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Abstract 

For the sustainable management of natural resources, institutional arrangements and governance 

structures should acknowledge and address the complex, emergent, and non-linear dynamics of 

Social-Ecological Systems (SESs). Current best practices for the governance of small-scale Common 

Pool Resources, such as water and fisheries, are described by Ostrom’s design principles. Researchers 

have explored the applicability of some of the design principles for larger, complex SESs. However, 

the interpretation and application of the design principles in a large SES are not straightforward due 

to such systems' inherent complexity and scale. Although the design principles include the concepts 

of self-organization, local knowledge and participation, and feedbacks, there are gaps in 

understanding and the relevance of the design principles for large SES with high spatial 

heterogeneity is unclear. The aim of the thesis is to extend SES theory by exploring the relevance of 

the design principles for urbanizing, spatially heterogeneous landscapes.  

Peri-urban SESs are spatially dynamic landscapes experiencing degradation of natural resources and 

loss of related ecosystem goods and services. They are often characterised by multiple and 

conflicting resource use, overlap and gaps in policies, corroding institutions, actor heterogeneity, lack 

of social capital, and skewed power dynamics. Consequently, natural resource management is 

challenging in a peri-urban SES. Therefore, scholars have proposed commons-based approaches to 

manage resources in the SES.  

I identified three research questions relating to the roles of space, scale, and connectivity in natural 

resource governance to explore the applicability of the design principles in a peri-urban SES. I 

addressed them using an exploratory dynamic simulation model based on Ostrom’s SES framework. 

The model uses a modified reaction-diffusion equation and includes the concepts from game theory 

and land use change studies. I used a dataset of simulated landscapes (N=200), loosely based on 

urban peripheries of rapidly expanding tier -1 Indian cities.  

First, I explored the applicability of design principle 2 for addressing the issue of institutional fit in 

dynamic landscapes. Design principle 2 asserts congruence between governance rules and local 

social-ecological conditions. However, little is known about how to achieve congruence in spatially 

dynamic SES, partly because the local conditions are constantly changing. Using the model, I explored 

social-ecological feedbacks between ecological patterns and landscape governance. I captured 

feedbacks by varying the spatial extent of decision making in the model from a regional to a local 

scale across landscapes for two different levels of spatial heterogeneity. I found that the rate of 
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urbanization and urbanization trend differed significantly at the regional scale as compared to the 

local scale for highly heterogeneous landscapes. For low heterogeneity landscapes, the trend was 

similar for both regional and local scales. I extended and operationalised the design principle by 

explicitly defining the term ‘local’ as relative rather than fixed, that is, as a spatial extent of decision-

making based on landscape heterogeneity.  

Second, I explored the influence of resistance among actors on effectiveness of design principle 3 for 

governing spatially dynamic landscapes. Design principle 3 emphasises the importance of collective 

participation by local actors in the rule making. In a peri-urban SES, urban actors appropriate land 

which often results in land fragmentation and affects the livelihood of rural inhabitants by reducing 

land availability for activities such as agriculture. Little is known about how rural actors resist or 

accept these impacts and whether the design principle is useful in this context. I simulated the 

consequences of individual rural and urban actor decisions on emerging land use patterns in the 

urban periphery. I used game theory to describe competition for land, and landscape metrics to 

quantify the impacts of increasing rural resistance on emerging landscape patterns. I found that 

landscape structure (number of patches, patch area, clumping of patches and edge density) had a 

non-linear response to resistance to urbanization. The responses of individual landscape structural 

elements varied for a given level of resistance. The non-linear response and presence of tipping 

points for ecological processes depending on connectivity or area can create significant challenges 

and opportunities for sustainable land use change in spatially dynamic SES. I conclude that efforts to 

use the design principles to manage complex landscapes must account for actor heterogeneity and 

the potential of actor resistance in achieving ecosystem sustainability.  

Third, I explored the applicability of design principle 3 to situations where a group of actors have 

limited local knowledge. Design principle 3 stresses the importance of local knowledge and 

therefore, emphasizes including local actors in decision-making. In a peri-urban SES, however, urban 

actors have limited local knowledge of rural elements of the SES but wield strong influence over 

policymaking and landscape governance. In addition, it is known that local spatial conditions 

influence the decisions of actors. I hypothesized that urban actors can regulate the influence of 

existing landscape conditions on emerging landscape patterns by explicitly including local spatial 

information in decision-making. I explored the influence of varying levels of spatial neighbourhood 

information included in the decision-making on spatial composition and configuration of green 

spaces left after urbanization for high and low heterogeneity landscapes. I found that the change in 

patch area, which explained most of the variation in the outcomes, followed a sigmoidal curve in 

response to the varying level of neighbourhood information for both landscapes. For high 

heterogeneity landscapes, the change in patch area was higher than the low heterogeneity 
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landscapes for the same level of neighbourhood information. As level of neighbourhood information 

increased in the decision making, the difference between the patch metrics for high and low 

heterogeneity reduced. The results show that urban actors can regulate the influence of existing 

landscape conditions on emerging landscape patterns by explicitly including local spatial information 

in the decision-making. Urban actors can compensate for lack of knowledge and contribute to 

integrated governance by making spatially conscious choices. My work sheds new light on cross-scale 

interactions in spatially dynamic landscapes.  

In sum, I operationalised design principle 2 and 3 for spatially dynamic SES by exploring feedbacks 

and cross-scale interactions in the SES. The thesis provides new insights into the spatial interplay 

between governance and landscape change and extends SES theory for spatially explicit SES and 

landscape governance for dynamic landscapes with multiple land use. 
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Chapter 1 : General Introduction  

 

1.1 Background to SES theory 

Human and natural systems are interdependent. Humans depend on natural systems to fulfil their need 

for ecosystem services and goods. In turn, human activities alter ecosystems by influencing biophysical 

processes (Millennium Ecosystem 2005). For example, the conversion of natural landscapes for human 

use (e.g., cultivation, expansion of urban centres) has resulted in the loss and degradation of forests 

(Foley et al. 2005, Seppelt et al. 2018). The intensity and scale of human activities have escalated 

(Gunderson and Holling 2003, Bennett et al. 2016), with impacts that are evident in changes in climate, 

biochemical flows, and freshwater use (Steffen et al. 2015). Such changes have resulted in an increase in 

the frequency and intensity of events such as drought, floods, forest fires, heatwaves and the 

emergence of new pathogens threatening the sustainability of natural resources and human-wellbeing 

(Millennium Ecosystem 2005, Biggs et al. 2021). As human dominance of the earth’s system increases, it 

is important to address the association between natural and human systems for the effective 

management of natural resources (Vitousek et al. 1997, Gunderson and Holling 2003, Folke et al. 2021).  

Researchers have long acknowledged the interconnections between human and natural systems 

(Holling and Chambers 1973, Redman et al. 2004, Liu et al. 2007). However, there are gaps in scientific 

and management solutions for environmental challenges (Berkes et al. 2002). Many conventional 

approaches and familiar responses to current environmental issues are insufficient to provide 

sustainable solutions for the management of natural resources, because they overlook the intertwined 

relationship between social and ecological systems and the inherent complexities within each system 

(Berkes et al. 2002). Conventional approaches limited by disciplinary boundaries have addressed the 

issues of natural resource management by treating either social or ecological systems as external drivers 

to the problem (Gunderson and Holling 2003). For example, land use change studies often treat humans 

as drivers that disturb the functioning of the ecosystem, thereby overlooking the interactions within 

social systems (Wu and Hobbs 2002, Foley et al. 2005, Menatti 2017). Similarly, economists and social 

scientists often consider natural systems as resources, which are ‘managed’ by humans (Berkes et al. 

2002). Both approaches often fail to address the interactions among the elements of a system that in 

turn influence the interactions between systems through feedbacks. In doing so, they generate actions 

based on partial perspectives (Berkes et al. 2002, Preiser et al. 2018). Further, approaches looking for a 

tractable solution and bounding the problem to a particular spatial and temporal scale often ignore the 

concept of adaptation and variability within system components and overlook interactions that occur 

across levels (Cash et al. 2006) and spatial and temporal scales (Preiser et al. 2018, Anderies et al. 2019). 
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For example, neoclassical economic theories concerned with fast-moving variables often find it difficult 

to incorporate slow-moving variables, as well as the interaction between the slow-moving and fast-

moving variables and resulting emergent dynamics (Gunderson and Holling 2003). Therefore, for dealing 

with environmental challenges in the current era of human dominance, we need broader, integrative 

approaches that acknowledge and address the fundamental interdependence among system 

components, between systems, and their wider environment. 

1.2 Introduction to SES theory 

The social-ecological systems (SES) approach, which is embedded in complexity thinking and systems 

science, recognizes the inextricable linkages between coupled social and ecological systems (Cumming 

2011, Preiser et al. 2018). Redman et al. (2004) defines an SES as, ‘A coherent system of biophysical and 

social factors that regularly interact in a resilient, sustained manner’. As components of an SES, social 

and ecological components form a complex web of interactions that vary across spatial, temporal, and 

organisational scales (Redman et al. 2004, Cumming 2011). Understanding SESs through the lens of 

complex adaptive systems provides a non-reductionist approach to understand interactions occurring 

across scales by treating the interactions as the fundamental elements of the system (Spies and Alff 

2020). The complex adaptive systems’ lens provides a systematic approach to understanding the 

inherent complexity in SES characterised by non-linearity, feedbacks, self-organising ability, and 

emergent phenomena (Holling 2001, Gunderson and Holling 2003). 

 

SES theory extends the theories and concepts of complex adaptive systems to address environmental 

issues (Cumming 2011, Spies and Alff 2020). In particular, SES theory embedded in complex adaptive 

systems recognizes the role of institutions in the complex environmental governance interface between 

social and ecological systems (Cumming et al. 2020). Institutions include formal and informal laws, rules, 

norms, and strategies that influence human interactions among themselves and with the environment 

(Ostrom 2005, Cumming et al. 2020, Epstein et al. 2020). Institutions thus play an important role in 

guiding, supporting, and constraining human actions and decision-making (Bennett and Satterfield 

2018). For the sustainable management of resources in an SES, institutional arrangements should 

acknowledge and address the complex, emergent, and non-linear dynamics of an SES.  

 

Scholars have increasingly recognized the effectiveness of the commons approach for the sustainable 

governance of natural resources from an SES perspective (Partelow 2018, Cumming et al. 2020). 

Ostrom’s seminal work on Governing the Commons (Ostrom 1990), which was based on extensive 

research on common pool resources, extended beyond the traditional models of (purely) state or 

market based institutional arrangements for addressing common pool resource use (Agrawal 2001). 
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Management of common pool resources such as fisheries, irrigation, and forests is challenging primarily 

because it is difficult to exclude potential resource users and the resources are subtractable (Ostrom 

1990, Ostrom and Gardner 1993). However, studies have found that the resource users can self-organise 

to devise institutional arrangements for the sustainable management of the resources (Ostrom 1990, 

Schlager 2004). 

Ostrom and her colleagues identified 8 design principles that support institutional arrangements for the 

successful management of resources. The 8 design principles established as a set of guidelines include: 

specifying well-defined system boundaries, emphasising congruence of rules and local conditions, having 

collective choice arrangements by those affected by the rules, establishing effective monitoring practices, 

having graduated sanctions in place to check free riding, having mechanisms to resolve conflict, 

recognising the autonomy of institutions by external authorities, and supporting nested enterprises 

(Ostrom 1990). Concepts such as participation, social capital, local knowledge, self-organization, and 

feedbacks, are inherent in the design principles (Cox et al. 2010, Saunders 2014). 

Table 1.1: The design principles illustrated by common pool resources (Ostrom 1990); Refer to Ostrom 

(1990) for a detailed discussion on each design principle. 

Ostrom’s design principles 

1) Clearly defined system boundaries 

2) Congruence between appropriation and provision rules and local conditions 

3) Collective choice arrangements by those affected by the rules 

4) Effective monitoring practices 

5) Graduated sanctions in place to check free riding 

6) Mechanisms to resolve conflict 

7) Minimal recognition of rights to organize 

8) Supporting nested enterprises 

 

To be able to study and analyse SESs and integrate the knowledge into a conceptual understanding, a 

theoretical framework is required. A framework provides an abstract understanding of an SES and its 

components for the diagnosis of the phenomena under study (Epstein et al. 2013; Schlüter et al. 2014). 

For a systematic conceptualization of an SES, Ostrom proposed an SES framework which was based on 

research in common pool resources, collective choice theory and natural resource management 

(Ostrom 2009, Binder et al. 2013). The SES Framework is a multi-tiered structure where components of 

an SES are organised into logical categories (Ostrom 2007, 2009, McGinnis and Ostrom 2014). In the first 

tier, the components of an SES are organised into eight sub-systems which are resources system (RS), 



4 
 

resource units (RU), governance system (G) and actors (A) that interact and the interactions (I) produce 

outcomes (O). Related ecosystems (ECO) and social, ecological, and political settings (S) further 

influence the interactions and outcomes in an SES. The focal action situation captures the interactions 

among the components and resulting outcomes (McGinnis and Ostrom 2014, Dancette and Sebastien 

2019). The SES Framework provides a generalised platform to systematically evaluate, diagnose and 

address the challenges of governances in an SES, and test hypotheses (Schlüter et al. 2014, Partelow 

2018). 

The Design Principles for large SES  

Large SESs are characterised by complex social–ecological elements such as a large resource area (Tyson 

2017), multiple resource-use types, multiple actor groups (Evans et al. 2014, Fleischman et al. 2014a), 

transboundary governance (Epstein et al. 2014), and gaps in institutions (Villamayor-Tomas et al. 2014). 

In addition, researchers have recognised that the design principles and the SES Framework although 

rooted in collective action theory and common pool resources are embedded in broader SES contexts 

(Anderies et al. 2007, Partelow 2018). Therefore, researchers have explored the applicability of the 

design principles and the SES Framework for larger, complex SES, beyond traditional small-scale 

common pool resources, such as for evaluating and assessing the multi-actor resource system of Great 

Barrier Marine Park (Evans et al. 2014, Morrison 2017), transboundary governance in the watershed 

region of the Rhine river (Villamayor-Tomas et al. 2014), national-level management of forests in 

Indonesia (Fleischman et al. 2014b), environmental policy and governance effectiveness in the context 

of the carbon tax (Lacroix and Richards 2015), and  co-management of terrestrial and marine wildlife 

resources (Tyson 2017). For the applicability of the design principles to large SESs, the studies found 

stronger support for 5 out of 8 design principles (Table 1.1): (1) boundary conditions, (2) congruence 

between rules and local conditions, (4) monitoring, (5) having graduated sanctions in place to check free 

riding, (6) having mechanisms to resolve conflict. There is enough evidence to support the applicability 

of the design principles in large SESs. 

Studies testing applicability of the design principles in large SESs, discussed above, have also found that 

interpretation and application of the design principles in large systems are not straightforward due to 

the inherent complexity and scale of such systems (Evans et al., 2014; F. D. Fleischman et al., 2014). For 

example, some aspects of the design principles lack direct relevance such as clear resource boundaries, 

monitoring, and graduated sanctions and therefore, have to be adapted to be applicable in large SES (G. 

