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Abstract: Recently, we demonstrated that inducible T-cell costimulator (ICOS) shares its unique
ligand (ICOSL) with osteopontin (OPN), and OPN/ICOSL binding promotes tumor metastasis and
angiogenesis in the 4T1 breast cancer model. Literature showed that OPN promotes melanoma
metastasis by suppressing T-cell activation and recruiting myeloid suppressor cells (MDSC). On the
opposite, ICOS/ICOSL interaction usually sustains an antitumor response. Here, we engineered
murine B16F10 melanoma cells, by transfecting or silencing ICOSL. In vitro data showed that loss
of ICOSL favors anchorage-independent growth and induces more metastases in vivo, compared
to ICOSL expressing cells. To dissect individual roles of the three molecules, we compared data
from C57BL/6 with those from OPN-KO, ICOS-KO, and ICOSL-KO mice, missing one partner at a
time. We found that OPN produced by the tumor microenvironment (TME) favors the metastasis by
interacting with stromal ICOSL. This activity is dominantly inhibited by ICOS expressed on TME by
promoting Treg expansion. Importantly, we also show that OPN and ICOSL highly interact in human
melanoma metastases compared to primary tumors. Interfering with this binding may be explored in
immunotherapy either for nonresponding or patients resistant to conventional therapies.

Keywords: osteopontin; ICOSL; melanoma; metastasis; tumor microenvironment

1. Introduction

Melanoma is a malignant tumor arising from melanocytes that accounts for only about
1% of skin cancers [1] but it causes the large majority of skin cancer deaths [2]. Indeed,
diagnosis is often made at late stages when melanoma cells have already metastasized.
Melanoma is a highly immunogenic tumor, and infiltration with cytotoxic CD8+ T cells
has been associated with a good prognosis, since they can efficiently kill tumor cells [3].
Melanoma immune escape is primarily due to alterations in antigen expression or presen-
tation, but a role has been ascribed also to immunosuppression, mediated in particular
regulatory T cells (Tregs) [4,5] and myeloid-derived suppressor cells (MDSCs) [6,7]. Both
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Tregs and MDSCs were found to be enriched and activated in the melanoma microenvi-
ronment, and are responsible for profound impairment of antitumor immune responses,
leading to tumor progression [8].

Melanoma progression is associated with increased expression of osteopontin (OPN),
a phosphoprotein acting either as a matricellular protein or as a proinflammatory cy-
tokine [9]: biopsies from different stages of melanoma progression indicate that OPN is
specifically overexpressed in invasive tumor stages [10]. Furthermore, high levels of OPN
are significantly associated with poor clinical outcome in patients bearing highly metastatic
tumors [11]: stromal OPN directly suppresses CD8+ T cell proliferation and activation [12],
and in parallel, sustains MDSCs colonization, thus supporting tumor progression [13].

The role of OPN in melanoma metastasis has been demonstrated clearly in animal
models. B16-F10 is a murine melanoma cell line used as a model to study metastasis [14].
Injection of B16-F10 melanoma cells in the tail vein of syngeneic mice results in extravasation
into the lungs and formation of countable macro-metastases [14]. The intracardiac injection
of B16-F10 cells leads to metastasis in the lungs and other organs, such as the liver [15].
Intracardiac injection of B16-F10 cells into OPN knock-out (OPN-KO) mice produces fewer
metastases than occur in wild-type mice, whereas no difference is found when injection is
intravenous [16].

OPN is expressed by different components of the tumor microenvironment, such as
macrophages, dendritic cells (DCs), and activated T cells. Thanks to its multiple adhesion
motifs (i.e., calcium-binding sites, heparin-binding domains and integrin domains), OPN is
able to interact with different receptors and exerts multiple functions. In particular, two
classes of receptors have long been identified for OPN, namely integrins and CD44v6-7 [17].
More recently, for the first time, the present group demonstrated that OPN directly binds
the immune checkpoint receptor inducible T-cell costimulator ligand (ICOSL) [17], finding
that it binds directly to ICOSL at a binding site that is distinct and nonoverlapping com-
pared to that employed by ICOS, which is the conventional partner of ICOSL. The two
interactions exert opposing effects on cell migration, which is induced by OPN, but domi-
nantly inhibited by ICOS. Moreover, angiogenesis and tumor metastasis are increased, both
in vitro and in vivo, by OPN-mediated triggering of ICOSL, whereas they are inhibited by
ICOS-mediated ICOSL triggering [17–19].

