IFI16 impacts metabolic reprogramming during human cytomegalovirus infection GLORIA GRIFFANTE,¹ WERONIKA HEWELT-BELKA,² CAMILLA ALBANO,¹ FRANCESCA GUGLIESI,¹ SELINA PASQUERO,¹ SERGIO F. CASTILLO PACHECO,¹ GRETA BAJETTO,¹ PAOLO E. PORPORATO,³ ERICA MINA,³ MARTA VALLINO,⁴ CHRISTIAN KRAPP,⁵ MARTIN JAKOBSEN,⁵ JOHN PURDY,⁶ SANTO LANDOLFO,¹ VALENTINA DELLØOSTE,¹ <u>MATTEO</u> BIOLATTI¹ ¹Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy; ²Department of Analytical Chemistry, Gda sk University of Technology, Gda sk, Poland; ³Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy; ⁴Institute for Sustainable Plant Protection, CNR, Turin, Italy; ⁵Department of Biomedicine, Aarhus University, Aarhus, Denmark; ⁶Department of Immunobiology, University of Arizona, Tucson, Arizona, USA. Cellular lipid metabolism plays a pivotal role in human cytomegalovirus (HCMV) infection as increased lipogenesis in HCMV-infected cells favors the envelopment of newly synthesized viral particles. As all cells are equipped with restriction factors (RFs) able to exert a protective effect against invading pathogens, we asked whether a similar defense mechanism would also be in place to preserve the metabolic compartment from HCMV infection. Here we show that the IFN-gamma-inducible protein 16 (IFI16), a RF able to block HCMV DNA synthesis, can also counteract HCMV-mediated metabolic reprogramming in infected primary human foreskin fibroblasts (HFFs), thereby limiting virion production. Specifically, we find that IFI16 downregulates the transcriptional activation of the glucose transporter 4 (GLUT4) through cooperation with the carbohydrate-response element-binding protein (ChREBP), thereby reducing HCMV-induced transcription of lipogenic enzymes. The resulting decrease in glucose uptake and consumption leads to diminished lipid synthesis, which ultimately curbs the *de novo* formation of enveloped viral particles in infected HFFs. Consistently, untargeted lipidomic analysis shows enhanced cholesteryl ester levels in wild-type (WT) vs. IFI16 KO HFFs. Overall, our data unveil a new role of IFI16 in the regulation of glucose and lipid metabolism upon HCMV replication and uncover new potential targets for the development of novel antiviral therapies.