦Qm and m ◦Qu = IdQ = m ◦ uQ. An algebra over a monad
Q on A (or simply a Q-algebra) is a pair (X,µ) where X ∈ A and µ : QX → X is a morphism
in A such that µ ◦ Qµ = µ ◦mX and µ ◦ uX = IdX . A morphism between two Q-algebras (X,µ)
and (X ′, µ′) is a morphism f : X → X ′ in A such that µ′ ◦Qf = f ◦ µ. We will denote by QA the
category of Q-algebras and their morphisms. This is the so-called Eilenberg-Moore category of the
monad Q (which is sometimes also denoted by AQ in the literature). When the multiplication and
unit of the monad are clear from the context, we will just write Q instead of Q.

A monad Q on A gives rise to an adjunction (F,U) := (QF, QU) where U : QA → A is the
forgetful functor and F : A → QA is the free functor. Explicitly:

U (X,µ) := X, Uf := f and FX := (QX,mX) , Ff := Qf.

Note that UF = Q. The unit of the adjunction (F,U) is given by the unit u : A → UF = Q of
the monad Q. The counit λ : FU → QA of this adjunction is uniquely determined by the equality
U (λ (X,µ)) = µ for every (X,µ) ∈ QA. It is well-known that the forgetful functor U : QA → A is
faithful and reflects isomorphisms (see e.g. [Bo2, Proposition 4.1.4]).

Let L ⊣ R : A → B be an adjunction with unit η : IdB → RL and counit ǫ : LR → IdA. Then
(RL,RǫL, η) is a monad on B and we can consider the so-called comparison functor K : A → RLB
which is defined by KX := (RX,RǫX) and Kf := Rf. Note that RLU ◦K = R.

Definition 1.2. An adjunction L ⊣ R : A → B is called monadic (tripleable in Beck’s terminology
[Be, Definition 3, page 8]) whenever the comparison functor K : A → RLB is an equivalence of
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categories. A functor R is called monadic if it has a left adjoint L such that the adjunction (L,R)
is monadic, see [Be, Definition 3’, page 8].

Definition 1.3. (See [AGTM, Definition 2.7], [AHW, Definition 2.1] and [MS, Definitions 2.10
and 2.14]) Fix a N ∈ N. We say that a functor R has a monadic decomposition of monadic length
N whenever there exists a sequence (Rn)n≤N of functors Rn such that

1) R0 = R;
2) for 0 ≤ n ≤ N , the functor Rn has a left adjoint functor Ln;
3) for 0 ≤ n ≤ N − 1, the functor Rn+1 is the comparison functor induced by the adjunction

(Ln, Rn) with respect to its associated monad;
4) LN is fully faithful while Ln is not fully faithful for 0 ≤ n ≤ N − 1.
Compare with the construction performed in [Ma, 1.5.5, page 49].
For R : A → B, as above we have a diagram

(2)
A

R0��

A

R1��

IdAoo A

R2��

IdAoo · · · · · ·
IdAoo A

RN��

IdAoo

B0

L0

OO

B1

L1

OO

U0,1oo B2

L2

OO

U1,2oo · · · · · ·
U2,3oo BN

LN

OO

UN−1,Noo

where B0 = B and, for 1 ≤ n ≤ N,

• Bn is the category of Qn−1-algebras Qn−1Bn−1, where Qn−1 := Rn−1Ln−1;
• Un−1,n : Bn → Bn−1 is the forgetful functor Qn−1U .

We will denote by ηn : IdBn
→ RnLn and ǫn : LnRn → IdA the unit and counit of the

adjunction (Ln, Rn) respectively for 0 ≤ n ≤ N . Note that one can introduce the forgetful functor
Um,n : Bn → Bm for all m ≤ n with 0 ≤ m,n ≤ N .

We point out that LN is full and faithful is equivalent to the fact that the forgetful functor
UN,N+1 is a category isomorphism, see e.g. [AGTM, Remark 2.4].

We refer to [AGTM, Remarks 2.8 and 2.10] for further comments on monadic decompositions.

We now recall the notion of inserter category which will be a crucial tool in the construction of
the adjoint decomposition.

Definition 1.4. Let F,G : A → B be functors. The inserter category 〈F |G〉 has objects the pairs
(A,αA) where A ∈ A and αA : FA→ GA is a morphism in B. A morphism f : (A,αA) → (A′, αA′)
is a morphism f : A→ A′ in A such that the following diagram commutes

FA
αA ��

Ff // FA′

αA′��
GA

Gf // GA′

If we denote by
P = P〈F |G〉 : 〈F |G〉 → A, (A,αA) 7→ A, f 7→ f

the forgetful functor, then there is a natural transformation

ψ := ψ〈F |G〉 : FP → GP

which is defined by ψ (A,α) = α for every (A,α) ∈ 〈F ↓ G〉 .
Given functors F,G, F ′, G′ : A → B and natural transformations φ : F ′ → F and γ : G → G′

we can define the functor

〈φ|γ〉 : 〈F |G〉 → 〈F ′|G′〉 ,
(
A,FA

αA→ GA
)
7→

(
A,F ′A

φA
→ FA

αA→ GA
γA
→ G′A

)
, f 7→ f.

Remark 1.5. We point out that 〈F |G〉 is exactly the inserter Insert(F,G) in the 2-category Cat,
see e.g. [CS, page 157].

Lemma 1.6. 1) Let F,G : A → B be functors and let Q : Q → A be a functor endowed with a
natural transformation q : FQ→ GQ. Then there is a unique functor Q [q] : Q → 〈F |G〉 such that
P ◦ Q [q] = Q and ψQ [q] = q. Explicitly Q [q]X := (QX, qX) ∈ 〈F |G〉 for every X ∈ Q. Clearly
any functor N : Q → 〈F |G〉 is of the form Q [q] for Q = PN and q = ψN.
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2) Let Q [q] ,K [k] : Q → 〈F |G〉 be functors and let π : Q → K be such that Gπ ◦ q = k ◦ Fπ.
Then there is a unique natural transformation π̃ : Q [q] → K [k] such that P π̃ = π. Clearly any
natural transformation ν : Q [q] → K [k] is of the form π̃ for π = Pν.

3) Let φ : F ′ → F and γ : G→ G′. Then 〈φ|γ〉 ◦Q [q] = Q [γQ ◦ q ◦ φQ] .

Proof. 1) For every X ∈ Q define Q [q]X := (QX, qX : FQX → GQX) ∈ 〈F |G〉 . Given f :
X → Y in Q, by naturality of q we have qY ◦ FQf = GQf ◦ qX so that f induces a morphism
Q [q] f : Q [q]X → Q [q]Y such that PQ [q] f = Qf. Thus the functor Q [q] : Q → 〈F |G〉 is
defined. Moreover ψQ [q]X = ψ (QX, qX) = qX so that ψQ [q] = q. Let us check that Q [q]
is unique. Given a functor N : Q → 〈F |G〉 such that PN = Q and ψN = q we have that
PNX = QX so thatNX = (QX,α) for some α.Moreover qX = ψNX = ψ (QX,α) = α and hence
NX = (QX, qX) = Q [q]X. Moreover, given f : X → Y in Q, we have PNf = Qf = PQ [q] f.
Since P is faithful, we deduce Nf = Q [q] f and hence W = Q [q] .

2) For X ∈ Q we have GπX ◦ qX = kX ◦ FπX. Since Q [q]X := (QX, qX) and K [k]X :=
(KX, kX) , we get that πX induces π̃X : Q [q]X → K [k]X such that P π̃X = πX. The naturality
of πX induces the one of π̃X so that we get π̃ : Q [q] → K [k] such that P π̃ = π.

3) First we have

P〈F ′|G′〉 ◦ 〈φ|γ〉 ◦Q [q] = P〈F |G〉 ◦Q [q] = Q

ψ〈F ′|G′〉 (〈φ|γ〉 ◦Q [q]) =
(
γP〈F |G〉 ◦ ψ ◦ φP〈F |G〉

)
Q [q]

= γP〈F |G〉Q [q] ◦ ψQ [q] ◦ φP〈F |G〉Q [q] = γQ ◦ q ◦ φQ

so that 〈φ|γ〉 ◦Q [q] = Q [γQ ◦ q ◦ φQ] . �

Proposition 1.7. Consider the forgetful functor P = P〈F |G〉 : 〈F |G〉 → A. Let f : (A, a) → (C, c)
and g : (B, b) → (C, c) morphisms in 〈F |G〉 and let h : A → B be a morphism in A such that
Pf = Pg ◦ h. If GPg is a monomorphism, then there is a (unique) morphism h′ : (A, a) → (B, b)
such that Ph′ = h and f = g ◦ h′.

Proof. Consider the following diagram

FA

a��

Fh // FB

b��

FPg // FC
c��

GA
Gh // GB

GPg // GC

Since f is a morphism in 〈F |G〉, then the external diagram commutes, and since g is a morphism
in 〈F |G〉, so does the right square. Using that GPg is a monomorphism, we deduce that the left
square commutes as well i.e. h induces a morphism h′ : (A, a) → (B, b) such that Ph′ = h. Now
Pf = Pg ◦ h = P (g ◦ h′) and P is faithful imply f = g ◦ h′. Since P is faithful, h′ is unique. �

Example 1.8. Recall from [Pi, Definition 2.2.2], that given an endofunctor F : A → A, the
category of F -algebras (not to be confused with an Eilenberg-Moore algebra) is F -Alg = 〈F |IdA〉.

Let F,G : A → B be functors and let ǫ : F → G be a natural transformation. If B has
coequalizers we can define the functor

(3) U (ǫ) : 〈F |G〉 → B

by the following coequalizer of natural transformations

(4) FP
ψ //
ǫP

// GP
π:=π(ǫ) // U(ǫ)

2. Adjoint Triangles and Adjoint Decomposition

In this section we construct iteratively the category B[n] and an analogue of the monadic de-
composition that will be called the adjoint decomposition. Our first aim is to obtain an analogue
of the Eilenberg-Moore category. For this purpose we will use the notion of adjoint triangle.
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Definition 2.1. [Du, Definition 1] By an adjoint triangle, we mean a diagram of functors

(5)

A
Id //

ζR
��

A

R′

��
B

L

OO

G // B′

L′

OO

where (L,R, η, ǫ) and (L′, R′, η′, ǫ′) are adjunctions and GR = R′.
The letter ζ inserted in (5) is the unique natural transformation ζ : L′G→ L such that ǫ◦ζR = ǫ′

namely ζ := ǫ′L ◦L′Gη. The convention to write this natural transformation inside the respective
adjoint triangle will be useful to state our results along the paper. It is easy to check that

(6) R′ζ ◦ η′G = Gη.

Note that diagram (5) has been drawn as a square to make it more readable, although the two
copies of A on the top can be glued together to give rise, in fact, to a triangle.

Remark 2.2. As a particular case of horizontal composition of adjoint squares (see [Gra, I,6.8 ]),
we can define the (horizontal) composition T′′ := T′ ∗ T of two adjoint triangles T′ and T by

T′ :=

A
Id //

θR′′

��

A

R
��

B′′

L′′

OO

Θ // B

L

OO
T :=

A
Id //

ζR

��

A

R′

��
B

L

OO

G // B′

L′

OO
T′′ :=

A
Id //

ζ′′=θ∗ζR′′

��

A

R′

��
B′′

L′′

OO

G′′=GΘ // B′

L′

OO

where θ ∗ ζ :=
(
L′GΘ

ζΘ
→ LΘ

θ
→ L′′

)
. In fact (GΘ)R′′ = GR = R′ and

ǫ′′ ◦ (θ ∗ ζ)R′′ = ǫ′′ ◦ θR′′ ◦ ζΘR′′ = ǫ ◦ ζR = ǫ′.

To any adjoint triangle T as in (5) we would like to associate a new adjoint triangle T2 as follows

T :=

A
Id //

ζR
��

A

R′

��
B

L

OO

G // B′

L′

OO
 T2 :=

A
Id //

R(T)
��

A

R

��
I(T)

L(T)

OO

P (T) // B

L

OO
(7)

First we have to introduce the category

I (T) := 〈R′L|G〉 .

For any category A we can consider the functor

D : A → 〈IdA|IdA〉 , A 7→ (A, IdA) , h 7→ h.

If F,G : A → B, H : B → B′ and K : A′ → A are functors, we can define

SH : 〈F |G〉 → 〈HF |HG〉 , (A,αA : FA→ GA) 7→ (A,HαA : HFA→ HGA) , f 7→ f

DK : 〈FK|GK〉 → 〈F |G〉 , (A′, αA′ : FKA′ → GKA′) 7→ (KA′, αA′ : FKA′ → GKA′) , f 7→ Kf.

Given ǫ : F → G we define the functor

S (ǫ) :=

(
A

D
→ 〈IdA|IdA〉

SG

→ 〈G|G〉
〈ǫ|IdA〉
→ 〈F |G〉

)
.

Explicitly, by the notation of Lemma 1.6, we have

S (ǫ) = IdA [ǫ] : A → 〈F |G〉 , A 7→ (A, ǫA) , f 7→ f.

Let us show how S (ǫ) relates to the functor U (ǫ) of (3) in the particular case when G = IdA.

Lemma 2.3. Let F : A → A be a functor and let ǫ : F → IdA be a natural transformation.

Assume A has coequalizers. Then π (ǫ)S (ǫ) is invertible and
(
U (ǫ) ,S (ǫ) , η (ǫ) , (π (ǫ)S (ǫ))

−1
)

is an adjunction where η (ǫ) : Id〈F |IdA〉 → S (ǫ)U (ǫ) is uniquely determined by Pη (ǫ) = π (ǫ) .
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Proof. Set π := π (ǫ) . Note that ψS (ǫ) = ǫ and P ◦S (ǫ) = IdA. Thus, if we evaluate the left-hand
side coequalizer below on S(ǫ), we obtain the right-hand side one.

FP
ψ //
ǫP

// P
π // U(ǫ) F

ǫ //
ǫ

// IdA
πS(ǫ) // U(ǫ)S(ǫ)

This means πS (ǫ) is invertible. Let us check that there is η (ǫ) : Id〈F |IdA〉 → S (ǫ)U (ǫ) such
that Pη (ǫ) = π. We have

π ◦ ψ = π ◦ ǫP = ǫU (ǫ) ◦ Fπ.

Since Id〈F |IdA〉 = P [ψ] and S (ǫ)U (ǫ) = U (ǫ) [ψS (ǫ)U (ǫ)] = U (ǫ) [ǫU (ǫ)] , by Lemma 1.6 there is
a unique natural transformation η (ǫ) : Id〈F |IdA〉 → S (ǫ)U (ǫ) such that Pη (ǫ) = π. We have

Pη (ǫ)S (ǫ) = πS (ǫ) = PS (ǫ)πS (ǫ)

so that η (ǫ)S (ǫ) = S (ǫ)πS (ǫ) . Moreover

U (ǫ) η (ǫ) ◦ π = πS (ǫ)U (ǫ) ◦ Pη (ǫ) = πS (ǫ)U (ǫ) ◦ π

and hence U (ǫ) η (ǫ) = πS (ǫ)U (ǫ) . Therefore
(
U (ǫ) ,S (ǫ) , η (ǫ) , (π (ǫ)S (ǫ))−1

)
is an adjunction.

�

Lemma 2.4. Let F, F ′ : A → A be functors. Let ǫ : F → IdA and φ : F ′ → F be natural
transformations. Set ǫ′ := ǫ ◦ φ : F ′ → IdA. If A has coequalizers, we have the adjoint triangle

A
Id //

φ∗S(ǫ)
��

A

S(ǫ′)
��

〈F |Id〉

U(ǫ)

OO

〈φ|Id〉
// 〈F ′|Id〉

U(ǫ′)

OO

Moreover the natural transformation φ∗ : U (ǫ′) ◦ 〈φ|Id〉 → U (ǫ) satisfies

φ∗ ◦ π (ǫ′) 〈φ|Id〉 = π (ǫ)

and φ∗S (ǫ) ◦ π′S (ǫ′) = πS (ǫ) . In particular φ∗S (ǫ) is invertible.

Proof. By Lemma 2.3, we have that U (ǫ) ⊣ S (ǫ) and U (ǫ′) ⊣ S (ǫ′) .
Set P := P〈F |IdA〉 and P ′ := P〈F ′|IdA〉. Set also π = π (ǫ) and π′ = π (ǫ′). By Lemma 1.6, we

have

〈φ|Id〉 ◦ S (ǫ) = 〈φ|Id〉 ◦ IdA [ǫ] = IdA [ǫ ◦ φ] = IdA [ǫ′] = S (ǫ′) .

so that 〈φ|Id〉 ◦ S (ǫ) = S (ǫ′) and hence the diagram in the statement is an adjoint triangle.

By definition φ∗ = (π (ǫ′)S (ǫ′)U (ǫ))
−1

◦ U (ǫ′) 〈φ|Id〉 η (ǫ) . Then

φ∗ ◦ π′ 〈φ|Id〉 = (π′S (ǫ′)U (ǫ))
−1

◦ U (ǫ′) 〈φ|Id〉 η (ǫ) ◦ π′ 〈φ|Id〉

= (π′S (ǫ′)U (ǫ))
−1

◦ π′ 〈φ|Id〉 S (ǫ)U (ǫ) ◦ P ′ 〈φ|Id〉 η (ǫ)

= (π′S (ǫ′)U (ǫ))
−1

◦ π′S (ǫ′)U (ǫ) ◦ Pη (ǫ) = π.

Moreover

φ∗S (ǫ) ◦ π′S (ǫ′) = φ∗S (ǫ) ◦ π′ 〈φ|Id〉 S (ǫ) = (φ∗ ◦ π′ 〈φ|Id〉)S (ǫ) = πS (ǫ) .

Since π′S (ǫ′) and πS (ǫ) are invertible, then so is φ∗S (ǫ) . �

Given an adjoint triangle as in (5), assume A has coequalizers and consider the following diagram
where we apply Lemma 2.4 to the counit ǫ : LR → IdA and φ := ζR : L′R′ → LR to get the
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adjoint triangle with (ζR)∗ in the middle.

A
Id //

(ζR)∗S(ǫ)
��

A

S(ǫ′)
��

〈LR|Id〉

R(T) ))❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

U(ǫ)

OO

〈ζR|Id〉
// 〈L′R′|Id〉

U(ǫ′)

OO

I (T) = 〈R′L|G〉
L(T)

55❥❥❥❥❥❥❥❥❥❥❥❥❥

The functors L (T) and R (T) appearing in the diagram above are defined as follows

L (T) = LPI(T)

[
ζPI(T) ◦ L

′ψI(T)

]
: I (T) := 〈R′L|G〉

SL′

→ 〈L′R′L|L′G〉
〈IdL′R′L|ζ〉

→ 〈L′R′L|L〉
DL

→ 〈L′R′|IdA〉 ,

(B, b) 7→ (LB,α (B, b) := ζB ◦ L′b) , h 7→ Lh

R (T) = RP〈LR|IdA〉

[
R′ψ〈LR|IdA〉

]
: 〈LR|IdA〉

SR′

→ 〈R′LR|R′〉 = 〈R′LR|GR〉
DR

→ 〈R′L|G〉 = I (T) ,

(A,αA : LRA→ A) 7→ (RA,R′αA : R′LRA→ R′A = GRA) , f 7→ Rf.

