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Abstract 

Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, 

distinct from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing 

multiple myeloma (MM). Herein, we performed a comprehensive molecular analysis of a 

prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and 

gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with 

prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequent numerical alterations 

involved 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%), and 17p 

(35%). We identified a minimal biallelic deletion (1.5 Mb) in 8p21.2 encompassing the PPP2R2A 



gene, belonging to a family of putative tumor suppressors and found to be significantly down-

regulated in deleted cases. Mutations of TP53 were identified in four cases, all but one associated 

with a monoallelic deletion of the gene, whereas activating mutations of the BRAF oncogene 

occurred in one case and were absent in N- and K-RAS. To evaluate the influence of allelic 

imbalances in transcriptional expression we performed an integrated genomic analysis with GEP 

data, showing a significant dosage effect of genes involved in transcription, translation, 

methyltransferase activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we 

provide a compendium of genomic alterations in a prospective series of pPCLs which may 

contribute to improve our understanding of the pathogenesis of this aggressive form of plasma cell 

dyscrasia and the mechanisms of tumor progression in MM. Am. J. Hematol. 2013 

Introduction 

rimary plasma cell leukemia (pPCL) is a rare, yet aggressive form of plasma cell tumor accounting 

for 1–4% of plasma cell dyscrasias. According to current accepted criteria, pPCL is defined by 

circulating plasma cells >2 × 10
9
/l or a relative plasmacytosis >20% of peripheral blood leukocytes 

with evidence of monoclonal gammopathy [1]. PPCL can be distinguished from secondary PCL 

(sPCL) which represents the leukemic transformation of a previously diagnosed multiple myeloma 

(MM). As described by several authors [1, 2], pPCL shows characteristic clinical–biological 

features compared with MM or sPCL, such as younger age (about a decade), more frequent 

extramedullary disease, renal failure, higher bone marrow infiltration, and proliferative activity of 

the malignant clone, and less bone disease. 

Genomic studies from a retrospective series of pPCLs, mainly based on fluorescence in situ 

hybridization (FISH) analyses, indicated a spectrum of major genetic lesions overlapping those 

found in MM, although higher frequency of t(11;14) and hypodiploidy have been reported [3–8]. 

MYC rearrangements may also occur in pPCL associated with worse clinical outcome [6, 8]. 

In the present report, we performed a comprehensive molecular analysis of a prospective series of 

pPCLs using FISH and single nucleotide polymorphism (SNP) array approaches. Moreover, since 

global gene expression profiles were also available, we performed an integrated genomic analysis to 

evaluate the influence of distinct allelic imbalances in the expression of specific genes in pPCL. 

Methods 

Patients 

Our series included 23 newly diagnosed primary pPCL patients (Table I), enrolled in a multicenter 

Italian clinical trial (RV-PCL-PI-350, EudraCT 2008-003246-28), aimed at evaluating safety and 

anti-tumor activity of combined lenalidomide and dexamethasone as first-line treatment. The 

median age was 60 years (range, 44–80) and the sex ratio (M/F) was 0.92. For the purpose of the 

present work, we considered progression free (PFS) and overall survival (OS), defined as secondary 

endpoints of the study, and evaluated their association with the occurrence of genomic alterations; a 

detailed description of the study is beyond the scope of this work and will be provided elsewhere 

(Musto et al., manuscript in preparation). The median follow-up was 23 months (range, 9–32). 

Highly purified (≥90%) bone marrow plasma cell (PC) samples were obtained using CD138 

immunomagnetic microbeads as previously described [9]. 
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Table I. Biological and Clinical Characteristics of the 23 PCLs Included in the Study 

 

 A: Only monoallelic deletion. 

 B: M, monoallelic deletion; B, biallelic deletion. 

 C: CD138-negative counterpart available. 

 



Search String  

 Advanced > 
 Saved Searches > 

ARTICLE TOOLS 

 Get PDF (312K) 
 Save to My Profile 
 E-mail Link to this Article 
 Export Citation for this Article 
 Get Citation Alerts 
 Request Permissions 

More Sharing ServicesShare|Share on citeulikeShare on facebookShare on deliciousShare on 

www.mendeley.comShare on twitter 

 Abstract 
 Article 
 References 
 Supporting Information 
 Cited By 

Enhanced Article (HTML) Get PDF (312K) 

  

Abstract 

Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, 

distinct from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing 

multiple myeloma (MM). Herein, we performed a comprehensive molecular analysis of a 

prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and 

gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with 

prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequent numerical alterations 

involved 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%), and 17p 

(35%). We identified a minimal biallelic deletion (1.5 Mb) in 8p21.2 encompassing the PPP2R2A 

gene, belonging to a family of putative tumor suppressors and found to be significantly down-

regulated in deleted cases. Mutations of TP53 were identified in four cases, all but one associated 

with a monoallelic deletion of the gene, whereas activating mutations of the BRAF oncogene 

occurred in one case and were absent in N- and K-RAS. To evaluate the influence of allelic 

imbalances in transcriptional expression we performed an integrated genomic analysis with GEP 

data, showing a significant dosage effect of genes involved in transcription, translation, 

methyltransferase activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we 

provide a compendium of genomic alterations in a prospective series of pPCLs which may 

