
16 October 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Efficiency of Virtualization over MEC plus Cloud

Publisher:

Published version:

DOI:10.1145/3447555.3465325

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1795181 since 2023-09-13T10:47:34Z

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Efficiency of Virtualization over MEC plus Cloud
Vincenzo Mancuso

vincenzo.mancuso@imdea.org

IMDEA networks Institute

Leganés, Spain

Paolo Castagno

castagno@di.unito.it

Università degli Studi di Torino

Turin, Italy

Matteo Sereno

matteo@di.unito.it

Università degli Studi di Torino

Turin, Italy

ABSTRACT
We study average performance and costs for routing service

requests in a virtualized environment, where either the MEC

or the Cloud can serve user’s requests. Employing a simple

yet precise analytical model validated via simulation, we

focus on latency, service request losses, energy consumption,

and provider utility. The model is very effective in providing

insight and guidelines for setting up server selection strate-

gies with different characteristics (e.g., energy consumption,

penalties, etc.) and performance requirements. In particu-

lar, our results show that the MEC is latency-efficient but

incurs higher costs than Cloud, and then, to make its use

sustainable, it is desirable that the MEC server is powered

with renewable source energy.

CCS CONCEPTS
•Networks→Networkperformance analysis;Network
performance modeling; Cloud computing.

ACM Reference Format:
Vincenzo Mancuso, Paolo Castagno, and Matteo Sereno. 2021. Effi-

ciency of Virtualization over MEC plus Cloud. In The Twelfth ACM
International Conference on Future Energy Systems (e-Energy ’21),
June 28–July 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3447555.3465325

1 INTRODUCTION
The Mobile-Edge Computing (MEC) architecture aims to

bring computing capabilities as close as possible to mo-

bile subscribers [13]. This technology is a crucial ingredi-

ent of a variety of applications, such as autonomous driv-

ing, smart factory, virtual and augmented reality, and smart

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8333-2/21/06. . . $15.00

https://doi.org/10.1145/3447555.3465325

city applications. In this type of architecture, multiple small-

scale server farms dedicated to the MEC computation are

either co-located with base stations or placed within the

backhaul ring [7]. User services can be provided by MEC

hosts or Cloud datacenters, with different characteristics, be-

cause the MEC is characterized by computational resources

(CPU/memory/storage) that are rather limited compared

to those offered by the Cloud. However, the MEC can be

reached with much lower delay, because of proximity. En-

ergy consumption and costs can be also quite different for

reaching and using either MEC or Cloud resources, the latter

being generally more cost-efficient. Thereby, we suggest that

MEC and Cloud resources should be combined to provide

virtualized services with good performance and high energy

efficiency. We study performance and costs of such system.

Related work. A relevant issue in virtualizing services

via the MEC instead of the Cloud concerns energy consump-

tion and strategies that could be used for its optimization. Sev-

eral recent papers address these issues. For instance [2], [10]

and [11] propose methods to optimize the energy consump-

tion in the MEC by using different assumptions/scenarios,

while [8] provides a summary of the possible applications of

theMEC computing paradigm in the field of energy consump-

tion optimization. In other studies, energy consumption and

its optimization are tailored to specific application scenarios

where the energy consumption is a cost optimization issue.

Energy is a fundamental ingredient for the availability and

reliability of such systems, for instance with mobile edge

and vehicular MEC applications [9], or with MEC-assisted

unmanned aerial vehicles [4]. Existing studies neglect the

possibility to integrate MEC and Cloud paradigms, and there

is no study on the efficiency of mixed MEC and Cloud virtu-

alization solutions, which is the object of our work.

Our contribution. We consider a simple application sce-

nario in which a set of users submit service requests to the

network. These requests can be processed either in a MEC

host or in the Cloud, according to a generic request routing

strategy. We develop an analytical framework to evaluate

the average latency, loss, energy consumption, and utility

yielded by the selected strategy. We use a discrete event

simulator based on OMNeT++ to validate the model, and

show that relying on both MEC and Cloud is key to achieve

high energy efficiency and good service quality. The MEC

results to be less cost-effective than the Cloud, but it offers

2021-05-20 12:00. Page 1 of 1–6.

https://doi.org/10.1145/3447555.3465325
https://doi.org/10.1145/3447555.3465325

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Vincenzo Mancuso, Paolo Castagno, and Matteo Sereno

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

Figure 1: System overview

low latency, and, given its small scale, could be run on green

energy sources to make its adoption sustainable.

