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Abstract Metabolic adaptations are intimately associated

with changes in cell behavior. Cancers are characterized by

a high metabolic plasticity resulting from mutations and the

selection of metabolic phenotypes conferring growth and

invasive advantages. While metabolic plasticity allows

cancer cells to cope with various microenvironmental sit-

uations that can be encountered in a primary tumor, there is

increasing evidence that metabolism is also a major driver

of cancer metastasis. Rather than a general switch pro-

moting metastasis as a whole, a succession of metabolic

adaptations is more likely needed to promote different

steps of the metastatic process. This review addresses the

contribution of pH, glycolysis and the pentose phosphate

pathway, and a companion paper summarizes current

knowledge regarding the contribution of mitochondria,

lipids and amino acid metabolism. Extracellular acidifica-

tion, intracellular alkalinization, the glycolytic enzyme

phosphoglucose isomerase acting as an autocrine cytokine,

lactate and the pentose phosphate pathway are emerging as

important factors controlling cancer metastasis.
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TKTL1 Transketolase-like 1

uPA Urokinase

VEGF Vascular endothelial growth factor

Introduction

It is currently estimated that about one out of three people

will develop cancer in his/her lifetime in Western countries

and at least one out of five patients will die of the disease.

Metastasis represents the ultimate step of tumor progression

and accounts for *90 % of cancer-associated deaths [1].

Cancer refers to a group of heterogeneous diseases that

originate from different tissues and affect different cellular

subtypes. Influenced by interactions with the host, patient

lifestyle and therapy, cancers can evolve in different ways.

In 2000, Hanahan and Weinberg [2] proposed a general

framework detailing common hallmarks of cancer that

served as a cornerstone to facilitate the biological under-

standing of the pathology. It was updated in 2011 [3].

Cancer hallmarks comprise aberrant metabolic activities

and the ability to metastasize at distant sites from a primary

tumor to generate secondary tumors. The relationship

between cancer metabolism and metastasis is the focus of

this review.

Deregulation of metabolic fluxes is one of the earliest

distinctive features of cancers that was described almost

one century ago when Otto Warburg [4] reported that some

cancer cells convert glucose to lactate aerobically, whereas

most normal cells in the body use glucose for oxidative

metabolism. Nowadays, it is becoming increasingly clear

that many hallmarks of cancer are under metabolic control

and that the execution of the aggressive tumor agenda

requires specific rewiring of metabolic fluxes. Metabolic

characterization has a high potential to lead to new thera-

peutic applications against cancer [5, 6].

Metastasis (from Greek lesa9 [beyond] and rsa9ri1 [s-

tanding still]) is characterized by the acquisition of

invasive and colony-formation capabilities by cancer cells.

It is a critical hallmark of cancer as it defines the switch

from benign tumor to malignant cancer. Metastasis is a

rather inefficient process comprising several consecutive

steps, with only a small proportion of cancer cells among

those gaining access to the circulation being able to suc-

cessfully generate a metastatic lesion. Metastatic

progenitor cells possess distinctive characteristics corre-

sponding to specific traits that are required for the

formation of metastases in distant organs [1].

On their metastatic route, cancer cells have to cross a

first barrier formed by the extracellular matrix and stromal

cells, which necessitates the activation of proteases, such as

matrix metalloproteinases (MMPs) [1]. Metastatic

progenitor cells must also acquire migratory activities to

get access to the blood or lymphatic circulation. Acquisi-

tion of these capabilities is often preceded by the epithelial-

to-mesenchymal transition (EMT), during which cancer

cells of epithelial origin activate transcription factors

TWIST1 and SNAIL as main drivers of cell elongation [7].

During EMT, cancer cells adopt a fibroblastoid morphol-

ogy. EMT is critical for metastasis formation: it provides

mobility and increases resistance to apoptosis [8], and

EMT pathways are tightly connected to those driving

stemness/tumor initiation [9]. When getting access to the

circulation (intravasation), cancer cells must successfully

cope with reoxygenation-associated redox stress, shear

stress, immune attacks and the absence of anchorage that

would normally induce anoikis (from Greek

[homelessness]), a form of apoptotic cell death induced by

the loss of prosurvival signals following cell detachment

from the extracellular matrix (ECM) [10, 11]. Cancer cells

that successfully reach the blood stream are termed ‘cir-

culating tumor cells’ (CTCs). They represent a

heterogeneous population of cells with various molecular

markers and phenotypes [12–15]. Among CTCs, some can

leave the circulation (extravasation) and restore their pro-

liferative activity to establish a tumor at a secondary site.

Cells that had initially undergone EMT must also be able to

(partially) reverse EMT in a process called mesenchymal-

to-epithelial transition [16]. Only a minority of CTCs

successfully undergoes these changes, with about 0.01 %

of them being able to successfully form metastases [17].

Cancer metastasis is thus a complex process, as further

detailed in references [1, 18, 19].