ICOSL is a transmembrane receptor belonging to the B7 family that is expressed in B
cells, dendritic cells, monocytes, endothelial cells, fibroblasts, epithelial cells, and several
types of tumor cells [20]. Its main known function is to trigger ICOS, a costimulatory recep-
tor expressed by activated T cells [21]. Inflammatory signals increase ICOSL expression in
several cell types of nonlymphoid tissue, such as the brain, lung, heart, kidney, liver, and
gut, which suggests that the ICOS/ICOSL interaction regulates the activity of effector and
effector/memory T cells [22]. ICOS is a type I transmembrane glycoprotein belonging to
the CD28 family; it acts as a costimulatory immune checkpoint receptor. It is expressed by
activated T cells, and its stimulation modulates differentiation and potentiates cytokine
production of T helper (Th) cells [21]. Depending on the microenvironment cytokine mi-
lieu, ICOS supports differentiation of Tregs: Th17, Th2 (in mouse), and Th1 (in human)
cells. Moreover, it is highly expressed by T follicular helper (Tfh), and a deficiency of
the ICOS gene causes defective formation of germinal centers in both humans [23]. The
ICOS-ICOSL interaction also triggers “reverse signaling” to the cell expressing ICOSL. In
DCs, triggering of ICOSL with ICOS-Fc, a recombinant soluble form of ICOS, modulates
cytokine secretion, promotes antigen cross-presentation, and inhibits adhesiveness and
migration; in endothelial and tumor cells it inhibits adhesion and migration. Moreover,
it induces dephosphorylation of ERK and p38 in endothelial cells, dephosphorylation of
FAK in tumor cells, and downmodulation of β-PIX in DCs and tumor cells [19,24–26]. The
present group employed the B16 mouse melanoma model to demonstrate that ICOS-Fc
inhibits cell migration in vitro and the development of metastases in vivo [19,24]. Further,
ICOS-Fc encapsulated in nanoparticles inhibits the growth of established subcutaneous
B16 tumors by inhibiting tumor angiogenesis and Treg development [18].
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Collectively, these data draw a picture in which the triggering of ICOSL by one or other
of the binding partners, ICOS and OPN, mediates opposing activities on tumor metastasis,
which is promoted by OPN and inhibited by ICOS. Stemming from these findings, the
present study aimed to evaluate the net effect of ICOSL binding to OPN and to ICOS on the
metastasis potential of the two binding partners in vivo. To this end, B16-F10 melanoma
cells, stably silenced for ICOSL, were injected intravenously (i.v.) into either syngeneic
wild-type C57BL/6 mice, or mice deficient in one molecule at a time (OPN-KO, ICOS-
KO, ICOSL-KO mice). Interestingly, it emerged that OPN, through binding with ICOSL,
promotes melanoma metastasis formation.

2. Materials and Methods
2.1. Cell Lines

B16-F10 mouse melanoma cells, purchased from the American Type Culture Collection
(ATCC; Manassas, VA, USA), were grown in culture dishes as a monolayer in RPMI 1640
medium plus 10% fetal bovine serum (FBS) (Life technologies, Carlsbad, CA, USA), 100
U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in 5% CO2-humidified atmosphere.

2.2. ICOSL Cloning

ICOSL was cloned as described elsewhere [17]. Briefly, cDNA derived from RNA
extracted from mouse splenocytes was cloned into pcDNA 3.1 vector. The plasmid was
then transformed into JM109 bacteria (Promega, Madison, WI, USA) and the resulting
colonies were sequenced by Sanger sequencing (Life technologies, Carlsbad, CA, USA).

2.3. Cell Transfection and Cell Silencing

B16-F10 cells were transfected as reported elsewhere [17]. Briefly, 2 × 106 B16-F10 cells
were transfected with 10 µg of a DNA plasmid (pcDNA3.1) carrying the ICOSL cDNA,
using lipofectamineTM 3000 (Life technologies, Carlsbad, CA, USA). The endogenous
ICOSL gene was siRNA-silenced using lipofectamineTM RNAiMAX transfection reagent
(Life technologies, Carlsbad, CA, USA) as reported elsewhere [17]. Real-time PCR was
used to evaluate the expression of ICOSL in the transfected (B16-ICOSL-high) and silenced
(B16-ICOSL-low) cells, 48 h after transfection and silencing. Next, 1 µg of RNA was
retrotranscribed to cDNA using the QauntiTect Reverse Transcription Kit (Qiagen, Hilden,
Germany). Real-time PCR was performed using CFX96 System (Bio-Rad Laboratories) in
duplicate for each sample, in a 10 µL final volume containing 1 µL of diluted cDNA, 5 µL
of TaqMan Universal PCR Master Mix (Life technologies, Carlsbad, CA, USA), and 0.5 µL
of Assay-on-Demand mix. The results were analyzed with a ∆∆ threshold cycle method
using GAPDH as housekeeping gene. Surface expression of ICOSL was evaluated by flow
cytometry using anti-ICOSL PE mAb (Catalog number #107405, clone HK5.3, Biolegend,
San Diego, CA, USA).

2.4. Invasion Assays

In the Boyden chamber (BD Biosciences) invasion assay, 1 × 103 cells of B16-ICOSL-
high and B16-ICOSL-low were plated onto the apical side of 50 µg/mL Matrigel-coated
filters (8.2 mm diameter and 0.5 mm pore size; Neuro Probe; BIOMAP snc, Milan, Italy)
in serum-free medium with or without 2 µg/mL ICOS-Fc. Medium containing 20% FBS,
as control, or 10 µg/mL of OPN (Bio-techne, Minneapolis, MN, USA) were placed in the
basolateral chamber as chemoattractants for the tumor cells. The chamber was incubated
at 37 ◦C under 5% CO2. After 6 h, the cells on the apical side were wiped off with Q-tips.
The cells on the bottom of the filter were stained with crystal violet and all counted with
an inverted microscope (magnification ×40). The results are expressed as the number of
migrated cells per high-power field.