2 MEC-CLOUD VIRTUALIZATION
We consider the system illustrated in Fig. 1. Mobile users are

connected to a base station, which in turn is connected to a

backhaul subsystem. A MEC server is also attached to the

same backhaul. A Core network connects the backhaul to

the Internet, where a Cloud server is located.

Users generate service requests with arrival rate _, which

are sent for computation to a server running at either a MEC

host or in the Cloud. We assume that the request can be

dropped by the server, but not by network nodes. Routing a

request towards the MEC or the Cloud is decided according

to a probabilistic routing policy which sends a request to the

MEC with probability 𝛼 .

A request is a message of 𝑃𝑅 bits, on average. When it

reaches a server, some computation is carried out, which

requires 𝐹 floating-point operations, and a response is sent,

consisting of 𝑃𝑆 bits, on average. The intensity of served

requests that are delivered to the mobile users is b ≤ _.

The total service time is 𝑇 , which includes the transfer of

the request to a server, the computation time at the server,

and the transport of the server response back to the user.

Access. Service requests access the network via a base

station, with the RACH procedure. The average time spent

in the RACH, that we denote by 𝑇𝐴, is practically constant

and the RACH is loss-less as long as the request rate is below

a few thousands per second [1], as we consider in this paper.

Base station forwarding. Once a user has obtained a

grant to access the network, she can send the actual service

request to the base station, who has sliced resources to store

and forward the request towards a server. This uplink process

incurs latency depending on the arrival rate _ and the service

rate `𝑈 . In the downlink, the base station will receive service

answers with intensity b and serve with rate `𝐷 .

Backhauling. The backhaul consists in typically one or

more optical rings that connect several base stations and

MEC servers, as described in [3]. With network slicing, the

backhaul can be seen as a set of point-to-point links between

base stations and MEC hosts. Service rates in the backhaul

are indicated as `𝐵𝑢 and `𝐵𝑑 for uplink requests and downlink

server responses, respectively.

Reaching the Cloud. The Core connects backhaul and
Cloud. We represent the path as two links to and from the

Cloud, although each link represents tens of hundreds of

high-capacity links. We denote by `𝐶𝑢 and `𝐶𝑑 the service

rate at the Core to and from the Cloud, respectively.

Service at MEC or Cloud. At the MEC host and at the

Cloud server, we assume that service requests are served as

in a FIFO queue with one or more processors and a finite

buffer. The number of processors represents the number of

virtual machines or CPU cores allocated to the service. The

computation needed to provide service occurs at rate `𝑀
requests/s at the MEC and `𝐶 at the Cloud. We denote by

𝜋𝑀 and 𝜋𝐶 the corresponding buffer overflow (i.e., the loss).

Energy for networking. We distinguish between vari-

ous sources of energy consumption: (𝑖) negotiating network
access over the RACH, (𝑖𝑖) user uplink transmissions, (𝑖𝑖𝑖)
base station’s transmissions to users, (𝑖𝑣) backhaul transmis-

sions, and (𝑣) Core network transmissions. For the RACH,

we also consider that failures result in retransmissions at pro-

gressively higher transmit power, according to the standard

power ramping scheme of 3GPP [14].

Energy for service execution. A service at the MEC or

at the Cloud incurs an energy cost mainly due to computation

or proportional to that. Thus, we assume that the service

cost is proportional to the number of CPU cycles, thereby

proportional to the average service time, be it `−1
𝑀

or `−1
𝐶
. The

coefficient that multiplies the service time, however, could

be different for MEC and Cloud, because of the efficiency of

the different hardware used at the MEC and at the Cloud.

3 MODEL
3.1 Network
3.1.1 Access. Assuming that RACH losses are negligible,

we can neglect the effects of RACH timeouts, finite number

of RACH retries, and blocking at the base station queue.

