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Abstract

Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we

have developed a fully quantum numerically accurate wave-function-based approach

for the calculation of third-order spectroscopic signals of polyatomic molecules and

molecular aggregates at finite temperature. The systems are described by multi-mode

nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in

harmonic approximation, while off-diagonal inter-state couplings are assumed to be

coordinate independent. The approach is based on the Thermo Field Dynamics (TFD)

representation of quantum mechanics and tensor-train (TT) machinery for efficient
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numerical simulation of quantum evolution of systems with many degrees of freedom.

The developed TFD-TT approach is applied to the calculation of time- and frequency-

resolved fluorescence spectra of the Fenna–Matthews–Olson (FMO) antenna complex at

room temperature taking into account finite time-frequency resolution in fluorescence

detection, orientational averaging, and static disorder.

1. Introduction

Nonlinear femtosecond electronic spectroscopy is the main diagnostic tool for the detailed

characterization of photophysical and photochemical processes in polyatomic chromophores

and molecular aggregates in real time.1–7 However, measured spectroscopic responses contain

information on the system dynamics only implicitly, through the dependence of signals on

carrier frequencies, delay times, phases, and temporal envelopes of the laser pulses. For

example, time- and frequency-resolved fluorescence signal considered in the present work is

triggered by a femtosecond pump pulse and is detected by mixing of spontaneous emission

of excited electronic state(s) with a femtosecond up-conversion pulse.8,9 The signal depends

on the time delay between the pump and up-conversion pulses, on carrier frequency and

duration of the pump pulse, and on time- and frequency-resolution of the up-conversion

setup. Since most of polyatomic molecules and notably molecular aggregates are complex

multi-mode systems, theoretical support is indispensable for the extraction of the intrinsic

system evolution from detected spectroscopic observables.

Until recently, theoretical simulations of nonlinear spectroscopic signals were based on

phenomenological models with several relevant electronic states, a few optically-active vibra-

tional modes, and oversimplified description of vibrational relaxation and optical dephasing.

Computer simulations have revolutionized theoretical spectroscopy: It became possible to

develop more complex and therefore more realistic models in which relevant potential energy

surfaces and transition dipole moments were retrieved from electronic structure calculations.

Vibronic-coupling (VC) based approach, in which diabatic potential energy surfaces and
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transition dipole moments are represented by polynomials of nuclear coordinates, is one of

the most popular and reliable methods for the construction of ab initio-based Hamiltonians

of polyatomic chromophores4,10 and molecular aggregates.5,6 The VC models can also be

efficiently interfaced with classical trajectory simulations.11 Usually, diagonal terms in the

diabatic potential energy surfaces of VC Hamiltonians are retained up to the second order

in nuclear coordinates (harmonic approximation), while off-diagonal inter-state couplings

are assumed to be either coordinate independent (constant VC (CVC) model describing

avoided crossings between diabatic electronic states) or linear in nuclear coordinates (lin-

ear VC (LVC) model describing conical intersections between diabatic electronic states).

Usually, VC Hamiltonians contain high-frequency Franck-Condon-active vibrational modes

(which are strongly coupled to electronic states and are responsible for vibronic structure of

spectroscopic signals) as well as relevant low-frequency vibrational modes (which are weakly

coupled to electronic states and are primarily responsible for vibrational relaxation and

electronic dephasing). Since typical energies of low-frequency modes are comparable or less

than thermal energy at ambient conditions, it is necessary to have a computationally efficient

methodology for the simulation of nonlinear femtosecond signals at finite temperature.

There exist two major methods for the simulation of quantum dynamics generated by

multi-mode VC Hamiltonians, the reduced density-matrix method and the wave-function

method. In the reduced density-matrix method, a few relevant high-frequency vibrational

modes with strong electron-vibrational couplings are incorporated into the system Hamilto-

nian, the remaining vibrational modes are treated as a harmonic heat bath, and the time

evolution of the reduced (system) density matrix is calculated by appropriate stochastic or

master equations.3,12,13 The hierarchical equations-of-motion (HEOM) method14–18 is nowa-

days the most powerful technique for the simulation of dissipative quantum dynamics and

spectroscopic signals within the system-bath approach (see Ref.19 for a recent review). In the

wave-function method, which is at focus of the present work, the system-bath partitioning is

not employed and multidimensional time-dependent Schrödinger equations governed by VC

3



Hamiltonians are handled directly.

Wave-function-based-methods, notably the (multilayer) multi-configuration time-dependent

Hartree (MCTDH) method20 and the variational multi-configurational Gaussian (vMCG)

method,21 are known to be highly efficient in numerically accurate simulation of multi-

mode fully quantum dynamics driven by CVC and LVC Hamiltonians at zero temperature.

In the late 1990s, this was impressively demonstrated on a 24-vibrational-mode model of

pyrazine.22,23 Yet generalization of these methods to finite temperatures is computation-

ally demanding and requires multidimensional statistical sampling of initial conditions.24–29

Hence applications of the MCTDH method to the simulation of spectroscopic signals at fi-

nite temperatures are quite limited.25,30–32 The multiple variational Davydov Ansatz method,

which was used to simulate nonlinear spectroscopic signals at zero temperature,33–38 was re-

cently extended to finite temperatures39 by employing the sampling technique of Refs.40,41

However, the method of Ref.39 is computationally efficient for CVC and LVC models with

only a few low-frequency modes. There exist also approximate (though quite accurate for

certain classes of multi-mode systems) finite-temperature techniques of simulation of spec-

troscopic signals of multi-mode systems which are based on employing the thawed Gaussian

Ansatz method42–44 and quasiclassical mapping approach.45–48

Recently, we have developed a computationally efficient, numerically accurate wave-

function-based method for the simulation of quantum dynamics of systems with many degrees

of freedom at finite temperature described by CVC Hamiltonians.49–52 The method is based

on the ideas of Thermo Field Dynamics (TFD)53–58 (which enables a finite temperature

wave-function representation of quantum mechanics and can efficiently be implemented for

systems consisting of Bosons and/or Fermions) and the tensor-train (TT) methodology.59–61

In physics literature, it is common to use the name matrix product states (MPS) instead

of TTs, and the methodology very similar to TFD-TT is called finite-temperature time-

dependent density matrix renormalization group (TD-DMRG).62 Over the recent years, the

TFD-TT machinery has been applied to the calculation of time-dependent populations and
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linear steady-state signals of molecular systems at finite temperature.63–71 In this work, the

TFD-TT approach is extended towards the simulation of nonlinear response functions and

electronic femtosecond spectroscopic signals.