Biomedicines 2022, 10, 51 4 of 16

2.5. Anchorage-Dependent Growth Assay

For the anchorage-independent growth assay, 1.6 × 103 cells were plated in RPMI
(Life technologies, Carlsbad, CA, USA) plus 10% FBS in a 96-well plate. From day 1 to
day 4 cells were counted daily using trypan blue. For the anchorage-independent growth
assay, a 12-well plate was coated with RPMI 3% agar. After solidification, 5 × 103 cells
were plated over the 3% agar bottom layer, in RPMI 1% agar. Cells were grown at 37 ◦C for
14 days. 1 mg/mL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
was then added and the plate incubated for 3 h at 37 ◦C. The colony images were taken
using Chemidoc (Biorad, Hercules, CA, USA).

2.6. In Vivo Experiments

Eight-to-ten-week-old adult female mice of the following 4 standard inbred strains
were used: C57BL/6, B6.129S6(Cg)-Spp1tm1Blh/J, also known as OPN KO, B6.129P2-
Icostm1Mak/J, also known as ICOS KO, and B6.129P2-Icosltm1Mak/J, also known as
ICOSL KO (all mice were purchased from The Jackson Laboratory, Bar Harbor, ME, USA).
Animals were maintained under pathogen-free conditions in the animal facility of Uni-
versità del Piemonte Orientale; they were fed ad libitum on rodent chow, and water was
freely available in the home cages; the ambient temperature was maintained at 21 ± 1 ◦C.
All experimental procedures were conducted during the light phase of a 12:12 h light:dark
cycle. One million cells were i.v. injected and after 15 days the mice were sacrificed and
lung metastases counted by two operators working blind. The lungs were cut into small
pieces and incubated at 37 ◦C for 30 min with 0.5 mg/mL of Collagenase type IV (Merck,
Darmstadt, Germany). After neutralization of the enzyme with 2 mM of EDTA (Merck,
Darmstadt, Germany), the tissue was crushed and passed through a 100 µm filter. Red
blood cells were lysed by osmotic shock. Aliquots of one million cells were stained with
mAb as follows. Myeloid MDSC (M-MDSC) (CD11b+, Ly6Chigh and Ly6Glow) with anti-
CD11b Percp-Cy5.5 (Catalog number #101228, clone M1/70, Biolegend, San Diego, CA,
USA), anti-Ly6C APC (Catalog number #128016, clone HK1.4, Biolegend, San Diego, CA,
USA), and anti-Ly6G APC-Cy7 (Catalog number #127624, clone 1A8, Biolegend, San Diego,
CA, USA) Treg cells (CD4+, CD25+ and Foxp3+) with anti-CD4 FITC (Catalog number
#100406, clone GK1.5, Biolegend, San Diego, CA, USA) and anti-CD25 PE (Catalog number
#12-0251-83, clone PC61.5, Life Technologies, Carlsbad, CA, USA); cells were then perme-
abilized and stained with anti-Foxp3 APC antibody (Catalog number #17-5773-82, clone
FJK-16s, Life Technologies, Carlsbad, CA, USA). Cells were acquired using Attune flow
cytometry (Thermo Fisher Scientific, Waltham, MA, USA) and data analyzed using FlowJo
Software (Becton and Dickinson, Franklin Lakes, NJ, USA). The results are expressed as %
of Ly6Chigh in CD11b+ cells (M-MDSC) and as % of Treg in CD4+ cells (Treg).

2.7. Proximity Ligation Assays (PLA)

PLA technology is based on the detection of protein interactions. This technique uses
one pair of primary antibodies that target the proteins of interest with the aim of studying
the interaction. PLA was carried out with Duolink® In Situ Red Starter Kit Goat/Rabbit
(Merck, Darmstadt, Germany). Additional reagents used were Duolink® In Situ PLA®

Probe Anti-Goat MINUS (# DUO92006) and Duolink® In Situ PLA® Probe Anti-Rabbit
PLUS (#DUO92002). Antibody concentrations were optimized using immunofluorescence
prior to PLA experiments. Human melanocytic skin lesions or metastatic tissue have been
removed based on the clinical suspicion/confirmation of melanoma, accordingly to the best
clinical practices (study approved by the Ethical Committee of AOU Maggiore della Carità
di Novara, 14 December 2012, CE 166/12). The origin of the tumor biopsy (i.e., primary
tumor or metastasis) was confirmed by the pathologist. Each primary tumor was paired
with its lymph node metastasis. No clinical data are provided in the manuscript because
samples were anonymized. Paraffin-embedded primary tumor or metastasis tissues from
patients were deparaffinized and subjected to graded rehydration through an alcohol series
(xylene; 100, 95, and 70% ethanol) before immersion in PBS 1×. Heat-induced epitope
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retrieval was performed using a microwave. Tissue samples were then blocked with protein
block serum-free (Dako) for 1 h at room temperature. Tissues were incubated with primary
antibodies (diluted 1:100 in blocking solution) overnight at 4 ◦C. The In Situ Red Starter Kit
Goat/Rabbit was used following the manufacturer’s protocol. The sections were observed
by Leica TCS SP2 AOBS confocal laser-scanning microscope (Leica Microsystems, Wetzlar,
Germany) and analyzed with the Image Pro Plus Software for micro-imaging 5.0 (Meyer
Instruments, Houston, TX, USA).