contribute to improve our understanding of the pathogenesis of this aggressive form of plasma cell 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/advanced/search
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/myprofile/displaySavedSearches
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/pdf
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/saveContent?doi=10.1002%2Fajh.23339&originUrl=%2Fdoi%2F10.1002%2Fajh.23339%2Ffull
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/emailArticleLink?doi=10.1002/ajh.23339&issueDoi=10.1002/ajh.v88.1
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/documentcitationdownload?publicationDoi=10.1002/%28ISSN%291096-8652&doi=10.1002/ajh.23339&type=journal
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/getCitationAlert?id=10.1002%2Fajh.23339&originUrl=%2Fdoi%2F10.1002%2Fajh.23339%2Ffull
https://s100.copyright.com/AppDispatchServlet?publisherName=Wiley&publication=AJH&title=Genome-wide%20analysis%20of%20primary%20plasma%20cell%20leukemia%20identifies%20recurrent%20imbalances%20associated%20with%20changes%20in%20transcriptional%20profiles&publicationDate=09%20OCT%202012&author=Laura%20Mosca%2CPellegrino%20Musto%2CKatia%20Todoerti%2CMarzia%20Barbieri%2CLuca%20Agnelli%2CSonia%20Fabris%2CGiacomo%20Tuana%2CMarta%20Lionetti%2CEleonora%20Bonaparte%2CSilvia%20Maria%20Sirchia%2CVitina%20Grieco%2CGabriella%20Bianchino%2CFiorella%20D%5C%27Auria%2CTeodora%20Statuto%2CCarmela%20Mazzoccoli%2CLuciana%20De%20Luca%2CMaria%20Teresa%20Petrucci%2CFortunato%20Morabito%2CMassimo%20Offidani%2CFrancesco%20Di%20Raimondo%2CAntonietta%20Falcone%2CTommaso%20Caravita%2CPaola%20Omed%C3%A8%2CMario%20Boccadoro%2CAntonio%20Palumbo%2CAntonino%20Neri&startPage=16&endPage=23&copyright=Copyright%20%C2%A9%202012%20Wiley%20Periodicals%2C%20Inc.&contentID=10.1002%2Fajh.23339&orderSource=Wileyonline&orderBeanReset=true
http://www.addthis.com/bookmark.php?v=250&username=ra-51225be51b56b4c4
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/abstract
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/references
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/suppinfo
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/citedby
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/enhanced/doi/10.1002/ajh.23339
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/pdf
http://p9003-sfx.cineca.it.offcampus.dam.unito.it/unito?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American%20Journal%20of%20Hematology&rft.stitle=Am.%20J.%20Hematol.&rft.atitle=Genome%E2%80%90wide%20analysis%20of%20primary%20plasma%20cell%20leukemia%20identifies%20recurrent%20imbalances%20associated%20with%20changes%20in%20transcriptional%20profiles&rft.volume=88&rft.issue=1&rft.spage=16&rft.epage=23&rft.date=2013-01-01&rft.issn=0361-8609&rft.eissn=1096-8652&rfr_id=info%3Asid%2Fwiley.com%3AOnlineLibrary


dyscrasia and the mechanisms of tumor progression in MM. Am. J. Hematol. 2013. © 2012 Wiley 

Periodicals, Inc. 

 

Introduction 

Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of plasma cell tumor accounting 

for 1–4% of plasma cell dyscrasias. According to current accepted criteria, pPCL is defined by 

circulating plasma cells >2 × 10
9
/l or a relative plasmacytosis >20% of peripheral blood leukocytes 

with evidence of monoclonal gammopathy [1]. PPCL can be distinguished from secondary PCL 

(sPCL) which represents the leukemic transformation of a previously diagnosed multiple myeloma 

(MM). As described by several authors [1, 2], pPCL shows characteristic clinical–biological 

features compared with MM or sPCL, such as younger age (about a decade), more frequent 

extramedullary disease, renal failure, higher bone marrow infiltration, and proliferative activity of 

the malignant clone, and less bone disease. 

Genomic studies from a retrospective series of pPCLs, mainly based on fluorescence in situ 

hybridization (FISH) analyses, indicated a spectrum of major genetic lesions overlapping those 

found in MM, although higher frequency of t(11;14) and hypodiploidy have been reported [3–8]. 

MYC rearrangements may also occur in pPCL associated with worse clinical outcome [6, 8]. 

In the present report, we performed a comprehensive molecular analysis of a prospective series of 

pPCLs using FISH and single nucleotide polymorphism (SNP) array approaches. Moreover, since 

global gene expression profiles were also available, we performed an integrated genomic analysis to 

evaluate the influence of distinct allelic imbalances in the expression of specific genes in pPCL. 

Methods 

Patients 

Our series included 23 newly diagnosed primary pPCL patients (Table I), enrolled in a multicenter 

Italian clinical trial (RV-PCL-PI-350, EudraCT 2008-003246-28), aimed at evaluating safety and 

anti-tumor activity of combined lenalidomide and dexamethasone as first-line treatment. The 

median age was 60 years (range, 44–80) and the sex ratio (M/F) was 0.92. For the purpose of the 

present work, we considered progression free (PFS) and overall survival (OS), defined as secondary 

endpoints of the study, and evaluated their association with the occurrence of genomic alterations; a 

detailed description of the study is beyond the scope of this work and will be provided elsewhere 

(Musto et al., manuscript in preparation). The median follow-up was 23 months (range, 9–32). 