Set

R(T) = R [R′ǫ] = R (T) ◦ S (ǫ) : A → I (T) , A 7→ (RA,R′ǫA) , f 7→ Rf,

L (T) = U (ǫ′) ◦ L (T) : I (T) → A, (B, b) 7→ U (ǫ′) (LB, ζB ◦ L′b) , h 7→ U (ǫ′) (Lh) .

Consider also the forgetful functor

P (T) = PI(T) : I (T) → B, (B, b) 7→ B, f 7→ f

and the functor

G (T) := G ◦ P (T) , I (T) → B′ : (B, b) 7→ GB, h 7→ Gh.

Note that,if we set P ′ := P〈L′R′|IdA〉, we get

P (T)R (T) = R,(8)

P ′L (T)R (T) = LR(9)

We are now ready to construct the adjoint triangle T2 announced in (7).

Proposition 2.5. Assume A has coequalizers. Given an adjoint triangle T as in (5), then

T2 :=

A
Id //

π(ǫ′)L(T)R(T)

��

A

R

��
I(T)

L(T)

OO

P (T)
// B

L

OO

is an adjoint triangle where the adjunction (L (T) ,R(T) , η (T) , ǫ (T)) is uniquely determined by
the following equalities

P (T) η (T) = Rπ (ǫ′)L (T) ◦ ηP (T) ,(10)

ǫ (T) ◦ π (ǫ′)L (T)R (T) = ǫ.(11)

Proof. Set ψ′ := ψ〈L′R′|IdA〉 and π′ := π (ǫ′) and let us construct ǫ (T).

One easily checks that L (T)R (T) = (LR) [ζR ◦ L′R′ǫ]. Moreover S (ǫ′) = IdA [ǫ′] .
Since ǫ ◦ (ζR ◦ L′R′ǫ) = ǫ′ ◦ L′R′ǫ, by Lemma 1.6, the counit ǫ : LR → IdA induces ǫ̃ :

L (T) R (T) → S (ǫ′) such that P ′ǫ̃ = ǫ. Define

ǫ (T) := (π (ǫ′)S (ǫ′))
−1

◦ U (ǫ′) ǫ̃ : L (T)R (T) → IdA.
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Now we define η (T) : IdI(T) → R(T) L (T) . One easily checks that R(T) L (T) = (RL (T)) [R′ǫL (T)]

and IdI(T) = P (T)
[
ψI(T)

]
. Set

α :=

(
P (T)

ηP (T)
−→ RLP (T) = RP ′L (T)

Rπ(ǫ′)L(T)
−→ RU(ǫ′)L (T) = RL (T)

)
.

We compute

ǫ′L (T) ◦ L′
(
Gα ◦ ψI(T)

)
= ǫ′L (T) ◦ L′Gα ◦ L′ψI(T)

= ǫ′L (T) ◦ L′GRπ (ǫ′)L (T) ◦ L′GηP (T) ◦ L′ψI(T)

= ǫ′L (T) ◦ L′R′π (ǫ′)L (T) ◦ L′GηP (T) ◦ L′ψI(T)

= π (ǫ′)L (T) ◦ ǫ′LP (T) ◦ L′GηP (T) ◦ L′ψI(T)

= π (ǫ′)L (T) ◦ ζP (T) ◦ L′ψI(T)

(∗)
= π (ǫ′)L (T) ◦ ψ′L (T)

def.π(ǫ′)
= π (ǫ′)L (T) ◦ ǫ′P ′L (T)

= π (ǫ′)L (T) ◦ ǫ′LP (T)

= π (ǫ′)L (T) ◦ ǫLP (T) ◦ LηP (T) ◦ ǫ′LP (T)

= ǫL (T) ◦ LRπ (ǫ′)L (T) ◦ LηP (T) ◦ ǫ′LP (T)

= ǫL (T) ◦ Lα ◦ ǫ′LP (T)

= ǫ′L (T) ◦ L′R′ (ǫL (T) ◦ Lα) = ǫ′L (T) ◦ L′ (R′ǫL (T) ◦R′Lα)

where (*) follows by the equality ζP (T) ◦ L′ψI(T) = ψ′L (T) that can be easily checked.

We have so proved that ǫ′L (T) ◦ L′
(
Gα ◦ ψI(T)

)
= ǫ′L (T) ◦ L′ (R′ǫL (T) ◦R′Lα) . By the ad-

junction this is equivalent to Gα ◦ ψI(T) = R′ǫL (T) ◦ R′Lα. By Lemma 1.6, the map α induces

η (T) : IdI(T) → R(T) L (T) such that P (T) η (T) = α. We compute

ǫ (T) L (T) ◦ L (T) η (T) ◦ π (ǫ′)L (T)

= (π (ǫ′)S (ǫ′) L (T))
−1

◦ U (ǫ′) ǫ̃L (T) ◦ U (ǫ′)L (T) η (T) ◦ π (ǫ′)L (T)

nat.π(ǫ′)
= (π (ǫ′)S (ǫ′) L (T))

−1
◦ π (ǫ′)S (ǫ′) L (T) ◦ P ′ǫ̃L (T) ◦ P ′L (T) η (T)

= P ′ǫ̃L (T) ◦ LP (T) η (T) = ǫL (T) ◦ Lα

= ǫL (T) ◦ LRπ (ǫ′)L (T) ◦ LηP (T)

= π (ǫ′)L (T) ◦ ǫLP (T) ◦ LηP (T) = π (ǫ′)L (T)

so that ǫ (T) L (T) ◦ L (T) η (T) = IdL(T).
We compute

P (T) (R (T) ǫ (T) ◦ η (T) R (T)) = P (T) R (T) ǫ (T) ◦ P (T) η (T) R (T)

= Rǫ (T) ◦ αR(T)

= (Rπ (ǫ′)S (ǫ′))
−1

◦RU (ǫ′) ǫ̃ ◦Rπ (ǫ′)L (T)R (T) ◦ ηP (T) R (T)

= (Rπ (ǫ′)S (ǫ′))
−1

◦Rπ (ǫ′)S (ǫ′) ◦RP ′ǫ̃ ◦ ηR

= Rǫ ◦ ηR = IdR.

We have so proved that (L (T) ,R(T) , η (T) , ǫ (T)) is an adjunction. We compute

ǫL (T) ◦ LP (T) η (T) = ǫL (T) ◦ Lα

= ǫL (T) ◦ LRπ (ǫ′)L (T) ◦ LηP (T)

= π (ǫ′)L (T) ◦ ǫLP (T) ◦ LηP (T) = π (ǫ′)L (T) .
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Thus, since P (T) R (T) = R, the diagram in the statement is an adjoint triangle and the natural
transformation inside it is the correct one. Note that (11) follows by definition of adjoint triangle
and, since π (ǫ′)L (T) R (T) is an epimorphism, it uniquely determines ǫ (T) . �

Starting from an adjunction (L,R, η, ǫ) , with R : A → B and where A has all coequalizers,
we are now able to construct a kind of monadic decomposition that will be called an adjoint

decomposition as follows, where we set L[0] := L,R[0] := R, η[0] := η, ǫ[0] := ǫ and B[0] := B.

(12)

A

R[0]

��

A

R[1]

��

Idoo A

R[2]

��

Idoo · · · · · ·
Idoo A

R[n]

��

Idoo

B[0]

π[0,1]L[0]

OO

B[1]

π[1,2]L[1]

OO

U[0,1]oo

T[0,1]

B[2]

L[2]

OO

U[1,2]oo

T[1,2]

· · · · · ·
U[2,3]oo

T[2,3]

B[n]

L[n]

OO

U[n−1,n]oo

T[n−1,n]

In the diagram above we label by T[0,1] the first adjoint triangle from left, by T[1,2] the second
one and in general by T[n−1,n] the n-th one. Denote by T[n] the composition of the first n adjoint
triangles. They are constructed iteratively as follows. The adjoint triangle T[0] is defined as in

the following diagram while, for n > 0, we set T[n−1,n] :=
(
T[n−1]

)2
(see Proposition 2.5) and

T[n] := T[n−1,n] ∗ T[n−1].

T[0] :=

A
Id //

π[0]=IdLR
��

A

R
��

B

L

OO

Id // B

L

OO
T[n] :=

A
Id //

π[n]R[n]

��

A

R

��
B[n]

L[n]

OO

U[n] // B

L

OO

Explicitly B[1] = I
(
T[0]

)
= 〈R′L|G〉 = 〈RL|IdB〉 , U[1] = U[0,1] = P

(
T[0]

)
the forgetful functor.

L
(
T[0]

)
: B[1] → 〈LR|IdA〉 , (B, b) 7→ (LB, ζB ◦ Lb) = (LB,Lb) , h 7→ Lh,

R[1] = R
(
T[0]

)
= R

(
T[0]

)
◦ S (ǫ) : A → I

(
T[0]

)
, A 7→ (RA,RǫA) , f 7→ Rf,

L[1] = L
(
T[0]

)
= U (ǫ) ◦ L

(
T[0]

)
: I

(
T[0]

)
→ A, (B, b) 7→ U (ǫ) (LB,Lb) , h 7→ U (ǫ) (Lh) ,

π[1] = π[0,1] = π (ǫ)L
(
T[0]

)
.

The unit η[1] = η
(
T[0]

)
and the counit ǫ[1] = ǫ

(
T[0]

)
of the adjunction

(
L[1], R[1]

)
are uniquely

defined by

(13) U[1]η[1] = Rπ[1] ◦ ηU[1] and ǫ[1] ◦ π[1]R[1] = ǫ = ǫ[0].

Note that for every B[1] := (B, b) ∈ B[1] we have the following coequalizer

(14) LRLB
Lb //
ǫLB

// LB
π[1]B[1] // L[1]B[1]

Next B[2] = I
(
T[1]

)
=

〈
RL[1]|U[1]

〉
, U[1,2] := P

(
T[1]

)
and U[2] = U[0,1] ◦ U[1,2]. Moreover

L
(
T[1]

)
: B[2] → 〈LR|IdA〉 :

(
B[1], b[1]

)
7→

(
L[1]B[1], π[1]B[1] ◦ Lb[1]

)
, h 7→ L[1]h,

R[2] = R
(
T[1]

)
= R

(
T[1]

)
◦ S

(
ǫ[1]

)
: A → B[2], A 7→

(
R[1]A,Rǫ[1]A

)
, f 7→ R[1]f,

L[2] = L
(
T[1]

)
= U (ǫ) ◦ L

(
T[1]

)
: B[2] → A,

(
B[1], b[1]

)
7→ U (ǫ)

(
L[1]B[1], π[1]B[1] ◦ Lb[1]

)
, h 7→ U (ǫ)

(
L[1]h

)
,

π[1,2] = π (ǫ)L
(
T[1]

)

π[2] = π[1,2] ∗ π[1,0] = π[1,2] ◦ π[1]U[1,2]
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The unit η[2] = η
(
T[1]

)
and the counit ǫ[2] = ǫ

(
T[1]

)
of the adjunction

(
L[2], R[2]

)
are uniquely

determined by

(15) U[1,2]η[2] = R[1]π[1,2] ◦ η[1]U[1,2] and ǫ[2] ◦ π[1,2]R[2] = ǫ[1]

Note that for every B[2] :=
(
B[1], b[1]

)
∈ B[2] we have the following coequalizer

LRL[1]B[1]

π[1]B[1]◦Lb[1] //
ǫL[1]B[1]

// L[1]B[1]

π[1,2]B[2] // L[2]B[2]

Finally B[n+1] = I
(
T[n]

)
=

〈
RL[n]|U[n]

〉
, U[n,n+1] = P

(
T[n]

)
and U[n+1] = U[n] ◦ U[n,n+1].

Moreover

L
(
T[n]

)
: B[n+1] → 〈LR|IdA〉 ,

(
B[n], b[n]

)
7→

(
L[n]B[n], π[n]B[n] ◦ Lb[n]

)
, h 7→ L[n]h,

R[n+1] = R
(
T[n]

)
= R

(
T[n]

)
◦ S

(
ǫ[n]

)
: A → B[n+1], A 7→

(
R[n]A,Rǫ[n]A

)
, f 7→ R[n]f,

L[n+1] = L
(
T[n]

)
= U (ǫ) ◦ L

(
T[n]

)
,

B[n+1] → A :
(
B[n], b[n]

)
7→ U (ǫ)

(
L[n]B[n], π[n]B[n] ◦ Lb[n]

)
, h 7→ U (ǫ)

(
L[n]h

)
,

π[n,n+1] = π (ǫ)L
(
T[n]

)

π[n+1] = π[n,n+1] ∗ π[n] = π[n,n+1] ◦ π[n]U[n,n+1]

The unit η[n+1] = η
(
T[n]

)
and the counit ǫ[n+1] = ǫ

(
T[n]

)
of the adjunction

(
L[n+1], R[n+1]

)
are

uniquely determined by

(16) U[n,n+1]η[n+1] = R[n]π[n,n+1] ◦ η[n]U[n,n+1] and ǫ[n+1] ◦ π[n,n+1]R[n+1] = ǫ[n]

Note that for every B[n+1] :=
(
B[n], b[n]

)
∈ B[n+1] we have the following coequalizer

(17) LRL[n]B[n]

π[n]B[n]◦Lb[n] //
ǫL[n]B[n]

// L[n]B[n]

π[n,n+1]B[n+1] // L[n+1]B[n+1]

so that

(18) π[n+1]B[n+1] ◦ Lb[n] = π[n,n+1]B[n+1] ◦ ǫL[n]B[n]

By composing the functors on the bottom of (12) and the corresponding natural transformations
one defines, for 0 ≤ t ≤ n,

U[t,n] = U[t,t+1] ◦ U[t+1,t+2] ◦ · · · ◦ U[n−2,n−1] ◦ U[n−1,n],

π[t,n] = π[n−1,n] ∗ π[n−2,n−1] ∗ · · · ∗ π[t+1,t+2] ∗ π[t,t+1]

= π[n−1,n] ◦ π[n−2,n−1]U[n−1,n] ◦ · · · ◦ π[t,t+1]U[t+1,n].

Let us give a more explicit description of objects and morphisms in the category B[n] for n ∈ N.

First B[0] = B. An object in B[1] is a pair B[1] =
(
B, b[0] : RL[0]B → B

)
where B ∈ B, b[0] ∈ B. An

object in B[2] is a pair B[2] =
(
B[1], b[1] : RL[1]B[1] → B

)
, where B[1] =

(
B, b[0]

)
∈ B[1], b[1] ∈ B.

Thus we can regard B[2] as the triple
(
B, b[0] : RL[0]B → B, b[1] : RL[1]B[1] → B

)
. Going on this

way, an object in B[n] has the form B[n] =
(
B, b[0], b[1], . . . , b[n−1]

)
where b[t] : RL[t]B[t] → B and

B[t] = U[t,n]B[n] =
(
B, b[0], b[1], . . . , b[t−1]

)
for each t ∈ {0, . . . , n− 1} .

The lower case n = 0 can also be included in the notation B[n] =
(
B, b[0], b[1], . . . , b[n−1]

)
by

thinking that the b[i]’s disappear. A datum such as
(
b[0], b[1], . . . , b[n−1]

)
is called a R-structured

sink in the literature.
A morphism f[1] : B[1] → B′

[1] in B[1] means a morphism f = U[1]f[1] : B → B′ such that

RL[0]B

b[0] ��

RL[0]f // RL[0]B
′

b′[0]��
B

f // B′
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For n > 1, a morphism f[n] : B[n] → B′
[n] in B[n] is a morphism f[n−1] = U[n−1,n]f[n] : B[n−1] →

B′
[n−1] such that

RL[n−1]B[n−1]

b[n−1]
��

RL[n−1]f[n−1] // RL[n−1]B
′
[n−1]

b′[n−1]��
B

f // B′

where f = U[n]f[n] : B → B′.

3. Comparing monadic and adjoint decompositions

Next aim is to connect the monadic and adjoint decompositions by constructing functors (Λn)n∈N

making commutative the solid faces of diagram (1) for every n ≥ 1.
To this aim we first prove some technical results needed to obtain Proposition 3.6 which is the

main tool to iteratively construct (Λn)n∈N in Remark 3.7.

Proposition 3.1. Assume A has coequalizers and consider the two adjoint triangles T, T′ and
their composition T′′ of Remark 2.2. Then there is an adjoint triangle

(19) A
Id //

U(ǫ′)θR(T′′)
��

A

R(T)
��

I(T′′)

L(T′′)

OO

I(θ) // I(T)

L(T)

OO

The functor I (θ) is defined by

I (θ) : I (T′′) → I (T) , (B′′, µ′′) 7→ (ΘB′′, µ′′ ◦R′θB′′) , f 7→ ΘP (T′′) f

and it satisfies

P (T) ◦ I (θ) = Θ ◦ P (T′′) and G (T) ◦ I (θ) = G′′ ◦ P (T′′) .

The natural transformation θ : L (T) I (θ) → L (T′′) appearing inside the adjoint triangle is defined
uniquely by U ′

[1]θ = θP (T′′), where U ′
[1] : 〈L

′R′|Id〉 → IdA is the forgetful functor.

If Θ is faithful, then so is I (θ).
If θ is invertible (resp. the identity), then so is θ.

Proof. The functor I (θ) can be more properly defined as follows

I (θ) := DΘ ◦ 〈R′θ | IdG′′〉 : I (T′′) = 〈R′L′′|G′′〉 → I (T) = 〈R′L|G〉 ,(
B′′, R′L′′B′′ µ

′′

→ G′′B′′

)
7→

(
ΘB′′, R′LΘB′′ R

′θB′′

→ R′L′′B′′ µ
′′

→ G′′B′′ = GΘB′′

)

We compute

P (T) ◦ I (θ) = P (T) ◦DΘ ◦ 〈R′θ | IdG′′〉 = Θ ◦ P〈R′LΘ|G′′〉 ◦ 〈R
′θ | IdG′′〉 = Θ ◦ P (T′′) ,

G (T) ◦ I (θ) = G ◦ P (T) ◦ I (θ) = G ◦Θ ◦ P (T′′) = G′′ ◦ P (T′′) .