Epstein et al., 2014; Evans et al., 2014). Similarly, there are gaps in understanding and relevance of the 

design principles for large-scale dynamic SES in a spatially explicit context such as for terrestrial resource 

systems (Gari et al. 2017).  
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The applicability of the design principles for a terrestrial SES in urbanizing landscapes, in particular, is 

not yet sufficiently studied (Mundoli et al. 2017).There is a growing interest among land use scientists to 

address landscape management and governance through the lens of SES (Patterson 2017, Turner et al. 

2020). Experts emphasise that land use transformations and emerging landscapes are a result of human 

interactions with their environment and recognize that actors who use, value and share landscape are 

central to the landscape management (Menatti 2017, Cerquetti et al. 2019).  Land use transformations 

such as those observed in peri-urban areas involve multiple interconnected resource use linked across 

scale, weak and overlooked feedbacks, multiple and a diverse set of actors and governance processes, 

and interplay of dynamics and drivers are common in terrestrial SES (e.g. in urbanizing landscapes) 

(Jagers et al. 2020). In the thesis, I test and extend the applicability of the design principles and SES 

theory for large and dynamic SES. 

Peri-urban SES 

I focus on peri-urban SES as an example of a large and dynamic SES with heterogeneous actor groups 

and complex use of the terrestrial resource system. Peri-urban areas are located along the urban 

periphery and serve as functional spaces to support urban well-being and provide for rural 

livelihoods (Narain 2009, 2021). As a result, peri-urban areas experience rapid land use transformations 

resulting in a complex mix of urban, rural, and natural landscapes (Elmqvist et al. 2013). This often leads 

to complex and continually evolving interactions and feedbacks among institutions, environment, and 

actors across scales in a peri-urban area (Narain 2009, Ramachandra et al. 2012, Sarkar  and 

Bandyopadhyay 2013). Peri-urban areas are highly vulnerable due to these dynamic changes, yet are 

often neglected in science and policymaking. Often this neglect is in terms of institutional development 

(Roy 2009). Institutions that can deal with the complexities of a peri-urban area may not evolve as 

rapidly as needed, especially in fast-developing countries such as India, China and Ethiopia (Roy 2009, 

Sarkar  and Bandyopadhyay 2013, Zhang et al. 2019, Gashu Adam 2020). For example, several cities in 

India, including Delhi, Bengaluru, and Kolkata, have experienced rapid urbanization since India’s 

independence followed by changes in national economic policy in 1991 (Nagendra et al. 2012, 

Hettiarachchi et al. 2013, Vij and Narain 2016). The SES perspective offers a systematic approach to 

analyse complex interactions and address the issue of sustainable management of natural resources 

(Narain 2009, Haase et al. 2014, Okpara et al. 2018, Zhang et al. 2019, Narain 2021).  

 

Natural resource governance is also challenging and controversial in a peri-urban SES due to its 

transitional nature (Žlender 2020). Peri-urban SESs are often characterised by multiple and conflicting 

uses of land and water, overlaps and gaps in policies and institutions, lack of clarity on ownership rights, 

corroding institutions, social and economic heterogeneity among actors, and skewed power dynamics 
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(Allen 2003, Narain 2009, Mundoli et al. 2017, Patil et al. 2018, Narain 2021). Consequently, urban 

sprawl, lack of sufficient infrastructure, degradation of natural resources, loss of ecosystem goods and 

services, and disruption of ecological processes are common among peri-urban SES (Ramachandra et al. 

2012). For example, there is an increase in flood-related events in Kolkata and Bangalore due to the 

uncontrolled urbanization of wetlands (Nagendra et al. 2012, Hettiarachchi et al. 2013), and cities like 

Florida and Mississippi are witnessing loss of resilience to hurricane and sea-level rise (Noss 2011). As 

top-down approaches are increasingly ineffective in peri-urban SES to manage natural resources, 

scholars have therefore proposed commons-based approaches to manage resources in peri-urban SESs 

(Menatti 2017, Cerquetti et al. 2019, Zhang et al. 2019). However, there has been limited testing of 

these approaches in peri-urban SESs. 

 

1.3 Aim and Gaps  

In peri-urban areas, resources such as ponds, pasture, forest and wasteland are managed as common 

property systems which are now gradually being converted into private property systems as 

urbanization progresses leading to social conflict and deterioration of natural resources (Vij and Narain 

2016, Mundoli et al. 2017, Singh and Narain 2019). Researchers have proposed commons based 

approached for the effective management of natural resources in a peri-urban SESs. Further, there is an 

increasing focus to move beyond limited sectorial focus such as watershed management, pastures (Baur 

and Binder 2013) and forests (Fischer 2018) in the land-use management (Wandl and Magoni 2016, 

Wandl et al. 2016). The terrestrial resource system in a peri-urban SES is an interconnected set of spatial 

units where land use is multifunctional (e.g., for food production, housing, and recreation), and a variety 

of potentially conflicting ecosystem goods and services are in demand (Wandl et al. 2016).  Ostrom’s 

design principles and the SES framework, rooted in collective action theory, can provide effective 

support for analysing and developing governance strategies for the management of urbanizing 

landscapes (Foster and Iaione 2019). Researchers have used the design principles for the diagnosis and 

analysis of the management of resources in a landscape such as forests(Nagendra and Ostrom 2012), 

urban lakes(Nagendra and Ostrom 2014), and residential open spaces(Gabriel Ling Hoh Teck et al. 2014). 

However, there is only limited research on how Ostrom’s design principles and SES framework can be 

adapted to include the characteristics of the peri-urban SES such as spatial scale, heterogeneity and 

connectivity in a multifunctional landscape. Therefore, I explore how Ostrom’s design principles can be 

used to explicitly address questions of space, scale, and connectivity in a peri-urban SES.  

Geography, including spatial properties of the components and spatial variation in the system elements 

in a peri-urban SES, has a significant influence on the SES dynamics (Cumming 2011). Spatial 

heterogeneity, including heterogeneity among LULC classes, is a characteristic feature of the terrestrial 
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resource system in peri-urban SESs that influences underlying ecological processes and flows of 

ecosystem services and goods (Banerjee et al. 2013). Spatial heterogeneity and connectivity also 

influence social processes such as land use change decisions and institutions (Cumming and Epstein 

2020). However, questions related to spatial dynamics are poorly understood in Ostrom’s design 

principles (Gari et al. 2017). Particularly, it is not clear how the SES Framework and the design principles 

address differences in spatial heterogeneity and their impact on outcomes in an SES.  

Peri-urban SESs are dynamic in nature and witness the continual transformation of their components 

including institutions. Indeed, overexploitation and degradation of resources and lack of sufficient 

infrastructure show that environment planning and management is inadequate in peri-urban 

SESs (Butsch and Heinkel 2020). An important cause of ineffective natural resource management in peri-

urban SES is a spatial mismatch of emerging institutions and dynamic landscapes (Beilin et al. 2013). 

Often, old institutions are gradually corroding and new institutions emerging in peri-urban SES (Filatova 

et al. 2013, Mundoli et al. 2017, Singh and Narain 2019). The evolution of institutions is not 

straightforward; new institutions cannot always be extrapolated from existing institutions (Allen 2003, 

Anderies et al. 2004). This is because changes in institutions are not only due to their internal 

adjustments but are also influenced by other components of the SES, such as transformation in the 

landscape and changes in actors’ preferences  (Morrison 2017), potentially leading to institutional 

mismatches that affect SES outcomes. It therefore remains unclear how landscape dynamics and their 

scale-dependent spatial characteristics influence the emergence of institutions (Cumming and Epstein 

2020). Research is required to explore the interactions between landscape and institutions to address 

the question of spatial mismatch in a peri-urban SES.  

A peri-urban SES is a self-organizing system where local level interactions among actors influence the 

outcomes in the SES (Lei et al. 2021).  The design principles recognize the importance of local actors and 

emphasise their involvement in rulemaking (Ostrom 1990). Further, social capital, trust, and reciprocity 

among actors contribute to effective rule-making and successful outcomes in an SES (Ernstson 2011, 

Baggio et al. 2016). However, in a peri-urban SES, there exists multiple actor groups with varying socio-

economic attributes, cultural attributes, levels of local knowledge and conflicting land use interests 

(Mundoli et al. 2017, Gashu Adam 2020). For example, there are rural actors living in the area before 

urbanization who depend on the peri-urban SES for their livelihood and daily activities such as land for 

farming, firewood for fuel, and grasslands for pasture. On the other hand, there are urban actors who 

come from the city centres and appropriate land parcels for urban land use such as for setting up 

industries or residential buildings leading to conflicts among urban and rural actors (Vidyarthi et al. 

2017). Conflicts among actors in a peri-urban SES and unexpected outcomes in an SES such as urban 

sprawl are interlinked (Unnikrishnan et al. 2016). Therefore, to apply the design principle in a peri-urban 
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SES it is important to understand how the interactions among the actors groups can influence the 

outcomes in the SES.  

The design principles recognize the importance of actor interactions and therefore emphasise including 

the local actors in the rule-making (Ostrom 1990). Local actors have insights into the economic and 

societal rationale and social conflict, knowledge about resources and understanding of the implication 

of their actions on the SES (Nuhu 2018). However, in a peri-urban SES, while urban actors exert a strong 

influence on the policymaking; they often have limited local knowledge and complexities of the SES 

(Purushothaman et al. 2012). It is not clear how the actors with limited local knowledge can contribute 

to effective decision making in a peri-urban SES.  

1.4 Research Questions  

A peri-urban landscape is a complex mix of land use land cover types. In an urbanizing landscape, the 

aim of land-use policies is sustainable urbanization of a peri-urban SES which is to maintain natural 

resources (such as green spaces) while also addressing economic needs and urban development. In the 

thesis, I test the applicability of Ostrom’s design principles for the management of terrestrial resource 

systems. I particularly focus on design principle 2 and 3 to test and reflect upon how the commons 

approach and the design principles can be adapted to accommodate the dynamics and complexity of a 

peri-urban SES such as spatial mismatch, multiple actor groups and landscape heterogeneity. I assess 

policy success by measuring the spatial sustainability of an urbanizing landscape. I have identified the 

following research questions that I go on to answer in chapters 3, 4, and 5 respectively using the model 

described in chapter 2.  

Q1. How can spatially explicit social-ecological feedbacks shape governance of dynamic landscapes? 

Continually evolving landscapes such as those in peri-urban SES often witness the issue of institutional 

misfit. Design Principle 2 emphasizes that congruence between local (social and ecological) conditions 

and rule-making can address the issue of institutional fit in large-SES (Ostrom 1990, Fleischman et al. 

2014b). In a peri-urban SES, the spatial characteristics of the landscape such as spatial heterogeneity 

may influence the outcomes in the landscape. However, it is not clear how the interactions between 

landscape dynamics and spatial characteristics such as connectivity and heterogeneity can influence 

institutions in an SES (Cumming and Epstein 2020). In Chapter 3, I explore the spatially explicit feedbacks 

between landscape heterogeneity and institutions to operationalize the design principle for spatially 

dynamic landscapes. 

Q2. How does resistance among actors influence the effectiveness of Ostrom’s design principles for 

governing spatially dynamic landscapes? 
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Design Principle 3 stresses the importance of the participation of actors in rulemaking (Ostrom 1990). To 

facilitate the creation of effective rules it is important to have social cohesion, trust, and reciprocity 

among the actors (Baggio et al. 2016). In the case of large and complex SESs such as peri-urban SESs, 

heterogeneity among actor groups is a dominant group characteristic. Peri-urban SESs also witness 

conflicts and lack of social cohesion among the actor groups, which may result in unexpected outcomes 

in the commons situation (Poteete and Ostrom 2004). Little is known about how conflicts among actor 

groups in a complex and dynamic landscape can challenge the validity of the design principle. Therefore, 

in Chapter 4 I explore the influence of actors’ resistance on emerging landscape patterns in a dynamic 

landscape.  

Q3. How can spatially informed decision-making and landscape heterogeneity influence integrated 

governance of spatially dynamic landscapes? 

For effective governance of SESs, design principle 3 stresses the importance of local knowledge and 

therefore, emphasizes including local actors in  decision-making (Ostrom 1990). In peri-urban SES, 

however, not all actors have sufficient local knowledge and understanding of the complexities of the SES 

but wield strong influence over policymaking and landscape governance (Purushothaman and Patil 

2017). In addition, it is known that local spatial conditions influence the decisions of actors (Barredo et 

al. 2003). In Chapter 5 I explore the applicability of the design principle when actors with limited local 

knowledge contribute to informed decision making by harnessing local spatial information.  

 

1.5 Method and data used 

Computational models are powerful research tools to investigate complex interactions in an SES, 

facilitating the systematic representation, exploration, and assessment of patterns and processes 

occurring across scales in an SES (Elsawah et al. 2020). Such models have contributed in multiple ways to 

SES research, enabling assessment of policies, development of strategies for management and 

extending conceptual understanding of the system (Schlüter et al. 2019). While models have the 

capacity to generate and test hypotheses  and contribute to theory development in SES studies 

(Cumming et al. 2020), models that extend SES theory for land use change studies are limited (Verburg 

et al. 2019).  To address the research gaps in the thesis, I therefore developed a minimalistic dynamic 

simulation model. Simulation using a transparent, low-parameter approach allows identification and 

exploration of local relationships, such as feedbacks, in a low-cost environment characterised by low 

data availability (Salecker et al. 2019).  

I developed a data set of simulated land use land cover vector images simulating landscapes in a peri-

urban SES.  These simulated images are a generalised representation of the periphery of larger 

metropolitan cities in India, also known as tier-1 cities, such as Bengaluru, Delhi and Pune  (India). 
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Following India’s Independence in 1947, the Information Technology boom of 1980, and economic 

liberalization in 1990, the cities in India have witnessed an unprecedented urban expansion beyond 

their initial urban boundaries (Sudhira et al. 2007, Nagendra et al. 2012, Ramachandra et al. 2012). Cities 

like Bengaluru and Delhi have increased 10-fold as a result of which areas around the urban periphery 

have experienced a rapid transition from rural to urban landscapes, particularly, over last three decades 

(Sudhira et al. 2007). The rapid rate of landscape transformations makes the peri-urban areas of Indian 

cities an interesting example for understanding dynamic resource governance as well as a 

representative example of the peri-urban challenge for rapidly growing economies, especially in the 

Global South (Ramachandra et al. 2012). A time span of a few decades is sufficient for studying land use 

transformation in such peri-urban SES  making them a scientifically tractable example of a large dynamic 

SES (Ramachandra et al. 2012).  

 

1.6 Thesis outline 

I have structured my thesis into six chapters.   

I first give a detailed description of the dynamic simulation model that I developed to answer the three 

research questions in Chapter 2. I start with an overview of the state variables and entities of the model, 

the sequence of different processes involved, and a theoretical description on which the model is based. 