Highly purified (≥90%) bone marrow plasma cell (PC) samples were obtained using CD138 

immunomagnetic microbeads as previously described [9]. 
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Table I. Biological and Clinical Characteristics of the 23 PCLs Included in the  

Study 

 



                    

Fluorescence in situ hybridization 

Pathological samples from all patients were characterized by FISH analysis for the presence of the 

main IGH@ chromosomal translocations and for del(13)(q14), del(17)(p13), 1p33 (CDKN2C) loss 

and 1q21.3 (CKS1B) gain aberrations, as previously described [10–12]. The cut-off levels 

considered were 10% for fusion or break-apart probes and 20% for numerical abnormalities, as 

recommended by the European Myeloma Network (EMN) [13]. The SNP-array data concerning 

deletions of 8p21.2 region were validated by previously described FISH standard protocols [11] 

using the chromosome 8 alpha satellite probe and the BAC clone RP11-795G8 specific for the 

PPP2R2A gene selected from the UCSC Genome Browser Database (http://genome.ucsc.edu/). The 

presence of mono- and biallelic deletion of the TRAF3 gene at 14q32.32 was validated by FISH 

using the specific BAC clone CTD-3235K2 and the fosmid G248P81572G6 as previously reported 

by Keats et al. [14] in MM patients. 

High-density SNP-arrays 

High-density SNP-arrays were performed in 17 patients (Table I). Total genomic DNA was 

extracted using Wizard genomic purification DNA kit (Promega), then processed and hybridized on 

Affymetrix GeneChip® Human Mapping 250K NspI arrays following the manufacturer's protocol 

(Affymetrix). Each sample was compared with a set of 48 normal Caucasian HapMap references 

available on the Affymetrix web site 

(http://www.affymetrix.com/support/technical/sample_data/500k_data.affx). Genotyping Console 

(GC) was used to extract raw DNA copy number (CN) and loss-of-heterozygosity (LOH) 

probability from CEL files according to Affymetrix guidelines. CN was then estimated using 

circular binary segmentation and normalized on FISH data using DNAcopy and FBN packages in R 

software, respectively, as previously described [10, 15]. LOH was defined by applying a 1 Mb 

smoothing window on the GC-derived value with a probability higher than 0.95 for the detection of 

a monoallelic polymorphism. Furthermore, DNA CN and LOH probability estimation using CD138 

negative bone marrow population as normal counterpart (i.e., CD138+ <0.5% as assessed by FACS 

analysis) was performed in 8 patients. The thresholds for the identification of the gained and lost 

genomic regions resulted as follows: inferred CNs of more than 2.18, 2.52 and 3.41 corresponded to 

3, 4 and 5 or more copies, whereas CNs of less than 1.75 and 1.34 corresponded to mono- and 

biallelic deletion. 

Gene expression profiling 

Total RNA was available in 21 cases and purified using the RNeasy® Total RNA Isolation Kit 

(Qiagen, Valencia, CA). Preparation of DNA single-stranded sense target, hybridization to 

GeneChip® Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA) and scanning of the arrays (7G 

Scanner, Affymetrix) were performed according to the manufacturer's protocols. Log2-transformed 

expression values were extracted from CEL files and normalized using NetAffx Transcript Cluster 

Annotations, Release 31 and robust multiarray average (RMA) procedure in Expression Console 

software (Affymetrix). The expression values of transcript cluster IDs specific for loci representing 

naturally occurring read-through transcriptions were summarized as the median value for each 

sample. Supervised analyses were performed using Significant Analysis of Microarrays software, 

version 4.0 [16] as previously described [17]. The functional annotation analysis on the selected 

lists was performed by means of NetAffx (https://www.affymetrix.com/analysis/netaffx/) and the 
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Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.7 (U.S. National 

Institutes of Health at http://david.abcc.ncifcrf.gov/) tools. Only Gene Ontology Biological Process 

and Molecular Function terms were selected as annotation categories and high classification 

stringency was set for the analysis, using the DAVID Functional Annotation Clustering option. The 

Annotation Clusters with an Enrichment Score (ES) >1.3 were considered significant. 

To evaluate whether gene dosage effects could be identified for specific genes, the relationship 

between relative transcript expression levels and the inferred CNs of the corresponding locus 

(according to NCBI36/hg18) was measured by means of Kendall's τ correlation test (P-value 

<0.005). The analyses were made using conventional R software packages. 

The genotyping and gene expression data have been deposited at NCBI Gene Expression Omnibus 

repository (http://www.ncbi.nlm.mih.gov/geo) and are accessible through GEO Series accession 

number GSE39383. 

Mutation analyses 

TP53 mutation analysis was performed on genomic DNA of 17 pPCLs. Oligonucleotide primers 

used to amplify TP53 exons 5–9 and polymerase chain reaction (PCR) protocols were downloaded 

from the IARC TP53 database website (http://www-

p53.iarc.fr/Download/TP53_DirectSequencing_IARC.pdf). The amplicons were sequenced directly 

with sense and anti-sense primers using the Big Dye terminator v1.1 cycle sequencing kit in ABI 

PRISM 310 automated sequencer (Applied Biosystems, FosterCity, CA). 