Let us construct θ : L (T) I (θ) → L (T′′) . It is easy to check that

L (T) I (θ) = (LΘP (T′′))
[
ζΘP (T′′) ◦ L′ψI(T′′) ◦ L

′R′θP (T′′)
]
,

L (T′′) = (L′′P (T′′))
[
θP (T′′) ◦ ζΘP (T′′) ◦ L′ψI(T′′)

]

Since

θP (T′′) ◦
(
ζΘP (T′′) ◦ L′ψI(T′′) ◦ L

′R′θP (T′′)
)
=

(
θP (T′′) ◦ ζΘP (T′′) ◦ L′ψI(T′′)

)
◦ L′R′θP (T′′) ,

by Lemma 1.6, there is a unique θ : L (T) I (θ) → L (T′′) such that U ′
[1]θ = θP (T′′) .

Consider U (ǫ′)θ : U (ǫ′)L (T) I (θ) → U (ǫ′)L (T′′) i.e. U (ǫ′)θ : L (T) I (θ) → L (T′′) . This gives
rise the adjoint triangle (19). In fact we have

P (T) ◦ I (θ) ◦ R(T′′) = Θ ◦ P (T′′) ◦ R(T′′) = Θ ◦R′′ = R = P (T) ◦ R(T) ,
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ψI(T)I (θ)R (T′′)
(∗)
=

(
ψI(T′′) ◦R

′θP (T′′)
)
R(T′′) = ψI(T′′)R(T′′) ◦R′θP (T′′)R (T′′)

= R′ǫ′′ ◦R′θR′′ = R′ (ǫ′′ ◦ θR′′) = R′ǫ = ψI(T)R(T)

where in (∗) we used the equality ψI(T)I (θ) = ψI(T′′)◦R
′θP (T′′) which follows from the computation

ψI(T)I (θ) (B
′′, µ′′) = ψI(T)(ΘB

′′, µ′′ ◦R′θB′′) = µ′′ ◦R′θB′′ = ψI(T′′)(B
′′, µ′′) ◦R′θP (T′′) (B′′, µ′′).

By Lemma 1.6, we get I (θ) ◦R(T′′) = R (T) . Consider the morphisms in the following diagram

U(ǫ′)L(T)I(θ)R(T′′)
U(ǫ′)θR(T′′)

//

ǫ(T) ''PP
P
P
P
P
P
P
P
P
P

U(ǫ′)L(T′′)R(T′′) = L(T′′)R(T′′)

ǫ(T′′)uu❥❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

U ′
[1]L(T)I(θ)R(T

′′)

π(ǫ′)L(T)I(θ)R(T′′)
44 44❥❥❥❥❥❥❥❥❥❥❥❥❥❥

IdA

Then

ǫ (T′′) ◦ U (ǫ′)θR(T′′) ◦ π(ǫ′)L (T) I (θ)R (T′′) = ǫ (T′′) ◦ π(ǫ′)L (T′′)R (T′′) ◦ U ′
[1]θR(T′′)

(11)
= ǫ′′ ◦ θP (T′′)R (T′′) = ǫ′′ ◦ θR′′ = ǫ

(11)
= ǫ (T) ◦ π(ǫ′)L (T)R (T)

= ǫ (T) ◦ π(ǫ′)L (T) I (θ)R (T′′)

so that ǫ (T′′)◦U (ǫ′)θR(T′′) = ǫ (T) which means that U (ǫ′)θ is the correct natural transformation
to put inside the adjoint triangle.

If Θ is faithful, from P (T) ◦ I (θ) = Θ ◦ P (T′′) and the fact that P (T′′) is faithful we get that
I (θ) is faithful too.

If θ is invertible, from U[1]θ = θP (T′′) and the fact that U[1] reflects isomorphisms, we deduce
that θ is invertible as well.

If θ is the identity, then LΘ = L′′ so that, by the foregoing, we get

L (T) I (θ) (B′′, µ′′) = (LΘB′′, ζΘB′′ ◦ L′µ′′ ◦ L′R′θB′′) = (L′′B′′, θB′′ ◦ ζΘB′′ ◦ L′µ′′) = L (T′′) (B′′, µ′′) .

Hence the domain and codomain of θ (B′′, µ′′) are the same. Thus, since U ′
[1]θ (B′′, µ′′) = θB′′ =

IdL′′B′′ = U ′
[1]IdL(T′′)(B′′,µ′′) and U ′

[1] is faithful, we obtain θ (B′′, µ′′) = IdL(T′′)(B′′,µ′′). �

Proposition 3.2. Assume A has coequalizers. Given an adjoint triangle T as in (5), then

A
Id //

σ[1]R[1]

��

A

R(T)
��

B[1]

L[1]

OO

SG

// I(T)

L(T)

OO

is an adjoint triangle too. If ζR is epimorphism on each component then σ[1] is invertible.

Proof. Recall that B[1] = 〈RL | Id〉 . Note that

SGR[1]A = SG (RA,RǫA) = (RA,GRǫA) = (RA,R′ǫA) = R (T)A

and since SGR[1] and R(T) coincide also on morphisms we get they are equal. Hence we have an

adjoint triangle as in the statement where σ[1] := ǫ (T)L[1] ◦ L (T)SGη[1]. Call T′ the diagram in

the statement and let T2 be the diagram of Proposition 2.5. Since P (T) ◦ SG = U[1] we get that

T′ ∗ T2 = T[1]. Thus

π[1] = σ[1] ∗ π (ǫ
′)L (T) = σ[1] ◦ π (ǫ

′)L (T)SG.

It is easy to check that U[1] ◦ L (T) ◦ SG = L ◦ U[1]. Moreover, by definition of L (T) one gets

ψ〈L′R′|Id〉L (T) = ζP (T) ◦ L′ψI(T).

In particular

ψ〈L′R′|Id〉L (T)SG = ζP (T)SG ◦ L′ψI(T)S
G = ζU[1] ◦ L

′Gψ〈RL|Id〉
nat.ζ
= Lψ〈RL|Id〉 ◦ ζRLU[1]
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so that the following diagram of coequalizers serially commutes

L′R′P〈L′R′|Id〉L (T)SG

ζRLU[1]

��

ψ〈L′R′|Id〉L(T)SG

//

ǫ′P〈L′R′|Id〉L(T)SG

// P〈L′R′|Id〉L (T)SG

Id

��

π(ǫ′)L(T)SG

// U (ǫ′)L (T)SG = L (T)SG

σ[1]

��
LRLU[1]

Lψ〈RL|Id〉 //
ǫLU[1]

// LU[1]

π[1] // L[1]

If ζR is epimorphism on each component it is then easy to check that π (ǫ′)L (T)SG is a

coequalizer for the pair
(
Lψ〈RL|Id〉, ǫLU[1]

)
and hence σ[1] is invertible.

�

Proposition 3.3. Assume A has coequalizers. Consider the two adjoint triangles T, T′ and their
composition T′′ of Remark 2.2. Then we can define a new adjoint triangle

(20) A
Id //

θ[1]R′′
[1]

��

A

R(T)

��
B′′
[1]

L′′
[1]

OO

Θ[1] // I(T)

L(T)

OO

where

Θ[1] : B
′′
[1] → I (T) , (V ′′, µ′′) 7→ (ΘV ′′, G′′µ′′ ◦R′θV ′′) , f 7→ ΘU ′′

[1]f,

and such that

P (T)Θ[1] = ΘU ′′
[1] and G (T)Θ[1] = G′′U ′′

[1].

1) If Θ is faithful, then so is Θ[1].
2) If θ is invertible and any component of ζR is an epimorphism, then θ[1] is invertible.

Proof. By composing the two adjoint triangles obtained in Proposition 3.1 and Proposition 3.2,
the latter applied to T′′, i.e.

A
Id //

σ′′
[1]

R′′
[1]

��

A

U(ǫ′)θR(T′′)
��

Id // A

R(T)

��
B′′
[1] = 〈R′′L′′ | Id〉

L′′
[1]

OO

SG′′

// 〈G′′R′′L′′ | G′′〉 = I(T′′)

L(T′′)

OO

I(θ) // I(T)

L(T)

OO

we obtain the triangle (20) with θ[1] := σ′′
[1] ∗ U (ǫ′)θ = σ′′

[1] ◦ U (ǫ′)θSG
′′

and Θ[1] = I (θ) ◦ SG
′′

.

Explicitly for every (V ′′, µ′′) ∈ B′′
[1] we have

Θ[1] (V
′′, µ′′) = I (θ)SG

′′

(V ′′, µ′′) = I (θ) (V ′′, G′′µ′′) = (ΘV ′′, G′′µ′′ ◦R′θV ′′)

and for every morphism f ∈ B′′
[1] we have Θ[1]f = I (θ)SG

′′

f = ΘU ′′
[1]f .

If Θ is faithful, then, by Proposition 3.1, so is I (θ). Since SG
′′

acts as the identity on morphisms
it is faithful too and we get that Θ[1] is faithful as a composition of faithful functors.

Assume θ is invertible and that any component of ζR is an epimorphism. By Proposition 3.1,
θ is invertible. Now

ζ′′R′′ = (θ ∗ ζ)R′′ = θR′′ ◦ ζΘR′′ = θR′′ ◦ ζR

which is an epimorphism on each component. Thus, by Proposition 3.2, we get that σ′′
[1] is invertible.

Hence θ[1] is invertible as a composition of invertible natural transformations. �

Notation 3.4. By applying Proposition 3.3 in the particular case when G = Id, L′ = L,R′ = R,
we get the functor

Θ′
[1] : B

′′
[1] → B[1], (V ′′, µ′′) 7→ (ΘV ′′,Θµ′′ ◦RθV ′′) , f 7→ ΘU ′′

[1]f.

This functor will be used in the following section.
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Recall from Definition 1.3 that given an adjunction L ⊣ R : A → B we can consider the
category B1 of RL-algebras over B and the corresponding forgetful functor U0,1 : B1 → B. The
functor R = R0 induces the comparison functor R1 : A → B1.

Proposition 3.5. Assume A has coequalizers. Consider an adjunction L ⊣ R : A → B. Then the
inclusion functor Λ1 : B1 → B[1] gives rise to an adjoint triangle

A
Id //

λ1=IdL1R1

��

A

R[1]

��
B1

L1

OO

Λ1 // B[1] = 〈RL | Id〉

L[1]

OO

such that U[1] ◦ Λ1 = U0,1 and L[1] ◦ Λ1 = L1

Proof. Clearly B1 is a full subcategory of B[1] through Λ1 and one has Λ1 ◦R1 = R[1]. By construc-
tion of L1 and L[1], for every (B, b) in B1, we have that L[1]Λ1(B, b) = L[1](B, b) = U(ǫ)(LB,Lb)
which is the coequalizer of the pair (Lb, ǫLB) namely L1(B, b). Similarly L[1] ◦ Λ1 and L1 agree
on morphisms and hence L1 = L[1] ◦Λ1. Moreover the components of π[1]Λ1 = π1 : LU1 → L1 are
the universal morphisms defining the coequalizer L1(B, b). Note that L[1]R[1] = L[1]Λ1R1 = L1R1

and

ǫ[1] ◦ π1R1 = ǫ[1] ◦ π[1]Λ1R1 = ǫ[1] ◦ π[1]R[1]
(13)
= ǫ = ǫ1 ◦ π1R1

so that ǫ[1] = ǫ1. Note that the last equality, in the above displayed formula, is just the definition
of the counit ǫ1 of (L1, R1) . As a consequence λ1 = ǫ[1]L1 ◦ L[1]Λ1η1 = ǫ1L1 ◦ L1η1 = IdL1 . �

Proposition 3.6. Assume A has coequalizers. Consider the two adjoint triangles T, T′ and their
composition T′′ of Remark 2.2. Then we can define a new adjoint triangle

A
Id //

θ1R′′
1

��

A

R(T)
��

B′′
1

L′′
1

OO

Θ1 // I(T)

L(T)

OO

where

Θ1 : B′′
1 → I (T) , (V ′′, µ′′) 7→ (ΘV ′′, G′′µ′′ ◦R′θV ′′) , f 7→ ΘU ′′

0,1f,

is such that

P (T) Θ1 = ΘU ′′
0,1 and G (T)Θ1 = G′′U ′′

0,1.

1) If Θ is faithful, then so is Θ1.
2) Assume that θ is invertible and that any component of ζR is an epimorphism.

Then θ1 is invertible. Moreover if Θ is full, then so is Θ1 and, if Θ is injective on
objects, then so is Θ1.

Proof. Compose the adjoint triangles of Proposition 3.5 (applied to the adjunction (L′′, R′′)) and
Proposition 3.3

A
Id //

λ1=IdL′′
1R′′

1

��

A

θ[1]R′′
[1]

��

Id // A

R(T)

��
B′′
1

L′′
1

OO

Λ1 // B′′
[1] = 〈R′′L′′ | Id〉

L′′
[1]

OO

Θ[1] // I(T)

L(T)

OO

to get the adjoint triangle in the present statement. Thus Θ1 = Θ[1] ◦ Λ1 and θ1 = λ1 ∗ θ[1] =
λ1 ◦ θ[1]Λ1 = θ[1]Λ1.

If Θ is faithful, then, by Proposition 3.3, so is Θ[1]. Since the inclusion functor Λ1 is faithful it
is then clear that Θ1 is faithful too as a composition of faithful functors.

Assume that θ is invertible and that any component of ζR is an epimorphism. Still by Propo-
sition 3.3, we deduce that θ[1] is invertible. Thus θ1 = θ[1]Λ1 is invertible too.
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It remains to prove that if Θ is full, then so is Θ1. Let ξ : Θ1 (V
′′, µV ′′) → Θ1 (W

′′, µW ′′ ) be a
morphism in I (T) = 〈R′L|G〉 . This means to have a morphism h := P (T) ξ : ΘV ′′ → ΘW ′′ such
that

Gh ◦ (G′′µV ′′ ◦R′θV ′′) = (G′′µW ′′ ◦R′θW ′′) ◦R′Lh.

Since G′′ = GΘ, R = ΘR′′ and R′ = GR we can rewrite this equality as

G (h ◦ΘµV ′′ ◦ΘR′′θV ′′) = G (ΘµW ′′ ◦ΘR′′θW ′′ ◦ΘR′′Lh) .

Since Θ is full, there is a morphism g : V ′′ → W ′′ such that h = Θg so that, using G′′ = GΘ, we
can further rewrite

G′′ (g ◦ µV ′′ ◦R′′θV ′′) = G′′ (µW ′′ ◦R′′θW ′′ ◦R′′LΘg) .

By naturality of θ we have µW ′′ ◦ R′′θW ′′ ◦ R′′LΘg = µW ′′ ◦ R′′L′′g ◦ R′′θV ′′ so that, since θ is
invertible, we obtain

G′′ (g ◦ µV ′′) = G′′ (µW ′′ ◦R′′L′′g)

and hence

L′′ (g ◦ µV ′′) ◦ ζ ′′R′′L′′V ′′ nat. ζ′′

= ζ ′′W ′′ ◦ L′G′′ (g ◦ µV ′′)

= ζ′′W ′′ ◦ L′G′′ (µW ′′ ◦R′′L′′g)
nat. ζ′′

= L′′ (µW ′′ ◦R′′L′′g) ◦ ζ′′R′′L′′V ′′.

Now ζ ′′ = θ ∗ ζ = θ ◦ ζΘ so that ζ′′R′′ = θR′′ ◦ ζΘR′′ = θR′′ ◦ ζR which is an epimorphism on each
component. Thus we arrive at

L′′ (g ◦ µV ′′) = L′′ (µW ′′ ◦R′′L′′g) .

Using this equality we compute

g ◦ µV ′′ = µW ′′ ◦ η′′W ′′ ◦ g ◦ µV ′′ = µW ′′ ◦R′′L′′ (g ◦ µV ′′) ◦ η′′R′′L′′V ′′

= µW ′′ ◦R′′L′′ (µW ′′ ◦R′′L′′g) ◦ η′′R′′L′′V ′′

= µW ′′ ◦ η′′W ′′ ◦ µW ′′ ◦R′′L′′g = µW ′′ ◦R′′L′′g

This means there is a morphism g1 : (V ′′, µV ′′) → (W ′′, µW ′′ ) such that U ′′
0,1g1 = g. We have

P (T)Θ1g1 = ΘU ′′
0,1g1 = Θg = h = P (T) ξ.

Since P (T) is faithful, we deduce that Θ1g1 = ξ. Thus Θ1 is full.
Assume that Θ is injective on objects and Θ1 (V

′′, µV ′′) = Θ1 (W
′′, µW ′′) . Then we can apply

the above argument for ξ := Id. In this case h := P (T) ξ = Id : ΘV ′′ → ΘW ′′. The fact that Θ
is injective on objects tells that V ′′ = W ′′ so that we write h = Θg for g = Id (and the above
assumption that Θ is full can be dropped out). As above we arrive at g ◦ µV ′′ = µW ′′ ◦ R′′L′′g
i.e. µV ′′ = µW ′′ . We have so proved that (V ′′, µV ′′) = (W ′′, µW ′′) and hence Θ1 is injective on
objects. �

Remark 3.7. Consider an adjunction (L,R, η, ǫ) and assume A has coequalizers.
Apply Proposition 3.5 to obtain the adjoint triangle Λ[1]

Λ[1] :=

A
Id //

λ1=IdL1R1

��

A

R[1]

��
B1

L1

OO

Λ1 // B[1]

L[1]

OO

Λ[2] :=

A
Id //

λ2:=(λ1)1R2

��

A

R[2]

��
B2

L2

OO

Λ2:=(Λ1)1 // B[2]

L[2]

OO

where U[0,1]Λ1 = U0,1 and Λ1 is fully faithful and injective on objects. Recall that any component
of π[1]R[1] is an epimorphism.

Hence all the conditions in Proposition 3.6 are verified for T′ = Λ[1] and T = T[1] and we obtain
the adjoint triangle Λ[2] where λ2 : L[2]Λ2 → L2 is invertible. Moreover U[1,2]Λ2 = Λ1U1,2 and
U[2]Λ2 = U[0,1]Λ1U1,2 i.e. U[0,2]Λ2 = U0,1U1,2 = U0,2. Furthermore Λ2 is fully faithful and injective
on objects. Recall that any component of π[2]R[2] is an epimorphism.
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Going on this way we construct iteratively (Λn)n∈N such that Λ0 := Id and U[n−1,n]Λn =
Λn−1Un−1,n, for every n ≥ 1. Moreover λn : L[n]Λn → Ln is invertible, U[0,n]Λn = U0,n for every
n ∈ N and Λn is fully faithful and injective on objects.

Remark 3.8. Note that, by construction Λn is defined as follows

Λn : Bn → B[n],
(
Vn−1, µn−1

)
7→

(
Λn−1Vn−1, U[n−1]Λn−1µn−1 ◦Rλn−1Vn−1

)
, f 7→ Λn−1Un−1,nf

i.e.

Λn : Bn → B[n],
(
Vn−1, µn−1

)
7→

(
Λn−1Vn−1, Un−1µn−1 ◦Rλn−1Vn−1

)
, f 7→ Λn−1Un−1,nf.