2.8. Statistics

The number of metastases, the infiltrate among the mouse groups, and migrations
were analyzed using one-way ANOVA; in all other cases the Mann–Whitney t-test was used
as indicated. p values below 0.05 were considered statistically significant. The statistical
analyses were performed with GraphPad Instat software (Prism 8 version 8.4.3) (GraphPad
Software, San Diego, CA, USA).

3. Results
3.1. OPN and ICOSL Highly Interact in Human Melanoma Metastases

Recently, in a murine breast cancer model, we showed that OPN interacts with ICOSL,
and that this binding sustains the angiogenic process. To characterize the role of OPN-
ICOSL in patient-derived tumors more precisely, human melanoma samples were here
scored for mutual OPN/ICOSL interactions. To this end, the proximity ligation assay
(PLA) technology was employed, as it is a highly specific and sensitive tool for the in
situ detection of protein-protein interactions [17]. By means of immunofluorescence (IF)
analysis, human specimens of primary melanomas (n = 10) and their matched lymph node
metastases (n = 10) were screened; OPN/ICOSL interactions were found in both primary
tumor and metastatic tissues. Quantification of the OPN-ICOSL PLA signal showed this
was higher in metastases than in primary tumors (Figure 1A,B).

Figure 1. Increased OPN-ICOSL interaction in primary and its paired metastatic human melanoma.
(A) Proximity Ligation Assay (PLA) in primary tumor and corresponding metastasis. The merged
PLA signal (violet) shows ICOSL and OPN interaction, while nuclei are labeled with DAPI (blue).
Images were quantified using ImageJ software in order to calculate the ratio between red (OPN) and
green (ICOSL) channels; values are shown as percentage of red–green co-staining. Scale bar 50 µm.
Four images were analyzed for each sample at a magnification of 40×. (B) The histograms quantify
OPN-ICOSL PLA in signals of primary and metastatic tumors, expressed as MFI (mean ± SEM).
Mann–Whitney statistical test was used, *** p < 0.001.

These findings suggest that the simultaneous presence of OPN and ICOSL is rele-
vant in human melanomas, and that binding between these two molecules increases in
metastatic lesions.
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3.2. ICOSL Expression Modulates In Vitro Growth and In Vivo Metastasis of B16-F10
Melanoma Cells

Since OPN/ICOSL were observed to increase in human metastatic melanomas, it was
decided to investigate whether the interaction between these two molecules could also play
a role in a preclinical B16 mouse model. To this end, B16-F10 cells were injected i.v. into
syngeneic mice to generate black countable lung colonies.

Of note, B16-F10 parental cells express ICOSL, as shown by RT-PCR (Figure 2A) and
flow cytometry (Figure 2B), but do not express ICOS or OPN (data not shown). Since
surface expression of ICOSL was variable in different cell batches, and was closely de-
pendent on cell culturing conditions (not shown), cells were engineered to stably express
high (B16-ICOSL-high) or low (B16-ICOSL-low) levels of ICOSL. B16-ICOSL-high cells
were obtained by transfecting B16-F10 cells with a plasmid encoding the entire murine
ICOSL cDNA, and B16-ICOSL-low by transfecting B16-F10 cells with a siRNA targeting
ICOSL. Both cell lines showed stable expression levels of ICOSL mRNA and protein, which
were consistently higher in B16-ICOSL-high than in B16-ICOSL-low cells (Figure 2A,B). A
previous study having found that melanoma cell migration in response to OPN depends
on ICOSL expression, the migration response to OPN of the two cell lines was compared
(Figure 2C). B16-ICOSL-high cells were seen to migrate toward OPN, whereas B16-ICOSL-
low cells did not. As expected, ICOS-Fc was able to interfere and block this migration
(Figure 2C).

Figure 2. Engineering of B16-F10 melanoma cell lines expressing stable levels of ICOSL. (A) Relative
quantification of ICOSL RNA in B16-ICOSL-high and B16-ICOSL-low cells; the dotted line shows
B16-F10 parental cells. Data are shown as means ± SEM gene expression relative to expression of
the endogenous control GAPDH (2−∆Ct method). One representative experiment is shown (n = 3
biological replicates); (B) representative histogram showing surface expression of ICOSL in B16-
ICOSL-high (dark gray), B16-ICOSL-low (gray), and parental B16-F10 cells (light gray); (C) migration
of B16-ICOSL-high and B16-ICOSL-low cells in response to 10 µg/mL of rhOPN or 20% FBS as
chemotactic stimulus. The gray column shows inhibition of OPN-induced migration by ICOS-Fc. The
dotted line shows the migration of control cells, set at 100% in the absence of chemotactic stimuli.
Data are expressed as means ± SEM (n = 5) of the number of migrated cells per high-power field,
** p < 0.01 refers to baseline, ## p < 0.01 refers to OPN-induced migration, one-way ANOVA test
was used.
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In previous work, it was found that ICOSL expression inhibits the growth of mammary
carcinoma cells in anchorage-independent but not in anchorage-dependent conditions,
thus the in vitro growth of B16-ICOSL-high and of B16-ICOSL-low cells in these culture
conditions was compared. B16-ICOSL-high and B16-ICOSL-low displayed comparable
anchorage-dependent growth, as assessed by culturing cells in standard culture plates in
the presence of FBS (Figure 3A). However, anchorage-independent growth in soft agar was
lower in B16-ICOSL-high cells than in B16-ICOSL-low cells (Figure 3B).