I also describe the operationalizing of the SES Framework to build the model and connect it to SES 

theory. Finally, I give a detailed description of the variables, parameters, and sub-modules that link the 

spatial movement of actors constrained by policies and LULC types. I have used this model to answer the 

three research questions. 0, 4 and 5 correspond to the three research questions respectively. 

In Chapter 3, I discuss the first research question addressing spatial mismatch and institutional fit in a 

dynamic landscape. According to the second design principle, for effective natural resource 

management, there should be a congruence between local conditions and rulemaking. However, in a 

peri-urban SES, the ecological conditions of the landscape vary and are sensitive to the spatial extent of 

decision-making and therefore, rendering the concept of ‘local’ elusive. In addition, local ecological 

conditions also influence the institutions in a landscape; therefore, I explored the environmental 

feedbacks between institutions and landscape heterogeneity to inform interpretation of the concept of 

‘local’. 

 In Chapter 4, I addressed the second research question about how resistance among actors influences 

the effectiveness of the design principles. In a peri-urban SES, actor heterogeneity, lack of trust and 

reciprocity, and conflict among actors may influence the effectiveness of the design principles and lead 
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to unexpected outcomes in the SES. I therefore explored the influence of interactions among 

heterogeneous actor groups with varying levels of conflicts on the emerging landscape patterns. To 

capture the interactions I used a game theory approach. The analysis showed that it is important to 

consider actor heterogeneity when involving local actors in decision-making, because differences 

between actors can significantly influence landscape pattern. In addition, explicitly addressing actor 

heterogeneity can create opportunities for sustainable landscape management in an SES. 

In Chapter 5, I explored the influence of including local spatial information in decision-making at a fine 

spatial scale on emerging landscape patterns. In large SESs where there is a dominance of actors with 

limited local knowledge, local spatial information can play a significant role in addressing knowledge 

gaps and contributing to more informed decision making. I show that actors with limited local 

knowledge can contribute to integrated governance of large-scale dynamic SESs, especially by bridging 

the gap between urban centres and peri-urban areas by enabling spatially informed decisions. 

Finally, in Chapter 6, I summarize my main findings from each chapter and how the work contributes to 

SES theory and land use change studies more broadly. I discuss limitations and future recommendations, 

then provide by a general conclusion.    
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Chapter 2 : Description of the Model  

 

2.1  Introduction 

Social-ecological systems are complex adaptive systems that are characterised by nonlinearity, 

feedbacks, self-organisation and emergent phenomena (Levin et al. 2012). In SES studies, models are 

often used to systematically support theoretical and empirical investigations in order to understand SES 

dynamics (Cumming 2011, Cumming et al. 2012, Schlüter et al. 2014). An SES spans social and ecological 

domains, at multiple scales and levels (Schlüter et al. 2014). Therefore, models should ideally allow 

evaluation and investigation of the complex, non-linear interactions among relevant variables (Ostrom 

2007, Cumming 2011, Schlüter et al. 2014, Arkema et al. 2015, Martin and Schlüter 2015). In addition, 

missing data or insufficient knowledge, inadequate theories and unresolvable uncertainties (also known 

as deep uncertainties) are common in SES studies; these make it virtually impossible to develop a model 

that can both simplify and predict real-world outcomes (Moallemi et al. 2020). Instead, models in SES 

studies are used as conceptual tools to understand a system’s potential responses under various 

assumptions and to generate and/or test hypotheses with limited variables and parameters relevant to 

the research objective under investigation (Bankes 1993, Moallemi et al. 2020).   

A dynamic model supports investigation of a dynamic SES by providing a simplified mechanistic 

representation of changes through time in the system under study and the related processes (Schlüter 

et al. 2014). For example, the landscape of a peri-urban SES may gradually shift from a dominantly rural-

natural landscape to a mix of urban, rural and natural landscape and eventually become fully urbanised. 

As the landscape transforms and human demography changes, interactions and feedbacks among the 

components of the SES change, resulting in emergent outcomes. To explore the implications of Ostrom’s 

design principles at the landscape level I used simulated data to support greater generality and facilitate 

the use of appropriate controls, such as the creation of gradients of landscape pattern and the use of 

null models as a frame of reference (Gotelli and Graves 1996, Salecker et al. 2019).  

Ostrom’s SES Framework (Ostrom 2007, 2009) drew heavily on collective action theory in developing 

diagnostic for the systematic evaluation of governance of small common pool resources. Its purpose was 

to support empirical studies by describing the interlinkages and causal relationships between the social 

and ecological components involved in an SES (Binder et al. 2013, Partelow 2015, Tyson 2017). However, 

scholars are gradually starting to use Ostrom’s Framework as a tool to assess sustainability in larger, 

more complex SESs (Partelow 2018). The Framework supports the conceptualization and development 

of a model by allowing for abstraction from the target system. It provides a common taxonomy of 

variables across disciplines, identification of key processes, model conceptualization, and integration of 
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theories allowing model development in a systematic, integrative and transparent manner (Cumming 

2014, Schlüter et al. 2014, Williams and Tai 2016). I used the SES Framework to develop a model for 

spatially explicit analysis of Ostroms’ design principles in a peri-urban SES context.  

To model the spatial interactions among the components of a peri-urban SES and understand their 

influence on the emerging land use patterns, I used reaction-diffusion equations. Researchers have used 

the reaction-diffusion equation in spatial ecology to model and understand patterns resulting from 

spatial dynamics of populations in an ecosystem (Fisher 1936, Tilman et al. 1997, Flather and Bevers 

2002). The reaction-diffusion equation is originally based on the idea of passive diffusion, where objects 

of interest (such as insects) move into a region of low concentration from a region of high concentration 

(Fisher 1936, Tilman et al. 1997, Wilson et al. 2007). Movement between cells is further regulated by the 

diffusion coefficient, ‘D’, which dictates the permeability of a cell boundary (Cumming 2011). Studies in 

spatial ecology have used discrete reaction-diffusion equations to model population growth and 

dispersal across discrete units of space and time (Flather and Bevers 2002). Petrovskii et al. (2020) used 

reaction-diffusion equation to model the spatial aspect of dynamics in social protests. The reaction-

diffusion framework was well suited to my goals of capturing the spread and impacts of a growing urban 

population across a simulated landscape.  

A GIS based Hybrid-CA model 

Over the past few decades, researchers have developed various land use change models to simulate, 

explore and predict urbanization patterns and processes (Koch et al. 2019). However, there is an 

increasing emphasis on modelling land use change to inform theory and explicitly include the concepts 

of space and scale, and social dimension such as actors’ behaviour (Agarwal  et al. 2002, Turner et al. 

2020). With the availability of better geo-visualization techniques and high-speed computing, 

developing and running spatially explicit land use change models have become easier (Pratomoatmojo 

2018). Various modelling approaches are used for modelling land use change and urban expansion. 

Agent-Based Models (ABM) and Cellular automata (CA) models are two popular approaches for 

modelling urban expansion (Ren et al. 2019). ABMs explicitly model the social aspects by modelling 

choices and decisions made by individual actors (Gotts et al. 2019) and micro-scale interaction of the 

actors  (Ren et al. 2019). However, ABMs are limited to case studies with conditions specific to the study 

area and are therefore not easily transferable from one study area to another (Mustafa et al. 2017). In 

addition, they are inherently complex and require a large amount of ground data limiting their use (Ren 

et al. 2019). On the other hand, CA-based models are rule-based models used for prediction and spatio-

temporal analysis of land use change. CA-based models are based on simple rules and can generate 

complex behaviour including self-organization and therefore, are increasingly used in land use change 

models (Samat et al. 2011). The models use discrete spatial cells, land units or pixels as the smallest unit 
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of simulation with a fixed set of rules. CA-based models also allow the modelling of spatial interactions 

among the cells. Therefore, CA-based models are widely used for mapping urban expansion and land 

use changes. However, in a purely CA-based model, the decision making by actors is implicit and their 

behaviour over time doesn’t change (Mustafa et al. 2017, Jin et al. 2021). Lately, to overcome the 

limitations of CA-based models, researchers have integrated CA with various other approaches such as 

Markov Chain (Nath et al. 2020, Jafarpour Ghalehteimouri et al. 2022), GIS (Pratomoatmojo 2018) and 

ABM (Mustafa et al. 2017). For example, the HEUM model by Mustafa et al. (2017) models urban 

expansion by explicitly integrating choices made by three different type of actors into a CA model. 

However, most of the land use change models are used for prediction and are limited to a specific study 

area which makes it hard to generalise (Ren et al. 2019). In addition, to model land use change in a peri-

urban area as an SES requires linking of human and environment systems as interactions and feedbacks 

between policies, actors and land-use changes (Ren et al. 2019). My objective was to test hypothesis 

and extend Ostrom’s design principles in a spatially explicit context. To answer my research questions, I 

needed to simulate a generic landscape in a controlled environment meaning the number of variables 

influencing the landscape change were limited while exploring interactions among various components 

of a peri-urban SES. Therefore, I developed a GIS-based hybrid-CA model centred on reaction-diffusion 

equation using a simulated dataset. The model allows testing of Ostrom’s design principles by varying 

the conditions such as policies, landscape characteristics and actors’ interactions, and exploring the 

influence of the interactions and feedback on outcomes at the landscape level.  

To describe the model, I have followed the ODD + D (Overview, Design concepts and Details + human 

Decision-making) protocol (Müller et al. 2013) which is an extension of ODD+ protocol by Grimm et al. 

(2010). Its purpose is to foster standard descriptions of Agent-Based Models (ABM) (Grimm et al. 2010) 

and it has a history of use in the SES community (e.g., Koch et al. 2019). ODD + D is an extension of 

ODD+ protocol that explicitly includes human decision-making into model description (Müller et al. 

2013). I included the compulsory and relevant components of ODD + D protocol to describe the model. 

 

2.2 Model Description 

Overview  

Purpose:  The purpose of the model was to test hypotheses and extend SES theory for spatially dynamic 

SES. The focus was to understand the spatially explicit, cross-scale interactions and feedbacks between 

rural and urban actors, landscape heterogeneity, and land-use policies in a peri-urban SES.  

Entities, state variables, and scales 
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I developed a dataset of simulated images based on peri-urban areas of tier-1 cities in India, using 

the NLMR package in R (Sciaini et al. 2018). Each simulated image represented the terrestrial resource 

system of a peri-urban SES comprising of land units and actor as entities. Each entity had its 

corresponding attributes. Limited number of variables and parameters are included in the model to 

allow the results to be tractable. Therefore, it is important to note that the simulated data used in the 

model is only one of several possible realizations of dynamics involved in peri-urban SESs and do not 

necessarily represent all possible realizations of peri-urban SES dynamics.  

 

I mapped the land surface to a lattice of 50 x 50 cells of size 200 x 200 m each. The cells corresponded to 

land units, which was an entity in the model. The grain size was 200 m with a spatial extent of 10x10 sq. 

km. The spatial extent falls in the recommended range of the buffer zone to study peri-urban areas in 

India (Ramachandra et al. 2014). Due to the computational limitations the cell size of 200 m was used to 

limit the number of cells. In addition, changing the extent and grain will not affect the analysis of the 

results specific to the research questions in the thesis. Each cell corresponds to a spatial unit in the 

model. Cell attributes were a carrying capacity of the cell, a LULC class, and a land-use zone. The carrying 

capacity of the cell was the total population it could support at a given time. In the model, I used land-

use policies as a proxy for the governance system that influences actors’ decisions to transform a land 

parcel into urban land use. Each cell had an associated land-use zone and a score, estimated based on 

the land use policy. The land-use policies and land-use zones are described in detail in section 0.  

 

The actors were the second entity in the model who collectively took a decision at cell level and 

followed principles of bounded rationality (Simon 1972). I broadly classified actors into urban and rural 

actors based on the type of land use they occupied or were associated with. In the model, urban and 

rural actors occupied different cells and may use neighbouring cells for their livelihood.  For example, 

most of the actors in cells with urban built-up were urban actors and those occupying areas surrounding 

the agriculture cells or occupied rural built-up cells were rural actors. The actor population changed 

within each cell after every iteration according to a growth function described later in the reaction 

module. The actor groups interacted with actor groups from other cells to appropriate and transform a 

cell. The actors included neighbourhood spatial conditions when taking decisions for appropriating a cell 

and could vary their preference to include neighbourhood spatial conditions in the decisions. The 

decisions of actors were influenced by land-use policies, discussed later in the chapter.  

 

The model used discrete units of both space and time. The cells identify the space and spatial extent. 

The time corresponds to the iterations in a model run. Each model run, which correspond to one 

simulated image, included 150 to 200 iterations. To demonstrate and correctly document that a model 
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has reached saturation point I ran the model for about 150 to 200 iterations. In the model, I have set 1 

iteration equal to 1 year. However, to answer the research questions, the relative frequency or rate such 

as the frequency of change in institutions relative to the rate of landscape changes is relevant, instead of 

the actual time. Therefore, ‘the model time’ need not correspond to the actual time which means 

instead of years it can be read as months or weeks.  

  



17 
 

Processing overview and scheduling 

 

Figure 2-1: Conceptual diagram of the model with input data including the LULC maps, land-use policy 

score, neighbourhood information and actors' count. This data is used to estimate the cell score using 

three sub modules which is then used in reaction –diffusion model. The decisions taken by actors at cell-

level influence the landscape level LULC patterns as the urbanization progressed. The landscape level 

patterns including spatial configuration and composition of classes were used to estimate the output.   

The aim of the model was to capture the land use transformation decisions made by urban actors at a 

finer spatial scale and their influence on emerging landscape level patterns in a peri-urban SES. I used a 

data set of simulated images consisting of at least 100 images for each research question. Figure 2-1 

shows the conceptual diagram of the model. 
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Figure 2-2: Block flow diagram showing the flow of model process and sequence of different modules 

and sub-modules. The reaction and diffusion model and sub-modules are described in detail in section 0. 

The flow of the model process is explained in Figure 2-2. I modelled the reaction and diffusion terms 

separately. The reaction term was the preliminary module after initializing the state variables and 

attributes in an image. The reaction module approximated the population growth of actors within each 

cell. Once the cell reached its carrying capacity (see Table 2.2), a proportion of actors moved out of the 

cell and sought other cells in the peri-urban landscape (Cumming 2002). To estimate population growth 

of urban and rural actors, I used  the UN population growth model described in (Chen 2009). The model 

was applied in each cell. The population growth model had different growth curves for the rural and 

urban populations. To converge the model, the parameters of the model were set such that urban 

population had higher population growth compared to the rural population. Each cell reached carrying 

capacity at different times during a model run, depending on the total population and the type of actors 

(rural or urban) occupying the cell. For simplicity, the carrying capacity for all the cells was same and was 

constant for all the model runs.  