To illustrate performance of the TFD-TT methodology, we simulate time- and frequency-

resolved fluorescence of the Fenna–Matthews–Olson (FMO) complex. This antenna complex

was extensively studied by femtosecond transient-absorption pump-probe spectroscopy72,73

and electronic two-dimensional spectroscopy74–77 (see also recent reviews78–80). However, to

our knowledge, no femtosecond time- and frequency-resolved fluorescence signal of FMO was

detected and no theoretical simulations of this signal were attempted – despite time- and

frequency-resolved fluorescence reveals wavepacket dynamics exclusively in excited electronic

states, without admixture of ground-state bleach and excited-state absorption (time- and

frequency-resolved fluorescence of various molecular aggregates was extensively simulated

though81–83).

Our paper is structured as follows. Sec. 2 contains a brief introduction to the TFD

methodology for time-dependent CVC Hamiltonians. The explicit expressions for the TFD

third-order nonlinear response functions are derived in Sec. 3. Application of the TT method-

ology for the evaluation of nonlinear response functions is discussed in Sec. 4. Simulated

time- and frequency-resolved signals for the FMO antenna complex are presented and dis-

cussed in Sec. 5. Sec. 6 contains the conclusions and the discussion of the future develop-

ments.

2. TFD methodology

2.1 Starting equations

The third-order polarization P(3)(t) in the appropriate phase-matching direction is the key

quantity specifying nonlinear femtosecond signals.1–7 It describes the third-order response of

the molecular system to the electric field of relevant laser pulses. Once P(3)(t) is known, any
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spectroscopic signal can be calculated. To evaluate P(3)(t), we need to calculate the response

of the system (described by the Hamiltonian H) to electric fields of the relevant laser pulses

(described by the interaction Hamiltonian HF (t)). If the system is specified by the density

matrix ρ(t), the response can be obtained from the solution of the driven Liouville – von

Neumann equation (h̄ = 1)

∂tρ(t) = −i[H +HF (t), ρ(t)]. (1)

As has been explained in the Introduction, we assume that the system is characterized by a

standard CVC excitonic Hamiltonian

H =
∑
n

εnc
†
ncn +

∑
n̸=m

Jnmc
†
ncm +

∑
k

ωka
†
kak −

∑
kn

gkn√
2
c†ncn(a

†
k + ak). (2)

Here c†n (cn) create (annihilate) electronic excitation in the state n and obey the Pauli com-

mutation rules [cn, c
†
n′ ] = δnn′(1− 2c†ncn′), εn are site energies, Jnm are electronic couplings,

a†k (ak) are the creation and annihilation operators of the kth harmonic mode with frequen-

cies ωk, and the parameters gnk determine the strength of the electron-vibrational coupling.

In the remainder of the present work we adopt excitonic notation and refer to the Hamil-

tonian of Eq. (2) as excitonic Hamiltonian.5,6 However the developed formalism is equally

applicable to polyatomic chromophores4,10 and molecular aggregates5,6 described by CVC

Hamiltonians.

The system-field interaction Hamiltonian is given by the expression1–7

HF (t) = E(t)µ̂+ + E∗(t)µ̂− (3)

where E(t) is the total electric field of the relevant laser pulses,

µ̂+ =
∑
n

c†n(sµn), µ̂− =
∑
n

cn(sµn) (4)

6



are the raising and lowering components of the transition dipole moment operator

µ̂ = µ̂+ + µ̂−, (5)

µn are the transition dipole moment vectors, and s is the polarization of the laser pulses.

Eq. (3) is written the rotating wave approximation. This approximation is thoroughly

satisfied in femtosecond weak-field electronic nonlinear spectroscopy, which involves mostly

electronically-resonant transitions.1

It is assumed that parameters of the CVC Hamiltonian of Eq. (2) (site energies εn, elec-

tronic couplings Jnm, electron-vibrational couplings gnk) as well as transition dipole moment

vectors µn in the system-field interaction Hamiltonian of Eq. (3) are coordinate indepen-

dent. This level of description is adequate for a large variety of photophysical phenomena in

polyatomic chromophores and molecular aggregates. In certain cases, however, it is neces-

sary to take into account anharmonicities of potential-energy surfaces, coordinate-dependent

inter-state couplings, mode-mode couplings, and coordinate-dependent transition dipole mo-

ments (non-Condon effects). The corresponding generalizations and their treatment within

the TFD-TT methodology are discussed in Section 2.2.

We assume that the entire system is prepared at a certain time moment tin before arrival

of the laser pulses at thermal vibrational equilibrium in the electronic (excitonic) ground

state |g⟩. Hence the initial condition for the Liouville – von Neumann equation (1) reads

ρ(tin) = |g⟩⟨g|ρv, (6)

where

ρv = Z−1
v exp{−β

∑
k

ωka
†
kak}, (7)

Zv is the partition function, β = (kBT )
−1, kB is the Boltzmann constant, and T is the

temperature. With the above definitions, the total nonlinear polarization can be evaluated
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as

P(t) = Tr{µ̂ρ(t)}. (8)

The third-order polarization P(3)(t) can be extracted from P(t) by different non-perturbative

methods.4,7,84

2.2 TFD Schrödinger equation

The Liouville – von Neumann equation (1) is a standard departing point for the formal

calculation of various spectroscopic signals.1–7 Here, following the general scheme of Ref.,85

we demonstrate how Eq. (1) can be equivalently recast in the TFD representation.

Let us introduce the eigenvectors of the vibrational Hamiltonian,

∑
l

ωla
†
lal|k⟩ = Ek|k⟩.

Obviously,

|k⟩ =
∏
l

|kl⟩, Ek =
∑
l

klωl (9)

where |kl⟩ are the eigenvectors of the lth harmonic mode. We also define vectors |k̃⟩ which

are a copy of the original vectors |k⟩ but act in a different Hilbert space, the so-called tilde

space. Adopting the notation

|kk̃⟩ = |k⟩|k̃⟩,

we introduce the unity vector in the |k⟩ ⊗ |k̃⟩ vector space,

|Iv⟩ =
∑
k

|kk̃⟩, (10)

and the so-called thermal vacuum state,

|0v(β)⟩ =
√
ρv|Iv⟩ = Z

− 1
2

v e−
1
2

∑
l ωla

†
l al |Iv⟩. (11)

8



With the above definitions, the thermal Boltzmann distribution of Eq. (7) can be rewritten

in the form

ρv = Trk̃{|0v(β)⟩⟨0v(β)|} (12)

where Trk̃{...} indicates the trace over the tilde subspace. The equivalence of Eqs. (7) and

(12) follows immediately from the orthogonality of the harmonic oscillator eigenvectors.

Let us now consider the Liouville – von Neumann equation identical to that of Eq. (1),

∂tσ(t) = −i[H +HF (t), σ(t)], (13)

but with the initial condition

σ(tin) = |g⟩⟨g||0v(β)⟩⟨0v(β)|. (14)

Then Eq. (12) guarantees that

ρ(t) = Trk̃{σ(t)}. (15)

Furthermore, the Liouville – von Neumann equation

∂tσ(t) = −i[H +HF (t)− h̃v, σ(t)] (16)

(h̃v being any operator acting in the tilde subspace only) with the initial condition (14)

fulfills Eq. (15).