Knowledge concerning the metabolic aspects of tumor

transformation and progression is increasing, which is

notably reflected by a number of drugs targeting tumor

metabolism that recently entered into clinical trials [6].

Still, little is known about the specific metabolic changes

associated with the metastatic process. In the absence of

validated markers, it is indeed particularly challenging to

isolate and analyze rare metastatic progenitor cells and, in

our opinion, illusory to try to define a metabolic phenotype

typical of metastasis as a whole. In fact, a succession of

metabolic adaptations is more likely needed to promote

each step of the metastatic process (Fig. 1), with the pos-

sibility that some changes at an early step may not be

required or could even be detrimental for later steps. Thus,

an adapted analytical approach is needed to dissect the

metastatic process from mechanistic and metabolic stand-

points. Here, we detail the current understanding of the

metabolic changes occurring during metastatic progression,

with a special focus on tumor pH, glycolysis and the

pentose phosphate pathway. A companion paper reviews

the contributions of mitochondria, lipid and amino acid

metabolism to cancer metastasis.
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Intracellular and extracellular pH

A common feature of the tumor microenvironment is

extracellular acidosis, and a low extracellular pH (low pHe)

promotes tumor growth and cancer progression (Fig. 2)

[20–22]. Extracellular acidosis results from exacerbated

metabolic activities of cancer cells (associated or not with

an elevation of the glycolytic flux [23]), a high activity of

proton transporters and carbonic anhydrases, and a poor

extracellular proton clearance rate [6, 24, 25]. The origins

of the low pHe are still ill-defined as it involves the

metabolic contributions of different cancer cell and host

cell populations in tumors. Glycolytic tumor cells convert

glucose to lactate at a high rate, and lactate is exported

together with a proton by monocarboxylate transporters

(MCTs), among which MCT4 is often the main contributor

[26–28]. Glycolytic tumor cells comprise hypoxic cells and

proliferating cells that adopt a glycolytic metabolism either

as an adaptation to hypoxia or as preferred metabolic

platform allowing to rapidly alternate between energy

production and biosynthetic phases associated with the cell

cycle [6]. Transcription factors hypoxia-inducible factor-1

(HIF-1) and c-Myc cooperate to upregulate the expression

of glucose transporters, glycolytic enzymes, lactate and

proton transporters, and carbonic anhydrases [6, 25].

Oxidative cancer cells produce CO2 that can contributes to

tumor acidification, and additional sources of acidity

comprise the metabolism of amino acids (especially glu-

tamine) [29] and ATP hydrolysis [30].

While driver mutations causing cancers have been

associated with the number of divisions of stem cells in

healthy tissues and to a lower extent with environmental

Glycolytic tumor cell

Tumor cell with a prometastatic metabolism

Oxidative tumor cell

Host cell

Metastatic
Metastasis

progenitor cells

pHe

Circulating
tumor cells

Lactate

Blood vessel

Primary tumor

Fig. 1 Model depicting potential metabolic changes associated to

cancer metastasis. Tumors are composed of malignant and host cells

that are highly heterogeneous metabolically. According to the model,

metastatic progenitor cells could evolve from glycolytic tumor cells in

the glycolytic compartment of a primary tumor where a low extracel-

lular pH (pHe), lactate and other microenvironmental parameters

trigger tumor cell migration and invasion. On their metastatic route,

tumor cells would acquire different metabolic features comprising, e.g.,

increased pentose phosphate pathway activity and an enhanced

production of mitochondrial reactive oxygen species further promoting

migration and invasion, facilitating intravasation, survival in the blood

stream and extravasation, and conferring stem cell capabilities to

metastatic progenitor cells. At the secondary site in a distant organ such

as the lungs, metastatic progenitor cells would revert to a more

glycolytic phenotype associated with cell proliferation (the Warburg

effect) and metastasis formation. Of note, according to the model,

metastatic progenitor cells would constitute a distinct population/

populations of cells among all circulating tumor cells
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factors and inherited predispositions [31], the low pHe of

established tumors facilitates the acquisition of passenger

DNA mutations and chromosomal abnormalities during

tumor progression [32–34]. A low pHe further triggers the

apoptosis of healthy cells at the periphery of the tumor and

selects for acid- and/or apoptosis-resistant cancer cell

clones [35–37]. It decreases lymphocyte activity and pro-

liferation [38, 39], limits patient response to therapy [40]

and promotes tumor angiogenesis, tumor cell migration,

invasion and lung colonization following intravenous

injection in animal models (i.e., metastatic take, also

known as ‘experimental metastasis’) [25]. This review will

discuss the aspects that are directly related to the metastatic

process.

Tumor cell detachment from neighboring cells is a

prerequisite for migration. A low pHe has been shown to

decrease the abundance of adherent junctions between

hepatoma cells by promoting c-Src-induced b-catenin
phosphorylation and the subsequent disruption of b–cate-
nin/E-cadherin interaction [41].