The diffusion module simulated the movement of urban actors into other cells based on the decisions 

made by the group of actors at the cell level. Once the population in a cell reached its carrying capacity, 
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a proportion of actors in a cell move out of the cell. In general, only a proportion of population diffused 

into other cells (Cumming 2002). Therefore, in the model a fixed proportion of 50% of the total actors 

moved out of a cell. Urban actors in a cell sought other cells to move into and used the cell for urban 

land use. In reality, actors can chose to move in any direction in the landscape and select a land parcel in 

any location in the landscape. However, in the model, for simplicity I have restricted the movement of 

actors to the eight immediate neighbours that share the same boundary with the cell (cells in N, E, W, S, 

N-E, N-W, S-E, and S-W). The directions correspond to the cells that lie in their immediate 

neighbourhood also known as Moore’s neighbourhood window (Maria de Almeida et al. 2003). In the 

model, if a cell happened to be on the boundary of a landscape, then neighbourhood window included 

only those cells that shared the immediate boundary with the cell. The urban actors from each cell were 

restricted to select only one target cell to move into at every iteration.  

A classic reaction-diffusion equation is a deterministic equation with a constant diffusion coefficient that 

regulates the movement of population between cells (Cumming 2011). In addition to the diffusion 

coefficient, I included a factor (called cell score) that determines the direction of diffusion of urban 

actors. The decisions made by urban actors for the appropriation of cells is numerically calculated as the 

cell score in the model. When selecting a cell for urban land use in reality, urban actors consider various 

socio-economic and environmental factors such as the price of the land parcel, availability of 

infrastructure, biophysical factors in the area, policies, and rules (Benson et al. 1993). In the model, 

urban actors used three criteria to select the new land parcel from the neighbourhood: land-use policies 

of the target cell, the result of interaction with the actor group already occupying the cells in the 

neighbourhood window or the target cells, and the spatial neighbourhood of the target cells. I explicitly 

quantified these criteria using three sub modules: the Land-Use Policy module, Game theory module 

and Neighbourhood Information module respectively (described later under section 2.2.4 Details). The 

combined score from the three sub modules was used as the cell score by the urban actors to decide 

which cell to move into. Half of the total number of actors moved into the cell with the highest cell 

score. If the target cell into which urban actors moved belonged to a non-urban class, the model 

reclassified the cell into urban built-up. The model followed the process for all cells in the landscape for 

every iteration, to simulate the gradual build-up and expansion of urban actors into the peri-urban areas 

of a developing city (Figure 2-3). 
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Figure 2-3: Detailed flow diagram of the model describing decisions made at cell level at every iteration. 

Each box represent the sub-modules and modules corresponding to figure 2.1.  
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The output of the model was a time-series of maps in which the attributes of land units and actors were 

sequentially updated at every iteration (Figure 2-4). For each map, I calculated the total number of 

urban cells, number of non-urban cells left for each class, landscape configuration, and composition 

metrics including patch area, a number of patches, edge density, clumpy index, aggregation index, and 

fractal dimension. The estimated output varied for every research question as described in detail in 

Chapters 3, 4, and 5.  

 

Figure 2-4: Example of time series of map generated at different iteration for a model run for four 

different years. The color in the image shows the LULC of the cells at the given year described in the 

legend.  
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Design Concepts 

Theoretical and empirical background  

I used the SES Framework to identify the components of a peri-urban SES. The SES Framework is a multi-

tiered framework with a nested hierarchy of variables (Figure 2-5). The purpose of the Framework is to 

identify relevant variables that broadly identify factors or components needed to address in a research 

question (McGinnis and Ostrom 2014).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: This diagram shows the first tier of SES framework, where components of the SES are broadly 

divided into four subsystems (solid boxes with multiples instances): resource system (RS), resource unit 

(RU), governance (GS) and actors (A). These components are further unraveled as second tier and third tier 

variables. The components are linked (connection represented by solid arrows) to and influence each other 

via ‘Focal Action situation’ that includes interactions and outcomes. The Focal Action situation influences 

components of SES via feedback represented by dotted arrows. The exogenous influences from other 

ecosystem and external social, ecological and political settings are also included that can vary at multiple 

scale (Ostrom 2007, 2009, McGinnis and Ostrom 2014). 
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Peri-urban SES consisted of cells as resource units (RU) identified as an entity in the model. I used 

second tier variables of the SES Framework to describe the cells. Resource unit mobility (RU1) was zero. 

To distinguish the cells (RU6) I classified the cells into eight LULC classes. I used the level-i and level-ii 

LULC classification system by the Government of India to identify LULC classes (NRSC 2012) (see Figure 

2-6). 

 

Figure 2-6: An example of input simulated image with LULC classification. I defined eight LULC classes – 

forest, wet land, water body, grassland, rural built-up, agricultural land, wasteland, and urban built-up.  

In 2014,  McGinnis and Ostrom (2014) suggested an alternative list of second-tier variables for 

governance system. The alternative list provides a more clear and logical understanding of the 

governance system in a large SES. I used this list to characterize the governance system in the model. 

The land-use policy corresponds to the governance system in the SES Framework. The land-use policy 

regulates (GS1) the type of land use in a region through a zoning system and guidance of management 

in a landscape (Barredo et al. 2003). The Government of India’s Department of Land Resources, 

proposed a national level Land Utilization policy in 2013 , categorising the country into land-use zones 

based on criteria such as predominant land use, ecological and historical importance (India 2013). 

Because India is characterised by a federal system of Government, the national level Land Utilization 

Policy is an overarching set of guidelines or recommendations to the state or regional governments 

(government agencies - GS5) that must then formulate regionally and locally specific land-use policy.  

The Land Utilization Policy identifies four major land-use zones based on the land-use policy proposed. I 

used the same four zones in the model. Each zone had a level of restriction on land use change based on 

criteria described in Table 2.1. The land-use policy and corresponding land-use zones provided 

clarification on land use type allowed for the different land units in a landscape (GS6). 
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Table 2.1: The four land-use zones and their description as per the national level Land Utilization Policy, 

Government of India. The land-use zones are arranged in decreasing order of level of restrictions to land 

use change. For example, Protected Area is the zone with highest restriction to land use change and the 

Guided Area is the zone with lowest restriction to land use change.  

Land-use zones Description 

Protected Areas  Strictly prohibited for land-use change.  

Regulated Areas Not legally restricted for land-use change yet have important functions 
associated with it.  

Reserved Areas Areas under pressure of development, usually due to significant land-
use change in the neighbouring areas.  

Guided Areas Areas having highest probability for land-use change. 

 

In the model, land-use zone was set as an attribute of the cells in the landscape. The ‘Land-Use Policy’ 

submodule was used to assign and update land-use zone to each cell (Table 2.3). The land-use zones 

described in the table are in order from highest restrictions (Protected Area) to lowest level restrictions 

(Guided Area) for land use change. The land-use zones were updated after every 5 years (or 5 iterations) 

based on the current land use pattern. For example, as urbanization progressed, the distance of non-

urban cells from urban cells decreased and the model reclassified the land-use zone of the non-urban 

cells that were in proximity of urban cells into reserved areas, thereby relaxing the restrictions for land 

use transformations. I also calculated the number of green spaces left in the region after every five years 

and used another criterion  to decide if land-use zones should be more restricted (such as preserved 

area or regulated area) or restrictions could be lifted. The spatial scale of decision making, in general, is 

usually within fixed administrative boundaries that define a ‘region’ (Morrison and Lane 2014). In the 

SES Framework, the spatial scale of decision-making corresponds to geographic scale of governance 

system, which is a tier-2 variable of the SES Framework (GS2). In the model, specifically for chapter 3, I 

varied the geographic scale of governance system and used two spatial scales of decision making, one at 

a regional level and one at a local level. 

In a peri-urban SES, diverse actors exist who depend on peri-urban resources for their livelihoods and/or 

ecosystem services and goods (Bian et al. 2018). I classified actors into rural and urban actors based on 

second tier variables (McGinnis and Ostrom 2014) of the SES Framework. The variables are 

socioeconomic attributes (A2), geographic location (A4) and importance of resource (A8). Socio-

economic attributes and geographic location correspond to indicators commonly used in India for 

identifying rural and urban actors (Vidyarthi et al. 2017). Broadly speaking, rural actors reside in peri-

urban/rural areas before urbanization, have low population density, and have an agrarian-based 

economy  (Purushothaman and Patil 2017). Urban actors, by contrast, live in densely populated urban 
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areas and depend on peri-urban areas for various ecosystem goods and services such as extracting 

minerals, drinking water, and dumping waste. As the urban areas expand beyond their urban periphery, 

urban actors appropriate land in peri-urban areas for urban development such as housing, industries 

and supporting infrastructures such as parks, roads and highways (Bian et al. 2018). In addition, the 

importance of the resource and relationships with the resource varies among rural and urban actors 

(A8). The resource dependency of the actors includes the relationship of actors with their environment, 

their attempts to appreciate ecosystem services provided by the environment, and the understanding of 

the impact of their action on the social and ecological outcomes in the SES (Tidball and Stedman 2013). 

In general, rural actors who were already residing in the urban periphery before the urbanization began, 

may have a comparatively stronger association with a peri-urban SES. Rural actors often understand the 

rural complexities involved in the SES and the impact of their actions on the SES outcomes (Beilin et al. 

2013). On the other hand, urban actors often are seen as those appropriating resources from peri-urban 

areas; have limited understanding of the complex interactions involved in a peri-urban SES and the 

impact of their actions on the outcomes in the SES (Bian et al. 2018).  

 

 

Decision Making  

 

My aim was to unfold the action situation and understand how the interactions among the components 

of the SES Framework shape emerging landscape patterns. In an urbanizing landscape, the decisions by 

the actors are made at the local spatial level such as land units which are heavily regulated by 

governments and markets (Foster and Iaione 2019). In the model, urban actors make decisions at cell 

level within an eight neighbourhood window. The urban actors took bounded rational decisions to select 

a cell to move into within their immediate neighbourhood. For simplicity, I assumed that the actors 

within each cell had already made a unanimous decision to move out of the cell. Land use 

transformations decisions made by urban actors at the local level or cell level were a collective or group 

decision. The actors then interact with other actors occupying the target cells. In reality, the land parcels 

that urban actors want to appropriate are usually already in use by other actors for supporting their 

livelihoods or for ecosystem goods and services. Actors already occupying/using the cells in the 

neighbourhood window may resist or comply with land use transformation desired by urban actors 

coming from urban cells  (Koch et al. 2019). I included the interactions among actors occupying the 

different cells using the Hawk and Dove model from game theory. The module captures the outcomes of 

different combinations of interactions (resistance and compliance) among actor groups. In addition, the 

LULC of the neighbouring cells affects decisions made by the actors at the local level (Verburg et al. 

2006). For example, for urban residential built up , urban actors may prefer cells which are in the 
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neighbourhood of other similar cells or may want to stay away from the cells which are set up as 

wastelands being used for industrial waste or dumping. The decisions made by actors based on 

neighbourhood LULC conditions were explicitly modelled using the sub-model ‘Spatial neighbourhood 

Information’. The decisions made by the actors at local level influenced landscape level patterns. 

 

Adaptation 

To understand the potential influence of landscape conditions on institutions, I incorporated a routine 

that made land-use zones adaptive to changes in the landscape. The model updated land-use zones for 

the cells after every five years based on the landscape conditions at the time of update,  such as the 

number of green spaces left and the distance from the urban patches.  

Emergence  

In the model, the transformation of non-urban cells into urban cells by the urban actors resulted in an 

increase in the number of urban cells and decrease in non-urban cells, which led to the emergence of 

new landscape patterns. However, the land-use policies, responses of rural actors and landscape 

conditions prevented urban actors from converting the entire landscape into urban built-up. Therefore, 

after a point in time, the total number of urban cells did not change significantly.   

Objectives  

In the model, the urban actors made an implicit decision to move out of cells they occupied once the cell 

was about to reach its carrying capacity. The urban actors could move into one cell from its immediate 

neighbourhood window. The actors selected a target cell where land-use policies allowed the land-use 

transformation. Urban actors selected cells with highest cell score. In the model, the cell score was the 

combined score of the cell’s land-use zone score estimated from land-use policies, spatial 

neighbourhood, and the result of interactions between urban actors wanted to occupy a cell and actors 

already occupying the cell.  

Sensing  

The aim was to explore the influence of interactions across scale on the outcomes. Therefore, the 

interactions in the model occur at cell-level where urban actors consider the state of the cell they are 

occupying and that of the cells in its immediate neighbourhood window. The urban actors first 

confirmed if the total population of the cell they were occupying reached a threshold, identified as the 

carrying capacity of the cell. To select a suitable cell to move into, the urban actors used information 

about the attributes of the neighbouring cells such as their land-use zone, the response of the actors 

occupying or dominating the cells, and the spatial neighbourhood of the cells.  
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Interactions 

The model captured the lateral interactions among the actors in different locations with conflicting 

resource use interests. During the process of urbanization, urban actors moved out of the urban cells 

into peri-urban areas and appropriate non-urban cells. The urban actors then had to interact with rural 

actors dominating the non-urban cells, such as built-up rural and agricultural land. The rural actors could 

‘choose’ whether or not to allow the transformation of non-urban cells for urban land use. The 

interactions were captured using the Game Theory sub-module. There was no specific or explicit 

communication involved during interactions.  

Stochasticity 

I included stochasticity in multiple areas. First, I randomly assigned LULC classes to different patches. 

Second, the Z score associated with Land-use Zones were assigned randomly from within a given range 

(Table 2.3). Third, in the Game Theory module, rural actors could adapt either a Hawk or Dove strategy. 

The models assigned Hawk and Dove strategy to the rural cells randomly across the landscape (Chapter 

4).  Finally, both the rural Hawk and the urban Hawk had an equal probability of winning the fight 

(Chapter 4).  

Collectives  

The urban actors and rural actors functioned as collectives with in each cell. The dominant group of 

actors (rural or urban) was the collective that took the decision to move out of a cell after reaching its 

carrying capacity and the decision to adapt a strategy to fight (Hawk strategy) or comply (Dove strategy) 

in the Game Theory sub module.  

Observation 

The model output was the LULC pattern at the end of the iteration generated as LULC map at each time 

step. The resultant maps then provided the change in the number of urban cells, the change in 

landscape patterns (configuration and composition metrics), and the change observed in non-urban 

classes after urbanization.  

Details 

Platform used  

I used Matlab R2016a to develop the model. In addition, I used R language, R-studio and several R based 

packages to develop the input data set and to estimate, analyse, and visualise the results.  

I used the High Performance Computing system (HPC) at James Cook University to run the models. To 

run the simulations on spatially explicit data sets such as those used in the model needs resources with 
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higher processing speed and large storage size than over a laptop/desktop. HPC provides a network of 

computers and related resources (such as storage) clustered together. 

The model is available on GitHub for open access: 

https://github.com/SiveeChawla/RD_4_Institutions.git 

Input data and initialization  

The input was a vector file of the image where each cell had the associated attributes and parameters 

given in Table 2.2 

Table 2.2: List of attributes and parameters, their definition and corresponding values used in the model.  

 Name and id  Description Range /Values 

1. Land-use Land 
Cover class 
(LULC) 
 

LULC class to each cell from the set of eight classes 

(Figure 2-6).  