Since Λn : Bn → B[n] is fully faithful, we get that Bn is equivalent to the essential image of Λn.
Later on we will look for handy criteria for an object in B[n] to belong to the image of Λn.

4. Relative Grothendieck fibrations

In order to deduce properties of the functors Λn, a relative version of the notion of Grothendieck
fibration is needed. We collect here its definition and properties.

Definition 4.1. Let F : A → B be a functor and let M be a class of morphisms in B.
We say that a morphism f ∈ A is cartesian (with respect to F ) over a morphism f ′ ∈ B

whenever Ff = f ′ and given g ∈ A and h ∈ B such that Ff ◦ h = Fg, then there exists a unique
morphism k ∈ A such that Fk = h and f ◦ k = g, [Bo2, Definition 8.1.2].

FZ
h

vv❧❧❧
❧❧
❧❧
❧❧
❧

Fg��
FX Ff // FY

Z
k

ww
g
��

X f // Y

We say that F is an M-fibration if every morphism f ′ : B → FA in M there is f : A′ → A which
is cartesian over f ′. When M is the class of all morphisms in B we recover the notion of fibration,
see [Bo2, Definition 8.1.3].

Remark 4.2. A morphism f : X → Y is cartesian over Ff if and only if following diagram is a
pullback for every object Z, where the vertical maps are obtained by evaluating F .

Hom(Z,X)

FZ,X ��

Hom(Z,f) // Hom(Z, Y )

FZ,Y��
Hom(FZ, FX)

Hom(FZ,Ff)// Hom(FZ, FY )

In fact the map Hom(Z,X) → Hom(Z, Y ) ×Hom(FZ,FY ) Hom(FZ, FX) : k 7→ (f ◦ k, Fk) into the
pullback becomes bijective. This fact is well-known, see e.g. [St, Definition 4.32.1].

Lemma 4.3 (Cf. [Vi, Proposition 3.4(ii)]). Being cartesian is transitive.

Proof. Since the vertical composition of pullbacks is a pullback ([Bo1, Proposition 2.5.9]), it follows
from Remark 4.2. �

Recall that an isofibration (called transportable functor in [Gro, Corollaire 4.4]) is a functor
F : A → B such that for any object A ∈ A and any isomorphism f ′ : B → FA, there exists an
isomorphism f : A′ → A such that Ff = f ′. A discrete isofibration is an isofibration such that
f is unique (see [LP, page 13]).

It is known that every fibration is an isofibration. Let us prove a relative version of this result.

Proposition 4.4. Let Iso be the class of all isomorphisms in B. Then F : A → B is an Iso-fibration
if and only if it is an isofibration.

Proof. (⇒) Let f ′ : B → FA be any isomorphism. Then f ′ ∈ Iso. Since F is an Iso-fibration we
have that there is f : A′ → A which is cartesian over f ′. In particular Ff = f ′ and FA′ = B.

From Ff ◦ (f ′)
−1

= F IdA we deduce that there exists a unique morphism k : A → A′ such that

Fk = (f ′)
−1

and f ◦k = IdA. Similarly, from Ff ◦IdB = Ff, we get a unique morphism λ : A′ → A′
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such that Fλ = IdB and f ◦λ = f. Since F (k ◦ f) = Fk◦Ff = (f ′)
−1

◦f ′ = Id and f ◦(k ◦ f) = f ,
we get λ = k ◦ f. On the other hand since F IdA′ = IdB and f ◦ IdA′ = f we also have λ = IdA′ .
Hence k ◦ f = Id. We have so proved that f is an isomorphism. Thus F is an isofibration.

(⇐) Let f ′ : B → FA be in Iso. Then it is an isomorphism. Since F is an isofibration there
is there exists an isomorphism f : A′ → A such that Ff = f ′. Let g ∈ A and h ∈ B such that
Ff ◦ h = Fg. Then we can take k = f−1 ◦ g to get Fk = F

(
f−1

)
◦ F (g) = F

(
f−1

)
◦ Ff ◦ h = h

and f ◦ k = g. On the other hand any morphism k such that Fk = h and f ◦ k = g, from the latter
equality is f−1 ◦ g. We have so proved that f is cartesian over f ′. Hence F is an M-fibration. �

Corollary 4.5. If M ⊇ Iso and F : A → B is an M-fibration then F is an isofibration.

Proof. Clearly from M ⊇ Iso we deduce that F is M-fibration implies F is an Iso-fibration. By
Proposition 4.4, F is an isofibration. �

Remark 4.6. If F is an isofibration which is faithful and injective on objects then F is a discrete
isofibration. In fact, if there is another t : A′′ → A such that Ft = f ′, then FA′′ = B = FA′ so
that A = A′. Moreover Ft = f ′ = Ff so that t = f. Hence f is unique.

Definition 4.7. Given a functor F : A → B, if we define the image of F , denoted by Im (F ), as
the class of objects in B of the form FA for some A ∈ A together with the class of morphisms in
B of the form Ff for some f ∈ A, it is not necessarily true that Im (F ) is a subcategory of B in
general. However this holds in some particular cases e.g. when F is either injective on objects, see
e.g. [Mi, page 62], or full, see Lemma 4.8 below.

In general we can consider the following categories.

• Eim (F ) , the essential image of F, i.e. the full subcategory of B whose objects are those
isomorphic to FA for some A ∈ A.

• Im′ (F ) , i.e. the full subcategory of B whose objects are of the form FA for some A ∈ A.

Clearly Im (F ) ⊆ Im′ (F ) ⊆ Eim (F ) hold always.

Lemma 4.8. Let F : A → B be a functor.

1) If F is an isofibration then Eim (F ) ⊆ Im′ (F ) .
2) If F is full then Im (F ) is a category and Im′ (F ) = Im (F ) .

Proof. 1). Given an object B in Eim(F ) then B ∈ B is endowed with an isomorphism f ′ : B → FA
for some A ∈ A. Since F is an isofibration we get an isomorphism f : A′ → A such that Ff = f ′.
In particular FA′ = B whence B ∈ Im (F ) . Since Eim (F ) and Im′ (F ) ar both full subcategories
of B we get Eim (F ) ⊆ Im′ (F ) .

2). Let g : FA′ → FA be a morphism in Im′ (F ) . Since F is full, there is f : A′ → A such that
g = Ff. Then g is a morphism in Im (F ). As a consequence, the composition in Im′ (F ) of two
morphisms in Im (F ) lies in Im (F ) too. Since Im′ (F ) and Im (F ) have the same objects we get
Im′ (F ) ⊆ Im (F ) and hence the equality. �

Lemma 4.9. Let F : A → B be a fully faithful functor. Then F is an M-fibration if and only if for
every morphism f ′ : B → FA in M there is A′ ∈ A such that FA′ = B.

Proof. Assume that for every morphism f ′ : B → FA in M there is A′ ∈ A such that FA′ = B.
Since F is fully faithful there is f : A′ → A such that Ff = f ′. In order to prove that

f : A′ → A is cartesian over f ′, let g : C → A in A and h : FC → FA′ in B such that Ff ◦h = Fg.
Since F is fully faithful there exists a unique morphism k ∈ A such that Fk = h and from
Ff ◦ h = Fg and faithfulness of F we conclude that f ◦ k = g as desired. �

Remark 4.10. Proposition 1.7 states that a morphism g ∈ 〈F |G〉 is cartesian over Pg whenever
GPg is a monomorphism. In other words any morphism g ∈ M (GP ) is cartesian over Pg where

M (F ) = {f ∈ A | Ff is a monomorphism} .

Proposition 4.11. For every n ∈ N, every morphism g ∈ M
(
U[n]

)
is cartesian over U[n]g.
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Proof. We proceed by induction on n ∈ N. The first step is trivially true since U[0] = IdB.

Let n ≥ 1 and assume the statement true for n − 1. Let g be a morphism in M
(
U[n]

)
. Since

U[n] = U[n−1]U[n−1,n] we get that U[n−1,n]g ∈ M
(
U[n−1]

)
. By inductive hypothesis we have that

U[n−1,n]g is cartesian over U[n−1]U[n−1,n]g = U[n]g. By Lemma 4.3, it remains to prove that g is

cartesian over U[n−1,n]g in order to conclude. To this aim observe that U[n−1,n] = P
(
T[n−1]

)
.

Thus, by Remark 4.10 applied to P = P
(
T[n−1]

)
, F = RL[n−1], G = U[n−1], we get that g is

cartesian over U[n−1,n]g as g ∈ M
(
U[n−1]U[n−1,n]

)
. �

The following result provides a characterization in term of suitable pullbacks for a morphism to
be cartesian with respect to an adjoint functor. It will not be used in the sequel but we think it
might be of some intrinsic interest.

Proposition 4.12. Let (L,R) , with R : A → B, be an adjunction with unit η and counit ǫ.

(1) A morphism f is cartesian with respect to L over Lf if and only if the following diagram
is a pullback.

(21) X
y

ηX ��

f // Y
ηY��

RLX
RLf // RLY

(2) A morphism f is cartesian with respect to R over Rf if and only if ǫZ⊥f (that is ǫZ and f
are orthogonal) for every Z ∈ A i.e. any commutative diagram as follows admits a unique
diagonal filler k making both triangles commute.

(22) LRZ

u ��

ǫZ // Z
v��

k

vv
X

f
// Y

Proof. (1) . Assume that f : X → Y is cartesian over Lf and let us prove that (21) is a pullback.
Let u : Z → Y and v : Z → RLX be such that ηY ◦ u = RLf ◦ v. We have

Lf ◦ ǫLX ◦Lv = ǫLY ◦LRLf ◦Lv = ǫLY ◦L (RLf ◦ v) = ǫLY ◦L (ηY ◦ u) = ǫLY ◦LηY ◦Lu = Lu

so that the following diagram commutes.

LZ

Lu��
ǫLX◦Lv

uu
LX

Lf
// LRLY

Since f is cartesian over Lf, there is a unique k : Z → X such that Lk = ǫLX ◦ Lv and
f ◦ k = u. The condition Lk = ǫLX ◦ Lv, via the adjunction isomorphism, is equivalent to
RLk ◦ ηZ = R (ǫLX ◦ Lv) ◦ ηZ i.e. ηX ◦ k = RǫLX ◦ RLv ◦ ηZ i.e. ηX ◦ k = RǫLX ◦ ηRLX ◦ v
i.e. ηX ◦ k = v. Thus there is a unique k : Z → X such that ηX ◦ k = v and f ◦ k = u. In other
words (21) is a pullback.

Conversely assume that (21) is a pullback and let us prove that f : X → Y is cartesian over
Lf . Let u : Z → Y and h : LZ → LX be such that Lf ◦ h = Lu. Set v := Rh ◦ ηZ. Then

RLf ◦ v = RLf ◦Rh ◦ ηZ = RLu ◦ ηZ = ηY ◦ u.

By the universal property of the pullback there is a unique morphism k : Z → X such that
ηX ◦ k = v and f ◦ k = u. The condition ηX ◦ k = v, via the adjunction isomorphism, is
equivalent to ǫLX ◦ L (ηX ◦ k) = ǫLX ◦ Lv i.e. ǫLX ◦ LηX ◦ Lk = ǫLX ◦ L (Rh ◦ ηZ) i.e.
Lk = ǫLX ◦ LRh ◦ LηZ = h ◦ ǫLZ ◦ LηZ = h. Thus there is a unique morphism k : Z → X such
that Lk = h and f ◦ k = u. In other words f is cartesian over Lf.

(2) . Assume that f : X → Y is cartesian over Rf and let us prove that ǫZ⊥f . Consider a
commutative square as in (22). Set h := Ru◦ηRZ. Then Rf◦h = Rf◦Ru◦ηRZ = Rv◦RǫZ◦ηRZ =
Rv. Since f is cartesian overRf, there is a unique k : Z → X such that Rk = h and f◦k = v. By the
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adjunction, the condition Rk = h is equivalent to ǫX◦LRk = ǫX◦Lh i.e. k◦ǫZ = ǫX◦L (Ru ◦ ηRZ)
i.e. k ◦ ǫZ = u ◦ ǫLRZ ◦ LηRZ = u. Thus there is a unique k : Z → X such that k ◦ ǫZ = u and
f ◦ k = v. Hence ǫZ and f are orthogonal.

Conversely suppose ǫZ⊥f and let us prove f is cartesian over Rf. Let v : Z → Y and h :
RZ → RX be such that Rf ◦ h = Rv. By the adjunction the later equality is equivalent to
ǫY ◦ L (Rf ◦ h) = ǫY ◦ LRv i.e. f ◦ ǫX ◦ Lh = v ◦ ǫZ. Thus, if we set u := ǫX ◦ Lh, by the
orthogonality there is a unique morphism k : Z → X such that k ◦ ǫZ = u and f ◦ k = v.
By the adjunction the condition k ◦ ǫZ = u is equivalent to R (k ◦ ǫZ) ◦ ηRZ = Ru ◦ ηRZ i.e.
Rk ◦ RǫZ ◦ ηRZ = R (ǫX ◦ Lh) ◦ ηRZ i.e. Rk = RǫX ◦ RLh ◦ ηRZ = RǫX ◦ ηRX ◦ h = h. Thus
there is a unique k : Z → X such that k ◦ ǫZ = u and Rk = h i.e. f is cartesian over Rf.

A somewhat faster proof could be obtained by applying Remark 4.2.
If F = L or F = R we can rewrite the corresponding pullback by means of the adjunction

obtaining respectively the diagrams

Hom(Z,X)

Hom(Z,ηX)
��

Hom(Z,f) // Hom(Z, Y )

Hom(Z,ηY )
��

Hom(Z,RLX)
Hom(Z,RLf)// Hom(Z,RLY )

Hom (Z,X)

Hom(ǫZ,X)
��

Hom(Z,f) // Hom(Z, Y )

Hom(ǫZ,Y )
��

Hom(LRZ,X)
Hom(LRZ,f)// Hom(LRZ, Y )

The fact that the left-hand side diagram is a pullback means that (21) is a pullback, while the
fact that the right-hand side diagram is a pullback means that ǫZ⊥f. �

Next lemma will be used in order to prove Theorem 4.18 that is our main tool to get Theorem
4.19 where the embedding Λn is shown to be an M

(
U[n]

)
-fibration.

Lemma 4.13. The functor Λ1 : B1 → B[1] of Remark 3.7 is an M
(
U[1]

)
-fibration.

Proof. Let f[1] : B[1] → Λ1C1 be a morphism in M
(
U[1]

)
i.e. such that U[1]f[1] is a monomorphism.

Since Λ1 is fully faithful, in order to conclude, by Lemma 4.9, it suffices to prove that there is
B1 ∈ B1 such that Λ1B1 = B[1].

Write B[1] = (B, b : RLB → B) , C1 = (C, c : RLC → C) and note that C[1] := Λ1C1 =
(C, c : RLC → C) this time regarded as an object in B[1]. Set f := U[1]f[1] : B → C and con-
sider the following diagrams.

RLRLB

RLRLf

��

RLb //
RǫLB

// RLB

RLf

��

b // B

f

��
RLRLC

RLc //
RǫLC

// RLC
c // C

B

f

��

ηB // RLB

RLf

��

b // B

f

��
C

ηC // RLC
c // C

The left-hand side one serially commutes since f induces the morphism f[1] and by naturality of
ǫ. Since C1 ∈ B1, we also have that c ◦ RLc = c ◦ RǫLC. Since f is a monomorphism, we deduce
that b◦RLb = b◦RǫLB. A similar argument as above, but applied on the right-hand side diagram,
shows that b ◦ ηB = IdB. This means that B1 := (B, b : RLB → B) ∈ B1. By definition of Λ1, we
have that Λ1B1 = B[1]. �

The following lemma will be central in order to prove Propositions 4.15 and Proposition 4.16.

Lemma 4.14. 1) Let F : A → B be a functor and let f ∈ M (F ) be cartesian over Ff. Then f is a
monomorphism.

2) Let F : A → B be an M (G)-fibration. Then any morphism f ∈ M (F ) ∩M (GF ) factors as
f = g ◦ k, where g is a monomorphism and Fk = Id.

Proof. 1) Let f : A → A′ in M (F ) be cartesian over Ff. By definition of M (F ) we have that Ff
is a monomorphism. Let a, b : A′′ → A be such that f ◦ a = f ◦ b. Then Ff ◦ Fa = Ff ◦ Fb. Since
Ff is a monomorphism, we get Fa = Fb. Call h this morphism and g := f ◦ a. Then Ff ◦ h = Fg.
Since f is cartesian over Ff , there exists a unique morphism k ∈ A such that Fk = h and f ◦k = g.
Hence a = k = b.
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2) Let f : A→ A′ be in M (F ) ∩M (GF ). Then Ff and GFf are both monomorphisms.
In particular f ′ := Ff : FA → FA′ is in M (G) so that, by definition of M (G)-fibration, there

is g : E → A′ which is cartesian over f ′. Since Fg ◦ IdFA = Ff, there is a unique k : A→ E such
that Fk = IdFA and g ◦ k = f.

Moreover g ∈ M (F ) is cartesian over Fg so that, by 1), we get that g is a monomorphism. �

We are now going to prove Propositions 4.15, Proposition 4.16 and Theorem 4.17. These results
will be used to obtain Theorem 4.18.

Proposition 4.15. In the setting of Proposition 3.2, assume that any morphism g ∈ M (G) is
cartesian over Gg. Then for every morphism f ′ : (B, β) → SGC[1] in M (GP (T)) there is a

morphism f : B[1] → C[1] in M
(
GU[1]

)
which is cartesian with respect to SG : B[1] = 〈RL | Id〉 →

〈GRL | G〉 = I (T) over f ′. In particular SG is an M (G ◦ P (T))-fibration.

Proof. Let f ′ : (B, β) → SGC[1] be a morphism in M (GP (T)), in particular it is a morphism in

I (T) . Write C[1] = (C, c : RLC → C) so that SGC[1] = (C,Gc) . The fact that f ′ is a morphism
I (T) means that the following left-hand side diagram commutes

(23) GRLB

β ��

GRLP (T)f ′

// GRLC

Gc��
GB

GP (T)f ′

// GC

RLB

b ��

RLP (T)f ′

// RLC
c��

B
P (T)f ′

// C

Since f ′ ∈ M (GP (T)) , we get P (T) f ′ ∈ M (G) . By hypothesis P (T) f ′ is cartesian with respect
to G over GP (T) f ′. As a consequence the diagram on the left above implies there is a unique
morphism b : RLB → B such that Gb = β and the right-hand side diagram in (23) commutes.

Set B[1] = (B, b) ∈ B[1]. Then the last diagram means that there is a unique morphism f :
B[1] → C[1] such that U[1]f = P (T) f ′. Hence GU[1]f = GP (T) f ′ is a monomorphism so that

f ∈ M
(
GU[1]

)
.