Once cells have detached, cell migration necessitates

cycles of cellular elongation and contraction with the for-

mation of a lamellipodium at the migrating edge of the cell

during the elongation phase. During these cycles, pH reg-

ulators sodium-proton exchanger 1 (NHE1, a member of

the SLC9 family of sodium-proton antiporters expressed at

the plasma membrane of most cancer cells [42]), carbonic

anhydrase IX (CA IX, the major membrane-bound CA
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Fig. 2 Simplified scheme highlighting the contribution of tumor pH,

glycolysis and the pentose phosphate pathway to tumor metastasis.

Enzymes are represented in italicized blue font and their substrates in

bold black. Tumor cells avidly take up glucose, which is progres-

sively broken down during glycolysis to form pyruvate, a metabolite

that fuels the tricarboxylic acid (TCA) cycle. Pyruvate can also be

converted to lactate during lactate fermentation, and lactate is

released from the cell along with protons, inducing intracellular

alkalinization and extracellular acidification. This process and other

ion exchangers involved in cellular pH regulation promote tumor cell

migration and metastasis (shown in the migrating tumor cell on top

right). Lactate and a low extracellular pH (pHe) can also promote

tumor angiogenesis by activating several signaling pathways repre-

sented in the endothelial cell shown on bottom right. The glycolytic

enzyme phosphoglucose isomerase acts as an autocrine signaling

factor that triggers the epithelial-to-mesenchymal transition (EMT),

migration, invasion and angiogenesis. The pentose phosphate path-

way promotes tumor cell survival upon detachment. Other

abbreviations: AE2 anion exchanger 2, AP1 activator protein 1,

bFGF basic fibroblast growth factor, CA IX carbonic anhydrase IX,

GLUT glucose transporter, IL8 interleukin 8, MCT monocarboxylate

transporter, NBC1 sodium bicarbonate cotransporter 1, NF-jB nuclear

factor-jB, NHE-1 sodium-proton exchanger-1, pHi intracellular pH,

VEGF-A vascular endothelial growth factor-A
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isoform catalyzing the extracellular conversion of CO2 and

water to bicarbonate and proton [43]), sodium bicarbonate

transporter 1 and anion exchanger 2 (AE2, a pH-regulated

chloride-bicarbonate antiporter [44]), which all act as

extracellular acidifiers, are preferentially localized at the

lamellipodium [45–47]. There, NHE1 was shown to assist

the formation of actin stress fibers and focal adhesion

clusters, at least in part through alkalinizing intracellular

pH (pHi) [46, 48]. This process could also theoretically be

controlled by other pH regulators expressed in lamellipo-

dia. At the outer side of the membrane, extracellular

acidification controls cell adhesion to the ECM by modu-

lating the interaction of integrin a2b1 with collagen. In a

melanoma cell line, Stock et al. [49] identified an optimal

pHe range promoting cell migration, with a too alkaline

pHe (*7.5) resulting in cell adhesion that was too weak to

promote migration and a too acidic pHe (*6.6) resulting in

cell adhesion that was too strong. Extreme pHe values thus

impaired migration. In prostate cancer cells, lowering pHe

below physiological values stimulated the production of

reactive oxygen species (ROS) and triggered ROS-medi-

ated cell migration, which could involve decreased

E-cadherin expression and modulation of the expression of

integrins [50]. Conversely, targeting NHE1 [45, 46, 49, 51,

52], CA IX [47] and AE2 [45] with pharmacological

inhibitors has been well documented to repress tumor cell

migration. The promigratory activities of these proteins

depend on their ability to regulate pH, but not only. At least

in the case of NHE1 and CA IX, interactions with mem-

brane proteins and the cytoskeleton have been described to

control cell migration [48, 53].

During cell invasion, a low pHe stimulates the secretion

and/or activation of several hydrolases that degrade ECM

components. Among them, cathepsins B, D and L are

cysteine proteases characterized by an optimal activity at

low pH and a broad spectrum of substrates. They promote

tumor cell invasion. Cathepsins B and L degrade several

types of collagen, laminin and fibronectin in a process

facilitated by a low pHe [54–56]. When pHe decreases,

cathepsins are increasingly expressed at the plasma mem-

brane of tumor cells and/or secreted as zymogens or active

proteinases [57–60]. A low pHe indeed promotes the

redistribution of lysosomes towards the cell periphery

where they can release active cathepsin B [58, 61–63]. The

molecular events orchestrating this response have not been

fully identified to date. They implicate the activity of

NHE1 in invadopodia, extracellular and intracellular

acidification, and activation of RhoA GTPase that controls

microtubule assembly [59, 62–64]. Procathepsins can also

be released, and their autoactivation can theoretically occur

in the tumor interstitial fluid at low pH (*4.5 to *6.5)