Therefore, using the RACH model presented in [1] with

failures only caused by radio issues, the probability that a

request succeeds in 𝑖 RACH attempts can be obtained as

𝑝𝐴 (𝑖) = 𝑒−
𝑖 (𝑖−1)

2

(
1 − 𝑒−𝑖

)
, (1)

which does not depend on the arrival rate _ (at least before

the arrival rate becomes comparable to the RACH capacity).

The average number of RACH attempts is

𝑛𝐴 =

∞∑
𝑖=1

𝑖 𝑝𝐴 (𝑖) =
∞∑
𝑖=1

𝑖 𝑒−
𝑖 (𝑖−1)

2

(
1 − 𝑒−𝑖

)
≂ 1.42. (2)

The average latency is the latency in a successful attempt

plus the latency in 𝑛𝐴 − 1 failed attempts:

𝑇𝐴 =
𝑊

2

+ (𝑛𝐴 − 1) (𝑍 + E[𝐵𝐴]) , (3)

where𝑊 is the maximum time allowed in between a success-

ful request is sent to the RACH and a grant is issued, 𝑍 <𝑊

2021-05-20 12:00. Page 2 of 1–6.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Efficiency of Virtualization over MEC plus Cloud e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

is the maximum time to accept a request at the base station,

and E[𝐵𝐴] is the average RACH backoff time taken after a

RACH failure, before a new attempt.

3.1.2 Base station, backhaul and Core. We use an M/M/1

FIFO queue to model the behavior of each network segment

traveled by a service request. Therefore, we have 6 indepen-

dent queues (base station, backhaul and Core in uplink and in

downlink), although the Core queues are only for the Cloud.

The arrival rate at the base station uplink queue is the

throughput of the RACH, which is _, since we have assumed

that the RACH introduces no losses. Therefore, the average

time spent at the base station is
1

`𝑈 −_ . Similarly, the downlink

latency at the base station is
1

`𝐷−b .

The expressions for latency at backhaul and Core links

are alike. We only have to consider that the backhaul sees

arrival rate _ in uplink and b in downlink, while the Core

sees (1 − 𝛼)_ in uplink and (1 − 𝜋𝐶) (1 − 𝛼)_ in downlink.

The throughput, expressed in served requests per second,

is simply given by the following formula:

b = ((1 − 𝜋𝑀) 𝛼 + (1 − 𝜋𝐶) (1 − 𝛼)) _ = (1 − 𝜋𝐿) _, (4)

where the 𝜋𝐿 is the overall loss probability.

The average network latency for an accepted service re-

quest, not considering the service itself, is as follows:

𝑇net = 𝑇𝐴 + 1

`𝑈 − _ + 1

`𝐷 − b + 1

`𝐵𝑢 − _
+ 1

`𝐵𝑑 − b

+ (1 − 𝜋𝑀) 𝛼 _
b

𝑑𝑀 + (1 − 𝜋𝐶) (1 − 𝛼) _
b

·
(
𝑑𝐶 + 1

`𝐶𝑢 − (1−𝛼)_ + 1

`𝐶𝑑 − (1−𝜋𝐶) (1−𝛼)_

)
, (5)

where 𝑑𝑀 and 𝑑𝐶 are the round-trip times of MEC and Cloud

in absence of traffic. This latency is strongly affected by the

value of 𝛼 , which appears directly in the formula but also

affects the values of b and 𝜋𝐶 .

3.1.3 Network costs. The average cost incurred per time

unit, due to the network component is proportional to the

utilization of network elements:

Φnet = _ E𝐾

[
𝐾∑
𝑖=1

𝐸RACH (𝑖)
]
+ _ 𝑃𝑅𝐸user + (_ 𝑃𝐴+b 𝑃𝑆)𝐸bs

+ (_ 𝑃𝑅+b 𝑃𝑆)𝐸ring + (1−𝛼) _ (𝑃𝑅+(1−𝜋𝐶) 𝑃𝑆) 𝐸core, (6)

where 𝐸RACH (𝑖) is the energy used in the transmission of

a RACH request at the 𝑖-th attempt (after 𝑖 − 1 RACH er-

rors), which ramps up failure after failure, E𝐾 indicates the

average over the number of RACH attempts 𝐾 , 𝐸user is the

transmission energy per bit incurred by the user, 𝐸bs is the

energy per bit at the base station—with 𝑃𝑆 bits per message

in downlink, and with a coefficient 𝑃𝐴 that expresses the

cost of RACH acknowledgements—𝐸ring is the energy per bit

transmitted over the backhaul ring, and 𝐸core is the energy

spent per transmitted bit over the core.