Let us check that f is cartesian with respect to SG over f ′.
Note that SGB[1] = (B,Gb) = (B, β) so that SGf has the same domain and codomain of

f ′ : (B, β) → SGC[1]. Thus we get the equality SGf = f ′ by the following computation

P (T)SGf = U[1]f = P (T) f ′

and the fact that P (T) is faithful. Consider g[1] and h as in the following left-hand side diagram.

SGD[1]

h

vv❧❧❧❧
❧❧
❧❧
❧❧

SGg[1]��
SGB[1]

SGf // SGC[1]

U[1]D[1]
P (T)h

uu❦❦❦❦
❦❦
❦❦
❦❦

U[1]g[1]
��

U[1]B[1]

U[1]f // U[1]C[1]

By applying P (T) we get the right-hand side diagram above. We know that U[1]f = P (T) f ′ ∈
M (G) . Then, by hypothesis U[1]f is then cartesian with respect to G over GU[1]f. Thus, by Lemma

4.14, we get that U[1]f is a monomorphism. Thus f ∈ M
(
U[1]

)
. By Proposition 4.11, we get that

f is cartesian over U[1]f. As a consequence, the right-hand side diagram above implies there is a
unique morphism d[1] : D[1] → B[1] such that U[1]d[1] = P (T) h and f ◦ d[1] = g[1]. Note that

P (T)SGd[1] = U[1]d[1] = P (T)h

and hence SGd[1] = h. It remains to prove the uniqueness of d[1]. If there is another k[1] : D[1] → B[1]

such that SGk[1] = h and f ◦ k[1] = g[1]. Then

U[1]k[1] = P (T)SGk[1] = P (T)h = U[1]d[1]

so that k[1] = d[1] as U[1] is faithful. �

Consider now the functor Θ′
[1] : B

′′
[1] → B[1] introduced in Notation 3.4.

Proposition 4.16. Consider two adjoint triangles T and T′ as in Remark 2.2. Assume that

• any morphism g ∈ M (G) is cartesian over Gg;
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• Θ : B′′ → B is an M (G)-fibration,
• θ is invertible.

Then for every morphism f : B[1] → Θ′
[1]C

′′
[1] in M

(
GU[1]

)
there is f ′′

[1] : B
′′
[1] → C′′

[1] in M

(
U ′′
[1]

)

which is cartesian with respect to Θ′
[1] over f. In particular Θ′

[1] : B
′′
[1] → B[1] is an M

(
GU[1]

)
-

fibration.

Proof. Let f : B[1] → Θ′
[1]C

′′
[1] be a morphism in M

(
GU[1]

)
. Write B[1] = (B, b : RLB → B) and

C′′
[1] = (C′′, c′′ : R′′L′′C′′ → C′′) . By definition of Θ′

[1], we have

Θ′
[1]C

′′
[1] = Θ′

[1] (C
′′, c′′) = (ΘC′′,Θc′′ ◦RθC′′) .

The fact that f ∈ B[1] means that the first diagram in (24) commutes.
(24)

RLB

b ��

RLU[1]f // RLΘC′′

Θ(c′′◦R′′θC′′) ��
B

U[1]f
// ΘC′′

ΘR′′LΘB′′

b ��

ΘR′′LΘf ′′

// ΘR′′LΘC′′

Θ(c′′◦R′′θC′′) ��
ΘB′′

Θf ′′
// ΘC′′

R′′LΘB′′

τ ′′
��

R′′LΘf ′′

// R′′LΘC′′

c′′◦R′′θC′′
��

B′′

f ′′
// C′′

Since f ∈ M
(
GU[1]

)
, we have that U[1]f ∈ M (G) . Since Θ : B′′ → B is an M (G)-fibration,

there is a morphism f ′′ : B′′ → C′′ which is cartesian (with respect to Θ) over U[1]f. In particular
ΘB′′ = B and Θf ′′ = U[1]f. Note that R = ΘR′′ so that the first diagram in (24) rewrites as
the second one therein. Since f ′′ is cartesian (with respect to Θ) over U[1]f = Θf ′′, this diagram
implies there is a unique morphism τ ′′ : R′′LB → B′′ such that Θτ ′′ = b and the third diagram in
(24) commutes.

Set b′′ := τ ′′ ◦ (R′′θB′′)
−1

and B′′
[1] := (B′′, b′′) Then

f ′′ ◦ b′′ ◦R′′θB′′ = f ′′ ◦ τ ′′ = c′′ ◦R′′θC′′ ◦R′′LΘf ′′ = c′′ ◦R′′L′′f ′′ ◦R′′θB′′

and hence f ′′◦b′′ = c′′◦R′′L′′f ′′. As a consequence f ′′ induces a morphism f ′′
[1] : (B

′′, b′′) → (C′′, c′′)

such that U ′′
[1]f

′′
[1] = f ′′. We compute

U[1]Θ
′
[1]f

′′
[1] = ΘU ′′

[1]f
′′
[1] = Θf ′′ = U[1]f

Since

Θ′
[1]B

′′
[1] = (ΘB′′,Θb′′ ◦RθB′′) = (ΘB′′,Θ(b′′ ◦R′′θB′′)) = (ΘB′′,Θτ ′′) = (B, b) = B[1]

we have that Θ′
[1]f

′′
[1] and f have the same domain (and codomain). Since U[1] is faithful, we get

Θ′
[1]f

′′
[1] = f.

Since U[1]Θ
′
[1]f

′′
[1] = U[1]f ∈ M (G) , by hypothesis U[1]Θ

′
[1]f

′′
[1] is cartesian over GU[1]Θ

′
[1]f

′′
[1]. By

Lemma 4.14, we deduce that U[1]Θ
′
[1]f

′′
[1] is a monomorphism. Since U[1]Θ

′
[1] = ΘU ′′

[1], we get that

U ′′
[1]f

′′
[1] ∈ M (Θ) . The latter morphism is f ′′ which is cartesian (with respect to Θ) over Θf ′′.

Again, by Lemma 4.14, we deduce that f ′′ = U ′′
[1]f

′′
[1] is a monomorphism i.e. f ′′

[1] : B
′′
[1] → C′′

[1] in

M

(
U ′′
[1]

)
as desired.

Let us check that f ′′
[1] : B

′′
[1] → C′′

[1] is cartesian with respect to Θ′
[1] over f.

Let g′′[1] : D
′′
[1] → C′′

[1] in B′′
[1] and h : Θ′

[1]D
′′
[1] → B[1] in B[1] be such that Θ′

[1]f
′′
[1] ◦ h = Θ′

[1]g
′′
[1].

By applying on both sides U[1], we get U[1]Θ
′
[1]f

′′
[1] ◦U[1]h = U[1]Θ

′
[1]g

′′
[1] i.e. Θf ′′ ◦U[1]h = ΘU ′′

[1]g
′′
[1].

Since f ′′ : B′′ → C′′ is cartesian over U[1]f = Θf ′′, we get that there is a unique morphism
k′′ : D′′ → B′′ in B′′ such that U[1]h = Θk′′ and f ′′ ◦ k′′ = U ′′

[1]g
′′
[1]. Let us check that k′′ induces

a morphism k′′[1] : D′′
[1] → B′′

[1] such that Θ′
[1]k[1] = h. Write D′′

[1] = (D′′, d′′ : R′′L′′D′′ → D′′) .

Knowing that f ′′ ◦ b′′ = c′′ ◦R′′L′′f ′′ and that g′′[1] : D
′′
[1] → C′′

[1] belongs to B′′
[1], we obtain

f ′′ ◦ b′′ ◦R′′L′′k′′ = c′′ ◦R′′L′′f ′′ ◦R′′L′′k′′ = c′′ ◦R′′L′′U ′′
[1]g

′′
[1] = U ′′

[1]g
′′
[1] ◦ d

′′ = f ′′ ◦ k′′ ◦ d′′.
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Since we proved that f ′′ is a monomorphism, we get that b′′ ◦R′′L′′k′′ = k′′ ◦d′′ i.e. that k induces
a morphism k′′[1] : D

′′
[1] → B′′

[1] such that U ′′
[1]k

′′
[1] = k′′. We have

U[1]Θ
′
[1]k

′′
[1] = ΘU ′′

[1]k
′′
[1] = Θk′′ = U[1]h.

Since Θ′
[1]B

′′
[1] = B[1] we have that Θ′

[1]k
′′
[1] and h have the same domain and codomain. Since U[1]

is faithful, we obtain that Θ[1]k
′′
[1] = h. Moreover

U ′′
[1]

(
f ′′
[1] ◦ k

′′
[1]

)
= U ′′

[1]f
′′
[1] ◦ U

′′
[1]k

′′
[1] = f ′′ ◦ k′′ = U ′′

[1]g
′′
[1].

Since U ′′
[1] is faithful, we get f ′′

[1] ◦ k
′′
[1] = g′′[1]. Moreover k′′[1] is unique since U ′′

[1] is faithful and f ′′ is

a monomorphism. We have so proved that f ′′
[1] : B

′′
[1] → C′′

[1] is cartesian over f. �

Theorem 4.17. In the setting of Proposition 3.6, assume that

• any morphism g ∈ M (G) is cartesian over Gg;
• Θ : B′′ → B is an M (G)-fibration,
• θ is invertible.

Then for every morphism f ′ : (B, β) → Θ[1]C
′′
[1] in M (G ◦ P (T)) there is f[1] : B

′′
[1] → C′′

[1] in

M

(
U ′′
[1]

)
which is cartesian with respect to Θ[1] over f ′. In particular Θ[1] : B′′

[1] → I (T) is an

M (G ◦ P (T))-fibration.

Proof. First note that Θ[1] = SGΘ′
[1] as they coincide on morphisms and for everyC′′

[1] = (C′′, c′′ : R′′L′′C′′ → C′′) ∈

B′′
[1], we have

Θ[1]C
′′
[1] = Θ[1] (C

′′, c′′) = (ΘC′′, G′′c′′ ◦R′θC′′) = (ΘC′′, GΘc′′ ◦GRθC′′)

= SG (ΘC′′,Θc′′ ◦RθC′′) = SGΘ′
[1]C

′′
[1].

Let f ′ : (B, β) → Θ[1]C
′′
[1] in M (G ◦ P (T)). Since Θ[1]C

′′
[1] = SGΘ′

[1]C
′′
[1], by Proposition 4.15,

there is a morphism f : B[1] → Θ′
[1]C

′′
[1] in M

(
GU[1]

)
which is cartesian with respect to SG over f ′.

By Proposition 4.16, there is f ′′
[1] : B

′′
[1] → C′′

[1] in M

(
U ′′
[1]

)
which is cartesian with respect to Θ′

[1]

over f. By Lemma 4.3, the morphism f ′′
[1] is cartesian with respect to Θ[1] = SGΘ′

[1] over f ′. �

Theorem 4.18. In the setting of Proposition 3.6, assume that

• any morphism g ∈ M (G) is cartesian over Gg;
• Θ : B′′ → B is an M (G)-fibration,
• θ is invertible.

Then Θ1 : B′′
1 → I (T) is an M (G ◦ P (T))-fibration.

Proof. Let f ′ : (B, β : R′LB → GB) → Θ1C
′′
1 be a morphism in M (G ◦ P (T)) i.e. a mor-

phism in I (T) such that GP (T) f ′ : GB → GP (T)Θ1C
′′
1 = GΘC′′ is a monomorphism, where

C′′
1 = (C′′, c′′ : R′′L′′C′′ → C′′) . Since Θ1 = Θ[1]Λ1, by Theorem 4.17, there is a morphism

f[1] : (B′′, b′′) → (C′′, c′′) in M

(
U ′′
[1]

)
which is cartesian with respect to Θ[1] over f ′. In par-

ticular Θ[1] (B
′′, b′′) = (B, β) and Θ[1]f[1] = f ′. Since f[1] ∈ M

(
U ′′
[1]

)
, by Lemma 4.13, there is

f1 : B′′
1 → C′′

1 which is cartesian with respect to Λ1 : B1 → B[1] over f[1]. We compute

Θ1f1 = Θ[1]Λ1f1 = Θ[1]f[1] = f ′.

Since f1 is cartesian with respect to Λ1 over f[1] and f[1] is cartesian with respect to Θ[1] over f ′,
by Lemma 4.3, f1 is cartesian with respect to Θ1 = Θ[1]Λ1 over f ′. �

Theorem 4.19. Let n ∈ N. The functor Λn : Bn → B[n] of Remark 3.7 is an M
(
U[n]

)
-fibration.

Moreover it is a discrete isofibration and Eim(Λn) = Im (Λn) = Im′ (Λn) (see Definition 4.7).
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Proof. We proceed by induction on n ∈ N. The first step is trivially true since Λ0 = IdB = U[0].
Let n ≥ 1 and assume the statement true for n − 1. Apply Theorem 4.18 to Θ := Λn−1, G :=

U[n−1],T = T[n−1], T
′ = Λ[n−1] by noting that Λn = (Λn−1)1, that Θ fulfills the required conditions

by inductive hypothesis, G also fulfills them by Proposition 4.11 and θ = λn−1 is invertible by
Remark 3.7. Thus Λn is an M

(
U[n]

)
-fibration. i Any isomorphism in B[n] belongs trivially to

M
(
U[n]

)
. Moreover, by Remark 3.7, we know that Λn is (fully) faithful and injective on objects.

Thus we can apply Corollary 4.5 and Remark 4.6 to obtain that Λn is a discrete isofibration. From
Lemma 4.8 and the fact that Λn is full, we get that Eim (Λn) ⊆ Im′ (Λn) = Im (Λn) . We know
that Im (Λn) ⊆ Eim(Λn) holds always. �

The following result gives conditions for an object in B[n] to be image via Λn of an object in Bn.

Theorem 4.20. Fix n ∈ N consider the functors Λn : Bn → B[n] and U[n] : B[n] → B.

1) For every morphism B[n] → ΛnCn in M
(
U[n]

)
we have B[n] ∈ Im (Λn) .

2) Let B[n] ∈ B[n] be such that η[n]B[n] is in M
(
U[n]

)
. Then B[n] ∈ Im (Λn) .

3) Let
(
B[n], b[n]

)
∈ Im (Λn+1) . Then η[n]B[n] is in M

(
U[n]

)
.

Proof. 1) By Theorem 4.19, the functor Λn : Bn → B[n] is an M
(
U[n]

)
-fibration. Thus, for every

morphism B[n] → ΛnCn in M
(
U[n]

)
there is Bn ∈ Bn such that ΛnBn = B[n].

2) Since η[n]B[n] is a morphism B[n] → R[n]L[n]B[n] = ΛnRnL[n]B[n], we conclude by 1).

3) Since
(
B[n], b[n]

)
∈ Im (Λn+1) , there is Bn+1 = (Bn, µn : RnLnBn → Bn) ∈ Bn+1 such that(

B[n], b[n]
)
= Λn+1Bn+1. Then µn ◦ ηnBn = IdBn

and

B[n] = U[n,n+1](B[n], b[n]) = U[n,n+1]Λn+1Bn+1 = ΛnUn,n+1Bn+1 = ΛnBn.

Since λn is the natural transformation inside the adjoint triangle Λ[n], see Remark 3.7, we have
λn = ǫ[n]Ln ◦ L[n]Λnηn so that

R[n]λn ◦ η[n]Λn = R[n]ǫ[n]Ln ◦R[n]L[n]Λnηn ◦ η[n]Λn

= R[n]ǫ[n]Ln ◦ η[n]ΛnRnLn ◦ Λnηn = R[n]ǫ[n]Ln ◦ η[n]R[n]Ln ◦ Λnηn = Λnηn.

As a consequence we obtain

Λnµn ◦R[n]λnBn ◦ η[n]ΛnBn = Λnµn ◦ ΛnηnBn = IdΛnBn
.

In particular η[n]B[n] = η[n]ΛnBn is in M
(
U[n]

)
. �

Corollary 4.21. Fix n ∈ N. If the functor L[n] is fully faithful, then so is Ln and Λn : Bn → B[n]

is a category isomorphism. In particular R has a monadic decomposition of monadic length at
most n.

Proof. We have the isomorphism λn : L[n] ◦ Λn → Ln. Thus if L[n] is fully faithful we get that Ln
is fully faithful being isomorphic to a composition of fully faithful functors. By the dual version of
[Bo1, Proposition 3.4.1 ], we have that η[n] is invertible and hence η[n]B[n] is in M

(
U[n]

)
for every

B[n] ∈ B[n]. By Theorem 4.20, B[n] ∈ Im (Λn) . Thus Λn is surjective on objects. We already know
that Λn is injective on objects, see Remark 3.7, thus it is bijective on objects. Since we know it is
also fully faithful, we deduce that it is an isomorphism. �

Corollary 4.22. Consider an adjunction (L,R) such that L[1] and L1 exist. If R[1] is an equiv-
alence of categories then R is monadic. Moreover Λ1 : B1 → B[1] is a category isomorphism.

Proof. If R[1] is an equivalence of categories then L[1] is an equivalence of categories and hence,
by Corollary 4.21, L1 is fully faithful and Λ1 : B1 → B[1] is a category isomorphism. Since
R[1] = Λ1 ◦R1 we get that R1 is an equivalence of categories. Equivalently R is monadic. �

Example 4.23. Let us show that the converse of Corollary 4.22 is not true, in general. Let
B = Veck. As a starting adjunction consider (T,Ω) where T : B → Algk is the tensor algebra
functor and Ω : Algk → B is the forgetful functor. It is well-known that Ω is strictly monadic i.e.
the comparison functor Ω1 : Algk → B1 is a category isomorphism, see [AM2, Theorem A.6]. Given
B ∈ B, consider the zero map b : ΩTB → B. Then (B, b) ∈ 〈ΩT |Id〉 = B[1] but (B, b) /∈ Im (Λ1)
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since b ◦ ηB 6= IdB, where η is the unit of the adjunction (T,Ω) . Thus Λ1 is not surjective whence
not even a category isomorphism. By Corollary 4.22, we conclude that Ω[1] is not an equivalence.

Algk
Id //

λ1Ω1

��

Algk

Ω[1]

��
B1

T1

OO

Λ1 // B[1] = 〈ΩT, Id〉

T[1]

OO

We have so proved that R is monadic although R[1] is not an equivalence for R = Ω.

5. Connection to augmented monads

As an application of Theorem 4.20, in this section we show how to construct some functors
Γn : B → B[n] that factor through Λn : Bn → B[n]. The existence of Γn is related to the notion of
augmented monad.

Recall that an augmentation for a monad (M,m : MM → M,u : Id → M) is a natural
transformation γ :M → Id such that γ ◦ u = Id and γγ = γ ◦m. We will also say that the monad
M is augmented via the morphism γ : M → Id.

We will mainly focus on the existence of an augmentation for the monad (RL,RǫL, η) associated
to a given adjunction (L,R). We point out that such a monad has an augmentation if and only if
the left adjoint L is h-separable, see [AM3, Corollary 2.7].