[65–67]. In addition to a direct effect on the ECM,

cathepsin B can cleave pro-urokinase (pro-uPA) into uPA,

which then converts plasminogen to plasmin, a serine

protease that degrades the ECM and promotes tumor cell

invasion [57]. Besides cathepsins, matrix metallopro-

teinases MMP2 and MMP9 are proteinases secreted by

tumor cells as zymogens that, upon activation, degrade

collagen and promote tumor cell invasion. A low pHe

increases their expression [68–70] and activity [60, 71],

and can promote their release [60, 71, 72]. With respect to

MMP9, a low pHe was found to activate voltage-dependent

calcium channels that increased intracellular levels of free

calcium, which was associated to activation of phospholi-

pase D, mitogen-activated protein kinase (MAPK) kinase

1/2, p38 MAPK, and transcription factor nuclear factor-jB
(NF-jB) directly controlling MMP9 transcription [69].

Activation of acidic sphingomyelinase was further

involved [70]. Other MMPs are anchored in the plasma

membrane, including membrane-type 1 MMP (MT1-

MMP), which is under the control of NHE-1 [73, 74]. Via a

still unknown mechanism, NHE-1 upregulates MT1-MMP

expression and promotes its localization at the plasma

membrane where MT1-MMP stimulates tumor cell inva-

sion. Not only proteinases but also glycosidases participate

in invasion. A close association between hyaluronan

receptor CD44, NHE-1 and hyaluronidase 2 (Hyal-2)

allows cooperative activity for ECM degradation [59]. In

the complex, binding of hyaluronan to CD44 recruits Rho

kinase to the plasma membrane, where it phosphorylates/

activates NHE-1. NHE-1 contributes to extracellular acid-

ification, which stimulates Hyal-2-induced hyaluronan

catabolism and cathepsin B-dependent ECM degradation,

both of which contribute to the invasive phenotype. Fur-

thermore, the secretion of heparanase, an enzyme

degrading proteoglycans of the ECM with an acidic pH

optimum, was reported to correlate with invasion and lung

colonization after injection of mouse melanoma cells in the

tail vein of mice [75, 76]. Although a low pHe stimulates

tumor cell invasion through multiple mechanisms, some

studies failed to show activation of the invasive process

after acidic priming, suggesting that these mechanisms may

not necessarily be common to all cancer cell types [77].

Still, pharmacological inhibition of proton transporter NHE

and extracellular CAs impaired tumor cell invasion in

several studies [51, 59, 62, 73, 74, 78].

After tumor cell detachment, migration and invasion,

metastatic take is also influenced by pH. Acidic priming of

tumor cells was repeatedly reported to increase their

capacity to colonize the lungs after injection into the tail

vein of mice [50, 60, 72, 79]. While in the study of Sch-

lappack et al. [79] the metastatic potential was further

increased after a recovery period of 24–48 h at pH 7.4, the

effect of acidic priming was only transient in the work of

Rofstad et al. [60]. This observation suggests that different

mechanisms with distinct kinetics could be involved,

Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the… 1337

123



depending on the cell line and/or cancer type considered. It

also raises the question of whether low pHe exposure

allows stable phenotype selection. In this context, there is

evidence that growth at low pHe increases melanoma cell

migration and invasion even after recovery at physiological

pH for several passages [80].

Experimental metastasis investigates the ability of tumor

cells to survive in the blood stream, to extravasate and to

colonize distant organs. To understand whether interstitial

acidosis is sufficient to promote the metastatic process as a

whole, Kalliomaki et al. [81] used a model of spontaneous

metastasis in mice in which acidosis was induced by

administration of glucose and metaiodobenzylguanidine

(MIBG, an inhibitor of complex I of the mitochondrial

electron transport chain [ETC]). The treatment decreased

pHe in primary tumors, but did not increase their metastatic

potential, which can be related to the fact that full ETC

inhibition can repress the metastatic process [82, 83] (see

also companion paper).

Abnormal neovessels produced during tumor angio-

genesis facilitate the metastatic process. The production

and release of vascular endothelial growth factor (VEGF)-

A and interleukin (IL)-8, two potent inducers of angio-

genesis, have been found to be stimulated by a low pHe in

various cancer cell lines following activation of the tran-

scription factors NF-jB and activator protein-1 (AP-1)

(Fig. 2) [60, 84–89]. Similar to activation of NF-jB by a

low pHe [69], activation of AP-1 was found to involve the

upstream activation of Ras and of the MAPK pathway,

supporting enhanced VEGF-A transcription via AP-1 [89].

When binding to its receptors, VEGF-A promotes vascular

permeability [90, 91] and activation of MMP1 [92] and

uPA in migrating vascular endothelial cells [93]. IL-8

further stimulates the expression of MMP2 in melanoma

cells [94] and was found to enhance the formation of liver

metastasis in an orthotopic model of pancreatic cancer

[84].