3.2 Service
3.2.1 Average latency. The latency of a request entering an

M/M/𝑛 (·) /𝑘 (·) FIFO queue depends on the probability to find

a certain number of requests in the queue. The probability

to have 𝑗 requests in the queue can be computed as

𝑝 (·) (𝑗) =

𝑝 (·) (0)

𝜌
𝑗

(·)
𝑗 !

𝑗 = 0, · · · , 𝑛 (·) ;

𝑝 (·) (0)
𝜌𝑖(·)

𝑛 (·) !𝑛
𝑖−𝑛 (·)
(·)

𝑗 = 𝑛 (·) + 1, · · · , 𝑘 (·) ,
(7)

where 𝑝 (·) (0) is computed by using

∑𝑘 (·)
𝑗=0
𝑝 (·) (𝑗) = 1, and

𝜋 (·) = 𝑝 (·) (𝑘 (·)) is the loss probability relative to arrivals at

the queue, be (·) either𝑀 or 𝐶 .

The average latency in MEC or Cloud is a service time plus

the waiting time incurred in case to find 𝑗 ≥ 𝑛 (·) requests:

𝑇(·) (𝑗) =
{

1

` (·)
, 𝑗 < 𝑛 (·) ;

1

` (·)
+ 𝑗−𝑛 (·)+1

𝑛 (·) ` (·)
, 𝑛 (·) ≤ 𝑗 < 𝑘 (·) .

(8)

The overall average server latency in the system depends

on the routing probability, which affects the distributions of

served requests over MEC and Cloud:

𝑇serv=
(1−𝜋𝑀) 𝛼 _

b
E [𝑇𝑀] +

(1−𝜋𝐶) (1−𝛼) _
b

E [𝑇𝐶] . (9)

3.2.2 Service cost. MEC and Cloud resources are only used

for service requests that reach the server when there is avail-

able space in the local queue. Therefore, the average cost per

second can be expressed as follows:

Φserv = (1 − 𝜋𝑀) 𝛼 _ 𝐹 𝐸𝑀 + (1 − 𝜋𝐶) (1 − 𝛼) _ 𝐹 𝐸𝐶 , (10)

where 𝐸𝑀 and 𝐸𝐶 are energy spent per CPU cycle at the MEC

and at the Cloud, respectively.

3.3 Utility
We model the utility of the system according to rewards,

penalties and costs. The reward of a successful service re-

quest is denoted by 𝑅 and is expressed in monetary units.

However, to account for the importance of latency, we dis-

count a fraction of the reward proportionally to the average

latency of a served request, with a coefficient𝐶𝑙 . Discounted

rewards generate a reward rate proportional to the intensity

of served requests b . Losses might incur a monetary penalty

𝑃 , at a loss rate 𝜋𝐿_ =
𝜋𝐿

1−𝜋𝐿 b (note that 𝜋𝐿 < 1 for any fi-

nite load). Eventually, network and server costs are additive

and so we scale Φnet and Φserv by a common coefficient 𝐶𝑒
representing energy cost. The resulting utility is:

𝑈 =𝑅

(
1−𝐶𝑙 (𝑇net+𝑇serv)−𝑃

𝜋𝐿

1−𝜋𝐿

)
b −𝐶𝑒 (Φnet+Φserv). (11)

2021-05-20 12:00. Page 3 of 1–6.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Vincenzo Mancuso, Paolo Castagno, and Matteo Sereno

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

The coefficient 𝐶𝑙 can be set to 0 if the service is not

sensible to latency, or it can be set, e.g., to the inverse of the

maximal tolerable latency. Note that the resulting reward

could be negative in case of exceedingly high latency or high

penalty, whichmightmake sense in case of strict service level

agreements. The utility function expresses the monetary

flow (e.g., in Eur/s) for the provisioning of a service when

the request rate is _ and the routing probability is 𝛼 .