Figure 3. ICOSL expression inhibits anchorage-independent tumor cell growth. (A) Kinetic growth
assay of B16-ICOSL-low and B16-ICOSL-high cells in the presence of 10% FBS (n = 2). Cells were
counted following trypan blue staining; (B) the soft agar colony formation assay was run to estimate
anchorage-independent growth of B16-ICOSL-low and B16-ICOSL-high cells. Colonies were counted
digitally using ImageJ software. Data are expressed as means ± SEM. The Mann–Whitney statistical
test was used, ** p < 0.01.

The finding that tumor cells expressing low levels of ICOSL grow efficiently in the
absence of anchorage to the extracellular matrix suggests that they may be prone to metas-
tasize in vivo. To assess this possibility, the metastatic potentials of B16-ICOSL-high and
B16-ICOSL-low cells were compared, injecting them into the tail vein of C57BL/6 mice and
counting lung metastases after 15 days: B16-ICOSL-low cells produced more metastases
than B16-ICOSL-high cells (Figure 4A,B). In order to exclude any nonlung metastatic spread,
we macroscopically analyzed all the available organs comprising liver, omentum and gut,
lymph nodes, muscles, bone and brain: no metastases were found (data not shown). The
TME of the metastases was characterized by analyzing the infiltrating leukocytes of the
metastatized lung, focusing on M-MDSC and Tregs, which are known to be supported
by OPN and ICOS, respectively, and are key components of the immune suppressive
TME [13,27–29]. M-MDSC were evaluated as percentage of CD11b+/Ly6C+/Ly6G− cells
among total CD11b+ cells, and Treg cells as percentage of CD4+CD25+Foxp3+ among total
CD4+ cells (the gating strategy and the fluorescence minus controls (FMOs) are shown
in Supplementary Figures S1 and S2). Similar amounts of both cell types were detected
in lungs metastasized with either B16-ICOSL-low or B16-ICOSL-high cells (Figure 4C),
suggesting that the metastasis process, in this setting, is not influenced by recruitment of
M-MDSC and Tregs in premetastatic niches and finally, the percentages are in line with
those detected in the lungs of tumor-free mice (Supplementary Figure S3).
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Figure 4. Role of ICOSL expression in B16-F10 cell metastasis. (A) Schematic illustration of experi-
mental in vivo approach (top) and representative images of metastatic lung (bottom) from B16-ICOSL-
high and B16-ICOSL-low injected mice, at baseline (left) and after 15 days (right). (B) The graph
shows the number of lung metastases in B16-ICOSL-high and B16-ICOSL-low C57BL/6-injected
mice (n = 9–15 mice). Data are shown as means ± SEM. The Mann–Whitney statistical test was used,
**** p < 0.0001 (C) Left: bar graph showing the percentage of M-MDSC among total CD11b+ cells in
the lung of C57BL/6 mice injected with B16-ICOSL-high and B16-ICOSL-low cells. Right: bar graph
showing the percentage of Treg among total CD4+ cells in the lung of C57BL/6 mice injected with
B16-ICOSL-high and B16-ICOSL-low cells.

3.3. ICOSL Mediates Different Metastatic Effects When Binding to OPN or to ICOS

With C57BL/6 mice it is not possible to model the net OPN/ICOSL interaction in the
tumor context, since these mice fully express all three molecules (OPN, ICOS, and ICOSL)
and thus the effect of each may be masked by an opposing action of the others. Thus, in
order to gain in-depth understanding of the roles of ICOSL’s two binding partners, and to
elucidate their mechanisms, the metastasis of B16-ICOSL-high and B16-ICOSL-low cells
was examined in wild-type mice compared to OPN-, ICOS-, or ICOSL-KO mice; these are
mice in which either OPN or ICOS or ICOSL is lacking. ICOSL-KO mice were included to
examine the role of stromal ICOSL in comparison to tumor ICOSL. When necessary, ICOSL
expression was silenced in tumor cells to eliminate its interference, using B16-ICOSL-low
cells. For comparison purposes, ICOSL was also transfected into B16-F10 cells, so as to
overexpress it and evaluate its role when expressed by tumor cells, using B16-ICOSL-high
cells. Of note, these engineered cell models are only capable of addressing OPN produced
by stromal cells (B16-F10 cells do not secrete OPN; data not shown) whereas they can
address ICOSL expressed either by tumor cells or by the stromal compartment.