Since the initial condition (14) corresponds to a pure state, the solution of Eq. (16) reads

σ(t) = |ψ(t)⟩⟨ψ(t)| (17)

where the wave function |ψ(t)⟩ obeys the TFD Schrödinger equation

∂t|ψ(t)⟩ = −iH(t)|ψ(t)⟩ (18)
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with the initial condition

|ψ(tin)⟩ = |g⟩|0v(β)⟩. (19)

For brevity, we have defined

H(t) = H +HF (t)− h̃v. (20)

We have thus demonstrated that the solution of the original Liouville – von Neumann equa-

tion (1) with the initial condition (6) is equivalent to the solution of the TFD Schrödinger

equation (18) with the initial condition (19).

The key advantage of the TFD machinery is a compact analytical representation of the

thermal vacuum state given by thermal Bogoliubov transformation

e−iG|0v0̃v⟩ = |0v(β)⟩ (21)

where |0v0̃v⟩ is the ground state in the |k⟩ ⊗ |k̃⟩ subspace. Applying thermal Bogoliubov

transformation to Eq. (18), we obtain

i∂t
∣∣ψθ(t)

〉
= Hθ(t)

∣∣ψθ(t)
〉

(22)

where

Hθ(t) = eiGH(t)e−iG, (23)

∣∣ψθ(t)
〉
= eiG

∣∣ψ(t)〉 (24)

and ∣∣ψθ(tin)
〉
= |g⟩|0v0̃v⟩ (25)

is the global vacuum state. The nonlinear polarization of Eq. (8) can now be evaluated as

P(t) =
〈
ψθ(t)

∣∣µ̂θ

∣∣ψθ(t)
〉

with µ̂θ = eiGµ̂e−iG. (26)
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For thermal vacuum state |0v(β)⟩ of Eq. (11), the operator of thermal Bogoliubov transfor-

mation reads53–57

G = −i
∑
j

θj(aj ãj − a†j ã
†
j) (27)

where

θj = arctanh(e−βωj/2). (28)

For obtaining the explicit form of the transformed Hamiltonian Hθ(t), we assume that elec-

tronic energies εn, electronic inter-state couplings Jnm, electron-vibrational intrastate cou-

plings gnk, and transition dipole moment vectors µn are independent of vibrational coordi-

nates. These approximations are commonly employed in molecular spectroscopy1–7 and will

be adopted in the present work. With these approximations, µ̂θ = µ̂. Then, by choosing

h̃v(t) =
∑
k

ωkã
†
kãk

we obtain the driven TFD Schrödinger equation

i∂t
∣∣ψθ(t)

〉
= (Hθ +HF (t))

∣∣ψθ(t)
〉

(29)

where50

Hθ = eiGHe−iG = (30)

∑
n

εnc
†
ncn +

∑
n̸=m

Jnmc
†
ncm +

∑
k

ωk

(
a†kak − ã†kãk

)
−
∑
kn

gkn√
2

{(
ak + a†k

)
cosh(θk) +

(
ãk + ã†k

)
sinh(θk)

}
c†ncn.

HF (t) depends on electronic degrees of freedom only and is unaffected by the TFD and Bo-

goliubov transformations. Eq. (29) solved with the initial condition (25) yields the nonlinear

polarization

P(t) =
〈
ψθ(t)

∣∣µ̂∣∣ψθ(t)
〉
. (31)
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The TFD Schrödinger equation (29) is governed by the TFD-CVC Hamiltonian Hθ of Eq.

(30) and the system-field Hamiltonian HF (t) of Eq. (3). It is fully equivalent to the original

Liouville – von Neumann equation (1). Hence the nonlinear polarizations of Eqs. (8) and

(31) are identical. The number of vibrational modes in Hθ is double of that in the original

Hamiltonian H of Eq. (2), and electron-vibrational couplings in Hθ are renormalized by

temperature-dependent factors: cosh(θk) for physical coordinates xk =
(
ak + a†k

)
/
√
2 and

sinh(θk) for tilde coordinates x̃k =
(
ãk + ã†k

)
/
√
2. If T → 0 then θj → 0, the coupling to

the tilde space disappears, and the standard Schrödinger equation is recovered as expected.

Nonzero temperature causes dynamical mixing of the physical (ak, a†k) and tilde (ãk, ã†k)

spaces. In actual simulations, we can drop those high-frequency tilde vibrational modes k

for which the factors sinh(θk) are smaller than a certain threshold. Such a flexibility of

the TFD representation, which is absent in the traditional density matrix representation,

decreases effective dimensionality of the problem and reduces computational burden.

It is important that only vibrational degrees of freedom are doubled in the TFD Schrödinger

equation (29), while the number of the excitonic degrees of freedom remains unchanged. In

a basis-set representation, the density matrix ρ(t) in the Liouville – von Neumann equation

(1) is an array of the dimension (Mex ×Mv)
2, where Mex (Mv) is the number of the basis

functions specifying the excitonic and vibrational degrees of freedom. The wave function of

the TFD Schrödinger equation,
∣∣ψθ(t)

〉
, is an array of the dimension Mex ×M2

v . This yields

a considerable reduction of dimension, notably for systems with multiple electronic states.

For FMO, for example, Mex = 7 and computational savings are substantial.

In the derivation of Eqs. (29) and (30), we assumed that the site energies εn, electronic

couplings Jnm and electron-vibrational couplings gnk in the original CVC Hamiltonian H

of Eq. (2) as well as transition dipole moment vectors µn in the system-field interaction

Hamiltonian HF (t) of Eq. (3) were all constant. In many applications, however, these

parameters are polynomial in vibrational creation-annihilation operators. For example, a

conical intersection between the states n and m driven by the vibrational coupling mode
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j corresponds to Jnm ∼ aj + a†j and transition dipole moments may depend on vibrational

coordinates, µn = µ
(0)
n +

∑
j(aj + a†j)µ

(1)
nj (non-Condon effects).4 In all these cases, the TFD

Schrödinger equation with the TFD-VC Hamiltonian can readily be constructed by using

the fundamental relations86

eiGaje
−iG = aj cosh(θj) + ã†j sinh(θj), (32)

eiGãje
−iG = ãj cosh(θj) + a†j sinh(θj). (33)

We expect that coordinate-dependent system parameters can be efficiently handled within

the TFD-TT framework. For example, the present methodology was successfully applied to

the simulation of energy transfer in chains with cubic coordinate couplings.52

3. Third-order response functions

From the formal point of view, the TFD Schrödinger equation (29) can be treated as the

usual Schrödinger equation. Hence, all formal derivations, in particular perturbation theory

in system-field interactions and the corresponding response functions will retain their form.