3.4 Approximated optimal 𝛼
It is intuitive that the optimal value of 𝛼 must lead the system

as far as possible from loss. Based on this consideration, we

find near-optimal values of 𝛼 .

Claim 1 (under-loaded system). If the costs 𝐶𝑙 and 𝑃
tend to zero and the following conditions hold{

𝑛𝑀 `𝑀 + 𝑛𝐶 `𝐶 ≥ _,

𝑛𝑀 `𝑀 ≤ 𝑛𝐶 `𝐶 ,
(12)

then for 𝑅 large enough, the optimal value of the routing prob-
ability is included in the following interval:[

max

(
0, 1 − 𝑛𝐶 `𝐶

_

)
,min

(
1,
𝑛𝑀 `𝑀

_

)]
. (13)

Rationale: Since the system can serve all the traffic due

to the first condition, the loss can be taken towards zero,

which is always convenient in terms of utility if 𝑅 is large

enough, so that the rewards grows with _ faster than the

cost does. Therefore, imposing that neither the MEC nor the

Cloud suffer losses, the following conditions are necessary:{
𝛼 _ ≤ 𝑛𝑀 `𝑀 ,
(1 − 𝛼) _ ≤ 𝑛𝐶 `𝐶 .

(14)

The above system is satisfied by all values of 𝛼 in the range[
1 − 𝑛𝐶 `𝐶

_
,
𝑛𝑀 `𝑀
_

]
. The range is non-empty because of (12).

Since values of 𝛼 smaller than 0 and larger than 1 do not

have a physical meaning, the interval reduces to (13). □

Claim 2 (overloaded system). If costs 𝐶𝑙 and 𝑃 tend to
zero and the following condition holds

𝑛𝑀 `𝑀 + 𝑛𝐶 `𝐶 ≤ _, (15)

then, for 𝑅 large enough, the optimal value of the routing
probability is included in the following interval:[𝑛𝑀 `𝑀

_
, 1 − 𝑛𝐶 `𝐶

_

]
. (16)

Rationale: Here losses cannot be avoided. Proceeding like

for Claim 1, we reach the following inequalities, which guar-

antee full utilization of both MEC and Cloud:{
𝛼_ ≥ 𝑛𝑀 `𝑀 ,
(1 − 𝛼)_ ≥ 𝑛𝐶 `𝐶 .

(17)

The above inequalities are equivalent to (16). □

Observation 1. Simple, near-optimal values of 𝛼 are given
by the extremities of the intervals expressed by either (13) in
case of under-loaded system, or (16) in case of overloaded sys-
tem. Because of the meaning of 𝛼 , we call the approximations
computed with the leftmost (resp., rightmost) values of the
intervals as “Cloud-pushing” (resp., “MEC-pushing”).

4 PERFORMANCE EVALUATION
Here we present a realistic evaluation scenario. We use

𝜌 = _
𝑛𝑀 `𝑀+𝑛𝐶 `𝐶 to denote the total load of the system and

set 𝐶𝑙 = 𝑃 = 0 to evaluate the impact of energy efficiency.

Furthermore, to validate our model we compare the model

predictions against the results obtained by using a discrete

event simulator developed by using OMNeT++. The simula-

tor reproduces the topology of Figure 1, and includes detailed

RACH and queueuing operations. The parameters used in

our numerical study are as follows.

Messages. Users send requests of 𝑃𝑅 = 2000 bits with

exponential inter-arrival times. They receive service replies

of 𝑃𝑆 = 4000 bits, which is representative of short Internet

transactions. RACH replies have 𝑃𝐴 = 200 bits.