Forest, wetland, waterbody, 
grassland, rural built-up, 
agriculture land, wasteland and 
urban built-up.  

2. Land-Use Zone 
(LUZ) 

LUZ was assigned based on the land-use policies. 
LUZ and LUZ-S was assigned based on a set of 
criteria described in the sub-module – Land-Use 
Policy update.  

See Table 2.3 

3. Land-Use Zone 
Score (Z) 

The Z was based on LUZ See Table 2.3  
 

4. Total Population 
(ToP) 

Cells classified as urban, rural built-up, agriculture 
and cells in the vicinity were assigned a population 
of actors. Total population was a sum total of 
urban and rural population described below.  I 
initialized cells with ToP lower than the carrying 
capacity of the cell to allow the model to run for 
sufficient time before reaching saturation.  

0 - 18 

5. Urban 
Population (Up) 

Total number of urban actors occupying a cell. In 
the beginning of the model, the urban actors only 
occupied the cells classified as urban.  

0-18 

6. Rural Population 
(Rp) 

Total number of rural actors occupying a cell. Rural 
actors occupied the cells that belong to rural built-
up class, agriculture class, and cells near rural 
built-up and agriculture class. Population of rural 
actors dominated these cells and urban actors 
occupying the rural dominated cells were limited 
from 0 to 2. No rural population occupied the cells 
in the urban centres. However, the urban cells on 
the outer edge of urban patches had a mix of rural 
and urban population with urban population still 
dominating the total population size. 
 

0 - 18 

7. Strategy  The actors collectively within a cell adopted the 
strategy of either Hawk (resist) or Dove (comply).  

H – Hawk  
D - Dove 

8. Carrying Capacity 
(k) 

Carrying capacity is the total population a cell can 
support. In the model, the actors used the carrying 
capacity as the threshold to determine when to 
move out of a cell at a given iteration. The carrying 
capacity was the same for all cells in the landscape 
and across all model runs.  

18 
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9. Weight Factor 

() 

Weight factor determined the preference given to 
spatial neighbourhood information of the target 
cell in the decision-making by the urban actors. 

0 to 1 

10. Window Size (Sz) The window size for regional and local scale 
update of land-use zones. In the model, it was a 
square window defined by the number of cells in 
each window. This parameter is specific to Chapter 
53.  

10x10 cells 
 

11.  Green cell 
threshold (G) 

A threshold green to grey cell ratio was set to 
maintain a certain number of green cells in the 
landscape. The green cells were calculated as the 
sum of cells belonging to three classes which 
include forest, grassland, and wetland. The grey 
cells were the sum total of cells belonging to the 
Urban built-up, wasteland and rural built-up class.  
G was an input parameter for LUZ update.  

0.3,  
LUZ were more strict if the 
G<0.3. For example, if a cell was 
assigned land-use zone as 
registered area it was not 
classified into a less restricted 
zone (reserved area) if G < 0.3 
during the update.  

12.  Neighbourhood 
window  

The number of cells in the immediate 
neighbourhood of urban cells. 

3x3 cells , Moore’s 
Neighbourhood window 

13.  a, b,  Parameters for rural population growth model in 
equation 2.1 below. The parameters were kept 
fixed.  

a = 0.02, b=0.01,  = 0.2044 

14.  c, d,  Parameters for urban population growth model in 
equation 2.2 below. The parameters were kept 
fixed.  

c = 0.09, d = 0.05,  

 =0.8144 

 

Sub models  

This section describes the sub-modules (identified as sub models in the ODD + D protocol) for reaction 

and diffusion. Sub-modules Land-Use Policy, Game Theory and Neighbourhood interaction are part of 

the diffusion module. I programmed each of the modules and sub-modules such that each module was 

independent of each other to ensure scalability. For example, the population growth model used at 

present can be replaced by any other population growth model if needed. 

Reaction module  

The model calls the reaction module to calculate population growth within a cell. I used different growth 

models for urban and rural populations, adapted from Chen (2009), who used the UN population growth 

model. The UN model uses the following equations for population growth:  

𝑑𝑟(𝑡)

𝑑𝑡
= 𝑎𝑟(𝑡) + 𝑏𝑢(𝑡) − 𝛼

𝑟(𝑡)𝑢(𝑡)

𝑟(𝑡)+𝑢(𝑡)
               ----- Equation 2.1 : equation for rural population growth  

𝑑𝑢(𝑡)

𝑑𝑡
= 𝑐𝑢(𝑡) + 𝑑𝑟(𝑡) + 𝛽

𝑟(𝑡)𝑢(𝑡)

𝑟(𝑡)+𝑢(𝑡)
               ----- Equation 2.2: equation for urban population growth 

In equation 1 and 2, a, b, c, d, and  are the parameters and r and u are the rural and urban population 

in a cell (Table 2.2). I adjusted the parameters to ensure higher urban population growth compared to 

rural population growth. It was a preliminary module used to estimate the point in time when the urban 
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actors from an urban cell will decide to move out into other cells. The total population in a cell increased 

(due to either reproduction or migration) and reached a threshold, understood as the carrying capacity 

(Table 2.2) of the cell in the model. Once the population reaches the carrying capacity, a proportion of 

urban actors decide to move into neighbouring cells in the landscape.  

Diffusion module  

In the model, the diffusion module corresponds to the diffusion term of the reaction-diffusion equations 

that captures the movement of population outside the cell.   

In the model, the urban actors selected the cell to move into based on three criteria. The criteria were: 

the land-use zone of the target cell (Z), the interaction with the actor group already occupying the target 

cell (GT) and the spatial neighbourhood of the target cell (SI). I developed three sub-modules to 

calculate each term separately (see section 2.2.4). The output from the three sub-modules was then 

used to calculate the cell score (equation 2.3). The cell score was a combined score of the values 

estimated from three criteria and was used in the model by the urban actors to select a target cell. The 

urban actors selected the cell with the highest score. 

Cell Score = 𝑍[𝜆(𝑆𝐼) + (1 − 𝜆 )(𝐺𝑇)]        ----- Equation 2.3  

Where, Z is the land-use zone score associated with each cell and estimated from the Land-use policy 

Module. GT is the score estimated from the interactions between the actor groups estimated using the 

Game Theory sub module,  is the weight parameter and SI is the neighbourhood information calculated 

from the spatial neighbourhood Information sub-module  

Submodules  

1) Land-use policy (LUP)  

In the model, I identified four land-use zones (LUZs) adapted from the national Land Utilization Policy 

proposed by the Government of India in 2013 (Table 2.3). A higher score implied a higher probability of 

change. For example, there were no restrictions to change in the land use of a cell if the cell falls under 

the land-use zone identified as a Guided Area (GA). The GA land-use zone had the highest score (0.9). On 

the other hand, policies did not allow land use change of the cells categorized as a Protected Area (PA) 

land-use zone, hence, the score assigned was zero. Table 2.3 describes all land-use zones, corresponding 

policies and restriction, and Z. The model assigned scores from within a range of probability values given 

in the table. 
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Table 2.3: LUZs and their details, identified based on the National Land Utilization Policy set by the 

government of India. Based on the description, each land-use zone was associated with a probability of 

LULC change. The model assigns the score from the score from the range of values in the column Z. 

 

 

In the model, the land-use zone (and Z) of each cell was updated after a fixed period of every five 

iterations (or five years). I used a cellular automaton based approach that followed a set of rules to 

update the land-use zone of each cell based on the spatial conditions in the landscape. The rules 

themselves did not change over time. They were:  

i) Distance of the cell from the urban patches:  The module assigned LUZ RsA or GA to a cell that was 

close to urban patches.  

ii) LULC class of the cell: For example, the module assigns LUZ RgA or PA to a cell located near urban 

patches and belonging to either water body class or forest class. 

iii) Green to grey cell ratio in the landscape: The cells with forest, grassland or wetland classes were 

categorised as green cells. A threshold was set to maintain a certain level of green cells in the 

landscape. If the ratio was below the threshold, the model restricted the land use changes by assigning 

Land-use 

zone  

Land-use 

policy 

Description LUZ score 

for the 

model 

Protected 

Areas (PA) 

Strict no 

change zone 

Areas strictly prohibited for land-use change. For 

example, Ecologically, socially or historically sensitive 

areas 

0 

Regulated 

Areas 

(RgA) 

Restricted 

land use 

change  

Not legally restricted for land use change yet have 

important functions associated with it. For example, 

tourism, hazard prone zone, and prime agricultural 

land. Often may need permit based on the legal 

conditions for land use change. Hence, has less 

probability of land-use change.  

0.1 to 0.4  

(low 

probability 

of change) 

Reserved 

Areas (RsA) 

Land-use 

change 

permitted 

with 

conditions 

Areas under pressure of development, usually due to 

significant land-use change in the neighboring areas. 

For example, areas near human habitat, newly planned 

development/economic centre, proximity to road. 

0.5 to 0.8  

(higher 

probability  

of change) 

Guided 

Areas (GA) 

Land-use 

change 

permitted 

with no 

conditions 

These were the areas mostly in the urban periphery 

and have highest probability of land-use change. 

0.9  

(highest 

probability  

of change) 
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the stricter land-use zones to the cells. For example, the cells mostly fall under RgA category over RsA 

category. 

I used rules 1 and 2 for initialisation and rule 3 together with rule 1 and 2 for updating the land-use 

zones for the rest of the model runs. For Research Questions 2 and 3 (Chapters 4 and 5, respectively) the 

updates were based on the properties of the entire landscape (called regional level update in the 

model). In Chapter 3, a comparison was made between regional and local level updates of land-use 

policies to address Research Question 1.  

2) Game Theory (GT)  

The GT module captured the interaction between urban and rural actors at cell level, using the Hawk 

and Dove model derived from game theory (Weibull 1995). In the Hawk and Dove model, a player has 

two strategies to choose from. The strategies are (1) to compete (Hawk) or (2) to co-operate (Dove) 

(Kohli and Haslam 2017). In the model, as urbanization progressed, the urban actors appropriated cells 

in the landscape for urban land use. In the process, the urban actors from one cell interacted with rural 

actors occupying or dominating the target cell, as a group, to appropriate a non-urban cell. Both the 

group of actors, urban actors who want to move into a cell and groups of rural actors who dominate the 

target which urban actors want to appropriate, could choose to either compete for the cell or co-

operate. The strategy was selected by the actors at cell level. Urban Hawks were the urban actors who 

compete against rural actors for a cell and urban Doves were those urban actors who did not wish to 

appropriate the non-urban cells and therefore, did not compete against the rural actors. Rural Hawks 

were the rural actors who already dominated a cell that urban actors wanted to appropriate and 

resisted urban Hawks from appropriating and transforming the cell for urban land use. Rural Doves were 

the rural actors dominating a cell however ready to comply with urban Hawks and allow land use 

transformation. During the model run, at one iteration, only one strategy dominated a cell. In the 

model, the focus was on the interaction between the group of rural and urban actors representing a cell, 

therefore, urban actors never competed with other urban actors in the model.  

 

3) Spatial neighbourhood Information (SI)  

In addition to actors’ interactions between cells, availability of infrastructure, and land-use policy, 

spatial interactions in a landscape play an important role in defining LULC patterns. Land use change 

decisions made by urban actors depend heavily on already existing nearby land use (Verburg et al. 2004, 

van Schrojenstein Lantman et al. 2011). To include neighbourhood preferences of urban actors in their 

decision making for appropriation of calls and land use transformation, I estimated the number of 

similar land use cells in the neighbourhood of a target cell, as an ‘enrichment factor’ of the cell (Verburg 
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et al. 2004).  I calculate the enrichment factor by measuring the relative occurrence of each land-use 

type in the neighbouring cells, on a scale from 0 to 1. The factor is the ratio of similar land use cells in 

the neighbourhood of a cell estimated for all the classes in the landscape (equation 2.4). In the model, 

for simplicity, I limited the preference of urban actors to urban neighbourhoods which means urban 

actors preferred to move into a cell which had more numbers of urban cells in its spatial vicinity. To 

quantify the preference of urban actors, I estimated the enrichment factor of the urban land use as SI 

which was included in the cell score (Cell Score = 𝑍 𝜆(𝑆𝐼) + (1 − 𝜆 )(𝐺𝑇)        ----- Equation 2.3). The 

enrichment factor by Verburg et al. (2004) is given in the following equation.  

𝑆𝐼𝑖,𝑘,𝑑   =  
𝑛𝑘,𝑑,𝑖/𝑛𝑑,𝑖

𝑁𝑘/𝑁
              ----- Equation 2.4 

Where, i is the target cell, k is the land use type and d is the distance from the neighbourhood of the 

target cell. N is the total number of cells in the landscape.  

 

2.3 Verification  

Verification is an important step that is done to test and ensure a computational model is free from bugs 

and matches the underlying conceptual model. Verification of a model is done when the model is 

implemented from its conceptual form into computational (programming) model (Graebner 

2018).  Graebner (2018) emphasis that verification of the model is to assess the ‘internal consistency' of 

the model. I performed a series of tests to verify the model. Most of the checks for bugs were 

performed as the model was being programmed. I used three different sets of data to verify the model. 

First was a subset of an image (e.g. 10x10 cells) with a limited number of LULC classes (ranging from 2 to 

4), second was a single image and third, was the entire dataset of the images but for a limited number of 

iterations. I verified the results by printing the results of key intermediate steps and variables using print 

statements during the model run. In addition, the intermediate results were saved as shapefiles (vector 

images) with respective attributes of each cell. This was to check if the model proceeded as expected. 

For example, in the model, the urban cells should increase and the count of cells with other LULC classes 

should decrease. Record with a count of all cells with different LULC classes was saved after every 

iteration into Excel sheets. Further, it was important to make sure that only immediate neighbours were 

selected, particularly at the landscape boundary. 

I also embedded a set of checks at various points in the model to ensure that model is running correctly 

and smoothly throughout the actual model runs. A check was maintained at the start of the model to 

ensure that there weren’t any unknown classes in the image. In the Land-use policy update Module, the 

criteria used to initialize LUZ (at first iteration) and corresponding score (Z) was slightly different from 
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criteria used to update respective LUZ and corresponding Z (later iterations) (discussed in Section 2.2.4). 

Therefore, a check was maintained during the model runs to confirm if it was the first iteration of the 

model run or was the periodic update. In the Spatial Neighbourhood information (SI) Module for 

estimating enrichment factors in the neighbourhood window, it was ensured that all LULC classes were 

included in estimating the neighbourhood values. For all the cells, at different steps, it was checked if 

the cell belonged to the image boundary or was in the middle of the landscape to ensure only available 

neighbours were included in the neighbourhood window.  

2.4 Sensitivity Analysis  

Sensitivity analysis of computational models is performed to determine the influence of parameters on 

the output. Not all parameters exert the same influence on the output, some parameters may be 

insignificant and therefore, can be eliminated from the model to reduce the model complexity. In 

addition, parameters also influence the output uncertainty. Sensitivity analysis is also performed to 

identify the parameters that may need more knowledge in order to reduce the output uncertainty 

(Hamby 1994, Pianosi et al. 2016).   