The first comparison between B16-ICOSL-low and B16-ICOSL-high cells showed that
the former produced more metastases than did the latter, in OPN-KO, ICOS-KO, and
ICOSL-KO strains, and in wild-type mice (Figure 5A).
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Figure 5. ICOSL mediates different metastasizing effects when binding to OPN and ICOS. (A) The
histogram shows the number of metastases in each genotype (C57BL/6, OPN-KO, ICOSL-KO and
ICOS-KO) of B16-ICOSL-high and B16-ICOSL-low injected mice (n = 9–17 mice). (B) The histogram
shows the number of metastases in different genotypes (C57BL/6, OPN-KO, ICOSL and ICOS-KO)
in B16-ICOSL-high injected mice (n = 9–17 mice). (C) The histogram shows the number of metastases
within genotypes (C57BL/6, OPN-KO and ICOS-KO) of B16-ICOSL-low injected mice (n = 9–11 mice).
One-way ANOVA test was used, * p < 0.05, *** p < 0.001, **** p < 0.0001 and # p < 0.05 refers to C57
mouse background.

The second analysis compared the metastases formed by B16-ICOSL-high, displaying
low metastatic behavior, in the different mouse strains. Results showed that metastases
were higher in ICOSL-KO mice and ICOS-KO mice than in wild-type mice. In addition,
ICOSL-KO mice displayed an increased amount of metastasis compared to OPN-KO mice
(Figure 5B). The results of ICOS-KO mice confirm that ICOS inhibits metastasis. By contrast,
the results of ICOSL-KO and OPN-KO were unexpected and indicated that expression of
high levels of ICOSL in the tumor cells increases the system complexity.

The third analysis compared the metastases formed by B16-ICOSL-low, displaying
high metastatic behavior, in the different mouse strains. Results showed that, compared
to wild-type mice, metastases were decreased in OPN-KO mice and ICOSL-KO mice, and
increased in ICOS-KO mice (Figure 5C). These results are in line with the model that OPN
and ICOSL promote, whereas ICOS inhibits metastasis.

To assess the effects of ICOS, OPN and ICOSL expressed by the TME on the B16-F10
metastasis microenvironment, the lung-infiltrating m-MDSC and Treg cells in wild-type
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mice were compared with those in the different KO mice (the gating strategy is shown in
Supplementary Figures S1 and S2).

As in wild-type C57BL/6 mice also in ICOS-KO, OPN-KO and ICOSL-KO mice, m-
MDSC and Treg were not significantly different in lungs metastasized by B16-ICOSL-high
versus B16-ICOSL-low cells (Figure 6). On the contrary, comparison of wild-type mice
with each KO strain showed that: (1) M-MDSC were significantly increased in ICOS-KO
and a trend (p = 0.07) was found in ICOSL-KO mice when injected with B16-ICOSL-low,
but not with B16-ICOSL-high cells (Figure 6A,B); (2) Tregs were decreased in ICOSL-KO
mice injected with both B16-ICOSL-high -low cells, and increased in OPN-KO mice with
B16-ICOSL-low cells, but not in those injected with B16-ICOSL-high cells (Figure 6C,D). All
the other comparisons showed no statistically relevant difference.
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Figure 6. Percentage of Treg and M-MDSC infiltrating B16.ICOS-high/low tumors in C57BL/6 and
KO mice (A) M-MDSC as % of CD11b+ cells in lungs of C57BL/6, OPN-KO, ICOSL-KO and ICOS-KO
mice injected with B16-ICOSL-high cells; the gray rectangle shows the percentage of M-MDSC in
C57 mice. Data are means ± SEM (n = 10–17 mice). (B) M-MDSC as % of CD11b+ cells in lungs
of C57BL/6, OPN-KO, ICOSL-KO and ICOS-KO mice injected with B16-ICOSL-low cells; the gray
rectangle shows the percentage of M-MDSC in C57 mice. Data are means ± SEM (n = 9–11 mice).
(C) Treg as percentage of CD4+ in lungs of C57BL/6, OPN-KO and ICOS-KO mice injected with
B16-ICOSL-high cells; the gray rectangle shows the percentage of Tregs as percentage of CD4+ in
C57BL/6 mice. Data are means ± SEM (n = 9–12 mice). (D) Treg as percentage of CD4+ in lungs of
C57BL/6, OPN-KO and ICOS-KO mice injected with B16-ICOSL-low cells; the gray rectangle shows
the percentage of Tregs in C57BL/6 mice. Data are means ± SEM (n = 4–9 mice). One-way ANOVA
test was used, ** p < 0.01; # p < 0.05, ## p < 0.01 and ### p < 0.001 refer to C57BL/6 mouse background.

The amounts of M-MDSCs and Tregs obtained from the lungs of control tumor-free
mice were similar in wild type and each KO strain (Supplementary Figure S3).
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4. Discussion

This study investigates the role in tumor cell metastasis of the ICOS/ICOSL/OPN
network, comparing the metastasizing capability of two variants of melanoma B16-F10
cells, respectively expressing high and low levels of ICOSL. The study used wild-type
mice and three strains of KO mice, lacking either ICOS, or OPN, or ICOSL. It emerged that
the three members of the ICOS/ICOSL/OPN network play distinct and differing roles,
possibly acting both at the tumor cell level and at that of the TME. These differing effects
may be ascribed to the complexity of the ICOS/ICOSL/OPN network, in which (1) both
ICOS and OPN bind to ICOSL, but exert different, often opposing, effects on the cell that
expresses ICOSL; (2) OPN also binds other surface receptors, such as integrins and CD44;
(3) OPN and its ligands (ICOSL, integrins, and CD44) can be expressed by tumor cells
and by several cell types of the TME, influencing tumor cell survival, proliferation, and
metastasis; (4) ICOS can be expressed by different types of T cells, including effector and
Treg cells, and also by some other cell types in the TME, such as DCs and macrophages.
Moreover, OPN produced by tumor cells may lack important domains and may carry
different post-translational modifications, making it structurally and functionally different
from that produced by other cell types [30].