Mutations of BRAF (codon 600), KRAS (codons 12, 13, 61, 146) and NRAS (codons 12, 13, 61) 

genes were investigated by means of pyrosequencing analysis on genomic DNA of 15 pPCLs using 

CE-IVD kits “Anti-EGFR MoAB response” for BRAF, KRAS, and NRAS status (Diatech 

Pharmacogenetics, Italy). Briefly, 50–100 ng of genomic DNA were amplified using Rotor-Gene 

6000 Q (Corbett Research, Australia) and 20 μl of each PCR product were analyzed by 

pyrosequencing analysis using PyroMark Q96 ID instrument and Gold Q96 reagents (Qiagen), in 

accordance with the manufacturer's instructions. The sequences were analyzed with PyroMark ID 

1.0 software (Qiagen) according to the commercial kit handbooks. 

Survival analysis 

Patients were stratified into two groups according to the occurrence of the genomic aberrations 

under consideration. The groups were tested for association with survival using the Kaplan-Meier 

estimator and log-rank test, and P-values were calculated according to the standard normal 

asymptotic distribution. Survival analysis was conducted with the survcomp package in R software. 

Results 

We first characterized 23 pPCL patients included in our dataset by FISH for the major cytogenetic 

alterations (Table I). The deletion of 13q was identified in 17 patients (73.9%), whereas 

del(17)(p13) was found in 8 cases (34.8%). Translocations at 14q32 involving IGH@ locus were 

detected in the large majority of cases (20/23=87%); t(11;14) was the most frequent (9/23=39.1%), 

t(14;16) was identified in 7 cases (30.4%), and t(4;14) was present in 3 patients (13%). The t(14;20) 

was investigated in 21 cases and showed a positive result in one case (4.8%). The t(6;14) was 

analyzed in 17 cases, all of which found to be negative for the lesion. Alterations of chromosome 1 

were analyzed in 21 patients and 1p loss was identified in 8 cases (38.1%) and 1q gain in 10 

http://david.abcc.ncifcrf.gov/
http://www.ncbi.nlm.mih.gov/geo
http://www-p53.iarc.fr/Download/TP53_DirectSequencing_IARC.pdf
http://www-p53.iarc.fr/Download/TP53_DirectSequencing_IARC.pdf
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/ajh.23339/full#tbl1


(47.6%); five patients showed the concomitant presence of both aberrations. Finally, 

rearrangements of c-MYC gene were detected in two samples (2/15=13.3%). Overall, a contingency 

analysis revealed highly significant inverse correlation between the presence of 1q gain and the 

occurrence of the t(11;14) (P-adjusted=0.006). 

We tested whether the occurrence of any of the identified cytogenetic alterations might correlate 

with different outcome. In particular, we evaluated whether the prevalence of t(4;14), t(11;14), 

MAF-related translocations, 1p loss, 1q gain, del(13)(q14), and del(17)(p13) correlated with the 

secondary endpoints of the clinical trial, namely OS and PFS. However, none of the considered 

cytogenetic aberrations was significantly associated neither with OS nor with PFS (Supporting 

Information Fig. 1). 

SNP-array 

The genome-wide profiles were investigated by SNP-array in the 17 pPCLs for whom DNA 

material was available. To confirm CN and LOH estimation based on public references, CN and 

LOH were also estimated using DNA from CD138 negative bone marrow populations available 

from eight patients (Table I). With the exception of point-wise aberrant signals that were discarded 

from downstream analyses, all the estimated CN segments were concordant within ± 0.1, whereas 

the estimated probabilities of LOH (higher than 95% versus the normal samples subset) overlapped 

exactly with those obtained comparing the eight tumor samples against their normal counterparts 

(data not shown), suggesting the accuracy of the reported results. The analysis allowed the 

identification of copy number alterations (CNA) in all cases, showing complete concordance with 

FISH data. A total of 454 aberrations were detected with a median of 20 per sample (range 6-82). 

Losses were more prevalent (273/454 CNAs; 60.1%), including mono- (229/454=50.4%) or 

biallelic deletions (44/454=9.7%) (Fig. 1 and Supporting Information Table I). Of the remaining 

CNAs, 165 (36.3%) were gains (3 or 4 copies), and 16 (3.5%) represented amplifications (5 or more 

copies). The latter were identified in 2 patients showing a near-tetraploid karyotype (PCL-020) and 

a complex pattern involving chromosome 16q characterized by wide regions of amplification and 

loss (PCL-027) (Supporting Information Table I). Supporting Information Fig. 3 and Supporting 

Information Table II described the major regions of occurrence of LOH identified in our series. 

 

Figure 1. Heatmap of significantly altered DNA copy number regions in pPCL samples. Horizontal axis: 

chromosome localization. The dashed lines represent the location of the centromeres. Dark blue: biallelic 

deletion; light blue: loss; white: normal CN; orange: DNA gain (three copies); red: four or more copies. 

 

Table II. Functional Annotations of the 8 Downregulated Genes in 8p Loss Patients by SAM Analysis at q-

Value = 0 
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Since the majority of CNAs affected only a few patients, we focused our attention on chromosomal regions 

commonly involved in at least 5 patients (almost 30% of cases). Following this approach, chromosomes 1, 6, 

8, 13, 14, 16, and 17 were the most frequently altered in our series and will be discussed in further details 

(Supporting Information Fig. 2A–F and Fig. 2). For each of these chromosomes the most recurrent segments 

of alteration were defined as minimally altered regions (MARs). 