I first selected the level of neighbourhood information or weight factor () and heterogeneity of input 

landscapes as the parameters that (Table 2.2) have a strong influence on the outputs based on 

experience and knowledge of the model  (Hamby 1994). For addressing the research questions I have 

used two levels of landscape heterogeneity (high and low). The landscape heterogeneity in the model 

corresponds to the spatial arrangement of different patches in the landscape (Chapter 3 and Chapter 5). 

There are various approaches for sensitivity analysis broadly classified into local and global 

approaches(Pianosi et al. 2016). I have used the one-at-a-time (OAT) approach to perform sensitivity 

analysis on the two parameters. OAT is a localized approach where one parameter is changed at a time 

and the rest are kept constant for model runs to estimate the influence of the parameter on the output 

(Hamby 1994). In the model, I first changed the value of the level of neighbourhood information and 

kept the landscape heterogeneity constant and estimated the resulting variability in the number of 

urban cells as the output. I then performed the sensitivity analysis for different levels of heterogeneity, 

where I changed the landscape heterogeneity from low, medium, and high while the level of 

neighbourhood information was constant. The results showed variability in the neighbourhood 

information which implies there was stochasticity in the model due to the two parameters.  See box 

plots in the appendix A.  In addition, because the model was theoretical in scope therefore, calibration 

and verification was not performed. 
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2.5 Conclusion  

I have described the dynamic simulation model developed to address three research questions in 

subsequent chapter. The components of peri-urban SES used in the model are mapped to the tier-1 and 

2 of the SES Framework.  The equation (2.3) to estimate cell score described here are used in Chapter 3, 

4 and 5. In the method section of each chapter I have described how I have used the model to answer 

the related research question.  

The next three chapters use the model to explore spatially explicit feedbacks and their relevance for 

Ostrom’s design principles.  
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Chapter 3 :  Spatially explicit social-ecological feedbacks shape 

governance of dynamic landscapes 

 

3.1 Abstract 

Rapid urbanization is critical landscape transition that threatens biodiversity, ecosystem goods and 

services, and social sustainability. Interactions between social-ecological processes and landscape 

governance drive such landscape transitions and are critical to controlling urbanization. Ostrom’s design 

principles assert that effective landscape governance requires congruence between governance rules 

and local social-ecological conditions. However, little is known about how to achieve congruence in 

large-scale, complex, dynamic SESs such as peri-urban systems, partly because the local conditions are 

constantly changing. Using dynamic simulation models, I tested how spatially explicit feedbacks 

between ecological patterns and landscape governance influence landscape dynamics. I captured the 

feedbacks by varying the spatial extent of decision making from regional to local scale across landscapes 

for two different levels of LULC heterogeneity. I found that the rate of urbanization was higher for high 

heterogeneity landscapes than low heterogeneity landscapes. Further, the urbanization trend differed 

significantly at the regional-scale as compared to the local-scale for highly heterogeneous landscapes. 

For low heterogeneity landscapes, the trend was similar for both regional and local scales. I extended 

and operationalised Ostrom’s design principle for large-scale SES by explicitly defining the term ‘local’ as 

relative rather than fixed, that is, as a spatial extent of decision-making based on landscape 

heterogeneity. The analysis extends our understanding of fit between landscape governance and spatial 

processes.  

 

3.2 Introduction 

Across the globe, natural resources are under tremendous pressure from increasing human population 

and the demands for economic growth. This has led to the decline and loss of important ecological 

landscape elements. Degradation of natural resources and loss of ecosystem and services and goods is 

particularly prominent in urbanizing landscapes. For example, in some cities of the Global South, rising 

demand for urban land has led authorities to reclaim wetlands and water bodies for urbanization 

(Nagendra et al. 2013, Hettiarachchi et al. 2014). The loss of these ecosystems has not only influenced 

the ecological functioning of the area but has affected humans, for example through changes in water 

quantity, quality, and variability (e.g., floods, water scarcity). Where human pressure on resources is 
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high, effective landscape governance is critical to achieving the balance between economic growth and 

ecosystem integrity that is essential for social and environmental sustainability (Morrison 2006).  

Landscape governance has both formal (e.g. land administration, land-use rights and land-use planning) 

and informal (e.g. norms, structures, and processes) elements(Kusters et al. 2020). It structures actors’ 

decisions (Fazal et al. 2015) and influences the spatial and ecological dynamics of land use (Pickard et al. 

2016). In urbanizing landscapes, often the governance structure follows a linear, top-down approach 

which means rules and policies related to environmental management are largely defined, developed 

and implemented by central authorities at higher (national or regional) levels (Zhang et al. 2019). For 

example, top-down zoning systems are often used to create rules for identifying and regulating land use 

and conservation of green spaces in urbanizing areas (Evans et al. 2008). However, predominantly top-

down approaches are not always sufficient in managing urbanizing landscapes, and may lead to 

undesirable results such as low community buy-in, leapfrog development and urban sprawl which is 

common in the urban peripheries of the countries witnessing rapid urban development such as China 

and India (Evans et al. 2008, Salet and de Vries 2018, Zhang et al. 2019). This often occurs due the 

mismatch between the scale of governance and the scale of environmental, ecological, and biophysical 

processes (Christophe and Tina 2015, Salet and de Vries 2018). For example, there is often a spatial 

mismatch between administrative boundaries and underlying ecological processes when managing 

landscapes (Robinson et al. 2017). This is due to limited understanding of the interactions and feedbacks 

between the governance units and social and ecological components of the urbanizing landscapes 

occurring across multiple scales and levels (Borgström et al. 2006, Cash et al. 2006, Gomes and Hermans 

2016). Researchers are therefore increasingly advocating for more inclusive governance approaches that 

acknowledge the complexities of urbanizing landscapes as integrated social-ecological systems (Vij and 

Narain 2016, Menatti 2017, Cerquetti et al. 2019).  

Commons approaches acknowledge the complex interface between ecological and social systems (Görg 

2007, Cerquetti et al. 2019). Ostrom’s design principles (summarised in Table 1.1), for example, propose 

generalized governance rules for Social-Ecological Systems (Ostrom 1990), based on the characteristics 

of both social and ecological components of the underlying SES and their interactions (Cox et al. 2010). 

Design principle 2, in particular, emphasises congruence between rules and local conditions  for 

effective management of resources (Ostrom 1990). Initially, scientific understanding of ‘local resource 

conditions’ revolved around the availability of resources (e.g. artisanal fisheries and irrigation water) at 

relatively fine scale as well as the cost of extracting the resources (Agrawal 2002). However, over the 

last decade, researchers have sought to apply the design principles beyond the traditional small-scale, 

community based-focus to large SESs that have multiple complex social-ecological elements, such as 

extensive resources, trans-boundary governance, or a large number and diversity of actors (Huntjens et 
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al. 2012, Epstein et al. 2014, Fleischman et al. 2014a, Villamayor-Tomas et al. 2014, Lacroix and Richards 

2015). Studies based on large SESs and resource systems such as air pollution and open ocean fisheries 

have emphasised the importance of design principle 2 for the management of complex SESs (Epstein et 

al. 2014, Fleischman et al. 2014a). With further research and expansion of Ostrom’s design principles to 

large and complex SESs, the list of resource characteristics considered relevant to governance has 

expanded to include spatial and temporal heterogeneity (Cox et al. 2010, Cox 2014, Vogt et al. 2015). 

However, operationalising the design principles to address the issue of mismatch and landscape 

governance in dynamic terrestrial resource systems remains limited (Robinson et al. 2017, Foster and 

Iaione 2019, Myers 2020). I address this gap by operationalising design principle 2 for urbanizing 

landscapes in peri-urban SESs.  

Peri-urban SESs are transient in nature. The landscape is continually transforming from natural-rural 

landscapes to urban landscapes leading to a mix of rural, urban, and natural landscapes and this is often 

accompanied by a shift in the governance structure, whereby existing institutions including rules, norms, 

and strategies in the peri-urban SES corrode and new institutions emerge (Mundoli et al. 2017, Singh 

and Narain 2019). For example,  to address the demands of a growing city, formal institutions led by 

urban authorities often replace the existing commons in a peri-urban SES (Singh and Narain 2019). Both 

internal adjustments and external components such as land use transformations and actors’ preferences 

influence the evolution of institutions in a peri-urban SES (Gomes and Hermans 2016). Spatial attributes 

of the terrestrial resource system such as geographical context, topography, ecological diversity, and the 

total area also influence the governance structure in dynamic landscapes (Leslie et al. 2015, Sharma et 

al. 2016, Gari et al. 2017, Cho et al. 2019). Therefore, for effective landscape governance, it is important 

to consider local resource conditions and the spatial characteristics of the terrestrial resource system.  

Design principle 2 emphasises congruence between local conditions and appropriation rules with two 

elements, one of which focuses on the relationship between the level of restriction (rules) and local 

conditions in an SES (Agrawal 2001).  The local conditions include both social and ecological conditions 

such as resource characteristics. However, in the literature related to operationalizing the design 

principles, there is less focus on local ecological conditions as compared to local social conditions in an 

SES (Bluemling et al. 2021).  A close reading of the literature suggests that local is assumed to mean the 

lowest level of land use authority (Marshall 2008, Bell and Morrison 2014). However, the ecological 

processes and their spatial characteristics are sensitive to the spatial scale. Often, the spatial extent of 

social, economic, and ecological processes do not always match the spatial extent of land-use policies 

(Epstein et al. 2015). Frate et al. (2014) have shown that spatial extent of observation influences the 

information inferred from the landscape, which in turn influences the decision-making. Further, the 

term ‘local’ is not clearly defined in the context of spatial extent of the ecological conditions in a 
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terrestrial resource system in the design principle 2 (Agrawal 2002, Marshall 2008). To address this gap, I 

explore the interactions between local ecological conditions and landscape governance to understand 

the influence of varying spatial extent on the emerging outcomes in a peri-urban SES. 

Ecological conditions can influence landscape governance through various pathways. Spatial 

heterogeneity including LULC patterns are one of many influences on landscape governance (Leslie et al. 

2015, Sharma et al. 2016, Charnley et al. 2017). Spatial heterogeneity of LULC classes is a characteristic 

feature of a peri-urban SES  and is often used in geovisualization approaches as input to both 

understand dynamics in an urbanizing landscape and inform policy making (Setturu and Ramachandra 

2021). The spatial heterogeneity of the LULC classes is  associated with the underlying ecological 

processes and influences flow of ecosystem services and goods (Zhou et al. 2014, Turner and Gardner 

2015). For example, fragmentation of forest patches influences the connectivity and habitat in a region 

(Turner et al. 2012).  Spatial heterogeneity across a landscape provides information about the 

underlying processes that generate landscape patterns (Zhou et al. 2014, Setturu and Ramachandra 

2021). The spatial characteristics including spatial heterogeneity are sensitive to the spatial extent and 

may produce different results as the spatial scale of governance varies (Cattarino et al. 2014).  I tested 

the hypothesis that the impact of spatial heterogeneity on outcomes of a peri-urban SES varies as the 

spatial extent of decision making varies via emergent feedbacks. The feedback, therefore, can help 

reveal underlying mechanisms (Zhou et al. 2014) that can inform the term ‘local’ to operationalise 

design principle 2 for peri-urban SES. To test this hypothesis, I used a dynamic simulation model to 

explore the influence of varying spatial extent on the response of feedback between landscape 

conditions and governance and tested the results with a counterfactual whereby the landscape 

conditions were not included in the decision making.  

3.3 Methods 

I used the components of a peri-urban SES as mapped to the SES Framework, discussed in Chapter 2. In 

the following section, I first give a brief overview of the model followed by a description of how I used 

the model to test the hypothesis.  

The model was designed to capture the interactions among different components of a peri-urban SES 

which include interactions among urban and rural actors, the land-use policies as a governance system, 

and the LULC pattern of the landscape. In the model, the focus was on the movement of urban actors 

into peri-urban areas and resulting land use transformations of the cells into urban built-up. As the 

population in a cell increased and reached the carrying capacity of the cell, a percentage of urban actors 

moved out of the cell into one of the cells in their immediate neighbourhood. The urban actors selected 

the cell with highest cell score out of all the cells in the neighbourhood window (equation 2.3). The cell 
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score was a combination of three variables which include LUZ of the target cell (Z), interaction with 

actors occupying the target cell (GT), and the spatial neighbourhood of the target cells (SI). Each of the 

three variables were estimated using the three sub-modules respectively (see section 04 for the details). 

If the urban actors moved into a cell, which belonged to a LULC class other than urban built-up, the 

model updated the LULC of the cell into urban built-up. 

I explore the feedbacks between the resource system and governance system which I captured using the 

sub-module ‘Land-use policy update’. In the model, urban actors made decisions for land use 

transformation at a cell level, at which existing land-use policies and corresponding LUZs of the cell 

influenced the decisions of urban actors among other factors. In a dynamic landscape such as a peri-

urban area, the LUZ to which a cell belongs is updated as the landscape evolves. Therefore, the model 

also updated the LUZ of each cell periodically and assigned new LUZ to each cell based on the existing 

landscape conditions. 

To design update rules, the ‘Land-use policy update’ sub-module used information about the amount 

and distribution of LULC classes in the landscape. The spatial extent of the landscape within which the 

LULC characteristics are considered for the decision-making is usually a fixed area based on 

administrative boundaries. However, local ecological conditions and LULC patterns vary across the 

landscape in a peri-urban SES. Therefore, to apply design principle 2 and to establish congruence 

between local conditions and LUZ, I varied the spatial extent of decision making in the landscape. To test 

the hypothesis, I varied the spatial extent of decision making from regional to local scale and explored 

the implications of decision-making at different scales for landscapes with different levels of spatial 

heterogeneity.  

I created a 2x2-study design that contrasted high and low levels of spatial heterogeneity with land-

use zone updates based on the landscape conditions at the local scale and the regional-scale, 

respectively. I used two sets of landscapes with different levels of landscape heterogeneity based on the 

urbanization patterns of the Indian cities (Vidyarthi et al. 2017). The landscape conditions around 

peripheries of the cities, e.g. in Pune and Bengaluru, are not similar in all directions. For example, the 

LULC pattern such as spatial heterogeneity is higher in one direction as compared to another. The spatial 

heterogeneity varies because of various social and ecological reasons including existing topographic 

features, previous policies, and existing LULC type. The different landscape conditions influence the 

pattern of urban expansion beyond the initial boundary of the cities. In Pune, for example, the spatial 

expansion tends to dominate in the North-West direction (Ramachandra et al. 2014). To keep the model 

simple, I used only two levels of landscape heterogeneity. I prepared two simulated data sets comprising 

of 100 landscapes in each set, using the NLRM package (Sciaini et al. 2018). The first set had 100 

simulated images of landscapes with low spatial heterogeneity (e.g. Figure 3-1 a) while the second had 
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100 simulated images with much higher spatial heterogeneity (e.g. Figure 3-1 b). I maintained the 

degree of spatial heterogeneity constant for each set and changed the arrangement of patches for each 

landscape within the set.  