Pharmacological inhibition of CA IX was found to

repress breast cancer metastasis formation in experimental

and spontaneous metastatic models in mice [95, 96].

However, because CA IX inhibition also reduced tumor

growth in spontaneous metastasis experiments [96],

decreased metastasis detection could potentially reflect

primary tumor growth impairment. Other approaches aim

to buffer pH with alkaline compounds such as sodium

bicarbonate, imidazole-based molecules or lysine. With

respect to cancer metastasis, systemic pH buffering was

shown to inhibit metastatic take in the lungs and sponta-

neous metastatic dissemination in several different mouse

models of cancer [97–99]. Buffering tumors with alkaline

compounds can indeed impair cathepsin B activity and the

ability of tumor cells to extravasate [97]. Some cancer cells

were also shown to be dependent on extracellular

acidification for efficient proteolytic activities and lung

colonization, whereas others were not [100]. The latter

were insensitive to pH buffering treatments, thus implying

that extracellular acidification is not an obligatory

requirement for a tumor to successfully metastasize.

Glycolytic enzyme phosphoglucose isomerase

As stated above, established tumors contain tumor cells

with different metabolic phenotypes, among which gly-

colytic tumor cells are characterized by elevated glucose

uptake and lactate production resulting from the upregu-

lation of most glycolytic enzymes as well as glucose and

lactate transporters. In addition to catalyzing the reversible

isomerization of glucose-6-phosphate to fructose-6-phos-

phate, glycolytic enzyme phosphoglucose isomerase (PGI)

can act as a prometastatic signaling agent. PGI is also

known as ‘autocrine motility factor’ (AMF), an autocrine

cytokine that promotes tumor cell migration, invasion,

experimental metastasis and, overall, metastasis as a whole

(Fig. 2) [101–109].

PGI lacks a signal sequence for secretion and is there-

fore exported from cells through non-classical pathways

activated according to the PGI expression level [107, 110,

111]. PGI transcription is indirectly induced by hypoxia-

inducible factor-1 (HIF-1) through the VEGF pathway

[108], and HIF-1 is itself a main inducer of the glycolytic

switch in cancer. Once exported, PGI binds to membrane

receptor gp78 to activate intracellular effectors [102],

resulting in (1) relocalization of RhoA and Rac1 small

GTPases, two master regulators of actin dynamics, to

filopodia and lamellipodia [104, 112]; (2) increased

expression of integrins a2b3 and a5b1 that translocate to the
cell surface in order to regulate cell adhesion and to

stimulate MMP2 activity [103, 104]; and (3) stimulation of

EMT through NF-jB activation, upregulation of SNAIL,

ZEB1 and ZEB2 transcription factors and downregulation

of mir-200, leading to the loss of E-cadherin [106, 113,

114]. PGI/AMF can also bind to endothelial cells

expressing gp78 to promote angiogenesis and vascular

permeability, thereby facilitating tumor cell intravasation

[115–117]. In patients, high PGI/AMF and gp78 expression

in primary tumors and elevated serum levels of PGI were

reported to positively correlate with metastasis in col-

orectal carcinoma, esophageal squamous cell carcinoma

and lung adenocarcinoma [118–121].

Besides PGI, no other glycolytic enzyme has been

directly involved in the promotion of tumor metastasis.

Nevertheless, several glycolytic enzymes have been found

in invadopodia [122], and glycolysis has been proposed to

be a main source of ATP for tumor cell survival upon

detachment and during migration [123–125].
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Glycolytic end-product lactate

Glycolytic cancer cells secrete large amounts of lactate that

notably serves as a counter-ion for proton export via MCTs

(Fig. 2) [126, 127]. Once exported, lactic acid readily

dissociates in lactate and protons. High glycolytic and

glutaminolytic activities in combination with poor clear-

ance thus result in lactate accumulation in the tumor

interstitium [128], with lactate concentrations ranging from

1 to 40 lmol/g in human tumors (median value = 8 lmol/

g) [129]. More than a mere metabolic waste, lactate can

serve as an energetic fuel for oxidative tumor cells [28] and

a signaling molecule that promotes angiogenesis (see

below), chronic inflammation [130, 131], inhibits the

immune system [132–135] and contributes to tumor resis-

tance to radiotherapy [136]. In patients, high lactate levels

have been positively correlated with metastasis in head and

neck cancer [137, 138], rectal adenocarcinoma [139], and

cervix carcinoma [140, 141].

Some studies have proposed a direct role of lactate in

the metastatic process. Through a yet unknown molecular

mechanism, lactate can indeed stimulate the production of

hyaluronan, a high molecular weight glycosaminoglycan

polymer of the ECM, and the expression of its receptor

CD44 in tumor-associated fibroblasts, creating a favorable

environment for tumor cell motility [142]. Lactate can also

act directly on tumor cells. Addition of lactate to head and

neck carcinoma cells in culture dose-dependently stimu-

lated cell migration [135]. In glioma, Baumann et al. [143]

reported that lactate promotes cell motility and EMT. This

response to lactate was attributed to a LDHA-dependent

induction of transforming growth factor-b2 that upregu-

lated the expression of b1-integrin, a subunit of ECM

protein receptors controlling cell adhesion, and of MMP2.