The fundamental quantity describing the third-order response of the system on the external

fields is the four-time correlation function of the transition dipole moment operators.1 In our

case, it explicitly reads

Φ(τ4, τ3, τ2, τ1) = ⟨µ̂(τ4)µ̂(τ3)µ̂(τ2)µ̂(τ1)⟩ (34)

where the Heisenberg operators

µ̂(τ) = eiHθτ µ̂e−iHθτ (35)
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are governed by the TFD Hamiltonian Hθ. The angular brackets in Eq. (34) mean

⟨...⟩ ≡ ⟨g|⟨0v0̃v|...|0v0̃v⟩|g⟩. (36)

Following Refs.,34,87,88 the fundamental correlation function Φ can be expressed as a sum

of two contributions Φs and Φd, which correspond to the two situations in which, during the

evolution from τ2 to τ3, the system is electronically in the ground state and in the double-

exciton excited states, respectively (in both cases from τ1 to τ2 and from τ3 to τ4 the system

is in single-exciton state):

Φ(τ4, τ3, τ2, τ1) = Φs(τ4, τ3, τ2, τ1) + Φd(τ4, τ3, τ2, τ1). (37)

Explicitly,

Φs(τ4, τ3, τ2, τ1) = ⟨µ̂−(τ4)µ̂+(τ3)µ̂−(τ2)µ̂+(τ1)⟩ (38)

and

Φd(τ4, τ3, τ2, τ1) = ⟨µ̂−(τ4)µ̂−(τ3)µ̂+(τ2)µ̂+(τ1)⟩ . (39)

Φs describes the ground-state bleach (GSB) and stimulated-emission (SE) contributions to

third-order spectroscopic signals, Φd is responsible for excited-state absorption (ESA) and

double-coherence signals.

The four-time correlation functions Φα (α = s, d) generate 4 third-order response func-

tions:34,87,88

Rα
1 (t3, t2, t1) = Φα(t1, t1 + t2, t1 + t2 + t3, 0), (40)

Rα
2 (t3, t2, t1) = Φα(0, t1 + t2, t1 + t2 + t3, t1), (41)

Rα
3 (t3, t2, t1) = Φα(0, t1, t1 + t2 + t3, t1 + t2), (42)
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Rα
4 (t3, t2, t1) = Φα(t1 + t2 + t3, t1 + t2, t1, 0). (43)

With these definitions, nonlinear optically-induced third-order polarization can be evaluated

as

P(3)(t) =

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3 S(t1, t2, t3)E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) (44)

where

S(t1, t2, t3) = −i
4∑

k=1

∑
α=s,d

{Rα
k (t3, t2, t1)− [Rα

k (t3, t2, t1)]
∗}. (45)

In terms of the TFD Hamiltonian Hθ of Eq. (30), the four-time correlation functions

(38) and (39) read:

Φs(τ4, τ3, τ2, τ1) = ⟨g|⟨0v0̃v|µ̂−e
−iHθ(τ4−τ3)µ̂+e

−iHv
θ (τ3−τ2)µ̂−e

−iHθ(τ2−τ1)µ̂+|0v0̃v⟩|g⟩, (46)

Φd(τ4, τ3, τ2, τ1) = ⟨g|⟨0v0̃v|µ̂−e
−iHθ(τ4−τ3)µ̂−e

−iHθ(τ3−τ2)µ̂+e
−iHθ(τ2−τ1)µ̂+|0v0̃v⟩|g⟩. (47)

In writing the above expressions, we employ the conservation of the number of excitons

derived from the commutation property

[Hθ, N̂ex] = 0, N̂ex ≡
∑
k=1

c†kck, (48)

and set the zero-point energy of the vibrational ground state, E0, to zero

Hθ|0v0̃v⟩|g⟩ = E0|0v0̃v⟩|g⟩ = 0. (49)

If necessary, E0 can be readily reintroduced in the final formulas. In addition, exp{−iHθ(τ3−
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τ2)} in Eq. (46) is replaced by exp{−iHv
θ (τ3 − τ2)} where

Hv
θ =

∑
k

ωk

(
a†kak − ã†kãk

)
, (50)

because during the time interval τ3 − τ2 the system evolves in its ground excitonic state.

Below we concentrate on the evaluation of single-exciton TFD-TT response functions Φs

and Rs
k. Evaluation of Φd is much more involved and considered in Appendix A.

To make Eq. (46) more explicit and easier to implement in our TFD-TT approach we

proceed as follows. First, we define the single-exciton states

|en⟩ = c†n|g⟩. (51)

Then the TFD Hamiltonian in the manifold of states {|en⟩} reads

H
(s)
θ =

∑
n

εn|en⟩⟨en|+
∑
n ̸=m

Jnm|en⟩⟨em|+
∑
k

ωk

(
a†kak − ã†kãk

)

−
∑
kn

gkn√
2

{(
ak + a†k

)
cosh(θk) +

(
ãk + ã†k

)
sinh(θk)

}
|en⟩⟨en|

and the transition dipole moment operators assume the form

µ̂− = |g⟩⟨e|, µ̂+ = |e⟩⟨g| (52)

where

|e⟩ =
∑
n

(sµn)|en⟩. (53)

It is further convenient to define the TFD wavefunction

|ψ(t)⟩ = e−iHθtµ̂+|0v0̃v⟩|g⟩ = e−iH
(s)
θ t|0v0̃v⟩|e⟩, (54)
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the vibrational propagator

U(t) = e−iHv
θ t (55)

and the excitonic operator

B = µ̂+µ̂− = |e⟩⟨e|. (56)

With this notation,

Φs(τ4, τ3, τ2, τ1) = ⟨ψ(τ3 − τ4)|BU(τ3 − τ2)|ψ(τ2 − τ1)⟩. (57)

This is one of the key theoretical results of the present work, which shows that the evaluation

of Φs requires computation of just a single TFD-TT wavefunction |ψ(t)⟩ defined per Eq. (54).

Using the definitions (40)-(43) and employing Eq. (57) one obtains explicit expressions

for the single-exciton response functions:

Rs
1(t3, t2, t1) = ⟨ψ(t2)|BU †(t3)|ψ(t1 + t2 + t3)⟩, (58)

Rs
2(t3, t2, t1) = ⟨ψ(t1 + t2)|BU †(t3)|ψ(t2 + t3)⟩,

Rs
3(t3, t2, t1) = ⟨ψ(t1)|BU †(t2 + t3)|ψ(t3)⟩,

Rs
4(t3, t2, t1) = ⟨ψ(t3)|∗BU(t2)|ψ(t1)⟩

(∗ denotes complex conjugation which is applied to all components of the multidimensional

bra-vector ⟨ψ(t3)|). In the above formulas, R1 and R2 describe evolution of the system in

the single-exciton manifold during t2 and are responsible for the SE contribution. R3 and R4

describe evolution of the system in the ground excitonic state during t2 and are responsible

for the GSB contribution.
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Due to isotropy of space, the system as a whole does not have a preferential orientation.