Theorem 5.1. Consider a diagram

A
F //

R
��

A′

R′

��
B

Id //

L

OO

B

L′

OO

where (L,R, η, ǫ) and (L′, R′, η′, ǫ′) are adjunctions such that F ◦ L = L′. Define ξ : R→ R′F by

(25) R
η′R
→ R′L′R = R′FLR

R′Fǫ
→ R′F.

Then ξL : RL→ R′L′ is a morphism of monads such that

(26) ǫ′F ◦ L′ξ = Fǫ.

Assume that:

1) A has all coequalizers and that F preserves them;
2) R′ preserves coequalizers of pairs (fe, f) where f is composition of regular epimorphisms

and e is an idempotent morphism;
3) R′ preserves regular epimorphisms;
4) the monad R′L′ has an augmentation γ′ : R′L′ → IdB.

Then the monad RL is augmented via γ := γ′ ◦ ξL : RL → IdB. For every n ∈ N, there
are a functor Γ[n] : B → B[n] and a natural transformation γ[n] : RL[n]Γ[n] → IdB, such that
Γ[0] := IdB, γ[0] := γ and, for n ≥ 0,

Γ[n+1]B =
(
Γ[n]B, γ[n]B

)
∈ B[n+1], γ[n]◦U[n]η[n]Γ[n] = IdIdB

, γ[n+1]◦Rπ[n,n+1]Γ[n+1] = γ[n].

Moreover U[n,n+1] ◦ Γ[n+1] = Γ[n].

Proof. First we have

ǫ′F ◦ L′ξ = ǫ′F ◦ L′R′Fǫ ◦ L′η′R = Fǫ ◦ ǫ′L′R ◦ L′η′R = Fǫ

so that (26) holds true. It is easy to check that ξL : RL→ R′FL = R′L′ is a morphism of monads.
Since ξL : RL→ R′L′ is a morphism of monads and R′L′ is augmented via γ′ : R′L′ → IdB, we

get that γ := γ′ ◦ ξL : RL→ IdB is an augmentation for RL.
We set S[n] := L[n]Γ[n] and we define iteratively Γ[n], γ

′
[n] : R

′FS[n] → IdB and

γ[n] := γ′[n] ◦ ξS[n] : RS[n] → IdB
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such that

(27) U[n] ◦ Γ[n] = IdB, γ[n] ◦ U[n]η[n]Γ[n] = IdIdB
and γ′[n] ◦R

′Fπ[n]Γ[n] = γ′

as follows.
For n = 0, we set Γ[0] := IdB, γ

′
[0] := γ′, γ[0] := γ as required.

Let n ≥ 0. Suppose that Γ[n], γ
′
[n] such that (27) hold are given and let us construct Γ[n+1], γ

′
[n+1]

such that γ[n+1] ◦ U[n+1]η[n+1]Γ[n+1] = Id and γ′[n+1] ◦R
′Fπ[n+1]Γ[n+1] = γ′.

Since B[n+1] =
〈
RL[n]|U[n]

〉
we can apply Lemma 1.6, taking Q = Γ[n] and q = γ[n], to construct

a unique functor Γ[n+1] = Γ̃[n] : B → B[n+1] such that U[n,n+1] ◦ Γ[n+1] = Γ[n] and ψΓ[n+1] = γ[n].

Explicitly Γ[n+1]B =
(
Γ[n]B, γ[n]B

)
as desired.

For B ∈ B consider the coequalizer (17) taking B[n+1] := Γ[n+1]B =
(
Γ[n]B, γ[n]B

)
:

(28) LRS[n]B
π[n]Γ[n]B◦Lγ[n]B //

ǫS[n]B
// S[n]B

π[n,n+1]Γ[n+1]B // S[n+1]B

Set e[n] := U[n]η[n]Γ[n]◦γ[n]. Then e[n] is an idempotent natural transformation. Moreover, since
T[n] is an adjoint triangle, we have ǫ = ǫ[n] ◦ π[n]R[n] so that

ǫS[n] ◦ Le[n] = ǫ[n]S[n] ◦ π[n]R[n]S[n] ◦ LU[n]η[n]Γ[n] ◦ Lγ[n]

= ǫ[n]S[n] ◦ L[n]η[n]Γ[n] ◦ π[n]Γ[n] ◦ Lγ[n] = π[n]Γ[n] ◦ Lγ[n]

and hence
(
π[n]Γ[n]B ◦ Lγ[n]B, ǫS[n]B

)
=

(
ǫS[n]B ◦ Le[n]B, ǫS[n]B

)
. Moreover

ǫS[n]B = ǫ[n]S[n]B ◦ π[n]R[n]S[n]B

is a composition of regular epimorphisms as ǫ[n]S[n]B is the coequalizer of the parallel pair of

morphisms
(
L[n]R[n]ǫ[n]S[n]B, ǫ[n]L[n]R[n]S[n]B

)
(a split coequalizer, as S[n] = L[n]Γ[n]) and

π[n]R[n]S[n]B = π[0,n]R[n]S[n]B = π[n−1,n]R[n]S[n]B ◦ π[n−2,n−1]R[n−1]S[n]B ◦ · · · ◦ π[0,1]R[1]S[n]B

Since, by hypothesis, F preserves coequalizers, we get that
(
FS[n+1]B,Fπ[n,n+1]Γ[n+1]B

)
is the

coequalizer of
(
F
(
π[n]Γ[n]B ◦ Lγ[n]B

)
, F ǫS[n]B

)
=

(
FǫS[n]B ◦ FLe[n]B,FǫS[n]B

)
where FLe[n]B

is still idempotent and FǫS[n]B is still a composition of regular epimorphisms.
By the hypothesis, the latter coequalizer is preserved by R′. Thus we get the coequalizer

R′FLRS[n]B
R′Fπ[n]Γ[n]B◦R′FLγ[n]B //

R′FǫS[n]B

// R′FS[n]B
R′Fπ[n,n+1]Γ[n+1]B // R′FS[n+1]B

Let us check that γ′[n]B : R′FS[n]B → B together with the parallel pair above is a fork i.e.

(29) γ′[n] ◦R
′Fπ[n]Γ[n] ◦R

′FLγ[n] = γ′[n] ◦R
′FǫS[n].

To this aim we first compute

γ′[n] ◦R
′Fπ[n]Γ[n] ◦R

′FLγ′[n] ◦R
′FLR′Fπ[n]Γ[n]

(27)
= γ′ ◦R′FLγ′ = γ′γ′

= γ′ ◦R′ǫ′L′

(27)
= γ′[n] ◦R

′Fπ[n]Γ[n] ◦R
′ǫ′L′

= γ′[n] ◦R
′Fπ[n]Γ[n] ◦R

′ǫ′FL

nat. ǫ′
= γ′[n] ◦R

′ǫ′FS[n] ◦R
′L′R′Fπ[n]Γ[n]

= γ′[n] ◦R
′ǫ′FS[n] ◦R

′FLR′Fπ[n]Γ[n]
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Since R′, F and L preserve regular epimorphisms and π[n]Γ[n] is a regular epimorphism, we get
that R′FLR′Fπ[n]Γ[n] is a regular epimorphism and hence

γ′[n] ◦R
′Fπ[n]Γ[n] ◦R

′FLγ′[n] = γ′[n] ◦R
′ǫ′FS[n].

Coming back to the equality (29), we compute

γ′[n] ◦R
′Fπ[n]Γ[n] ◦R

′FLγ[n] = γ′[n] ◦R
′Fπ[n]Γ[n] ◦R

′FLγ′[n] ◦R
′FLξS[n]

= γ′[n] ◦R
′ǫ′FS[n] ◦R

′FLξS[n]

= γ′[n] ◦R
′ǫ′FS[n] ◦R

′L′ξS[n]
(26)
= γ′[n] ◦R

′FǫS[n]

Thus γ′[n] together with the parallel pair (R′Fπ[n]Γ[n] ◦ R
′FLγ[n], R

′FǫS[n]) is a fork and hence,

the universal property of the above coequalizer yields a unique natural transformation γ′[n+1] :

R′FS[n+1] → Id such that

γ′[n+1] ◦R
′Fπ[n,n+1]Γ[n+1] = γ′[n]

We compute

γ′[n+1] ◦R
′Fπ[n+1]Γ[n+1] = γ′[n+1] ◦R

′F
(
π[n,n+1] ◦ π[n]U[n,n+1]

)
Γ[n+1]

= γ′[n+1] ◦R
′Fπ[n,n+1]Γ[n+1] ◦R

′Fπ[n]U[n,n+1]Γ[n+1]

= γ′[n] ◦R
′Fπ[n]Γ[n]

(27)
= γ′.

We also have

γ[n+1] ◦ U[n+1]η[n+1]Γ[n+1] = γ′[n+1] ◦ ξS[n+1] ◦ U[n+1]η[n+1]Γ[n+1]

(16)
= γ′[n+1] ◦ ξS[n+1] ◦ U[n]

(
R[n]π[n,n+1] ◦ η[n]U[n,n+1]

)
Γ[n+1]

= γ′[n+1] ◦ ξS[n+1] ◦ U[n]R[n]π[n,n+1]Γ[n+1] ◦ U[n]η[n]U[n,n+1]Γ[n+1]

= γ′[n+1] ◦ ξS[n+1] ◦Rπ[n,n+1]Γ[n+1] ◦ U[n]η[n]Γ[n]

= γ′[n+1] ◦R
′Fπ[n,n+1]Γ[n+1] ◦ ξS[n] ◦ U[n]η[n]Γ[n]

= γ′[n] ◦ ξS[n] ◦ U[n]η[n]Γ[n] = γ[n] ◦ U[n]η[n]Γ[n]
(27)
= Id.

Finally

γ[n+1] ◦Rπ[n,n+1]Γ[n+1] = γ′[n+1] ◦ ξS[n+1] ◦Rπ[n,n+1]Γ[n+1]

= γ′[n+1] ◦R
′Fπ[n,n+1]Γ[n+1] ◦ ξS[n] = γ′[n] ◦ ξS[n] = γ[n].

�

Proposition 5.2. The functor Γ[n] : B → B[n] induces a functor Γn : B → Bn such that Λn ◦
Γn = Γ[n] and Un,n+1 ◦ Γn+1 = Γn. Moreover there is γn : RnLnΓn → Γn such that Γn+1B =

(ΓnB, γnB) , for all B ∈ B, and Unγn ◦RλnΓn = γ[n]. Note that L[n]Γ[n] = L[n]ΛnΓn
λnΓn→ LnΓn

is invertible.

Proof. The condition γ[n] ◦ U[n]η[n]Γ[n] = Id, given in Theorem 5.1, implies that η[n]Γ[n]B ∈

M
(
U[n]

)
for every B ∈ B. By Theorem 4.20, we have that Γ[n]B ∈ Im (Λn) = Im′ (Λn) . Thus

Im′
(
Γ[n]

)
⊆ Im′ (Λn) . Since Λn is fully faithful and injective on objects, by [AM2, Lemma 1.12],

there is a functor Γn : B → Bn such that Λn ◦ Γn = Γ[n]. We compute

Λn ◦ Un,n+1 ◦ Γn+1 = U[n,n+1] ◦ Λn+1 ◦ Γn+1 = U[n,n+1] ◦ Γ[n+1] = Γ[n] = Λn ◦ Γn.

Since Λn is faithful and injective on objects, we get Un,n+1 ◦ Γn+1 = Γn. Moreover since Γn+1B ∈
Bn+1 and Un,n+1Γn+1B = ΓnB, there is γnB : RnLnΓnB → ΓnB such that Γn+1B = (ΓnB, γnB) .
From Λn+1 ◦ Γn+1 = Γ[n+1], we get

(Γ[n]B, γ[n]) = Γ[n+1]B = Λn+1Γn+1B = Λn+1 (ΓnB, γnB) = (ΛnΓnB,UnγnB ◦RλnΓnB)

and hence Unγn ◦RλnΓn = γ[n]. The last part follows by Remark 3.7. �
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Lemma 5.3. In the setting of Theorem 5.1, define S[n] := L[n]Γ[n] : B → A. Given B ∈ B, a

morphism f : S[n]B → A in A together with the pair
(
π[n]Γ[n]B ◦ Lγ[n]B, ǫS[n]B

)
is a fork if and

only if Rf together with the pair
(
e[n]B, IdRS[n]B

)
is a fork, where e[n] := U[n]η[n]Γ[n] ◦ γ[n].

As a consequence, π[n,n+1]Γ[n+1]B : S[n]B → S[n+1]B is invertible if and only if either γ[n]B or
η[n]Γ[n]B is invertible. If π[n,n+1]Γ[n+1]B is invertible so is π[m,m+1]Γ[m+1]B for all m ≥ n.

Proof. In the proof of Theorem 5.1, we have seen that π[n]Γ[n] ◦ Lγ[n] = ǫL[n]Γ[n] ◦ Le[n] =
ǫS[n] ◦Le[n] where e[n] := U[n]η[n]Γ[n] ◦γ[n]. As a consequence, f : S[n]B → A together with the pair(
π[n]Γ[n]B ◦ Lγ[n]B, ǫS[n]B

)
is a fork if and only if f ◦ ǫS[n]B ◦ Le[n]B = f ◦ ǫS[n]B if and only if

Rf ◦RǫS[n]B ◦RLe[n]B ◦ηRS[n]B = Rf ◦RǫS[n]B ◦ηRS[n]B if and only if Rf ◦RǫS[n]B ◦ηRS[n]B ◦

e[n]B = Rf if and only if Rf ◦e[n]B = Rf if and only if Rf together with the pair
(
e[n]B, IdRS[n]B

)

is a fork. Since π[n,n+1]Γ[n+1]B is the coequalizer of the pair
(
π[n]Γ[n]B ◦ Lγ[n]B, ǫS[n]B

)
, we get

that π[n,n+1]Γ[n+1]B is invertible if and only if π[n]Γ[n]B ◦ Lγ[n]B = ǫS[n]B if and only if f = Id

together with the pair
(
π[n]Γ[n]B ◦ Lγ[n]B, ǫS[n]B

)
is a fork. By the foregoing this is equivalent

to Rf ◦ e[n]B = Rf that is e[n]B = Id i.e. U[0,n]η[n]Γ[n]B ◦ γ[n]B = Id.
Since γ[n]B◦U[n]η[n]Γ[n]B = Id, we conclude that π[n,n+1]Γ[n+1]B is invertible if and only if either

γ[n]B or U[n]η[n]Γ[n]B is invertible. Since U[n] reflects isomorphism, we have that U[n]η[n]Γ[n]B is
invertible if and only if η[n]Γ[n]B is invertible.

If π[n,n+1]Γ[n+1]B is invertible, then γ[n]B is invertible. Since γ[n+1]B ◦ Rπ[n,n+1]Γ[n+1]B =
γ[n]B, we obtain that γ[n+1]B is invertible. As a consequence π[n+1,n+2]Γ[n+2]B is invertible.
Going on this way, we obtain that π[m,m+1]Γ[m+1]B is invertible for all m ≥ n. �

6. Example on monoidal categories

Given a category A and an object X ∈ A we denote by A/X the correspondent slice category
consisting of pairs (A, tA : A→ X) and where a morphism f : (A, tA) → (B, tB) is a morphism
f : A→ B such that tB ◦ f = tA.

Let B be a category with pullbacks. It is known that any adjunction (L,R) with unit η and
counit ǫ and an object 1 ∈ B induces an adjunction (L/1, R/1) as in the following left-hand side
diagram where UA and UB are the obvious forgetful functors and UA ◦ L/1 = L ◦ UB.

A/L1
UA //

R/1
��

A

R
��

B/1
UB //

L/1

OO

B

L

OO KA
y

tKA //

kA
��

1

η1
��

RA
RtA // RL1

Explicitly (L/1) (B, tB : B → 1) := (LB,LtB) and (L/1) f = Lf. The functor R/1 associates
to an object (A, tA : A→ L1) the pair (KA, tKA) given by the pullback in the right-hand side
diagram above.

Given a morphism f : (A, tA : A→ L1) → (A′, tA′ : A′ → L1) then (R/1) f : (KA, tKA) →
(KA′, tKA′) is defined by the universal property of the pullback as the unique morphism such that

(30) kA′ ◦ UB (R/1) f = RUAf ◦ kA.

The unit η/1 and counit ǫ/1 of the adjunction are uniquely defined by the following equalities

kLB ◦ UB (η/1) (B, tB) = ηB UA (ǫ/1) (A, tA) = ǫA ◦ LkA.

Remark 6.1. As mentioned, the construction above is well-known. It can be recovered as follows.

For every morphism f : X → Y in a category C with pullbacks consider the functor C/X
f∗
→C/Y

defined on objects by (C, g) := (C, f ◦ g) and as the identity on morphisms. It is well-known that
this functor has a right adjoint f∗ given by pullbacks along f in the underlying category (see e.g.
[Schu, 16.8.5]). Now note that the functor L/1 : B/1 →A/L1 can be written as the composition

B/1
(η1)∗→ B/RL1

L/RL1
→ A/LRL1

(ǫL1)∗

→ A/L1.
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By [Schu, 16.8.7] the functor R/L1 : A/L1 → B/RL1 : (A, a) 7→ (RA,Ra) , α 7→ Rα is a right
adjoint for the composition (ǫL1)

∗
◦ L/RL1. As a consequence we get that a right adjoint of L/1

is given by the composition (η1)
∗
◦R/L1 which is exactly the functor R/1 defined above.

Lemma 6.2. Let C be a category and 1 ∈ C. The forgetful functor UC : C/1 −→ C creates colimits.

Proof. Cf. [Bo1, Proposition 2.16.3 ] or dual version of [MaL, Exercice 1, page 108]. �

Remark 6.3. Since B is a category with pullbacks, if 1 ∈ B is a terminal object then B would be
finitely complete by [Bo1, Proposition 2.8.2 ]. As a consequence B/1 is finitely complete whenever
B is a category with pullbacks (cf. [Bo1, Proposition 2.16.3 ]).

In the rest of this section M is a non-empty preadditive braided monoidal category such that

• M has equalizers, denumerable coproducts and coequalizers of reflexive pairs of morphisms;
• the tensor products are additive and preserve equalizers, denumerable coproducts and

coequalizers of reflexive pairs of morphisms.

We include here a well-known result we need.

Lemma 6.4. A non-empty preadditive category C with equalizers has a zero object.

Proof. For every A,B in C, the set HomC(A,B) contains a zero morphism i.e. C is a pointed
category. For any morphism f : A→ B we can compute the equalizer of f and the zero morphism
A→ B, i.e. the kernel of f . By [AHS][7C(d), page 127], the category C has a zero object. �

Remark 6.5. Let us show that under the hypotheses above, the category M is a pre-abelian, see
[Pop, pag 24]. First we see it is additive. By Lemma 6.4, the category M, being non-empty and
preadditive, admits a zero object, say 0. Given two objects X1, X2 in M we can set Xn := 0 for
all n ∈ N with n > 2. Then the denumerable coproduct

∐
n∈NXn, which exists by assumption, is

just the coproduct of X1, X2. By [Bo2, Proposition 1.2.4 and Definition 1.2.5], the category M has
binary biproducts. Since M has a zero object, then M is additive, see e.g. [Bo2, Definition 1.2.6].