Bonuccelli et al. [144] further reported that 10 mM of

lactate increased the in vitro migration of MDA-MB-231

human breast carcinoma cells, and daily intraperitoneal

injection of lactate to mice promoted the metastatic take of

these cells in the lungs of the animals. The same group

showed that 10 mM of lactate further enhanced the

clonogenicity (i.e., the ability of isolated tumor cells to

generate a clonal population of daughter cells on soft agar)

of MCF7 human breast carcinoma and induced a genetic

signature associated with stemness [145].

Lactate also stimulates angiogenesis and could therefore

indirectly contribute to the metastatic process (Fig. 2).

Lactate can indeed be taken up by oxidative tumor cells

and vascular endothelial cells via MCT1, after which it is

oxidized to pyruvate by lactate dehydrogenase 1 (LDH1/

LDHB). Pyruvate consequently accumulates in these cells

where it competes with a-ketoglutarate to inhibit prolyl-

hydroxylase 2 (PHD2), resulting in HIF-1 and NF-jB

activation, increased VEGF-A transcription in oxidative

tumor cells and increased transcription of VEGF receptor-

2, basic fibroblast growth factor and IL-8 in vascular

endothelial cells [146–152]. Interestingly, HIF-1 and NF-

jB are inducers not only of angiogenesis but also of tumor

metastasis [153, 154], suggesting that lactate could pro-

mote tumor metastasis by supporting PHD2 inhibition.

This possibility still requires further investigation.

Lactate signaling involves lactate exchange through the

plasma membrane, a process facilitated by the lactate-

proton co-transporters of the MCT family. MCTs recently

emerged as new therapeutic targets in cancer [25, 155]. In

the context of tumor metastasis, silencing and pharmaco-

logical inhibition of MCT1 or MCT4 have been shown to

inhibit the migration and invasion of various cancer cell

lines in several independent studies [156–159]. The anti-

metastatic potential of MCT inhibition is further supported

by clinical studies having found higher levels of the MCT1

protein in metastatic lesions versus primary tumors of non-

small cell lung carcinoma patients [160] and a positive

correlation between MCT4 expression in primary col-

orectal cancers and the number of distant metastases in

patients [161]. Still, to date, a formal demonstration that

MCT inhibition represses the metastatic process is lacking.

Such investigation should further dissect the respective

contributions of lactate and protons. A differential response

to lactate and acidity would not be trivial. For example,

human mammary epithelial cells exposed to lactic acid or

to HCl (both at pH 6.7) showed a similar genetic signature,

which was different from that obtained after exposure to

sodium lactate (pH 7.4) [162]. For the future development

of MCT inhibitors, direct inhibition of lactate flux versus

indirect effects should also be investigated. MCT1 and

MCT4 indeed interact with CD147, a chaperone protein

that is known to induce the secretion and activation of

MMPs [163, 164]. Overall, whether lactate and proton

influx, efflux or both promote metastasis, depending on the

cell type, the tumor region and the cell compartment,

remains an open question.

Pentose phosphate pathway

Glycolysis is connected to other metabolic pathways,

notably the pentose phosphate pathway (PPP) (Fig. 2). As a

major contributor to anabolism, the PPP has been well

described to support tumor cell proliferation [165]. Inter-

estingly, a further enhancement of the PPP has been

reported in metastatic breast cancer cells with high tropism

for the brain compared to the general population of CTCs

[166], and in metastatic lesions compared to primary

tumors in renal cell carcinoma [167]. Although correlative,
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these observations indicate that the PPP could facilitate

tumor metastasis.

The PPP consumes glucose-6-phosphate that fuels the

sequential oxidative and non-oxidative arms of the path-

way. The oxidative PPP produces ribulose-5-phosphate

and, as side products, 1 CO2, 3 protons and 2 NADPH per

molecule of glucose-6-phosphate consumed. CO2 and

protons contribute to tumor acidification [168–170], and

NADPH is a necessary cofactor for glutathione peroxidase

and fatty acid synthesis. Ribulose-5-phosphate is either

used for nucleic acid synthesis or fuels the non-oxidative

arm of the PPP. The associated production of glyceralde-

hyde-3-phosphate and fructose-6-phosphate generates a

metabolic shunt bypassing the PGI-catalyzed step of gly-

colysis (Fig. 2). Accordingly, overexpression of the PPP

enzyme transketolase-like 1 (TKTL1) was shown to

increase pyruvate and lactate production, resulting in HIF-

1a stabilization [171].