 

Figure 3-1: an example of simulated landscapes, (a) low heterogeneity landscape and (b) high 

heterogeneity landscape. Both landscapes consist of eight LULC classes listed in the legend.  100 images 

of each landscape was used in each dataset, where spatial arrangement of patches varied in each image 

within one dataset. 

For the regional-scale update, the model considered the LULC characteristics of the whole landscape to 

update and assign LUZ to each cell. For the local-scale update, I divided the landscape into 25 non-

overlapping administrative windows of 10 × 10 cells and identified ‘local’ extent by the windows (Figure 

3-2). To update the LUZ of cells at local-scale, the model considered the LULC characteristics only within 

the window that contained the cell. The model updated LUZ for each cell after every 5 iterations (or 5 

years) for both the local and regional scales.  

The GT sub-module and the SI sub-module, the other two sub modules, were also run simultaneously to 

capture the cell-level interactions among rural and urban actors and spatial neighbourhood information 

about LULC in the neighbourhood of the target cells, respectively.  
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Figure 3-2: Thick black lines forming a grid and dividing the images into 10x10 subsets is an example of 

the non-overlapping windows demarcating spatial extent for the local- scale updates in a landscape. 

Each window is represented is of size 10 x 10 cells.  

I explored the outcome of the model by quantifying land use transformation to urban built-up over 200 

iterations (which is 200 model years). In the model, LULC of a landscape is updated every year (per 

iteration), while land-use policies are updated every 5 years (every 5 iterations) by re-categorizing each 

cell into a new LUZ (Table 2.1) to ensure that the governance system is adapted to ongoing changes in the 

landscape.  

I used three quantities as indicators of the emergent outcomes of the peri-urban SES:  

1. Total urban area in the landscape: Number of urban cells in a landscape. This is the measure of area 

occupied by urban land cover. 

2. Rate of urbanization: percentage change (gain) in urban area per year. This measure is an adaptation 

of the ‘intensity analysis’ method for land transitions (Aldwaik and Pontius 2012). 

3. Pattern of urbanization:  area occupied by the rest of the seven classes (except urban built-up) at 

every iteration, estimated as the total number of cells per iteration. As urbanization progressed, the 

model converted cells belonging to other LULC classes into urban built-up. I wanted to test if there is any 

difference in the preference of change in LULC classes to urban built-up for different cases. 
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 Each of the three indicators including the total urban area, rate of urbanization and pattern of 

urbanization are related to the spatial sustainability of an urbanizing landscape. Researchers have 

associated the increase in urban land use with detrimental effects on the environment resulting in the 

degradation of ecosystem goods and services. For example, an increase in indiscriminate transformation 

of land for urban land use such as urban sprawl causes an increase in heat island effects, an increase in 

greenhouse emissions, loss of groundwater and an increase in flood-related events (Izakovičová et al. 

2021, Nuissl and Siedentop 2021). The amount of land converted together with the rate at which the 

land is converted for urban land use (or the rate of urbanization) influences the sustainability of the 

landscape (Zhang et al. 2020). For example, Zhang et al. (2020) have shown that the rapid land-use 

change has influenced the soil properties in Lanzhou New Area in China. Rapid land-use change which is 

common in peri-urban areas, particularly in the Global South, adds to the complexity of peri-urban 

SES (Rauws and de Roo 2011). In a peri-urban area, often spatial expansion of urban land use occurs at 

the expense of non-urban land use such as wasteland, forests, and wetlands. The impact of land use 

transformation for urbanization on the environment and ecological processes also depends on the 

pattern of urbanization which means the type of LULC class transformed for urban land use. For 

example, developing a built-up area on a drained out wetland is more detrimental to the environment 

as compared to using formerly agricultural land which was already degraded or was used as a 

wasteland (Nuissl and Siedentop 2021). Therefore, the amount of urbanization together with the rate of 

urbanization and the pattern of urbanization are useful indicators to assess the sustainability of a 

landscape.  

Statistical analysis 

I hypothesized that the results observed in the case of the regional and local scale update were 

influenced by spatial heterogeneity of the landscape because of the interactions between landscape 

conditions and the policies. To test the hypothesis I used a null model. A null model acts as a 

counterfactual by excluding the mechanism or process of interest (Gotelli and Graves 1996).  At both 

regional and local level updates, existing landscape conditions were included to identify land-use zones 

of a cell which influenced the outcomes in a landscape. In the null model, I assumed there is no 

interaction between the landscape conditions and decision making to assign land-use zones. Therefore, I 

didn’t include the landscape conditions in identifying land-use zones of the cells for both high and low 

heterogeneity landscapes, as was done in the case of regional level and local level updates. The land-use 

zones were assigned randomly to the cells. I then compared the amount of urbanization as an outcome 

in the null model to the cases when the landscape conditions were included in updating land-use zones.  

I then performed preliminary analysis on the data set and then divided the experiments into two broad 

steps to test for the effects of heterogeneity and scale.  
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For the preliminary analysis, I tested whether the initial landscape composition and configuration had a 

significant influence on the model outcomes for both scales of decision making and for the null model 

after a certain time period. I used patch-based landscape metrics (Turner et al. 2010) to describe 

landscape pattern before and after each model run. I estimated the average size of the urban patches 

(Patch Area), the number of urban patches (No. of Patches), edge density of the urban patches (Edge 

Density), and the standard deviation of the urban patch size within each landscape (SD Patch) for all 

input landscapes using the Landscapemetrics package in R (Hesselbarth et al. 2019). Patch Area, number 

of patches, Edge density and SD patch are some of the commonly used metrics used to quantify spatial 

composition and configuration of a landscape which may influence the outcomes (Plexida et al. 2014).   

I performed multiple regression for the two data sets where landscape metrics were the independent 

variables. One of the assumptions for multiple regression is no multi-collinearity which means that 

independent variables are not highly correlated with each other (Field et al. 2012). I used Principal 

Component Analysis to test and eliminate highly correlated variables (Field et al. 2012). I selected three 

out of four predictor variables (Patch Area, Edge Density and Standard Deviation of the urban patch size; 

dropping the fourth because it was redundant) as useful measures of landscape change. These three 

variables preserved the maximum information (60%) in the first component of the Principal 

Components Analysis. For both data sets, the predictor variables were Patch Area, Edge Density, and 

Standard Deviation of the urban patches at the beginning of the model. For the first data set, the 

response variable was the number of urban cells at when the slope of the curve first changed. I defined 

the saturation point as the time beyond which the urban area did not change significantly for the rest of 

the model’s duration. I estimated the saturation point and the first point of change in the curve using 

the findchangepts function of MATLAB (Figure 3-3).  

For the second data set, the response variable was the gradient (or the rate of change of urban cells) at 

the first change point. I performed multiple regression for all six cases (Table 3.1). 
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Table 3.1: Experimental design used to test the effects of landscape heterogeneity and the scale of 

governance on the amount of urbanization. Numbers indicate number of model runs under each pair of 

conditions. 

 

 

 

 

 

 

 

 

After the preliminary analysis, I performed the experiments in two steps:  

Step 1:  I first measured the influence of spatial heterogeneity on the three outcomes. I varied the 

spatial heterogeneity of LULC classes, keeping the spatial extent of land-use policies constant to the 

regional-scale update. In step 1, I applied the model to the two sets of landscapes. I reported the total 

urban area and the rate of urbanization. 

Step 2: Having clarified expectations relating to path dependence in step 1, I tested the influence of 

scale of decision-making for both high and low heterogeneity landscapes. I used two scales of decision-

making (regional and local) for both landscapes of heterogeneity. I ran the model for 2x2 sets (high and 

low heterogeneity landscapes for regional and local scale update). I reported total urban area, the rate 

of urbanization and the pattern of urbanization. 

To compare the rate of urbanization between time series, I limited the duration of urbanization to year 

120 because for almost all cases, the rate of urbanization tends to be zero beyond year 120. I measured 

the dissimilarity between the rates of urbanization using the diss.AR.MAH function of the R-based 

package TSclust (Montero and Vilar 2014). The metric tests if the time series are derived from the same 

auto-regression model, considering the autocorrelation of the time series. 

3.4 Results 

Ostrom’s design principle 2 asserts congruence between local conditions and rules. I focused on the 

interaction between spatial heterogeneity (as resource condition) and land-use policy (as the 

governance system). 

  

     Landscape heterogeneity                  
Scale of  
governance 

Low heterogeneity  High heterogeneity 

[none: the null model] 200 200 

Local  200 200 

Regional 200 200 
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Preliminary Analysis 

For both the high and low heterogeneity landscapes, urbanization happened more rapidly for the null 

(Figure 3-3 and Table 3.2). The null model reached saturation point much earlier than for the regional-

scale and the local-scale update, for both the high heterogeneity (at around 25th year) and low 

heterogeneity landscapes (at around 70th year). In addition, the total urban area was higher for the null 

model than the regional-scale and the local-scale update, for both the low (68%) and high (84%) 

heterogeneity landscapes.  

 

Figure 3-3: Comparison of the results of the null model, the regional scale update, and the local scale 

update for (a) low and (b) high heterogeneity starting landscapes. The thick lines show the average 

urban cells in all three cases; the dotted lines show the standard deviation in each case.  

  

a) b) 
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Table 3.2: Comparison of the time taken to reach the saturation point and the total area occupied at the 

saturation for the two sets of landscapes when the model updated the LUZ at regional-scale and local-

scale respectively and for the null model. 

 Scale of update Saturation point 

(at year) 

% urban area at the 

saturation point 

 

Low 

Heterogeneity 

landscape 

Null Model 70  68% 

Local-scale update 100 56% 

Regional-scale 

update 

100 60% 

 

High 

Heterogeneity 

landscape 

Null Model 23 to 25  84% 

Local-scale update 55 to 60  72% 

Region-scale update 33 to 37 68% 

Multiple Regression  

The result (Table 3.3) of multiple regression for all six cases had P>0.05 (for all 100 images in each case) 

and R-square value <0.05, which suggested no significant linear relationship of the amount of 

urbanization and the rate of urbanization with the initial landscape conditions.  

 

Table 3.3 : Result of multiple regression for the six cases. The numbers show the P-value and R-square 

value. The summary statistics for multiple regression is in Appendix B.  

 Scale of 
update 

Response variable: 
First Change Point 

Response variable:  
Gradient at First change point 

Low 

Heterogeneity 

Null Model P-value: 0.3007 
R-Square: 0.03955 

P-value: 0.565 
R-Square: 0.02627 
 

Local P-value: 0.3785 
R-Square: 0.03955 
 

P-value: 0.4728 
R-Square: 0.03233 
 

Regional P-value: 0.317 
R-Square: 0.04509 

P-value: 0.452 
R-Square: 0.03382   

High 

Heterogeneity 

Null P-value: 0.6994 
R-Square: 0.01467 
 

P-value: 0.4478 
R-Square: 0.02715 
 

Local P-value: 0.508 
R-Square: 0.02379 
 

P-value: 0.5601  
R-Square: 0.02112 
 

Regional P-value: 0.4863 
R-Square: 0.02497 

P-value: 0.4478 
R-Square: 0.02715 

 

From this point onwards, I only show the results of the regional and local level updates for the low and 

high and high heterogeneity landscapes and didn’t include the results of the null model.  
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Results of step 1 

 

For both low and high heterogeneity landscapes, the average urban area was the same at the beginning 

(Figure 3-4). As the model proceeded, the amount of urban area occupied increased at a much faster 

rate for the high heterogeneity landscapes than for the low heterogeneity landscapes. Consequently, 

the high heterogeneity landscapes reached saturation much earlier than the low heterogeneity 

landscapes (Table 3.3). Interestingly, at the saturation point, the total area occupied by urban cells for 

high heterogeneity landscapes was higher (~68%) than that of the low heterogeneity landscapes (~60%). 

 

Figure 3-4: Total urban area after every iteration. The solid lines are the average urban cells per iteration 

for each set. Orange and blue dashed lines show the variation for the low heterogeneity and the high 

heterogeneity landscapes, respectively.  

The rate of urbanization (Figure 3-5) shows the process of urbanization in the two sets of landscapes. 

The time series curves include two components, a high-frequency component (small, irregular peaks), 

and a trend. The high-frequency component captured changes in the rate of urbanization occurring 

periodically corresponding to land-use zone updates. Focusing on the more general trend, the rate of 

urbanization was higher for the landscapes with high heterogeneity than landscapes with low 
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heterogeneity. As indicated in Fig. 3.5, this trend occurred for the first 5 years, when similar cells were 

assigned similar land-use zones for the two cases. After the model updated the LUZ for all cells, there 

was a steep decrease in the rate of urbanization for the high heterogeneity landscape with urbanization 

approaching zero by around year 40. By contrast, the rate of urbanization decreased slowly for the low 

heterogeneity landscapes than the high heterogeneity landscapes. The two-time series were tested for 

dissimilarity by checking if the time series were generated from same auto-regression models. The two 

time series were found to be dissimilar (with p-value  0.998 for 120 years’ time assessed auto-

regression model analysis). 

 

Figure 3-5:  Rate of urbanization for  the high heterogeneity (in blue) and the low heterogeneity 

landscapes (in orange). The spikes represent high frequency components which correspond to the time 

when land-use policies were updated. The rate of urbanization was higher for the high heterogeneity 

landscapes but decreased drastically after year 10 when compared to low heterogeneity landscapes.  

Results of step 2 

In step 2, we tested the influence of varying the spatial extent of the land-use zone update for both the 

high and low heterogeneity landscapes. We compared the total urban area, the rate of urbanization and 

the pattern of urbanization for all four cases. 

In both high and low heterogeneity landscapes, the average of the total urban area was same for all four 

cases in the beginning of the model runs. We compared the results of the regional-scale and local-scale 

update for each set of landscapes (Figure 3-6) and across the two sets of landscapes (Table 3.2). The 
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time taken to reach the saturation point was same for the local-scale and the regional-scale update in 

the low-heterogeneity landscapes. In the case of the high heterogeneity landscapes, time taken to reach 

the saturation point was higher for the local-scale update than for the regional-scale update. For the low 

heterogeneity landscapes, total urban area occupied (at saturation point) was slightly higher in the case 

of the regional-scale update than in the local-scale update when compared to the high heterogeneity 

landscapes. In the high-heterogeneity landscapes, the total area occupied at the saturation point was 

much higher for local-scale update than for regional-scale update (Table 3.2). 

 

Figure 3-6: Total urban area after every iteration. (a) Corresponds to the results of regional and local 

scale update for the low heterogeneity landscapes, while (b) corresponds to the result of high 

heterogeneity landscapes for both regional and local scale update. The solid lines are the average urban 

cells per iteration for each set. Orange and blue lines show the standard deviation for local and region 

scale update, respectively. 