Hence Φα and Rα
k should be averaged over orientations of transition dipole moment vectors

µn. The details of this procedure and the explicit expressions for Φ̄α and R̄α
k (the averaging

is denoted by short overbar) are given in Appendix B. With the efficient averaging proce-

dure developed in,89 Φ̄α and R̄α
k can be computed by the evaluation of just three TFD-TT

wavefunctions |ψa(τ)⟩ (a = x, y, z) defined per Eq. (72).

4. Evaluation of response functions in the TT representa-

tion

As already noted, the basic ingredient for evaluation of the single-exciton response function

Φs is a single real time propagation of the initial vacuum state specified by Eq. (54). To show

how the procedure works in the TT representation, we concentrate on the response function

Rs
1(t3, t2, t1) of Eq. (58) (the remaining response functions are calculated similarly). Since

Hv
θ of Eq. (50) is separable into 2Nv non-interacting terms (Nv is the number of vibrational

modes in the Hamiltonian of Eq. (2)), U(t) of Eq. (55) is nothing but the direct product of

2Nv diagonal exponential operators

U(t) =
2Nv∏
k=1

Uk(t) =
2Nv∏
k=1

e−iωknkt (59)

where nk is the occupation number operator of the k-th vibrational mode in the physical or

tilde space.

In our approach the TFD Schrödinger equation is solved using the TT representation,

in combination with a time-dependent variational integration scheme.49–52 A variety of ap-

plications have shown that this method is very robust and well suited for many-dimensional

electron-vibrational problems.49–52,59–61 The TT representation of the fundamental wavefunc-
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tion |ψ(t)⟩ of Eq. (58) is written as

|ψ(t)⟩ =
∑

i1,i2,...iN

A1(i1; t)A2(i2; t)...AN(iN ; t)|i1, i2...iN⟩ (60)

where |i1, i2...iN⟩ labels the basis state, N = 2Nv +1, and the Ak(ik; t), k = 1, ...N are time-

dependent complex rectangular matrices of sizes rk−1 × rk called core of the tensor. The

indices rk are the ranks of the TT and, since each term in the product is a complex scalar,

the boundary condition r0 = rN = 1 must be fulfilled. In our specific case the index i1 labels

the excitonic states and the remaining 2Nv indices label the physical and tilde vibrational

degrees of freedom.

We now notice that the operators Uk(t) (Eq. (55)) and B (Eq. (56)) act on different vari-

ables, and hence on different indices of the state vector |ψ(t2)⟩ in Eq. (58). Using well known

properties of TTs59–61 we can easily compute the cores Ck(ik; t) of the TT representation of

the vector |ϕ(t2, t3)⟩ = BU(t3)|ψ(t2)⟩ as

C1(i1; t2) =
∑
j1

B(i1, j1)A1(j1; t2) (61)

Ck(ik; t2, t3) =
∑
jk

Uk(ik, jk; t3)Ak(jk; t2) k = 2, ..., 2Nv + 1 (62)

where B(i1, j1) and Uk(ik, jk; t) are the matrix representations of the operators B and Uk,

and Ak(jk; t2) is a matrix of dimensions rk × rk+1. Since Uk(ik, jk; t3) is a scalar, the cores

Ck(ik; t2, t3) have the same ranks of cores Ak(jk, t2). If we assume that these latter have the

value r, and that the size of the basis set is p for all vibrational degrees of freedom then

the summation over jk in Eq. 62 is equivalent to the product of a matrix of size (p × p)

(obtained from Ck(ik, jk, t)) by a matrix of size (p × r2) (obtained by reshaping the cores

Ak(jk)). Finally, Rs
1(t3, t2, t1) is given then by the scalar product ⟨ϕ(t2, t3)|ψ(t1 + t2 + t3)⟩

which can be computed with efficient TT algorithms.59

In all quantum dynamical calculations reported in the next section we have employed a
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basis set of 8 states for each oscillator, and we used a time-dependent variational integrator to

solve the Schrödinger equation. This integrator preserves the rank of the TT representation

during the evolution.60 Therefore the convergence of the TT calculation with respect to

the value of the ranks must be checked a posteriori, by running several calculations with

increasing rks until the error in the property of interest is below a prescribed tolerance. We

found that for the above system a fully converged calculation is achieved for r = 30.

5. Time- and frequency-resolved emission of FMO

For the explicit evaluation of Rs
k, we adopt the FMO model which is equivalent to Model

II of Ref.90 It describes 7 identical bacteriochlorophyll molecules (BChls), each of which is

modeled as an electronic two-state system possessing two vibrational modes with frequencies

ω1 = 200 cm−1 (2π/ω1 = 167 fs) and ω2 = 160 cm−1 (2π/ω2 = 208 fs). These modes have

been recently detected experimentally73,77 and are very close to those appearing from single

molecule spectroscopic data.91 Since β−1 = 0.026 eV =210 cm−1 at T = 300 K, temperature

effects are important for both modes. The electron-vibrational couplings are taken the same

for all 7 BChls, g1n = 57.8 cm−1 and g2n = 28 cm−1. The values of εn and Jnn′ are taken

from Ref.50,92 The transition dipole moment vectors of the BChls were assumed to be along

the two nitrogen atoms NB − ND,93 and positions of these atoms were we retrieved from

the protein data bank.94,95 The response functions Rs
k(t3, t2, t1) were computed on the three-

dimensional grid: 75 points along t3 with time step 10 fs, 150 points along t2 with time step 5

fs, 20 points along t1 with time step 1 fs. Orientational averaging was performed as explained

in Appendix B. Static disorder in εk is assumed to be Gaussian with variance σ = 100 cm−1.

The response functions R̄s
k(t3, t2, t1) were evaluated upon averaging over N = 100 random

realizations of static disorder, which was enough for obtaining converged results (see below).

Omitting a frequency-depending prefactor which is irrelevant for the present discussion,

we can express the time- and frequency-resolved fluorescence signals in terms of response
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functions as follows:96,97

I(t, ω) ∼ Re

∫ ∞

−∞
dt′

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1× (63)

Eg(t′ − t)Eg(t′ − t3 − t)Ep(t′ − t3 − t2)Ep(t′ − t3 − t2 − t1)×

e−(γ−iω)t3
{
Rs

1(t3, t2, t1)e
iωpt1 +Rs

2(t3, t2, t1)e
−iωpt1

}
.