By hypotheses M has all equalizers. Moreover, since M has binary coproducts and coequalizers
of reflexive pairs, then M has all coequalizers: to check this one has to apply the procedure
mentioned in [La, page 20] to replace a pair of morphisms by a reflexive pair with the same
coequalizer. Since M has a zero object, we get that M has all kernels and cokernels. Thus M is a
preabelian category. We point out that, by [Bo1, Proposition 2.8.2] and its dual form, the category
M is finitely complete and finitely cocomplete (this makes sense since the dual of a preabelian
category is preabelian, as observed in [Pop, page 24]).

We point out that, since, by hypothesis, denumerable coproducts and coequalizers of reflexive
pairs are preserved by tensor products, all coequalizers are preserved too by [AGM1, Lemma 2.3].

By the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of

an adjunction T̃ ⊣ P : Bialg (M) → M. Note that 1 is a terminal object in Bialg (M) so that
0 := P1 is a terminal object in M, as right adjoint functors preserve the terminal object. It is
indeed a zero object in M by Lemma 6.4.

As a particular case of the constructions above, consider the following left-hand side diagram

Alg(M)/T0
UAlg(M) //

Ω/0
��

Alg(M)

Ω
��

M/0
UM //

T/0

OO

M

T

OO
Alg+(M)

U :=UAlg(M) //

Ω+

��

Alg(M)

Ω
��

M
Id //

T+

OO

M

T

OO

Since left adjoint functors preserve the initial object, we get that T0 is initial. By uniqueness of
initial object, we get T0 ∼= 1 as 1 is the initial object in Alg (M). Thus Alg (M) /T0 is Alg (M) /1
i.e. the category of augmented algebras that will be denoted by Alg+ (M). Note also that the
functor UM : M/0 → M is a category isomorphism because 0 is terminal in M. In light of
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these observations we can rewrite the starting diagram as the right-hand side one above where

T+ := (T/0) ◦ (UM)
−1

and Ω+ := UM ◦ (Ω/0) . Explicitly

T+M = (T/0) (UM)
−1
M = (T/0) (M, tM) = (TM, T tM) = (TM, εTM ) ,

Ω+ (A, ε) = UM (Ω/0) (A, ε) = UM (KA, tKA) = KA

where Ω/0 associates (A, ε) ∈ Alg+ (M) the pair (KA, tKA) defined by the pullback in M

(31)

KA
y

tKA //

kA
��

0

η0=iΩ1

��
ΩA

Ωε // Ω1 ∼=ΩT0

where iX : 0 → X is the unique morphism from the initial object 0 and tX : X → 0 the unique
one into the terminal object. This means that (KA, kA) = Ker (Ωε) . Hence

T+M = (TM, εTM ) ,
(
Ω+ (A, ε) , kA

)
= Ker (Ωε) .

Given a morphism f : (A, ε) → (A′, ε′) then Ω+f : Ω+ (A, ε) → Ω+ (A′, ε′) is defined by

(32) kA′ ◦ Ω+f = ΩUf ◦ kA.

The unit η+ := (UM) (η/0) (UM)
−1

: Id → Ω+T+ and the counit ǫ+ := (ǫ/0) : T+Ω+ → Id are
uniquely determined by the following equalities

(33) kTB ◦ η+B = ηB Uǫ+ (A, ε) = ǫA ◦ TkA.

Next aim is to show that the left-hand side diagram below fits into the setting of Theorem 5.1.

(34)

Bialg(M)

P
��

℧+
// Alg+(M)

U :=UAlg(M) //

Ω+

��

Alg(M)

Ω
��

M

T̃

OO

Id // M
Id //

T+

OO

M

T

OO

By construction of T̃ we have ℧ ◦ T̃ = T . Here ℧ : Bialg (M) → Alg (M) and ℧+ are the

obvious forgetful functors such that U ◦ ℧+ = ℧ and ℧+ ◦ T̃ = T+.
Moreover the assumptions guarantee that the categoryAlg (M) has coequalizers, see e.g. [AGM1,

Proposition 2.5], see also [Por, Theorem 2.3]. Since Bialg (M) = Coalg (Alg (M)) we can apply
[Pa, Proposition 2.5] to C := Alg (M)op to obtain that ℧op : Bialg (M)op → Alg (M)op creates
limits, equivalently ℧ : Bialg (M) → Alg (M) creates colimits. Since Alg (M) has coequalizers,
we deduce that Bialg (M) has coequalizers and ℧ preserves coequalizers. On the other hand the
functor Ω : Alg (M) → M needs not to preserve coequalizers. Nevertheless Ω preserves the co-
equalizers of reflexive pairs of morphisms, see e.g. [AM2, Corollary A.10]. It is noteworthy that,
since Ω has a left adjoint T , then Ω is strictly monadic (the comparison functor is a category
isomorphism), see [AM2, Theorem A.6].

Let V ∈ M. By construction ΩTV = ⊕n∈NV
⊗n, see [AM1, Remark 1.2]. LetαnV : V ⊗n → ΩTV

denote the canonical inclusion. The unit of the adjunction (T,Ω) is η : IdM → ΩT defined by
ηV := α1V while the counit ǫ : TΩ → Id is uniquely defined by the equality

(35) Ωǫ (A,m, u) ◦ αnA = mn−1 for every n ∈ N

where mn−1 : A⊗n → A is the iterated multiplication of an algebra (A,m, u) defined by m−1 =
u,m0 = IdA and, for n ≥ 2, by mn−1 = m ◦

(
mn−2 ⊗A

)
.

Denote by η̃, ǫ̃ the unit and counit of the adjunction (T̃ , P ).

Lemma 6.6. ([Por, Theorem 2.3]) The functor Ω : Alg (M) → M preserves regular epimorphisms.

Not that the previous result does not mean that Ω preserves coequalizers.
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Lemma 6.7. 1) Let e : A → A and f : A → A′ be morphisms in M such that A ⊗ f, f ⊗ A are

epimorphisms and f ◦ e ◦ e = f ◦ e. Then (−)
⊗2

: M → M preserves the coequalizer of (fe, f) .
2) Let a, b : A → B be a reflexive pair of morphisms in M and let g : B → A′ be a morphism

in M such that A⊗ g, g ⊗A are epimorphisms. Then the functor (−)⊗2 : M → M preserves the
coequalizer of (ga, gb) .

3) Ω : Alg (M) → M creates the coequalizers of those parallel pairs (f, g) such that the functor

(−)
⊗2

: M → M preserves the coequalizer of (Ωf,Ωg) .

Proof. Recall that M has all coequalizers and the tensor products preserve coequalizers.
1) Consider the following left-hand side coequalizer

(36) A
fe //
f

// A′ p // V A⊗A
fe⊗fe //
f⊗f

// A′ ⊗A′ p⊗p // V ⊗ V

Let us check that the right-hand side one is a coequalizer too.
Let ζ : A′ ⊗A′ → Z be such that ζ ◦ (fe⊗ fe) = ζ ◦ (f ⊗ f) . Then

ζ ◦ (fe⊗A′) ◦ (A⊗ f) = ζ ◦ (f ⊗ f) ◦ (e⊗A) = ζ ◦ (fe⊗ fe) ◦ (e⊗A)

= ζ ◦ (fe⊗ fe) = ζ ◦ (f ⊗ f) = ζ ◦ (f ⊗A′) ◦ (A⊗ f) .

Since A⊗ f is an epimorphism, we deduce that ζ ◦ (fe⊗A′) = ζ ◦ (f ⊗A′) .
Since the tensor products preserve coequalizers, the following are both coequalizers.

(37) A⊗A′
fe⊗A′

//

f⊗A′
// A′ ⊗A′ p⊗A′

// V ⊗A′ V ⊗A
V⊗fe //
V⊗f

// V ⊗A′ V⊗p // V ⊗ V

By using the left one there is a morphism ζ1 : V ⊗A′ → Z such that ζ1 ◦ (p
′ ⊗A′) = ζ. We have

ζ1 ◦ (V ⊗ fe) ◦ (pf ⊗A) = ζ1 ◦ (p⊗A′) ◦ (f ⊗ f) ◦ (A⊗ e) = ζ ◦ (f ⊗ f) ◦ (A⊗ e)

= ζ ◦ (fe⊗ fe) ◦ (A⊗ e) = ζ ◦ (fe⊗ fe) = ζ ◦ (f ⊗ f)

= ζ1 ◦ (p⊗A′) ◦ (f ⊗ f) ζ1 ◦ (V ⊗ f) ◦ (pf ⊗A) .

Now, f ⊗A is an epimorphism by assumption. Moreover p⊗A is an epimorphism because the
tensor products preserve coequalizers. Thus, from the chain of equalities above, we deduce that
ζ1 ◦ (V ⊗ fe) = ζ1 ◦ (V ⊗ f). Since the right-hand side diagram in (37) is a coequalizer, there is a
morphism ζ2 : V ⊗ V → Z such that ζ2 ◦ (V ⊗ p) = ζ1. Therefore

ζ2 ◦ (p⊗ p) = ζ2 ◦ (V ⊗ p) ◦ (p⊗A′) = ζ1 ◦ (p⊗A′) = ζ.

Note also that p⊗ p = (V ⊗ p) ◦ (p⊗A′) is an epimorphism. Thus the right-hand side diagram in
(36) is a coequalizer.

2) Let s : A′ → A be such that a ◦ s = Id = b ◦ s. Set f := g ◦ b and e := s ◦ a. Then
f ◦ e = g ◦ b ◦ s ◦ a = g ◦ a so that (ga, gb) = (fe, f) and we can apply 1). We just point out that
f ⊗ A = (g ⊗A) ◦ (b⊗A) is an epimorphism as a composition of the epimorphism g ⊗ A by the
split-epimorphism b⊗A. Similarly A⊗ f is an epimorphism.

3) It is straightforward. �

Lemma 6.8. The forgetful functor U : Alg+ (M) −→ Alg (M) creates colimits. Moreover the
category Alg+ (M) has coequalizers and U preserves all coequalizers.

Proof. By Lemma 6.2, the forgetful functor U : Alg+ (M) −→ Alg (M) creates colimits and since
Alg (M) has coequalizers, we deduce that Alg+ (M) has coequalizers and U preserves them. �

Lemma 6.9. The forgetful functor ℧+ : Bialg (M) −→ Alg+ (M) preserves coequalizers.

Proof. Since ℧ : Bialg (M) → Alg (M) creates colimits, we have that ℧ preserves all colimits
that exist in Alg (M), see [McL, 11.5, page 106]. Since Alg (M) has all coequalizers, we get that
℧ preserves all coequalizers. Since ℧ = U℧+ and, by Lemma 6.8, U creates, whence reflects
coequalizers [MaL, Exercice 1, page 150], we get that ℧+ preserves coequalizers as desired. �
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Corollary 6.10. ΩU : Alg+ (M) −→ M preserves coequalizers for pairs (fe, f) where f : A→ A′

is composition of regular epimorphisms in Alg+ (M) and e : A → A is a morphism in Alg+ (M)
such that f ◦ e ◦ e = f ◦ e.

Proof. Consider in Alg+ (M) the following left-hand side coequalizer.

A
f◦e //
f

// A′ p // C UA
Uf◦Ue//
Uf

// UA′ Up // UC

By Lemma 6.8, U preserves coequalizers so that also the right-hand side one is a coequalizer.
Since ΩU preserves the regular epimorphisms (as U preserves coequalizers and Ω preserves

regular epimorphisms by Lemma 6.6), we get that ΩUf is composition of regular epimorphisms.
Since the tensor products preserves coequalizers, ΩUA⊗ΩUf and ΩUf ⊗ΩUA are epimorphisms.

Since ΩUf◦ΩUe◦ΩUe = ΩUf◦ΩUe and ΩUA⊗ΩUf,ΩUf⊗ΩUA are epimorphisms, we can ap-
ply Lemma 6.7-1) to ”f” = ΩUf and ”e” = ΩUe to get that the coequalizer of (ΩUf ◦ ΩUe,ΩUf)

is preserved by (−)
⊗2

and hence, by Lemma 6.7-3), Ω creates the coequalizer of (Uf ◦ Ue, Uf) .
As a consequence the above right-hand side displayed coequalizer is preserved by Ω. Hence ΩU
preserves the starting coequalizer. �

Proposition 6.11. Let ν : F → G and τ : G → F be natural transformations such that τ ◦
ν = Id. Then F preserves those colimits which are preserved by G. Moreover F preserves regular
epimorphisms which are preserved by G.

Proof. The first part follows from [MW, Lemma 1.7]. By the dual argument used therein, we have
that τ is the coequalizer of the parallel pair (ν ◦ τ , Id). Therefore, given a morphism p : A → B
such that Gp is a regular epimorphism, the two rows in the following diagram are coequalizers.

GA

Gp ����

νA◦τA //
IdGA

// GA

p

Gp
��

τA // FA

Fp
��

GB
νB◦τB //
IdGB

// GB
τB

// FB

Since Gp is an epimorphism, by a well-known result (see e.g. [Ho, Proposition 2.4]), we have that
the right square above is a pushout. Hence, by [Bo1, Proposition 4.3.8], we conclude that Fp is a
regular epimorphism. �

Consider the natural transformation ξ : P → Ω℧ defined, as in Theorem 5.1, by

P
ηP
→ ΩTP = Ω℧T̃P

Ω℧ǫ̃
→ Ω℧.

As in the proof of the above theorem, we have (26) that in local notations becomes

(38) ǫ℧ ◦ Tξ = ℧ǫ̃.

so that ξ is exactly the natural transformation of [AM1, Theorem 4.6], whose components are the
canonical inclusions of the subobject of primitives of a bialgebra B in M into Ω℧B and hence they
are regular monomorphisms.

Since UT+ = T, we can define

ζ :=

(
Ω+ ηΩ+

→ ΩTΩ+ = ΩUT+Ω+ ΩUǫ+

→ ΩU

)
.

Given (A, ε) ∈ Alg+ (M) , we have ζ (A, ε) : Ker (Ωε) → ΩA.

Remark 6.12. We compute

ζ (A, ε) =
(
ΩUǫ+ ◦ ηΩ+

)
(A, ε) = ΩUǫ+ (A, ε) ◦ ηΩ+ (A, ε)

(33)
= Ω(ǫA ◦ TkA) ◦ ηΩ+ (A, ε) = ΩǫA ◦ ΩTkA ◦ ηΩ+ (A, ε) = ΩǫA ◦ ηΩA ◦ kA = kA.

where kA is the morphism in diagram (31). Thus

(39) ζ (A, ε) = kA.
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Lemma 6.13. There is a natural transformation τ : ΩU → Ω+ such that τ ◦ ζ = Id. As a
consequence Ω+ : Alg+ (M) → M preserves coequalizers for pairs (fe, f) where f : A → A′ is
composition of regular epimorphisms in Alg+ (M) and e : A→ A is a morphism in Alg+ (M) such
that f ◦ e ◦ e = f ◦ e. Moreover Ω+ preserves regular epimorphisms.

Proof. Let (A, ε) ∈ Alg+ (M) . As observed, the pullback (31) means that Ω+ (A, ε) = KA =
Ker (Ωε) . The canonical inclusion is kA which by (39) equals ζ(A, ε). Thus we have the following
kernel in M.

0 → Ω+ (A, ε)
ζ(A,ε)
−→ ΩA

Ωε
−→ Ω1 = 1

Since ε is an algebra morphism, we have Ωε◦uΩA = Id. Hence Ωε◦ (IdΩA − uΩA ◦ Ωε) = 0 so that,
by the universal property of the kernel we get a unique morphism τ (A, ε) : ΩA → Ω+ (A, ε) such
that ζ (A, ε) ◦ τ (A, ε) = IdΩA − uΩA ◦ Ωε. Moreover τ (A, ε) ◦ ζ (A, ε) = IdΩ+(A,ε).

It remains to check that τ (A, ε) is natural in (A, ε). To this aim, first let f : (A, εA) → (B, εB)
be a morphism in Alg+ (M) and compute

ζ (B, εB) ◦ τ (B, εB) ◦ ΩUf = (IdΩB − uΩB ◦ ΩεB) ◦ ΩUf = ΩUf − uΩB ◦ ΩεB ◦ ΩUf

= ΩUf − uΩB ◦ Ω (εB ◦ Uf) = ΩUf − uΩB ◦ ΩεA

= ΩUf − ΩUf ◦ uΩA ◦ ΩεA = ΩUf ◦ (IdΩA − uΩA ◦ΩεA)

= ΩUf ◦ ζ (A, εA) ◦ τ (A, ε) = ΩUf ◦ kA ◦ τ (A, ε)

(32)
= kA′ ◦ Ω+f ◦ τ (A, ε) = ζ (B, εB) ◦Ω

+f ◦ τ (A, ε) .

Since ζ (B, εB) is a monomorphism we deduce τ (B, εB) ◦ΩUf = Ω+f ◦ τ (A, ε) which means that
τ is natural. Thus ζ : Ω+ → ΩU cosplits via τ : ΩU → Ω+ i.e. τ ◦ ζ = Id.

Now, by Lemma 6.6, the functor Ω : Alg (M) → M preserves regular epimorphisms.
By Lemma 6.8, the forgetful functor U : Alg+ (M) −→ Alg (M) creates colimits and preserves

all coequalizers. As a consequence ΩU : Alg+ (M) −→ M preserves regular epimorphisms. Hence
by Proposition 6.11 also Ω+ preserves regular epimorphisms. By Corollary 6.10, the functor ΩU :
Alg+ (M) −→ M preserves coequalizers for pairs (fe, f)where f : A→ A′ is composition of regular
epimorphisms in Alg+ (M) and e : A→ A is a morphism in Alg+ (M) such that f ◦ e ◦ e = f ◦ e.
By Proposition 6.11, the functor Ω+ preserves the same type of coequalizers. �

Next aim is to show that the functor T+ : M → Alg+ (M) is h-separable. First note that there
is a unique morphism ωV : ΩTV → V such that

(40) ωV ◦ αnV = δn,1IdV .

Given f : V →W a morphism in M, we get for every n ∈ N,

ωW ◦ΩTf ◦ αnV = ωW ◦ αnW ◦ f⊗n = δn,1f
⊗n = δn,1f = f ◦ ωV ◦ αnV

so that ωW ◦ ΩTf = f ◦ ωV which means that ω := (ωV )V ∈M is a natural transformation
ω : ΩT → IdM.