The first part of the study validates the model employing two types of B16-F10 cells,
and confirms the results of previous work on different tumor cell types [17]. That prior
study showed that expression of high levels of ICOSL promotes cell migration in response
to OPN, which is inhibited by ICOS-mediated triggering of ICOSL, and that it inhibits tumor
cell growth in anchorage-independent, but not in anchorage-dependent, conditions. The
effect on anchorage-independent growth suggests that expression of ICOSL may increase
tumor cell anoikis, which is a cell-death process whereby cells undergo apoptosis after they
lose contact with the extracellular matrix (ECM) [31]. Acquisition of anoikis resistance is
necessary for tumor cells to survive while traveling through the circulation [32].

Since the triggering of ICOSL by OPN, or alternatively by ICOS, exerts opposing
effects on tumor cell migration, metastasis of B16-ICOSL-high and of B16-ICOSL-low
cells in wild-type mice was compared, to assess the net effect of these opposing forces
in vivo. Expression of high levels of ICOSL was found to substantially decrease metastasis,
suggesting that the inhibitory effect of ICOS-mediated triggering of ICOSL is dominant
over the promoting effect mediated by OPN; this is in line with previous work showing
that treatment of mice with ICOS-Fc inhibits tumor cell metastasis [18].

To dissect the role of each member of the ICOS/OPN/ICOSL network expressed in the
TME, the metastasis ability of B16-ICOSL-high was compared with that of B16-ICOSL-low
cells, using KO mice lacking one network member at a time. B16-ICOSL-high and B16-
ICOSL-low cells express neither OPN nor ICOS, so that the only source of the two ligands
of ICOSL was in the TME. Importantly, removing each molecule of the trio, one at a time, is
useful at a twofold level: on one hand it allows evaluation of the effect of the absence of
the knocked-out molecule itself, but on the other hand it sets the conditions to evaluate,
without any interference, the residual activity of the other two interactors, as depicted for
better clarity in Figure 7. Analysis of ICOS-KO mice showed that, compared to wild-type
mice, they undergo increased metastasis formation, whether using B16-ICOSL-high or
B16-ICOSL-low cells. This effect is in line with the loss of the dominant ICOS-mediated
triggering of ICOSL both on tumor or stromal cells. Indeed, in B16-ICOSL-low metastases,
the increased numbers of M-MDSC cells might play a role in the increased metastasis, and
help tumor cells (not expressing ICOSL) to elude the immune system. On the contrary,
M-MDSC were not increased in B16-ICOSL-high metastases, suggesting that expression of
high levels of ICOSL on tumor cells might inhibit the development of M-MDSC, possibly by
sequestering OPN, known to support M-MDSC development. In line with this hypothesis,
the same increase in M-MDSC displayed by B16-ICOSL-low, (and not by B16-ICOSL-high
metastases), was also detected in ICOSL-KO mice, (and not in OPN-KO mice). Since
C57BL/6 mice did not show any increase in M-MDSC, these data collectively suggest that
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such an increase requires both the availability of OPN and absence of the ICOS/ICOSL
interaction at the TME level.

Figure 7. The metastatic niche model at a glance. The melanoma metastatic niche contains malignant
cells towards which immune suppressive cells are recruited and corrupted. Tumor and stromal
cells produce the ECM proteins that regulate cell function, and their interaction is also relevant for
tumor progression and metastasis. The model used here was implemented to investigate metastasis,
Tregs and M-MDSC-infiltrating metastatic melanoma, induced by ICOSL binding to ICOS or to OPN.
Melanoma cells, expressing ICOSL (green) or not expressing it (blue), were used to induce metastases
in scenarios lacking one of the three molecules of the trio. By removing one molecule at a time, the
effect of each molecule expressed can be observed without interference from the other two. The
results on the three strains of KO mice were then compared to each another and to those on wt mice.
Using this model, it was shown that OPN/ICOSL promote metastasis.

Analysis of OPN-KO mice showed that, when compared to wild-type mice, they
developed fewer metastases using B16-ICOSL-low. This effect is in line with a loss of
the prometastatic effect exerted by OPN. Interestingly, this model shows that B16-ICOSL-
low metastases contained increased numbers of Treg cells compared to C57BL/6 mice,
suggesting that OPN may inhibit development of these cells; this effect would be reversed
by the expression of high levels of ICOSL in B16-ICOSL-high cells, which is in line with the
notion that ICOS triggering in T cells supports Tregs.