Network slicing and topology. The base station has a

capacity of 500Mbps in downlink and 200Mbps in uplink,

in line with a 5G cell in the sub-6 GHz channels. We use a

network-sliced system and evaluate a slice that takes 5% of

base station resources. In the backhaul, the network slice

counts on 35 Mbps in downlink and 20 Mbps in uplink. Base

station and MEC are separated by 2 optical segments. The

round-trip time between user and MEC is 𝑑𝑀 = 27 ms, not

accounting for queueing. The Core network offers Gbps ca-

pacity, and Cloud and backhaul are separated by 100 links,

which is the order of magnitude observed for real Clouds.

The round-trip time between user and Cloud is 𝑑𝐶 = 66 ms,

not accounting for queueing.

RACH.We use a power ramping scheme with steps of 2

dB, starting at −11 dBm, which is the power required in a

residential area with a target power signal level of −74 dBm
and a typical pathloss of 63 dB, like in [14]. We use𝑊 = 2ms,

𝑍 = 0.5 ms, and E[𝐵𝐴] = 10 ms, with a RACH transmission

opportunity every 1 ms, and 54 orthogonal RACH codes.

Transmission power. We take ETSI specifications for

class-2UEs (mobile devices) and medium-range base stations.

The UE can transmit up to 0.2 W [5] (but can only use 5% of

airtime) and the base station uses 6.3 W [6] (out of which,

only 5% is for our slice). The backhaul efficiency is 2 Gbps/W

per link, which is a typical value for good network equipment.

Instead, in the Core, the efficiency is 20Gbps/W per traversed

link, which is a value representative of the currently available

high-end network devices.
1

1
Source: https://www.servethehome.com/qsfp-v-sfp-v-10gbase-t-testing-

power-consumption-differences/

2021-05-20 12:00. Page 4 of 1–6.

https://www.servethehome.com/qsfp-v-sfp-v-10gbase-t-testing-power-consumption-differences/
https://www.servethehome.com/qsfp-v-sfp-v-10gbase-t-testing-power-consumption-differences/

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Efficiency of Virtualization over MEC plus Cloud e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.06

0.08

0.1

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

s
)

 = 0.01

 = 0.2
 = 0.4
 = 0.6

 = 0.8

 = 1
 = 1.25

 = 1.5
 = 2

Figure 2: Latency vs routing probability: model (lines)
and simulation (markers)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

L
o
s
s

 = 0.01

 = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1

 = 1.25

 = 1.5

 = 2

Figure 3: Loss vs routing probability:model (lines) and
simulation (markers)

Server specifications. The MEC uses a virtual machine

for our service, pinned to a single core of a shared CPU,

therefore 𝑛𝑀 = 1. Its buffer can host 9 requests, so that

𝑘𝑀 = 10. The Cloud uses 10 cores (𝑛𝐶 = 10) and has a buffer

of 40 (i.e., 𝑘𝐶 = 50). At the MEC, we use the specifications of

an average dual-core 2-GHz CPU that consumes 80W at full

load. We do the same at the Cloud, with quad-core 2-GHz

CPUs, each consuming 140W in total, at full load. Serving

each request requires 𝐹 = 10
7
CPU cycles (i.e., `−1

𝐶
= `−1

𝑀
= 5

ms at 2 GHz, on average, with exponential distribution).

Costs and service revenue.We consider that the energy

has a cost of 𝐶𝑒 = 0.13 Euros/kWh, unless it is generated

locally from renewable sources, in which case we assume

that it has no cost. The service revenue 𝑅 is set to 0.01 Euros

per million of services, which yields revenues of the same

order of magnitude of energy costs (so that they play a role

in the optimization).

4.1 Latency and loss
The average service latency is depicted in Figure 2 vs the

routing probability for various values of the offered load.

The figure shows model (solid lines) and simulation results

(markers). The value of 𝛼 that yields the minimum of latency

widely changes with the load: low loads can be served at low

latency at the MEC, while medium-high loads—before the

system becomes overloaded—require more Cloud activity.

However, under overloaded conditions, the MEC becomes

progressively preferable, since the latency at the Cloud can

become too high. In overloaded conditions the latency has a

lower plateau due to the MEC queue, and a higher plateau

that corresponds to the saturation of the Cloud.