 

Figure 2. A: Chromosome 8p loss pattern in 7 pPCL patients detected by SNP-array. The common region of 

loss of 8p is indicated by dashed vertical lines. Each horizontal blue line indicates the range of loss of each 

pPCL patient. Light blue represents monoallelic deletion, dark blue biallelic loss. Physical position of FISH 

clone RP11-795G8 used to perform the 8p loss analysis and the localization of KIAA1967, TNFRSF10B, 
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PPP2R2A, CCDC25, WRN, and MAK16 genes are also indicated. B: Supervised analysis of 8p loss versus 8p 

normal pPCLs. By means of SAM supervised analysis (q-value=0), 8 genes resulted differentially expressed. 

Information about t(4;14), t(11;14), t(14;16)/t(14;20), and 8p loss are included alongside the patient ID (“+” 

= positive, “−” = negative). The color scale bar represents the relative gene expression changes normalized 

by the standard deviation, and the color changes in each row represent gene expression relative to the 

mean across the samples. The gene symbols are indicated. 

Chromosome 1 

As shown in Supporting Information Fig. 2A, 12 patients (70.6%) showed alterations of 

chromosome 1. Deletions of 1p were detected in 8 cases (47.1%), six of which had single or 

multiple interstitial deletions whereas two cases (PCL-017 and PCL-023) lost the whole short arm. 

Three MARs could be identified: the 1p33-p32.3 region (2.7 Mb in size) lost in five patients and 

encompassing CDKN2C and part of FAF1 gene, the 1p22.1 (1.3 Mb) containing TGFBR3, MTF2, 

and TMED5 genes and 1p13.3-p12 (6.9 Mb) regions including the FAM46C locus deleted in 6 

(35%) cases. A short (100kb) homozygous deletion involving the AGBL4 gene, was identified at 

1p33 in a single case (PCL-016). 

Gains of 1q were identified in 9 cases (52.9%), 4 of which showed 3 copies of the whole long arm. 

Four MARs were detected on 1q; the largest (6.7 Mb), mapping on 1q21.2-q23.1, included CKS1B 

gene, whereas the remaining regions of 0.9, 1.3, and 3.6 Mb in size, were located at 1q25.1-q25.2, 

1q25.2-q25.3, and 1q32.1, respectively (Supporting Information Fig. 2A) 

Chromosome 6 

Deletions of 6q were found in 5/17 cases (29.4%) with a common large telomeric deletion (43.5 

Mb) at 6q22.32-ter including SGK1, TNFAIP3 and SOD2 genes. One patient (PCL-029) showed 

two additional interstitial deletions of 4.3 and 12.1 Mb at 6q11.1-q12 and 6q16.1-q21, respectively 

(see Supporting Information Fig. 2B). 

Chromosome 8 

Extensive deletions of the short arm of chromosome 8 were detected in 6 (41.2%) cases, whereas an 

additional case (PCL-030) showed a homozygous deletion at 8p21.2 defining a putative MAR of 

1.5 Mb containing the PPP2R2A gene (Fig. 2A). This gene codes for a regulatory subunit of the 

protein phosphatase 2 (PP2A), implicated in the negative control of cell growth and division [18]. 

Several authors have suggested that deletion of the 8p represents a potential pathogenetic lesion in 

MM [19–21], although not yet fully elucidated. In our study, we investigated further the 

involvement of the 8p21.2 in pPCL; in particular, we performed FISH using the BAC clone (RP11-

795G8) specific for the PPP2R2A gene. Hybridizations were performed in 15 patients for whom 

material was available, 13 of which analyzed by SNP-array. FISH analyses confirmed SNP data and 

copy number assignment in all patients; furthermore one case (PCL-022), not analyzed by SNP-

array, showed a monoallelic deletion. Interestingly, FISH analysis revealed that case PCL-021, for 

whom SNP analysis indicated monoallelic deletion, had a subclone of approximately 10% of cells 

harboring the biallelic deletion of the 8p21.2, a finding not identified by microarray analysis, in all 

likelihood due to the low percentage of altered cells. Although this percentage is lower than that 

(20%) proposed by EMN criteria to define gains or losses positivity, we believe that it could be a 

reliable result based on the identification of two signals specific for the centromeric 8 alpha satellite 
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probe in all the nuclei presenting the homozygous deletion (Table I). Overall, the putative MAR at 

8p21.2, containing the PPP2R2A gene, was lost in 8/19 (42%) patients. Of the six cases with 

monoallelic deletion investigated by SNP-arrays, five had LOH overlapping the deleted regions. 

PCL-036 lacked LOH where the inferred CN indicated allelic loss, a finding suggestive of the 

occurrence of subclones (Supporting Information Fig. 3 and Supporting Information Table II). 

We investigated whether the 8p deletion could be associated with a specific transcriptional profile 

and/or the occurrence of a gene dosage effect. A supervised analysis was performed comparing the 

expression profiles of the 8p deleted (8) and wild-type (10) pPCL patients for whom FISH or SNP-

array data concerning the alteration were available. Eight genes were found significantly (q-

value=0) down-regulated in pPCLs with 8p loss, two of which mapped to 12q and six to 8p (4 in 

8p21.3-8p21.1 and 2 in 8p12) (Fig. 2B). Among them we evidenced, in addition to PPP2R2A gene, 

the KIAA1967 gene involved in positive regulation of apoptosis; the TNFRSF10B gene, a member 

of the TNF-receptor superfamily, inducing pro-apoptotic signals; the WRN gene, a DNA helicase 

acting in DNA repair, replication and telomere maintenance; and the CCDC25 gene with unknown 

function, found deleted in hepatocellular carcinoma patients associated with poor outcome [22] 

(Table II). 