Evading anoikis is a prerequisite for tumor cells to

metastasize, a capability that can be acquired by several

mechanisms including a switch in the pattern of integrin

expression, EMT, prosurvival signaling and metabolic

adaptations [11]. Because it is a main provider of

NADPH for glutathione reduction, increasing the meta-

bolic flux of the PPP is one of the strategies that tumor

cells can select to counter ROS-induced anoikis upon cell

detachment [124, 172]. Several studies have observed a

requirement for PPP to afford tumor cell growth without

anchorage [171, 173, 174]. Mechanistically, coupling

between glycolysis and the PPP is controlled by the

glycolytic enzyme pyruvate kinase M (PKM), catalyzing

the conversion of phosphoenolpyruvate and ADP to

pyruvate and ATP. Compared to differentiated cells that

primarily express PKM1, tumor cells often express the

embryonic PKM2 isoform resulting from alternative

splicing: PKM gene transcription is induced by HIF-1 and

alternative splicing to the PKM2 isoform by c-Myc that

induces the expression of specific ribonucleoproteins

[175–178]. Unlike PKM1, PKM2 can form active tetra-

mers or inactive dimers [178]. Oscillation between the

two states is regulated allosterically by metabolites such

as fructose-1,6-bisphosphate (that promotes active tetra-

mer formation) and alanine (that promotes inactive dimer

formation) and, independently, by oxidation [179]. When

ROS levels increase (for example following cell detach-

ment), Cys358 of PKM2 is oxidized, impairing tetramer

formation and redirecting metabolic flux from glycolysis

to the PPP where NADPH is produced. Elevated NADPH

production promotes glutathione recycling, reduction of

Cys358 and tetramer assembly to restore a high glycolytic

flux and a lower PPP activity. PKM2 thereby acts as a

redox sensor that controls the metabolic fate of glucose.

Similarly, it has been shown in yeast that the activity of

the glycolytic enzyme glyceraldehyde-3-phosphate dehy-

drogenase is reversibly inhibited by oxidation of Cys152,

which controls the coupling between glycolytic and PPP

fluxes [180]. Another regulator of the PPP is the tumor

suppressor protein p53, which binds to and prevents the

dimerization/activation of glucose-6-phosphate dehydro-

genase, the first and rate-limiting enzyme of the oxidative

arm of the PPP [181]. Together, these mechanisms control

antioxidant defenses and promote cell survival in stress

situations associated with increased ROS production, such

as tumor cell detachment. Other important sources of

NADPH are the malic enzyme reaction [182] and folate

metabolism [183].

Although the contribution of the PPP to resistance to

anoikis is well recognized, whether and how it influences

tumor cell migration and invasion has not received much

attention to date. Experimental evidence shows that

silencing 6-phosphogluconate dehydrogenase (6PGD), the

third enzyme of the oxidative arm of the PPP, reduces the

in vitro migration of lung carcinoma cells upon hepatocyte

growth factor (HGF) stimulation [184]. It does so by

decreasing the tyrosine phosphorylation/activation of HGF

receptor c-MET. Still, the molecular pathway linking

6PGD expression and/or PPP activity to c-MET phospho-

rylation has not been identified.

Evidence exists pointing at a control of tumor cell

invasion and cancer metastasis by transketolase (TKT) and

TKTL1 enzymes. TKT is the rate-limiting enzyme of the

non-oxidative part of the PPP that catalyzes the reversible

transfer of two carbon units between ketose- and aldose-

phosphate [185]. On the other hand, TKTL1 has been

proposed to have a different substrate affinity and a dif-

ferent catalytic activity: instead of transferring two carbon

units, it would act similarly to bacterial phosphoketolase

and produce ATP and either acetate or acetyl-CoA for lipid

biosynthesis, thus providing a tumor growth advantage

[186]. High TKTL1 expression has been reported in vari-

ous human cancer types [171, 187–189] and was positively

correlated with invasion in urothelial and colon carcinomas

[187] and to metastasis in renal cell, ovarian and papillary

thyroid carcinomas [190–192]. In colorectal carcinoma,

TKTL1 levels correlated positively with lymph node pos-

itivity but negatively with distant metastasis [193].

However, data associating high TKTL1 expression to

metastasis have to be interpreted with caution. The speci-

ficity of the anti-TKTL1 antibody used in correlative

studies has indeed been called into question, and TKT has

rather been proposed as the dominant enzyme expressed in

malignant tumors [194, 195]. Thus, the relevance of the

non-oxidative part of the PPP in tumor metastasis still

remains to be demonstrated.
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Concluding remarks

Nowadays, the clinical evolution of cancers to the meta-

static stage is too often associated with patient death,

reflecting the limits of the current therapeutic arsenal and,

notably, the lack of specific pharmacological therapies

targeting metastatic progenitor cells and metastatic lesions.