Figure 2 shows that using the MEC is key to achieve low

latency. However, using mostly the MEC incurs high losses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.175

0.18

0.185

0.19

0.195

0.2

0.205

E
n
e
rg

y
 (

J
/s

e
rv

ic
e
) = 0.01

 = 0.2

 = 0.4
 = 0.6

 = 0.8
 = 1

 = 1.25
 = 1.5

 = 2

(a) Total energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

E
n

e
rg

y
 (

J
/s

e
rv

ic
e

) = 0.01

 = 0.2
 = 0.4
 = 0.6

 = 0.8

 = 1
 = 1.25

 = 1.5
 = 2

(b) Energy consumption, not counting green MEC energy
Figure 4: Average energy spent overall in the system
per each served request

at even low-medium loads, as shown in Figure 3. This occurs

because, in the considered example, the MEC only provides

a small fraction of the service capacity. The figure shows

that low losses can only be achieved at either very low load

or at low-medium loads and low values of 𝛼 , i.e., by routing

requests (in most cases) to the Cloud. Note that the above

described results do not depend on energy, costs and prices.

Figures 2 and 3 show a good accuracy between model and

simulation. Limited errors are visible in the latency, in the

order of one millisecond. Errors are due to the fact that flows

in the simulator are not necessarily Markovian like we have

assumed in the model, where we also neglect the impact of

load on the RACH.

4.2 Energy efficiency
Figure 4 shows the average energy used for each service.

This includes the energy spent for unserved requests. In

Figure 4a we can see that using the Cloud is more energy-

efficient, which is due to low networking cost with respect

to CPU, and to the fact that most of networking costs are due

to wireless transmissions, which cannot be avoided, as also

pointed out in [12]. Curves for high load, which experience

high loss and saturated throughput, only slightly vary with

𝛼 in a wide range of values. This means that changing 𝛼 can

have large impact on latency (especially for under-loaded

systems) and loss, while the energy efficiency can be kept

under control although the MEC is not sustainable.

It is interesting to point out that if the MEC only uses

energy produced by renewable sources the trend flips, and

the MEC becomes always convenient (see Figure 4b).

4.3 Utility
The utility is reported in Figure 5a. Underloaded systems are

optimized by using mostly the Cloud and significant MEC

2021-05-20 12:00. Page 5 of 1–6.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Vincenzo Mancuso, Paolo Castagno, and Matteo Sereno

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
 (

E
u

r/
d

a
y
)

 = 0.01

 = 0.2
 = 0.4
 = 0.6

 = 0.8

 = 1
 = 1.25

 = 1.5
 = 2

(a) With non-free MEC energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
 (

E
u

r/
d

a
y
)

 = 0.01

 = 0.2
 = 0.4
 = 0.6

 = 0.8

 = 1
 = 1.25

 = 1.5
 = 2

(b) Green MEC (free energy)

Figure 5: Utility vs routing probability

operations are required only for loads well above 1. However,

if the MEC is green and its energy has no cost (or negligible),

Figure 5b shows that the value of 𝛼 that maximizes the utility

can change a lot with the load. In particular, we can see that

the MEC is progressively less useful as the load increases,

until the system begins to experience significant losses. This

is qualitatively similar to the behavior of latency curves in

Figure 2. In general, these results tell that the MEC can be

latency-efficient but not energy- and utility-efficient unless it

can run (almost) fully on green power. That would be doable

because running a (small) MEC host in full can require as

low as a few hundreds of W.

Note that the approximations shown in Section 3.4 identify

the interval in between the two knees of the utility curves of

Figure 5 (and the left knee is replaced by 0 in underloaded

systems, as per (13)). Using the Cloud-pushing and MEC-

pushing approximations would yield the sub-optimality ra-

tios shown in Figure 6. The former always yields utility val-

ues very close to the optimum if the MEC energy has a cost,

otherwise, the “MEC-pushing” approximation is preferable.

5 CONCLUSIONS
Wemodeled performance, costs and utility of a simple system

that randomly routes service request to virtualized resources

in the MEC and the Cloud. The model is tractable and allows

to evaluate the average system behavior, which in turns

allows to optimize the routing probability, for which we

provided extremely simple-to-compute approximated values.