Chromosome 13 

As shown in Supporting Information Fig. 2C, deletion of 13q was the most frequent alteration 

(13/17=76.5%) detected in our dataset, with most cases (9/13=69.2%) showing loss of the entire 

long arm. The MAR at 13q was defined in PCL-037 and showed a large interstitial deletion of 20.4 

Mb located between 13q12.3-q14.3 and containing 127 genes. The region included RB1 and the 

two miRNA transcript miR-15a and miR-16-1; however, no significant difference in the expression 

of neither RB1 nor miR-15a and miR-16-1 was evidenced between deleted and wild-type cases 

(data not shown). A short homozygous deletion of 125 kb was identified in only one patient (PCL-

017) at 13q31.3 where the GPC5 gene is located. All the cases with 13q deletion but one had LOH 

overlapping the deleted regions. In PCL-018 FISH analysis revealed the presence of two putative 

subclones, respectively involving the 31% and the 62% of the nuclei analyzed, that in all likelihood 

may explain the absence of LOH (Supporting Information Fig. 3 and Supporting Information Table 

II). 

Chromosome 14 

Deletions involving 14q were identified in 12 cases (70.6%), with two patients (PCL-015 and PCL-

032) showing loss of the whole chromosome and nine patients having interstitial/telomeric 

deletions (Supporting Information Fig. 2D). Four MARs could be identified: at 14q23 (1 Mb) and 

14q24.2-q24.3 (4.6 Mb) in 7 patients (41.2%); 14q31.3 (1.3 Mb) in 6 cases (35.3%); and 14q32.31-

q32.32 (1.2 Mb) in 5 samples (29.4%). Interestingly, three of the five patients harboring the 

telomeric MAR showed a biallelic deletion of at least 180 kb involving AMN and CDC42BPB and 

disrupting TRAF3 genes. These findings were validated by FISH using the BAC CTD-3235K2 and 

the fosmid G248P81572G6 clones (data not shown). Finally, deletion of 14q32.33-qter, associated 

with the loss of the IGVH gene, was identified in 8 cases, 3 of which showing a homozygous 

deletion. 

Chromosome 16 

Deletions of chromosome 16q were identified in 9 cases (52.9%) (Supporting Information Fig. 2E). 

Interestingly, two cases (PCL-018 and PCL-030) lost the entire long arm and seven samples showed 
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interstitial/telomeric losses of 16q leading to the identification of four MARs: at 16q12.1 (1.2 Mb in 

7/17=41.2%) encompassing the CYLD gene; 16q21 (3.6 Mb in 8/17=47.1%); 16q22.2-q22.3 (3.3 

Mb in 7/17=41.2%) and 16q23.1-q23.2 (1.4 Mb in 7/17=41.2%) containing WWOX. In line with 

what previously reported in MM [10, 23], in our series WWOX expression level was significantly 

lower in cases with LOH (P-value=0.037); similarly, CYLD showed reduced expression associated 

with LOH, although not reaching statistical significance (P-value=0.056). 

Chromosome 17 

As described in Supporting Information Fig. 2F, deletions involving 17p were found in 6 patients 

(35%) leading to the definition of two MARs: the larger (2.6 Mb), spanning the 17p13.2-p13.1 

region including the TP53 gene, and the shorter (0.9 Mb) at 17p12. 

Chromosome 17 

As described in Supporting Information Fig. 2F, deletions involving 17p were found in 6 patients 

(35%) leading to the definition of two MARs: the larger (2.6 Mb), spanning the 17p13.2-p13.1 

region including the TP53 gene, and the shorter (0.9 Mb) at 17p12. 

Mutation analyses 

We tested the frequency of inactivating TP53 mutations in 17 cases (Table I). Four patients 

(4/17=23.5%) showed a functionally relevant coding mutation in the DNA binding domain critical 

for TP53 tumor-suppressing activity. Three of these cases were also positive for 17p deletion and 

showed a missense mutation at exons 6 (I195T in PCL-027) and 8 (R280K in PCL-018 and R273C 

in PCL-030), respectively. The remaining TP53-mutated patient (PCL-037) had an in-frame 

deletion of 6 nucleotides affecting codons 155-156 in exon 5. 

Pyrosequencing analyses of 15 cases identified a BRAF gene mutation in one case (V600E in PCL-

015 6.7%), and a wild-type pattern of both NRAS and KRAS genes in all tested cases (Table I). 