Lastly, through analysis of ICOSL-KO, the role played by ICOSL—expressed by either
the tumor or the TME cells—was elucidated. Compared to C57BL/6, ICOSL-KO mice
displayed more B16-ICOSL-high metastases and fewer B16-ICOSL-low metastases, which
runs counter to the dominant negative effect exerted by ICOS on adhesion and migration
of ICOSL-expressing tumor cells. One possible explanation for this disparity is that, in
ICOSL-KO mice, the lack of endogenous ICOSL makes large amounts of OPN available
to the tumor cells, an abundance that might promote metastasis of B16-ICOSL-high cells
by overcoming the dominant negative effect exerted by ICOS. Importantly, low numbers
of B16-ICOSL-low metastases, which were comparable in number to those occurring in
OPN-KO mice, suggest that the metastasis process is closely related to the simultaneous
expression and interaction of OPN and ICOSL. In ICOS-KO mice, OPN has no competitor
for ICOSL in the TME in promoting M-MDSC recruitment. Moreover, the observation that
both B16-ICOSL-high and B16-ICOSL-low metastases displayed lower numbers of Treg
cells in ICOSL-KO mice than they did in wild-type mice is in line with the notion that the
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triggering of ICOS by microenvironmental ICOSL plays a key role in the development of
these cells.

Collectively, these data suggest that OPN produced by TME favors tumor metastasis
by interacting with stromal ICOSL; these activities are dominantly inhibited by ICOS. At the
light of the important role played by both host OPN and ICOSL in metastasis development,
further experiments using double OPN-KO and ICOSL-KO mice would be useful to sustain
our findings.

The multiple interaction spots of OPN/ICOSL detected by PLA in human melanoma
metastases, compared to those in primary tumors, support the hypothesis the binding
between these two molecules plays a role in metastasis, but appears to contradict our
in vitro finding that melanoma cells expressing low levels of ICOSL are prone to survive
in attachment-independent conditions and display increased metastatic capacity. We can
speculate that low expression of ICOSL in the primary tumor might favor detachment of
tumor cells, their survival in the blood stream, and their extravasation at the metastatic
site, since these cells would be less sensitive to the dominant negative inhibition triggered
by ICOS. At the metastasis site, the ICOSL/OPN interaction might thus be crucial for
engraftment of the metastasis, possibly taking advantage of a positive feedback loop,
since previous findings show that boosting ICOSL expression in 4T1 cells increases their
expression of OPN [17]. This opens an opposite scenario, not mutually exclusive with
the previous one, in which OPN, which is one of the most abundantly expressed genes
in melanoma metastases, acts as a chemoattractant for circulating ICOSL-positive tumor
cells, and thus promotes development of the premetastatic niche by interacting with its
multiple receptors [33,34]. Beside its effect on tumor cell migration and survival, the
network also plays a role in tumor neoangiogenesis, since OPN induces—while ICOS
inhibits—angiogenesis.

Targeting this network may exert an antitumor effect by acting at multiple levels and
addressing important unmet clinical needs, since approximatively 60% of patients do not
achieve any significant therapeutic response, and a substantial proportion of responders
relapse within 2 years [35].

ICOS-Fc treatment of mice carrying established primary melanomas decreases infil-
trating Treg cells [36,37]. Anti-PD1 and anti-CTLA4 treatments are effective in melanoma
immune therapy and, intriguingly, their effectiveness is marked by increased expression of
ICOS [38]. Therefore, ICOS itself may play a role as an effector molecule recruited by this
therapy, possibly by acting at several levels in the ICOS/ICOSL/OPN network. Recently,
OPN has been shown to act as an immune checkpoint that negatively regulates T-cell
activation and decreases the effectiveness of anti-PD-1-based immune therapy [39]. OPN
neutralization may thus be another approach to increasing the efficacy of PD-1-based im-
mune checkpoints blockade (ICB) immunotherapy in responding patients, and to overcome
resistance to ICB immunotherapy in nonresponding patients [40].

Finely tuning/interfering with the OPN/ICOS/ICOSL network may represent a next-
generation immunotherapy either for patients resistant to conventional therapies (i.e., ICB).

This model may be relevant for other cancer types too. Accumulative evidence
suggests that OPN is one of the most potent metastasis-associated proteins during the pro-
gression of other cancer types such as breast, colon, lung, pancreatic, renal, and esophageal
cancer [33]. Cancer is often linked to an expansion of MDSCs/Tregs [41,42], in which
OPN/ICOSL/ICOS trio may be involved. Given that the frequencies of MDSCs/Tregs
have also been negatively correlated with the response to immunotherapy, targeting these
cells in cancer patients may be a viable therapeutic approach to reverse immune escape
and to maximize immune-based treatments.

Lastly, many investigations have been performed to decipher the multiple signaling
pathways and gene expression profiles induced by OPN by focusing on its binding to
integrins and CD44. To the best of our knowledge, no studies have been performed yet
investigating OPN/ICOSL intracellular signaling pathways. This research is necessary
to improve the current understanding and to unveil the precise role of OPN/ICOSL in-
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teraction in tumor microenvironment remodeling, in tumor progression and metastasis
development. These studies may be relevant to dissect pathogenetic roles and to identify
new therapeutic targets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
biomedicines10010051/s1: Figure S1: Gating strategy to define M-MDSC in lung; Figure S2: Gating
strategies defining regulatory T cells (Treg) in lungs; Figure S3: Percentages of m-MDSC and Tregs in
lungs of tumor-free bearing mice.
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