Energy costs are key to evaluate the system, as shown by

comparing a legacy system to one in which the otherwise

not-sustainable MEC can be run on renewables. The model

can be also used to set up optimization problems with latency

and loss constraints, whose study we leave for future work.

0 0.5 1 1.5 2

0.4

0.6

0.8

1

O
p

ti
m

a
lit

y
 r

a
ti
o

Cloud-pushing approx
MEC-pushing approx

(a) Counting all energy

0 0.5 1 1.5 2

0.4

0.6

0.8

1

O
p

ti
m

a
lit

y
 r

a
ti
o

Cloud-pushing approx (Green MEC)
MEC-pushing approx (Green MEC)

(b) Free MEC energy

Figure 6: Ratio between utility values computed with
the Cloud-pushing and the MEC-pushing approxima-
tions defined in Observation 1 and the optimal utility

ACKNOWLEDGEMENTS
The work was supported by the Regione Piemonte, Italia

through the HOME project of the framework program POR

FESR 14/20, and by the Region of Madrid, Spain, through the

TAPIR-CM project (S2018/TCS-4496).

REFERENCES
[1] P. Castagno, V. Mancuso, M. Sereno, and M. Ajmone Marsan. 2020.

A Simple Model of MTC Flows Applied to Smart Factories. IEEE
Transactions on Mobile Computing (2020).

[2] L. Chen, J. Wu, and J. Zhang. 2021. Long-term optimization for MEC-

enabled HetNets with device–edge–cloud collaboration. Computer
Communications 166 (2021).

[3] L. Cominardi et al. 2018. Understanding QoS Applicability in 5G

Transport Networks. In IEEE BMSB.
[4] N. N. Ei et al. 2021. Multi-UAV-Assisted MEC System: Joint Association

and Resource Management Framework. In ICOIN.
[5] ETSI. 2019. 5G; NR; User Equipment (UE) radio transmission and recep-

tion; Part 2: Range 2 Standalone. Technical Specification (TS) 138 101-2.

ETSI. https://www.etsi.org/deliver/etsi_ts/138100_138199/13810102/

15.07.00_60/ts_13810102v150700p.pdf Version 15.7.0.

[6] ETSI. 2020. 5G; NR; Base Station (BS) radio transmission
and reception. Technical Specification (TS) 138 104. ETSI.

https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/16.

04.00_60/ts_138104v160400p.pdf Version 16.4.0.

[7] A. A. Franklin and S. D. Tambe. 2020. Multi-access edge computing in

cellular networks. CSI Transactions on ICT 8 (2020).

[8] R. Gopi et al. 2021. n Enhanced Green Cloud Based QueueManagement

(GCQM) System to Optimize Energy Consumption in Mobile Edge

Computing. Wireless Personal Communications 117, 3397–3419.
[9] X. Gu and G. Zhang. 2021. Energy-efficient computation offloading

for vehicular edge computing networks. Computer Communications
166 (2021), 244–253.

[10] C. Guleria, K. Das, and A. Sahu. 2021. A Survey on Mobile Edge

Computing: Efficient Energy Management System. In Innovations in
Energy Management and Renewable Resources.

[11] S.-T. Hong and H. Kim. 2019. QoE-Aware Computation Offloading

to Capture Energy-Latency-Pricing Tradeoff in Mobile Clouds. IEEE
Transactions on Mobile Computing 18 (2019).

[12] Y. Ming et al. 2019. Modeling the Total Energy Consumption of Mobile

Network Services and Applications. Energies 12, 1 (2019).
[13] M. Patel et al. 2014. Mobile-edge computing introductory technical white

paper. ETSI White paper. https://portal.etsi.org

[14] J. Thota and A. Aijaz. 2019. On Performance Evaluation of Random

Access Enhancements for 5G uRLLC. In IEEE WCNC.

2021-05-20 12:00. Page 6 of 1–6.

https://www.etsi.org/deliver/etsi_ts/138100_138199/13810102/15.07.00_60/ts_13810102v150700p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/13810102/15.07.00_60/ts_13810102v150700p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/16.04.00_60/ts_138104v160400p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/16.04.00_60/ts_138104v160400p.pdf
https://portal.etsi.org