Integrative analysis of CN and gene expression levels 

To further evaluate the influence of CNAs in the modulation of the expression of genes located in 

those regions, we tested whether a direct correlation existed between the occurrence of any CN and 

the expression level of the genes that reside on the corresponding loci. This analysis identified 382 

genes showing a strong correlation between CN imbalances and transcriptional modulation 

(Supporting Information Table III). Interestingly, almost half of these genes (184/382=48.2%) 

mapped to chromosome 1, mainly to 1q arm (142/184=77.2%). Among the remaining transcripts, a 

large fraction (160/382=41.9%) mapped to the previously described chromosomes, namely those 

showing some alteration in at least five cases. Specifically, 23 genes mapped to the 8p arm (6.0%), 

25 to 13q (6.5%), 52 to 14q (13.6%), 27 to 16q (7.1%), and 31 to 17p (8.1%). In order to identify 

the functional categories potentially affected by gene dosage effect we used the DAVID Functional 

Annotation Clustering tool on the 382 gene list resulting from the integrative analysis, selecting the 

annotation clusters for the upregulated transcripts in the main gained chromosomal regions and for 

those downregulated in the major regions of loss. Seven and nine annotation clusters with a 

significant enrichment score (ES>1.3) were respectively identified (Supporting Information Table 

IV). In particular, metabolic processes concerning protein transport, translation and biosynthesis 

together with genes involved in methyltransferase activity resulted positively modulated. Nucleic 
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acid metabolic processes such as transcription and RNA splicing, protein catabolic process and 

apoptosis were recognized as significantly associated with the downregulated genes in deleted 

regions. 

Discussion 

Existing studies have so far demonstrated that pPCL shows the main molecular characteristics of 

other plasma cell dyscrasias (e.g., IGH@ translocations or 13q and 17p deletions). However, a 

comprehensive analysis of numeric and structural genomic aberrations of this extremely aggressive 

entity is still lacking. In this study, we provided a detailed genomic characterization of a 

representative prospective series of pPCL patients, integrating genome-wide profiling and FISH 

data with the corresponding transcriptional profiles and correlated the main observed aberrations 

with clinical outcome. 

Chromosome translocations involving the 14q32 locus and the CCND1, FGFR3/MMSET, or MAFs 

partners have been reported occurring in the majority of primary, as well as in secondary PCLs. 

Herein, we identified the occurrence of IGH@ translocations in ∼87% of pPCL cases; such an 

incidence overlaps with those reported by several authors [3–6, 8], confirming the widely accepted 

notion that IGH@ translocations are almost an ubiquitous event in PCL. However, the frequency of 

the different types of partner loci still remains controversial and this is probably related to the 

heterogeneous series investigated or geographical factors, as already suggested by other Authors 

[8]. Specifically, in our study the frequency of the t(11;14) was approximately 40%, quite similar to 

that reported by some authors [3, 6], but lower than that reported by others [5, 8]. Overall, the 

evaluation of Cyclins D in pPCL confirmed the close association with the occurrence of IGH@ 

translocations, being CCND1 deregulated in t(11;14) cases and CCND2 in the remaining patients 

harboring t(4;14), t(14;16) or t(14;20) and in one additional case without the evidence of any major 

IGH@ translocation. CCND3 was expressed from low to moderate levels in all cases, whereas in 

our dataset cases were missing with ectopic expression of CCND3 as a consequence of t(6;14), in 

line with the very low prevalence of t(6;14) in multiple myeloma (<1%) [24] (Supporting 

Information Fig. 4). As regards IGH@ translocations involving MAF gene, we found higher 

frequency (30.5%) than those reported in previous works, where incidence in pPCL was 

approximately 10–17% [3, 4] if not absent [8], and almost identical to that reported by Chiecchio et 

al. [6]. Finally, we found a 13% incidence of t(4;14), quite similar to an earlier report [3] but 

different from other studies in which it was found at higher frequency (21–25%) [4, 5] or 

completely absent [6, 8]. 

We confirmed the remarkable frequency of del13q in pPCL which is higher than that reported in 

MM [21]. We found this lesion in 17/23 (74%) patients; based on SNP-array data we confirmed the 

loss of the entire chromosome in the majority of cases, with the exception of three pPCLs showing 

relatively large interstitial deletions encompassing the 13q14 region. 

Our study confirmed the increased frequency of TP53 deletion in comparison with that reported in 

MMs. Furthermore, we identified four TP53 mutated cases, three of which associated with a gene 

deletion. Therefore, ∼13% of cases in our series showed biallelic inactivation of TP53, similarly to 

that reported by other Authors [6, 8]. Furthermore, SNP-array data showed the loss of a large part of 

17p in all but one case tested; this finding is reminiscent of what was reported in CLL by our 

previous study [25] suggesting that other important tumor suppressor genes located in this region 

may contribute to the tumor development and expansion in pPCL. 

In the general context of chromosomal numerical aberrations in pPCL, our study provides novel 

data regarding the involvement of other regions known to be affected in MM. Overall, the incidence 
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of 1p loss and 1q gain was ∼40 and 50%, respectively, which is only slightly higher than that 

reported in MM by us and several other groups [7, 10, 12, 26]. Notably, SNP-array analysis pointed 

out the involvement of specific loci such as the CDKN2C loss at 1p and the CKS1B gain at 1q, 

which have been strongly suggested as putative targets in MM [21, 27–31], although in our dataset 

a slight correlation (P-value=0.04) between DNA CN and the expression levels has been found only 

for CKS1B (data not shown). Chromosome 16q has been shown to be one of the most involved 

regions in MM. Walker et al. reported losses in ∼35% of cases in their representative prospective 

series of MM [21]. Overall, 16q loss involving whole or interstitial deletions, occurred in ∼50% of 

cases in our series. Interestingly, two different MARs identified encompassed the CYLD and 

WWOX genes, thought to be specific targets of the lesion [23]. 