Here t is the time delay between the pump pulse and the up-conversion (gate) pulse, ω is the

detected fluorescence frequency, ωp and Ep(t) are the carrier frequency and the dimensionless

envelope of the pump pulse, Eg(t) is the dimensionless envelope determining the temporal

resolution of the gate, and the parameter 0 ≤ γ < ∞ controls the spectral resolution of the

gate: γ = 0 corresponds to perfect spectral resolution, while γ → ∞ yields poor spectral

resolution.98

Physically, the time- and frequency-resolved fluorescence spectrum is defined as the rate

of emission of photons of frequency ω at time t. Qualitatively, I(t, ω) can be interpreted as

the projection of the wave packet in the excited excitonic state(s) onto the vibrational states

of the excitonic ground state. If the pump pulse can be assumed instantaneous, while the

gate pulse is short on the system dynamics timescale, but long on the electronic dephasing

timescale and γ = 0 (perfect time and frequency resolution), then we obtain the so-called

ideal fluorescence signal

Iid(t, ω) ∼ Re

∫ ∞

0

dt3e
iωt3Rs

1(t3, t, 0). (64)

Iid(t, ω) cannot be detected in a fluorecence up-conversion experiment, because the frequency

and time resolution of the signal are determined by the duration of the gate pulse and are

Fourier-limited.99,100 Nowadays ∼ 10 fs pump pulses are common in spectroscopic labs,

while ∼ 50 fs resolution is currently achievable in fluorescence up-conversion.9,101 In our

simulations, the pump pulse was modeled by a Gaussian, Ep(t) = exp{−(t/τp)
2}, and τp = 15
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fs was fixed. For the present FMO model, excitation with this pulse is indistinguishable

from impulsive (instantaneous) excitation. The gate pulse was also assumed to be Gaussian,

Eg(t) = exp{−(t/τg)
2}, but its duration τg was varied to explore how a finite gate time

affects I(t, ω). Spectral resolution was assumed perfect (γ = 0). To give shape to spectral

features of ideal signals, Iid(t, ω) were calculated with electronic dephasing time τd = 200

fs (Rs
k(t3, t2, t1) → Rs

k(t3, t2, t1) exp{−(t3 + t1)/τd}). All real signals I(t, ω) were calculated

without phenomenological dephasing parameters (τ−1
d = 0): as follows from Eq. (63) and

is confirmed by explicit calculations, spectral resolution of I(t, ω) is controlled by the gate

pulse duration for τd > τg. In all time- and frequency-resolved spectra considered below, the

origin of the frequency axis is set at the excitonic energy of BChl #3.

Fig. 1 shows time- and frequency-resolved fluorescence spectra of FMO calculated with-

out averaging over static disorder. Ideal signal Iid(t, ω) is depicted in panel (a). As typical

for ideal fluorescence spectra,99,100 it combines time resolution (oscillatory transients in the

time domain) and frequency resolution (peaks in the frequency domain). We note that the

spectral features reveal neither purely excitonic nor vibrational frequencies. The peaks are

of vibronic character caused by strong exciton-vibrational coupling: despite relatively small

coupling constants κa = gan/ωa and, correspondingly, small Huang-Rhys factors κ2a/2, ωa

match quite well excitonic energy difference (a = 1, 2) (see the discussion in Refs.102–107).

Iid(t, ω) shows pronounced oscillations along t at a given ω, which are of vibronic origin (vide

infra).

Panels (b)-(d) of Fig. 1 show time- and frequency-resolved fluorescence spectra I(t, ω)

calculated with decreasing time resolution, from good (τg = 20 fs, panel (b)) through interme-

diate (τg = 50 fs, panel (c)) to poor (τg = 100 fs, panel (d)). Clearly, the spectral resolution

of I(t, ω) increases and the spectral width shrinks with τg. In addition, the spectral width

of I(t, ω) shrinks with t for fixed τg due to dephasing of vibronic modes contributing to the

wavepacket motion. The signals in panels (b) and (c) exhibit pronounced wavepacket dy-

namics. The wavepacket motion is almost symmetric relative to the line ω = 0.025 eV, which
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Figure 1: Time- and frequency-resolved fluorescence spectra I(t, ω) of FMO without static
disorder: (a) ideal, (b) τg = 20 fs, (c) τg = 50 fs, (d) τg = 100 fs. For better visualization,
top view of I(t, ω) is presented in panels (b)-(d).
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is caused by small Huang-Rhys factors of BChls and therefore small κa of the present FMO

model. I(t, ω) in panels (b) and (c) exhibit pronounced revivals of vibronic origin (notably

the one around t = 230 fs) which are readily detectable when the gate pulse is short enough

(cf. Refs.102–105). For τg = 100 fs (panel (d)), duration of the gate pulse is comparable with

the characteristic times of vibronic oscillations. Hence the latter are smeared out, and the

time resolution of I(t, ω) is almost lost in Fig. 1(d).

Figure 2: Cuts of time- and frequency-resolved fluorescence spectra I(t, ω) of FMO at ω =
−0.0075 eV (red), ω = 0.005 eV (green), ω = 0.0175 eV (blue), ω = 0.03 eV (magenta)
and ω = 0.0425 eV (black) calculated without static disorder: (a) ideal, (b) τg = 20 fs, (c)
τg = 50 fs, (d) τg = 100 fs. For better visualization, the cuts are normalized to 1 at their
maxima.

To obtain a more detailed view of the wavepacket dynamics, Fig. 2 shows the time evolu-
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tion of cuts of I(t, ω) at specific ω covering the most significant spectral width, from −0.0075

to 0.0425 eV. The cuts in all panels exhibit pronounced but quite irregular oscillations of

vibronic origin, the detection of which depends crucially on temporal resolution of gating.

The cuts of Iid(t, ω) in panel (a) are all quite erratic. The cuts of I(t, ω) in panel (b), which

corresponds to a good time resolution, are all similar and exhibit pronounced oscillations of

vibronic origin. However, these oscillations cannot be pinned down to several fundamental

harmonic frequencies. For τg = 50 fs (panel (c)), short-period wiggles are smoothed out,

while the remaining larger amplitude and longer-period structures remain. If temporal res-

olution further decreases (τg = 100 fs, panel (d)) the time resolution is almost lost and the

oscillatory features merge into rather irregular but still non-monotonic evolutions.

We now examine the effect of static disorder on I(t, ω). Fig. 3 shows a cut of the

fluorescence spectrum I(t, ω) at ω = 0.03 eV for good time resolution (τg = 20 fs) evaluated

for increasing number N of random realizations of static disorder. It is evident that static

disorder has a significant impact on I(t, ω) (the details of behavior of the signals are discussed

below), and that the signal evaluated with N = 100 can be considered converged.

Figure 3: Cuts of time- and frequency-resolved fluorescence spectra I(t, ω) of FMO at ω =
0.03 eV and good time resolution (τg = 20 fs) averaged over N realizations of static disorder
indicated in the legend.