Lemma 6.14. The natural transformation ω fulfills ω ◦ η = Id and

(41) ωω ◦ ΩTζT+ = ω ◦ΩǫT ◦ ΩTζT+.

Proof. In [AM3, Lemma 5.2] we prove that ωω ◦ ΩTζ′T̃ = ω ◦ ΩǫT ◦ ΩTζ′T̃ where ζ′ : E → Ω℧
is a natural transformation whose domain is the functor E : Bialg (M) → M assigning to each
bialgebraA the kernel

(
EA, ζ ′A : EA→ Ω℧A

)
in M of its counit Ωε℧A, where here ε℧A is regarded

as an algebra map. Then, for every M ∈ M, we have
(
ET̃M, ζ ′T̃M

)
= Ker

(
Ωε

℧T̃M

)
= Ker (ΩεTM ) =

(
Ω+ (TM, εTM ) , kTM

) (39)
=

(
Ω+T+M, ζT+M

)
.

Moreover, given f :M → N , since, by (39) we have kTM = ζT+M, we obtain

ζT+N ◦ Ω+T+f = kTN ◦ Ω+T+f = ΩUT+f ◦ kTM = ΩTf ◦ ζT+M

= Ω℧T̃ f ◦ ζ′T̃M = ζ ′T̃N ◦ ET̃f = ζT+N ◦ ET̃f
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so that Ω+T+f = ET̃f. As a consequence ET̃ = Ω+T+ and ζ ′T̃ = ζT+. If we substitute ζ′T̃ by
ζT+ in the starting equality we obtain the desired one. �

The following result shows that T+ is h-separable

Lemma 6.15. ζT+ : Ω+T+ → ΩT is a monad morphism between the monads associated to
(T+,Ω+) and (T,Ω) . Moreover ω+ := ω ◦ ζT+ : Ω+T+ → Id is an augmentation for the monad
associated to the adjunction (T+,Ω+) . Equivalently T+ is h-separable.

Proof. The monads to consider are (Ω+T+,Ω+ǫ+T+, η+) and (ΩT,ΩǫT, η) . We compute

ζT+ ◦ Ω+ǫ+T+ nat. ζ
= ΩUǫ+T+ ◦ ζT+Ω+T+ (33),(39)

= ΩǫUT+ ◦ ΩTζT+ ◦ ζT+Ω+T+ = ΩǫT ◦ ζT+ζT+

ζT+ ◦ η+
(39)
= kUT+ ◦ η+ = kT ◦ η+

(33)
= η.

We have so proved that ζT+ : Ω+T+ → ΩT is a morphism of monads. We compute

ω+ω+ = ωω ◦ ζT+ζT+ = ωω ◦ ΩTζT+ ◦ ζT+Ω+T+ (41)
= ω ◦ ΩǫT ◦ ΩTζT+ ◦ ζT+Ω+T+,

= ω ◦ ΩǫT ◦ ζT+ζT+ = ω ◦ ζT+ ◦ Ω+ǫ+T+ = ω+ ◦ Ω+ǫ+T+.

Moreover ω+ ◦ η+ = ω ◦ ζT+ ◦ η+ = ω ◦ η = Id. Thus ω+ is an augmentation for the monad
(Ω+T+,Ω+ǫ+T+, η+) . By [AM3, Corollary 2.7], this means that T+ is h-separable. �

As a consequence of the results above, Theorem 5.1 applies to the leftmost diagram in (34).

7. Conclusions

In this section we collect some fallouts of Theorem 5.1. We describe explicitly the functor Γ[n]

in case of Yetter-Drinfeld modules and in particular of vector spaces. We infer an analogue of the
notion of combinatorial rank and we propose possible lines of future investigation on the subject.

Example 7.1. Let H be a finite-dimensional Hopf algebra over a field k. We want to apply the
results of the previous sections in the case when M is the category H

HYD of (left-left) Yetter-
Drinfeld modules over H. This category is braided as the antipode of H is invertible. Moreover
H
HYD satisfies all the requirements of Section 6. The related diagram rewrites as follows and fulfills
the assumptions of Theorem 5.1.

Bialg(HHYD)
℧+

//

P
��

Alg+(HHYD)

Ω+

��
H
HYD

Id //

T̃

OO

H
HYD

T+

OO

Let V ∈ H
HYD and (A, ε) ∈ Alg+

(
H
HYD

)
. The object T̃ V is the usual tensor algebra TV that

becomes the tensor algebra in H
HYD, as V belongs to H

HYD, and that is endowed with a braided
bialgebra structure by means of its universal property and the braiding of V . By definition

T+V = (TV, εTV ) ,
(
Ω+ (A, ε) , kA

)
= Ker (Ωε) .

Thus Ω+ (A, ε) is nothing but the augmentation ideal A+ regarded as an object in H
HYD being the

kernel of ε which is a morphism in this category. The monad Ω+T+ is augmented via the morphism
ω+ : Ω+T+ → Id of Lemma 6.15. Note that, for any V ∈ H

HYD, the map ω+V : Ω+T+V → V is

just the restriction to Ω+T+V = (TV )
+

of the canonical projection ωV : ΩTV → V onto V (note
that ωV is not in general an augmentation for ΩT because T is not h-separable [AM3, Corollary
2.7 and Remark 5.3]).

By Theorem 5.1, also the monad P T̃ is augmented via γ := ω+ ◦ ξT̃ : P T̃ → Id. Explicitly γV

is the restriction of ωV to the Yetter-Drinfeld submodule of primitive elements of T̃ V . For every

n ∈ N, there are a functor Γ[n] :
H
HYD → H

HYD[n] and a natural transformation γ[n] : P T̃[n]Γ[n] →
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Id, such that Γ[0] := Id, γ[0] := γ and, for n ≥ 0,Γ[n+1]V =
(
Γ[n]V, γ[n]V

)
∈ H

HYD[n+1] and

γ[n] ◦ U[n]η̃[n]Γ[n] = Id. Let us describe explicitly the functor

S[n] := T̃[n]Γ[n] :
H
HYD → Bialg

(
H
HYD

)
.

For n = 0 we have S[0] := T̃[0]Γ[0] = T̃ . Moreover S[n+1]V is given by the coequalizer, see (28):

T̃PS[n]V
π[n]Γ[n]V ◦T̃ γ[n]V //

ǫ̃S[n]V
// S[n]V

π[n,n+1]Γ[n+1]V // S[n+1]V

By Lemma 5.3, a bialgebra map f : S[n]V → B in H
HYD together with the above parallel pair is

a fork if and only if Pf ◦ e[n]V = Pf, where e[n] := U[n]η̃[n]Γ[n] ◦ γ[n]. Since Pf : PS[n]V → PB is
just the restriction of f to the primitive elements, we get that S[n+1]V is obtained by factoring out

S[n]V by its two-sided ideal generated by Im
(
Id− e[n]V

)
. Since e[n]V is idempotent, we have that

Im
(
Id− e[n]V

)
= Ker

(
e[n]V

)
. By definition of e[n]V and since U[n]η̃[n]Γ[n]V is split-injective, its

retraction being γ[n]V , we get Im
(
Id− e[n]V

)
= Ker

(
γ[n]V

)
. Hence S[n+1]V =

S[n]V

〈Ker(γ[n]V )〉
.

In order to give explicitly Ker
(
γ[n]V

)
aind to get a complete description of the functors Γ[n], let

us take a closer look at γ[n]. By construction (see Theorem 5.1), we have that γ[n] := ω+
[n] ◦ ξS[n] :

PS[n] → Id where ω+
[n] : Ω

+℧+S[n] → Id (denoted by γ′[n] in the quoted theorem as it stems from

γ′ = ω+) is defined iteratively by the following equality ω+
[n+1] ◦Ω

+℧+π[n,n+1]Γ[n+1] = ω+
[n]. Since

Ω+℧+π[n,n+1]Γ[n+1] is surjective, we get that ω+
[n]V : Ω+℧+S[n]V =

(
S[n]V

)+
→ V is just the

projection onto V passed to the quotient. Since γ[n] := ω+
[n] ◦ξS[n] we get that γ[n]V : PS[n]V → V

is still the projection onto V. As a consequence Ker
(
γ[n]V

)
is spanned by the homogeneous

elements of PS[n]V of degree at least two.
Note that, if we forget the structure of Yetter-Drinfeld module and we just keep the underlying

braided bialgebra structure, the braided bialgebra S[n]V is exactly what in [Ar2, Definition 3.10]

was denoted by S[n] (B) for B := T̃ V. As a consequence, the direct limit of the direct system

T̃ V → S[1]V → S[2]V → · · ·

is the Nichols algebra B (V, c) ([Ar2, Corollary 3.17 and Remark 5.4]), where c : V ⊗ V → V ⊗ V
is the braiding of V in H

HYD.

Remark 7.2. In the previous example S[n+1]V is obtained by factoring out S[n]V by the two-
sided ideal generated by the primitive elements in S[n]V of degree at least two. Following [Ar2,
Definition 4.1 and Section 5], we get that the combinatorial rank of V, regarded as braided vector
space through the braiding c of H

HYD as above, is the smallest n such that π[n,n+1]Γ[n+1]V :
S[n]V → S[n+1]V is invertible, if such an n exists. In this case obviously S[n]V = B (V, c).

Since, in the setting of Theorem 5.1, we can always define S[n] := L[n]Γ[n] : B → A, for every
B ∈ B we are lead to the following definition.

Definition 7.3. In the setting of Theorem 5.1, consider the functor S[n] := L[n]Γ[n] : B → A. We
define the combinatorial rank of an object B ∈ B (with respect to the adjunction (L,R)) to be
the smallest n such that π[n,n+1]Γ[n+1]B : S[n]B → S[n+1]B is invertible, if such an n exists.

Remark 7.4. Thus a concept of combinatorial rank can be introduced and investigated in this
very general setting in which there are neither bialgebras nor braided vector spaces but just an
adjunction (L,R) as in Theorem 5.1. Note that, by Lemma 5.3, the morphism π[n,n+1]Γ[n+1]B is
invertible if and only if either γ[n]B or η[n]Γ[n]B is invertible.

As we will see below, a case of interest is the one in which all objects in B have combinatorial
rank at most one, equivalently η[1]Γ[1] : Γ[1] → R[1]S[1] is invertible. Since, to this aim, only the

functor Γ[1] is needed, we can even more relax our assumptions by taking just an adjunction (L,R)
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with an augmentation γ : RL→ Id for the associated monad, avoiding the setting of Theorem 5.1
and define directly Γ[1] by Γ[1]B := (B, γB).

Theorem 7.5. In the setting of Theorem 5.1, if the adjunction (LN , RN) is idempotent for some
N ∈ N, then every object in B has combinatorial rank at most N with respect to the adjunction
(L,R) . In particular the length of the monadic decomposition of R : A → B is an upper bound for
the combinatorial rank of objects in B with respect to the adjunction (L,R) .

Proof. The fact that the adjunction (LN , RN ) is idempotent is equivalent to require that ηNUN,N+1

is an isomorphism. By Proposition5.2, we have that Γ[N ] = ΛNΓN and UN,N+1 ◦ ΓN+1 = ΓN .
Thus ηNΓN = ηNUN,N+1ΓN+1 is an isomorphism. As in the proof of Theorem 4.20, we get
R[N ]λN ◦η[N ]ΛN = ΛNηN . In particular we getR[N ]λNΓN ◦η[N ]ΛNΓN = ΛNηNΓN i.e. R[N ]λNΓN◦
η[N ]Γ[N ] = ΛNηNΓN . Since ηNΓN and λN are invertible, we get that η[N ]Γ[N ] is invertible. By
the foregoing, every object in B has combinatorial rank at most N.

If R has a monadic decomposition of monadic length N , then LN is fully faithful i.e. ηN is
invertible. Thus, in particular, ηNUN,N+1 is an isomorphism and hence (LN , RN) is idempotent.
As a consequence every object in B has combinatorial rank at most N. �

Corollary 7.6. Let M be a symmetric MM-category in the sense of [AM2, Definition 7.4]. Then

every object in M has combinatorial rank at most one with respect to the adjunction (T̃ , P ).

Proof. By hypothesis all the requirements of Section 6 are satisfied so that the adjunction (T̃ , P )

is in the setting of Theorem 5.1. By [AM2, Theorem 7.2] the adjunction (T̃1,P1) is idempotent.
We conclude by Theorem 7.5. �

As a consequence all the symmetric MM-categories given in [AM2, Section 9] have objects with
combinatorial rank at most one.

Example 7.7. Consider the particular case when M is the category Vec of vector spaces over a
field k. Since Vec is just HHYD in case H is the trivial Hopf algebra k, this is a particular case of
Example 7.1. The diagram above can be more easily written as follows

Bialg
℧+

//

P
��

Alg+

Ω+

��
Vec

Id //

T̃

OO

Vec

T+

OO

As above we can define S[n] := T̃[n]Γ[n] : Vec → Bialg. Thus S[0] := T̃ and S[n+1]V =
S[n]V

〈Ker(γ[n]V )〉
is obtained by factoring out S[n]V by the two-sided ideal generated by the homogeneous primitive
elements in S[n]V of degree at least two. Note that the procedure we used to compute S[1]V =

T̃ V
〈Ker(γV )〉 is essentially the same used to compute L1V1 in the proof of [AGTM, Theorem 3.4].

By [Ar2, Definition 6.8 and Theorem 6.13], if char (k) = 0, and [Ar3, Example 3.13], if char (k) =
p, we get that V, regarded as a braided vector space via the braiding c : V⊗V → V⊗V : x⊗y 7→ y⊗x
of Vec, has combinatorial rank at most one. Thus Vec is an example of braided monoidal category

where every object has combinatorial rank at most one with respect to the adjunction (T̃ , P ).
By the foregoing S[1]V coincides with the Nichols algebra B (V, c) and all the maps π[1,2]Γ[2]V :

S[1]V → S[2]V , γ[1]V : PS[1]V → V and U[1]η[1]Γ[1]V : V → RS[1]V are invertible. By Lemma 5.3,
we have that π[n,n+1]Γ[n+1]B is invertible for all n ≥ 1 and hence γ[n]V is invertible for all n ≥ 1.

In Example 7.7 we observed that γ[1]V : PS[1]V → V (equivalently U[1]η[1]Γ[1]V : V → RS[1]V )
is an isomorphism for M = Vec. This fact may fail to be true if we change M. For instance, let us

come back to the category HHYD. By the foregoing we have S[1]V = T̃ V
〈Ker(γV )〉 where γV : P T̃V → V

is the projection on degree one and hence Ker (γV ) are the elements of P T̃V of degree at least two.
In order to see that the projection γ[1]V : PS[1]V → V and the injection U[1]η[1]Γ[1]V : V → RS[1]V

need not to be invertible we refer to [Ar2, Section 7] where examples of braided vector spaces of
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combinatorial rank greater than two, arising as object in H
HYD and braided via the braiding of

H
HYD, are given.

It would be of interest to determine which conditions on H guarantee that U[1]η[1]Γ[1]V : V →

RS[1]V is always invertible for every V ∈ H
HYD, equivalently any object in H

HYD has combinatorial
rank at most one.

Remark 7.8. In [AGTM, Theorem 3.4] we showed that the functor P in case M = Vec admits a
monadic decomposition of length at most two, represented in the following diagram.

Bialg

P

��

Bialg

P1

��

Idoo Bialg

P2

��

Idoo

Vec

T̃

OO

Vec1

T̃1

OO

U0,1oo Vec2

T̃2

OO

U1,2oo

This result was obtained by proving first that the adjunction (T̃1, P1) is idempotent or equivalently

that η̃1U1,2 is an isomorphism. Note that, by [AGTM, Proposition 2.3], we can take T̃2 := T̃1U1,2,
U1,2η̃2 = η̃1U1,2 and ǫ̃2 = ǫ̃1. We have seen in [AM2, Theorems 7.2 and 8.1] and [AGM2, Theorem
3.3] that the category Vec2 is equivalent to the category Lie of (restricted) Lie algebras over k and

that the adjunction (T̃2, P2) plays the role of the usual adjunction, between the categories Bialg and
Lie, given by the (restricted) universal enveloping algebra functor and the primitive functor. The

fact that the monadic decomposition has length at most two means that the unit η̃2 : Id → P2T̃2 is
invertible. In view of the identifications we mentioned, this is the counterpart of half of the Milnor–
Moore theorem [MM, Theorems 5.18(1) and 6.11(1)]. Now, given V2 := (V, µ, µ1) ∈ Vec2, with

µ : P T̃V → V, V1 := (V, µ) and µ1 : P1T̃1V1 → V1, one has µ1 ◦ η̃1 = Id and hence µ1 = (η̃1V1)
−1

(note that η̃1V1 = η̃1U1,2V2 is invertible). Moreover T̃2V2 = T̃1U1,2V2 = T̃1V1. Following the proof

of [AGTM, Theorem 3.4], we can compute explicitly T̃1V1 as T̃ V
〈z−µ(z)|z∈EV 〉 , where EV denotes the

subspace of P T̃V spanned by element of homogeneous degree greater than one, and hence we obtain

that T̃1V1 = U (V, c, µ) in the sense of [Ar1, Definition 3.5], where c : V ⊗V → V ⊗V : x⊗y 7→ y⊗x
is the braiding of Vec.

Note that, in the same quoted definition, it is set S (V, c) := U (V, c, 0) = T̃ V
〈z|z∈EV 〉 . Clearly

S (V, c) coincides with S[1]V of Example 7.7. In [Ar1, Corollary 5.5] it is proved that PU (V, c, µ) ∼=
V using the fact that PS (V, c) ∼= V. In view of the above identifications, the latter isomorphism
means that U[1]η[1]Γ[1]V : V → PL[1]Γ[1]V = PS[1]V is invertible and we already observed that this

is another way to say that V has combinatorial rank at most one (the primitive elements in PS[1]V
are concentrated in degree one). On the other hand, the first isomorphism implies that U1η̃1V1 :

V → P T̃1V1 is invertible for any V2 ∈ Vec2. Equivalently U1η̃1U1,2 is invertible which is the same
as requiring that η̃1U1,2 is invertible i.e. the condition, recalled above, saying that the adjunction

(T̃1, P1) is idempotent. Summing up, using that any object in Vec has combinatorial rank at most

one, we can prove that (T̃1, P1) is idempotent and hence that P has monadic decomposition of
length at most two.

As mentioned, we can consider an adjunction (L,R) whose associated monad is augmented. If
every object in B has combinatorial rank at most one, it is natural to wonder if, also in this wider
setting, it is true that (L1, R1) is idempotent and hence R has monadic decomposition of length
at most two. In this way the adjunction (L2, R2) would be involved in an analogue of the Milnor–
Moore theorem in the above sense. More generally one can ask whether (LN , RN ) is idempotent
in case the combinatorial rank of objects in B for an adjunction (L,R) as in Theorem 5.1 is at
most N ∈ N. This would provide an inverse of Theorem 7.5.
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