We did not find a different incidence of 6q and 14q losses compared to previous reports in MM 

[21]. In particular, our study identified 14q loss involving whole or part of the chromosome in 

∼70% of cases, and confirmed the occurrence of biallelic losses of the TRAF3 gene in 60% of 

pPCL cases (3/5) showing loss of 14q32.31-q32.32 region. 

Another finding of our study was the involvement of the 8p loss in approximately 40% of pPCL, a 

frequency slightly lower than that referred by Chiecchio et al. (55.5%) in their series of 10 pPCLs 

[6] but higher than that recently reported by Walker et al. in MM (25%) [21]. We identified the 

presence of a MAR of ∼1.5 Mb region in 8p21.2 which is centered on the PPP2R2A locus and also 

comprises NEFM, NEFL, DOCK5, GNRH1, KCTD9, CDCA2, and EBF2 genes. According to a 

recent evidence reported in MM [21], the PPP2R2A transcript was found significantly down-

regulated in our pPCLs with 8p loss. In line with previous findings [6], we also demonstrated that in 

two cases this region was homozygously lost in a fraction of malignant cells, suggesting that 

PPP2R2A could be the major target of this lesion. However, the correlation between transcriptional 

and genomic data, as well as the transcriptional patterns associated with 8p deleted cases, showed 

that this lesion is associated with a significant gene dosage effect involving a large number of genes 

in addition to PPP2R2A. Concerning the clinical impact, our data indicated that the 8p loss is not 

associated with survival in our cohort of pPCLs (Supporting Information Fig. 1); this finding is in 

agreement with what showed by Walker et al. in MM [21] but not with Sutlu et al., who reported 

the 8p21 deletion as an independent prognostic factor affecting both PFS and OS in MM patients 

receiving autologous stem cell transplantation [20]. Therefore, the clinical relevance of 8p loss in 

plasma cell dyscrasias needs to be further investigated in larger series of cases. 

A striking result of our study is the absence of N- and K-RAS activating mutation in pPCLs, which 

is in contrast with the general frequency of RAS gene mutation either in MM as reported by us [32], 

or in pPCL as reported either by Bezieau et al. [33] (50%) or Tiedemann et al. [8] (27%) in their 

series including a similar number of cases. We do not have a clear explanation for this discrepancy; 

however, as suggested by Tiedemann et al. who reported a very high frequency of the t(11;14) and 

absolute absence of MAF translocation in their series, this finding could also be related to regional 

variations in leukemogenesis in the context of plasma cell dyscrasias. 

Interestingly, we were able to demonstrate the occurrence of a BRAF activating mutation in one 

pPCL case. As a part of the RAS/RAF/MAPK signaling pathways, BRAF has an important role in 

many processes regulating cell growth and differentiation. Mutations of BRAF, mostly V600E, 

have been frequently found in many common types of human cancers and recently it has been found 

as the hallmark of hairy-cell leukemia [34]. BRAF mutations have been recently identified by 

whole genome sequencing in MM and reported to occur in ∼4% of cases [35]. Our finding in 

pPCLs confirms this frequency, suggesting that some pPCL patients might putatively benefit of 

specific treatments with BRAF inhibitors. 
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Finally, the functional clustering of differentially expressed genes mapping within altered CN 

regions identified potentially deregulated genes involved in metabolic processes fundamental in 

cancer development. In particular, we found genes involved in intracellular protein transport, such 

as COPA and ARF1, which play a role in vesicle-mediated transport from the endoplasmic 

reticulum to the Golgi region, or RABIF1 related to the ubiquitous key regulators of membrane-

vesicle transport Rab GTPases. Furthermore, several transcripts in gained (PSMB4, PSMD4, 

UCHL5) and deleted (PPP2CB, PPP2R5C, PSMC6, PSMD7) chromosomal regions were associated 

with a proteasomal ubiquitin-dependent protein catabolic process. In addition, some genes are 

implicated in several other pathways relevant to myeloma biology, such as the Wnt (DVL2, 

HDAC1, PPP2R5C, PPP2CB, PPP2R5E, GNG5 and MYST3) and NF-κB (SLC16A1, GCLM, 

BCL10, ZCCHC11, GPR89A, IL6R, ARHGEF2, CASP4, NDIFP2, YY1, TRAF3 and VPS53) 

pathways. Interestingly, the ARHGEF2 gene, in addition to its capability to induce NF-κB 

transactivation, promotes tumorigenesis by inhibiting apoptosis and enhancing proliferation via 

RhoA and cyclin D1 upregulation [36]. Notably, several genes, such as TRAF3, PSDM4, YY1, 

UCHL5, PARP1, and HDAC1, are associated with response to Bortezomib treatment; among them, 

PSDM4 and PARP1 have been previously reported to be up-regulated in MM patients with poor 

outcome [37, 38]. 

Overall, our study provides a compendium of genomic alterations in pPCL. Although the 

differences between our genomic data and those previously published could result from random 

variations due to the small number of samples analyzed, to the best of our knowledge this represents 

the first study involving a prospective series of patients. Our results may provide an important 

contribution to the understanding of the pathogenesis of this particular form of plasma cell 

dyscrasias and could be of potential value to better elucidate the mechanisms of tumor progression 

in MM. 
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