Fig. 4 shows time- and frequency-resolved fluorescence spectra of FMO obtained after

25



Figure 4: Time- and frequency-resolved fluorescence spectra I(t, ω) of FMO calculated after
averaging over static disorder: (a) ideal, (b) τg = 20 fs, (c) τg = 50 fs, (d) τg = 100 fs. For
better visualization, top view of I(t, ω) is presented in panels (b)-(d).
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averaging over static disorder. It is quite evident that the oscillatory features in the ideal

signal Iid(t, ω) in panel (a) as well as in real signals in I(t, ω) in panels (b)-(d) are more

regular and smoother in Fig. 4 than in Fig. 1. Furthermore, the shapes and locations of

these oscillatory features change considerably, as is evident from the comparison of signals

in panels (b) and (c) in Figs. 4 and 1.

Figure 5: Cuts of time- and frequency-resolved fluorescence spectra I(t, ω) of FMO at ω =
−0.0075 eV (red), ω = 0.005 eV (green), ω = 0.0175 eV (blue), ω = 0.03 eV (magenta) and
ω = 0.0425 eV (black) calculated after averaging over static disorder: (a) ideal, (b) τg = 20
fs, (c) τg = 50 fs, (d) τg = 100 fs. For better visualization, the cuts are normalized to 1 at
their maxima.

A more detailed and quantitative explanation of the impact of static disorder on the

fluorescence signals can be obtained from the analysis of Fig. 5, which shows cuts of I(t, ω)

27



of Fig. 4 at specific ω. Indeed, the cuts in Fig. 5(a) corresponding to Iid(t, ω) are quite

regular. The cuts in Fig. 5(b) for t > 300 fs exhibit oscillations with a period of ∼ 100

fs which reveal 2nd overtone of the second vibrational mode, 2π/(2ω2) = 104 fs. The

features revealing 2nd overtone of ω2 start to merge and produce different patterns in Fig.

5(c), because the gate time τg = 50 fs is just half of the period of 2nd overtone, which is

insufficient for resolving the corresponding oscillatory motion. The cuts in Fig. 5(d) for

τg = 100 fs show non-monotonic evolutions which are difficult to analyze and impossible to

associate with a specific vibrational frequency.

The signal I(ω, t) evaluated for a good time resolution (see Fig. 5(b)) has two distinct

features.

(i) 2nd overtones of vibrational modes frequently manifest themselves in spectroscopic

signals.108,109 Indeed, the motion of an excited-state wavepacket modulates the signal inten-

sity I(t, ω), thus if a maximum of the fluorescence intensity corresponds to the position of

the wavepacket along the dominant Franck-Condon-active vibrational mode somewhere in

between the turning points of its motion, the wavepacket will cross this position twice per

period.

(ii) As shown in Ref.90 and summarized in Appendix C, the correlation function of any

two dynamical variable A and B averaged over static disorder with a characteristic dispersion

σ exhibits predominantly vibrational oscillations at times t > 2π/σ and can be represented

as

C(t) = ⟨eiHθtAθe−iHθtBθ⟩ ≈
∑
k

Mk∑
m=0

akm(t) cos(mωkt− φkm(t)). (65)

Here ⟨...⟩ indicates the trace, long overbar denotes averaging over static disorder, akm(t), φkm(t)

are some slowly varying functions of time, and Mk is the maximal number of overtones for the

kth vibrational mode. The excitonic populations averaged over static disorder, which were

studied in Ref.90 for the same FMO model, also exhibited vibrational oscillations featuring

ω2. The response functions, and notably spectroscopic signals, cannot be expressed in terms

of the simple expression in the l.h.s. of Eq. (65). Nevertheless, the cuts of I(t, ω) in 5(b) un-
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equivocally show that the behavior predicted by the r.h.s. of Eq. (65) can indeed be detected

in time- and frequency-resolved fluorescence of FMO provided the time resolution of gating

is sufficient. Hence purely vibrational beatings recently detected in femtosecond signals of

FMO73,77 may be caused not only by the wavepacket motion in the excitonic ground state,104

but also by "melting" of vibronic frequencies ωss′(y) into vibrational frequencies upon av-

eraging over static disorder, as predicted by Eq. (65) (see Appendix C for details). Note

that there exist other mechanisms of long-lived predominantly vibrational responses in the

excited electronic states,110 and existence of disorder-induced purely excitonic oscillations

has also been predicted.111

To complete the discussion, I(t, ω) of FMO for τg = 50 fs calculated for three random

realizations of εn sampled from Gaussians with variance σ = 100 cm−1 are presented in Fig.

6. These random realizations mimic different FMO mutants experimentally studied in Ref.73

It is essential that all three signals are substantially different and exhibit vibronic revivals

at different times. Yet, averaging of I(t, ω) over static disorder results in the signal in Fig.

4(c) which reveals qualitatively different spectral features.

6. Conclusions

We have developed a methodology for numerically accurate fully quantum simulation of

nonlinear electronic femtosecond signals of polyatomic molecules and molecular aggregates

at finite temperature. The methodology is based on the Thermo Field Dynamics (TFD)

representation of the driven quantum dynamics and tensor-train (TT) methods for efficient

simulation of spectroscopic third-order response functions.

The methodology was applied to the simulation time- and frequency-resolved fluorescence

signals of the Fenna–Matthews–Olson (FMO) complex. The signals show a pronounced

wave-packet motion in the single-exciton states of FMO and depend strongly on the time

resolution of the up-conversion process. In the time domain, the signals exhibit pronounced
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Figure 6: Top views of time- and frequency-resolved fluorescence spectra I(t, ω) of FMO
for τg = 50 fs calculated for three random realizations of εn sampled from Gaussians with
variance σ = 100 cm−1.
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oscillations of vibronic origin provided static disorder can be neglected. Upon averaging over

static disorder with variance σ = 100 cm−1, the signals exhibit predominantly vibrational

oscillations caused by "melting" of vibronic frequencies into vibrational frequencies upon

averaging over static disorder. If the time resolution is sufficient, such disorder-induced

vibrational oscillations may become visible in various femtosecond signals.

Work is in progress on further generalization of our methodology towards description of

open quantum systems along the lines developed in Refs.112–114
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Appendix A. Double-exciton response functions

The double-exciton response functions Rd
1 −Rd

4 generated by the four-time correlation func-

tion of Eq. (39) are defined as follows:

Rd
1(t3, t2, t1) = ⟨g|⟨0v0̃v|µ̂−e

iHθt2µ̂−e
iHθt3µ̂+e

−iHθ(t1+t2+t3)µ̂+|0v0̃v⟩|g⟩,

Rd
2(t3, t2, t1) = ⟨g|⟨0v0̃v|µ̂−e

iHθ(t1+t2)µ̂−e
iHθt3µ̂+e

−iHθ(t2+t3)µ̂+|0v0̃v⟩|g⟩,

Rd
3(t3, t2, t1) = ⟨g|⟨0v0̃v|µ̂−e

iHθt1µ̂−e
iHθ(t2+t3)µ̂+e

−iHθt3µ̂+|0v0̃v⟩|g⟩,

Rd
4(t3, t2, t1) = ⟨g|⟨0v0̃v|µ̂−e

−iHθt1µ̂−e
−iHθt2µ̂+e

−iHθt3µ̂+|0v0̃v⟩|g⟩.