Metabolic heterogeneity is a hallmark of cancer that

impacts and can probably drive most phenotypic features

of malignancy, including metastasis. Among these pheno-

types, switching to a glycolytic metabolism is well known

to promote hypoxic cell survival and offers the metabolic

plasticity necessary for cells to rapidly switch from energy

production metabolism to biosynthesis for cell proliferation

[6]. But while the strongest evidence that glycolysis pro-

motes tumor aggressiveness has been obtained in primary

tumors, little is known regarding its contribution to the

metastatic process.

Among glycolytic enzymes and metabolites, PGI/AMF

and lactate single out as potential prometastatic agents that

facilitate early phases of the process. Yet, clinical appli-

cations are still to be developed. Inhibiting PGI binding to

gp78 could be of potential therapeutic interest for metas-

tasis prevention, but, to our knowledge, is currently not

under experimental evaluation. As an alternative, MCT

inhibitors with clinically compatible pharmacological

profiles have been identified [196–198], among which

MCT1 inhibitor AZD3965 is currently entering a Phase I

clinical trial for patients with prostate cancer, gastric can-

cer or diffuse large B cell lymphoma (ClinicalTrials.gov

NCT01791595). The primary objective of this trial is to

identify dose-limiting toxicities and its secondary objective

is to objectivize anticancer effect(s) of the MCT1 inhibitor.

Thus, prevention of metastasis, prolongation of metastasis-

free survival and the assessment of metastasis regression

are currently beyond the scope of clinical evaluation,

which also reflects the fact that a strong, formal experi-

mental demonstration that lactate and MCTs promote

cancer metastasis is still lacking.

Glycolysis does not produce a high yield of protons

per se but fuels proton-producing side pathways and

reactions, including the PPP, ATP hydrolysis and oxida-

tive metabolism [25, 199]. It also contributes to

extracellular acidification with lactate serving as a coun-

ter-ion for proton export [24]. Although the invoked

mechanisms can differ across studies, there is now good

evidence that extracellular acidification and intracellular

alkalinization can promote tumor cell detachment,

migration, invasion, metastatic take, angiogenesis and,

consequently, tumor metastasis. In theory, a low pHe,

therefore, constitutes a therapeutic target per se, which is

currently explored with pH buffering therapies, but

resistance may occur by the selection of mechanisms that

promote metastasis independently of a low pHe [100]. As

an alternative, inhibition of the various transport systems

facilitating lactate export could potentially repress meta-

static dissemination, as probably best exemplified with

CA IX inhibitors [96, 200]. Still, a thorough under-

standing of the specific versus redundant contributions of

these proton transporters to tumor metastasis is needed in

order to design inhibitors and identify most effective anti-

metastatic strategies. Of note, while repressing tumor

acidification is a potential therapeutic approach against

cancer, exploiting tumor acidity to target drugs to tumors

is also particularly appealing. In particular, pH-sensitive

nanoparticles are currently being developed to selectively

deliver anticancer drugs to tumors with enhanced efficacy

and limited side effects [201, 202].

Despite some recent progress, our current understanding

of the metabolic features associated to cancer metastasis is

still fairly limited and many reported observations are

purely correlative. Therefore, a main task to achieve in

basic research is to discriminate metabolic changes driving

tumor metastasis from those acquired as a secondary

adaptation to phenotypic changes. Several metabolic

intermediates (including lactate, succinate and fumarate

[24, 203, 204]) have already been identified to act as sig-

naling agents capable of activating prometastatic pathways,

therefore directly enhancing tumor growth and metastasis.

Their activities include modulation of enzymatic activities

[205, 206] and binding to membrane receptors [207]. The

list of metabolites endowed with signaling activity is most

probably far to be exhaustive and could be extended by

systematic characterization. Another area deserving atten-

tion relates to the nonmetabolic functions of metabolic

enzymes, as illustrated here with PGI/AMF. Several

enzymes could indeed promote tumor metastasis indepen-

dently of their catalytic activity. For example, PKM2 has

been found in cell nuclei where it can regulate the tran-

scriptional activity of HIF-1 and promote EMT, glycolytic

enzyme glyceraldehyde-3-phosphate dehydrogenase can

activate the prosurvival Akt pathway, and aldolase can

trigger EMT [208, 209]. Together, a better understanding

of the nonmetabolic functions of metabolites and metabolic

enzymes could allow the rationale design of new anti-

metastatic approaches for therapy.

While increasing evidence indicates that a low pHe,

glycolysis and the PPP can influence cancer metastasis,

there is also good evidence that mitochondria, lipid and

amino acid metabolism can facilitate the metastatic pro-

cess. This is the topic of a companion paper. This argues

for the existence of temporally well-defined metabolic

adaptations along the metastatic route, the articulation of

which is still largely beyond understanding.
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Spéciaux de la Recherche (FSR). Pierre Sonveaux is a F.R.S.-FNRS

Research Associate, Paolo E. Porporato a F.R.S.-FNRS Postdoctoral
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