Here Rd
1 and Rd

2 describe ESA contribution to pump-probe and photon-echo signals, while

Rd
3 and Rd

4 are responsible for double-coherence signals.2,3 Unfortunately, the double-exciton

response functions cannot be expressed in terms of the single-exciton excited-state propagator

|ψ(t)⟩ of Eq. (54) alone, because the system dynamics during t3 (Rd
1, Rd

2), t2 + t3 (Rd
3)

and t2 (Rd
4) develops in the double-exciton manifold. Hence Rd

1 − Rd
4 should be evaluated

on the t3, t2, t1 grid, which is computationally expensive. However, the system propagates

during the time interval t3 in the electronic coherence between the single- and double-exciton

manifold (response functions Rd
1 and Rd

2) and during the time interval t2 in the electronic

double-coherence between the ground- and double-exciton manifold (response functions Rd
3

and Rd
4). In addition the time interval t3 corresponds to the electronic coherence between the

single- and ground-exciton manifold. Hence propagation during t1, t3 (Rd
1, Rd

2) and t1, t2, t3

(Rd
3, Rd

4) is controlled by electronic dephasing times which are typically tens of femtoseconds

for polyatomic species in condensed phase.
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Appendix B. Orientational averaging

Following,89,115,116 we introduce an orthogonal molecular reference frame with the axes x, y, z

specified by three mutually orthogonal unit vectors da

(dadb) = δab (66)

(a = x, y, z) and decompose vectors of the matrix elements of the transition dipole moments

as follows:

µn =
∑

a=x,y,z

µnada, (67)

µna = (daµn).

Then we obtain

µ̂+ =
∑

a=x,y,z

(sda)µ̂
a
+, µ̂− =

∑
a=x,y,z

(sda)µ̂
a
− (68)

where

µ̂a
+ =

∑
n

µnac
†
n, µ̂

a
− =

∑
n

µnacn (69)

are the contracted raising and lowering components of the transition dipole moment opera-

tors. In the manifold of the single-exciton states defined per Eq. (51)

µ̂a
− = |g⟩⟨e(a)|, µ̂a

+ = |e(a)⟩⟨g| (70)

where

|e(a)⟩ =
∑
n

µna|en⟩. (71)

Let us consider averaging of single-exciton response functions Φs. With the definitions

of Eqs. (68) and (69), the wavefunction |ψ(t)⟩ (Eq. (54)) and the operator B (Eq. (56)) can
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be rewritten as follows:

|ψ(t)⟩ =
∑

a=x,y,z

(sda)|ψa(t)⟩,

B =
∑

b,c=x,y,z

(sdb)(sdc)Bbc.

Here

|ψa(t)⟩ = e−iH
(s)
θ t|0v0̃v⟩|e(a)⟩, (72)

Bbc = |e(b)⟩⟨e(c)| =
∑
nn′

µnbµn′c|en⟩⟨en′|.

With this notation,

Φs(τ4, τ3, τ2, τ1) = (73)

∑
a,b,c,d

(sda)(sdb)(sdc)(sdd)⟨ψa(τ3 − τ4)|BbcU(τ3 − τ2)|ψd(τ2 − τ1)⟩.

Since d-vectors are orthonormal (Eq. (66)), orientational averaging (denoted by longoverbar)

yields117

Cabcd = (sda)(sdb)(sdc)(sdd) =
1

15
{δabδcd + δacδbd + δadδbc} . (74)

Therefore,

Φ̄s(τ4, τ3, τ2, τ1) =
1

15

∑
a,b

{⟨ψa(τ3 − τ4)|BbbU(τ3 − τ2)|ψa(τ2 − τ1)⟩

+ ⟨ψa(τ3 − τ4)|(Bba +Bab)U(τ3 − τ2)|ψb(τ2 − τ1)⟩} . (75)

The explicit expressions for double-exciton response functions Φ̄d can be obtained analo-

gously.
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Appendix C. Origin of purely vibrational oscillations

Let us consider the Liouville – von Neumann equation (1) with the system Hamiltonian H of

Eq. (2) and the system-field interaction Hamiltonian HF (t) = 0. Then the time correlation

function of the two operators A and B reads

C(t) = ⟨A(t)B(0)⟩ = Tr {ρ(t)A} (76)

where

ρ(t) = e−iHtBρve
iHt,

and ρv is defined per Eq. (7) (remind that h̄ = 1). We formally introduce the eigenstate

representations of H,

H |s⟩ = Es |s⟩ , (77)

and the corresponding vibronic transition frequencies

ωss′ = Es − Es′ . (78)

Then Eq. (76) reduces to

C(t) =
∑
s,s′

Vss′e
−iωss′ t (79)

where Vss′ = ⟨s|A|s′⟩⟨s|Bρv|s′⟩.

Let us collectively denote the excitonic energies εn and the couplings Jnn′ in the Hamil-

tonian H as yj (j = 1, 2, ...,K). If yj are subject to static disorder, the averaging of the

correlation function of Eq. (79) is given by

C(t) =

∫ ∞

−∞
dy g(y − ȳ)

∑
s,s′

Vss′(y)e
−iωss′ (y)t (80)

where the matrix elements Vss′(y) and vibronic transition frequencies ωss′(y) become y-
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dependent,

yj = ȳj + zj, (81)

ȳj are mean values and zj are random numbers with a certain distribution g(z). The latter

is usually represented by a product of Gaussians with zero mean and variances (dispersions)

σj. The averaging in Eq. (80) can be evaluated asymptotically, for t → ∞, by using the

stationary phase method.90 Let

τD ≃ 2π/σ (82)

be a characteristic time at which the asymptotic description becomes valid (σ ≈ minσj).

Then for t > τD the the correlation function exhibits purely vibrational oscillations90

C(t) ≈
∑
m,k

akm(t) cos(mωkt− φkm(t)). (83)

Here akm(t), φkm(t) are slowly varying functions of time. They can be expressed in terms

of Vss′(y), g(y) and ωss′(y), but the corresponding expressions are quite cumbersome90 and

their explicit form adds nothing profound to the present discussion. The ωk in Eq. (83)

are the fundamental vibrational frequencies of the Hamiltonian H which are unaffected by

static disorder, and the summation over m accounts for vibrational overtones. The terms

∼ cos(mωkt−φkm(t)) are generated by the contributions ∼ exp(−iωss′(y)t). Static disorder

thus "melts" vibronic frequencies ωss′(y) into multiples of vibrational frequencies ωα.
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