I further compared the rate of urbanization for all four cases (Figure 3-7). The rate of urbanization was 

same for the regional-scale and local-scale update within each set. For low heterogeneity landscapes, 

the average rate of urbanization peaked at ~6.2% for the regional-scale update, which was higher than 

the peak (average) rate of urbanization for the local-scale update (~5%). For the high heterogeneity 
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landscapes, the average rate of urbanization peaked at ~16% for the regional-scale update, which was 

higher than the peak rate of urbanization for the local-scale update (~11%). In the high heterogeneity 

landscapes, a cyclic trend was also prominent in the local-scale update while it was absent in the 

regional-scale update. The time series were tested for dissimilarity by checking if the time series were 

generated from same auto-regression models. The statistical dissimilarity (with p-value = 0.999 for 120 

years’ time) existed between the regional-scale update and local-scale update time series of the high 

heterogeneity landscapes. Similarly, the regional-scale update and local-scale update time series were 

statistically different (p-value = 0.999 for 120 years’ time) for the low heterogeneity landscape. 

 

 

Figure 3-7: Rate of urbanization for (a) local and (b) regional scale update for the high heterogeneity 

landscapes and for (c) local and (d) regional scale update for low heterogeneity landscapes. The solid 

lines is the average rate of change for each set. 
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Pattern of urbanization 

As the urban area increased, the area occupied by other classes decreased. While the saturation point 

was similar for both scales of update in the low heterogeneity landscapes, there was considerable 

variation in the pattern of urbanization for the two scales of update (Figure 3-8). For instance, the 

average area of forest cover converted to urban was higher in the case of the region-scale update (25%) 

than the local-scale update (14%), after 100 years (saturation point).  

In the high heterogeneity landscapes, the difference in the saturation point is prominent for the local-

scale and the regional-scale update (Figure 3-9). For the wasteland class, the ‘total area’ curves 

overlapped. This result occurred due to the model design, which was to convert the wasteland class into 

urban before any other classes. For the agriculture, waterbody, grassland, wetland, and forest classes 

the ‘total area’ curve corresponded to the results of the ‘total urban area occupied’ (Figure 3-6) and the 

rate of urbanization (Figure 3.-5). However, the rural built-up class did not follow the trend. For the 

local-scale update, the area occupied by each of the classes was higher than the regional-scale update 

until saturation point (year 40). The area occupied by the rural built-up area, by contrast was lower in 

the local-scale update than in the regional-scale update.  

 

Figure 3-8: Area occupied by a LULC class at every time interval for low heterogeneity landscapes at the 

regional-scale and the local-scale update. Each plot in the figure corresponds to the seven LULC classes 
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except urban built-up (see legend in Figure 2-6 for the LULC classes). The plots follow the pattern of loss 

among the seven classes in the low heterogeneity landscapes.  

 

 

Figure 3-9: The plots follow the pattern of loss among the seven non-urban classes in the high 

heterogeneity landscapes at both local and regional scale. Each plot in the figure corresponds to one 

LULC classes except urban built-up (see legend in Figure 2-6 for the list of LULC classes). The plots follow 

the pattern of loss among the seven classes in the high heterogeneity landscapes.   

 

3.5 Discussion  

Null model analysis and the saturation point 

For both high and low heterogeneity landscapes, in the case of the null model where the model did not 

include land use dynamics for updating LUZ of each cell, urbanization was more rapid than in the case of 

regional-scale and local-scale updates. The landscape reached saturation point much earlier for the null 

model and the amount of urbanization was higher when compared to the regional-scale and local-scale 

updates. This implies that patterns observed in the case of the regional-scale and local-scale were non-

trivial and not a simple result of a random process (Gotelli and Graves 1996).  
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In all six cases, the amount of urbanization reached a saturation point which means not all cells in a 

landscape were converted into urban land use at the end of model runs. This is because the area of 

interest across all landscapes was finite and the model could convert only a limited number of cells into 

urban built-up. In addition, the model classified the land-use zone of some cells into Protected Area and 

Reserved Area which further restricted the land use transformation. The model didn't allow land use 

transformation of the cells in the specific land-use zones if the number of green spaces in a landscape 

reached below a set threshold. 

 In addition, the results of multiple regression analysis show that the landscape configuration and 

composition do not have a direct relationship to the outcomes including the amount of urbanization and 

the rate of urbanization. In the model, other factors such as land-use policies and actors’ decisions, 

together with landscape conditions, influenced the outcomes. There was a difference in the rate of 

urbanization and the amount of urbanization for both the high and low heterogeneity landscapes at the 

saturation point (Table 3.1) because the landscape conditions drive the land-use policies and actors’ 

decisions which in turn influence the outcomes in a landscape (Cumming and Epstein 2020, Izakovičová 

et al. 2021).  

Existing landscape conditions influence the outcomes  

The results from Step 1 clearly show that the outcome of land-resource dynamics (the amount of 

urbanization and rate of urbanization) vary for the two landscapes when the LUZs were same for all the 

cells in the two landscape sets. The high heterogeneity landscapes had a higher rate of urbanization 

than the low heterogeneity landscapes even when the land-use policies and LUZ were same for both the 

landscapes, particularly in the first 5 years (Figure 3-5). In addition, in the case of null models, the 

amount of urbanization and time taken to reach the saturation point was different for both high and low 

heterogeneity landscapes (Table 3.3). The results confirm that the initial degree of spatial heterogeneity, 

and particularly the number and area of patches, influences the outcomes alongside land-use policies 

(Zhou et al. 2014).  

Spatial heterogeneity influences evolution of land-use policies 

We know that governance critically affects land-resource management (Ostrom 1990, Morrison 2006), 

the spatial dynamics of landscapes (Pickard et al. 2016), and decisions made by individual actors (Fazal 

et al. 2015). In peri-urban SES, however, the SES components and their interactions are continually 

evolving. Therefore, land-use policies and resulting LUZs are not predetermined but evolve or emerge as 

urbanization progresses (Allen 2003, Anderies et al. 2004), as shown in our model. This is particularly 

problematic in the rapidly urbanising cities of the Global South, where governments are often playing 

catch-up to control local land use change that is already occurring on the ground. Therefore, having a 
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fixed or strictly planned approach such as having a fixed spatial scale of decision making may be 

ineffective in a peri-urban SES, as often observed in the case of cities (Hedblom et al. 2017). 

Interestingly, the results show that the land-use policies evolved differently for the two sets of 

landscapes. After year 5 when the LUZ were updated, the rate of urbanization drastically decreased for 

the high heterogeneity landscapes. For the low heterogeneity landscapes, the decrease in the rate of 

urbanization was comparatively gradual over the years (Figure 3-5). This is because the spatial 

heterogeneity of the landscape also influenced the evolution of land-use policies and the assignment of 

land-use zones to the cells, which in turn guided and influenced actors’ decisions about land use 

affecting the land use dynamics (Parsons 1995). Therefore, we need governance approaches that better 

account for spatial heterogeneity in dynamic landscapes(Fazal et al. 2015, Hedblom et al. 2017).  

Spatial scale of decision-making influences feedbacks between the land-use policy and the spatial 

heterogeneity of the landscape   

 In the model, the aim was to explore institutional fit. Institutional fit is described as congruence 

between the institutions and the conditions to produce a desirable outcome (Cox 2012). The conditions 

can be ecological, social or social-ecological (Epstein et al. 2015).  I have explored fit between land-use 

policies and landscape level outcomes by setting up balance between the rate of urbanization and the 

area of green space in an urbanizing landscape. I focus on the spatial fit (Epstein et al. 2015) between 

land-use policies and existing landscape conditions and explored the effectiveness of land-use policies at 

two different spatial scales. In the case of the high heterogeneity landscapes at regional-scale update, 

the land-use policy was not effective in controlling urbanization as the model reached the saturation 

point rapidly compared to the low heterogeneity landscape. There was a mismatch, or lack of 

institutional fit (Epstein et al. 2015), between the land-use policy and the outcomes. However, when I 

varied the spatial extent of decision-making I observed that the model took more time to reach the 

saturation point at the local-scale update than at the regional-scale update for high heterogeneity 

landscapes (Figure 3-6(b)). 

The high frequency components (small cyclic peaks) in Figure 3-7(b) correspond to the time when the 

land-use policies were updated in the landscape. The small peaks show the change in the rate of 

urbanization due to change in land-use policies. The presence of high-frequency components at the 

local-scale in high heterogeneity landscapes confirmed that the land-use policy could regulate the rate 

of urbanization (Figure 3-7 (a)). However, at the region-scale update for the high heterogeneity 

landscapes, the peaks were not as prominent which implies there wasn’t a significant influence of land-

use policies on urbanization at region-scale update. This is because dividing the landscape into smaller 

units in high heterogeneity landscapes allowed regulation of local feedbacks on rules (Marshall 2008). 
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The results therefore show that the spatial scale of decision-making influences feedbacks between the 

land-use policy and the spatial heterogeneity of the landscape.  

Landscape dynamics were different for the low heterogeneity landscapes and high heterogeneity 

landscapes when the model varied the spatial scale of decision-making for the low- heterogeneity 

landscapes. In the case of the low heterogeneity landscapes, the amount of urbanization followed a 

similar trend unlike in the case of the high heterogeneity landscape. For both the region-scale and the 

local-scale update, time taken to reach the saturation point was almost the same. The difference in total 

urban area occupied at the saturation point was similar in case of the local-scale update than the region-

scale update in the low heterogeneity landscapes (Figure 3-6).The results therefore imply that a similar 

spatial scale will not result in similar landscape dynamics for landscapes with different levels of 

heterogeneity. The patterns observed at a particular scale are influenced by the spatial heterogeneity 

due to LULC classes in a landscape which in turn affect the decision making process (Wu et al. 2000, 

Frate et al. 2014, Turner and Gardner 2015).  

The pattern of urbanization also varied for the two sets of landscapes. In the early periods of the model 

runs, land-use policies did not allow any urbanization of forest cover for both levels of heterogeneity. As 

urbanization progressed and land became limited, the forest class eventually converted into urban, 

implying that land-use policies evolved to allow the conversion of the forest class. However, the land-

use policies evolved differently for the two scales of decision-making, both in the high and low 

heterogeneity landscapes. The forest class decreased at different rates for the two sets of landscapes for 

both the regional-scale and local-scale update (Figure 3-8 and Figure 3-9). Similarly, for the first five 

years, conversion of the grassland class was zero because of restrictions in the land-use policy. However, 

the grassland was converted into urban-built up in later years.  

The influence of feedbacks between the spatial heterogeneity and the spatial extent of decision-making 

should also shape other factors such as the resultant heterogeneity of the urbanized landscape. 

However, the model could not capture this due to design limitations where only cells in the immediate 

neighbourhood could convert into the urban built-up. In addition, it is important to note that both 

spatial and temporal variation influence the outcomes of urbanization (Epstein et al. 2015, Vogt et al. 

2015). The temporal scale of decision-making should also take into account the temporal scale of 

ecological processes such as the lifespan of trees for forest landscape management and the return 

period of environmental disturbances (Fischer 2018). In the case of a peri-urban SES, in addition to the 

spatial scale of decision-making, the temporal scale of decision-making may also influence the 

urbanization process in the SES. This is an ongoing area of research (Morrison 2017). 
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The feedbacks can be used to inform design principle 2 

Landscape governance is challenging in peri-urban SES due its transient nature resulting in gaps and 

misfits between institutions and outcomes (Hedblom et al. 2017, Mundoli et al. 2017). In addition, cities 

in developing countries (e.g. India and Sri Lanka) are witnessing rapid urbanization which increases the 

challenges of effective landscape governance due to added spatial and temporal complexity (Basawaraja 

et al. 2011, Hettiarachchi et al. 2013, Hettiarachchi et al. 2014). The lack of efficient landscape 

governance and management is evident from the lack of sufficient infrastructure such as roads, urban 

sprawl and loss of green spaces in peri-urban areas (Sudhira and Nagendra 2013). Scholars, therefore, 

have advocated multi-scale and multi-level approach to support landscape governance (Bragagnolo et 

al. 2014) and management particularly when using Ostrom’s Design Principles (Robinson et al. 2017). 

The scale includes both social and ecological scale, which influences the processes in an urbanizing 

landscape (Robinson et al. 2017). My findings here contribute to operationalizing the design principles 

for multi-scale governance approaches in dynamic landscapes such as those in peri-urban SES by 

showing that feedbacks between spatial heterogeneity of the LULC classes and governance can be used 

to inform the term ‘local’ in the design principle.  

In the model, I have given an example of landscapes with two different levels of heterogeneity against 

two different spatial extent of decision-making. In the results, the set of responses at the regional-scale 

and local-scale were not same for the two landscape types. This corresponds to previous studies that 

show that there may exist multiple spatial scales along which specific landscape characteristics may be 

more evident (Frate et al. 2014). Therefore, my findings suggest that for operationalizing Design 

Principle 2 in large-scale dynamic landscapes the term ‘local’ cannot be fixed but will vary depending on 

the landscape conditions.  

Implications of the findings for landscape governance and conservation 

Considering patterns of land use transformations in urbanizing landscapes, along with the amount and 

rate of urbanization, are important when making decisions for addressing natural management issues in 

the peri-urban SES. The variation in LULC types, their composition, and configuration can influence the 

flow of ecosystem goods and services (Rodriguez-Loinaz et al. 2015). For example, the particulate matter 

in the air varies with different LULC types and land use changes(Yang and Jiang 2021). The results show 

that the spatial scale of decision-making also influences the dominance of one LULC class over the other 

for urbanization. For example, in the high heterogeneity landscapes, the trend in the change of the area 

occupied by the rural built-up class was opposite to that of other classes in the region-scale update and 

the local-scale update until the saturation point (Figure 3-9). Thus, explicitly identifying the spatial 

extent of decision-making can contribute to identifying specific patches for effective land-use 
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management and conservation measures, for example, in maintaining ecological corridors during 

urbanization (Austin 2012, Vergnes et al. 2013, Frate et al. 2014).  

3.6  Conclusion 

I have extended and operationalized Ostrom’s design principle 2 by applying it to a dynamic large-scale 

SES. I showed that in governing large-scale and dynamic SESs such as peri-urban SES, policymakers 

should take spatial heterogeneity of the LULC into account when designing land-use policies. More 

importantly, I have shown that the term ‘local’ is a relative rather than a fixed concept; that is, it should 

be specified as the spatial extent of decision-making identified based on local ecological factors 

including landscape heterogeneity, rather than merely fixing it to the lowest level of authority.  

In the next chapter, I will address the second research question that explores the effectiveness of design 

principle 3 for a peri-urban SES when there is conflict among actors.  
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Chapter 4 :  Actor resistance influences effectiveness of Ostrom’s 

Design Principles for governing spatially dynamic landscapes 

 

4.1 Abstract  

Ostrom’s principles for the effective management of common pool resources emphasize the importance 

of local participation by actors in the design of rules. Design Principle 3, in particular, assumes that 

including local knowledge will facilitate the creation of effective rules that fit local social and ecological 

settings. However, the validity of the design principles is challenged in situations of high actor 

heterogeneity, especially in complex and dynamic social-ecological systems. I used a dynamic, spatially 

explicit simulation model to test design principle 3 in a highly heterogeneous simulated study 

representing the peri-urban area of a fast-growing city. During rapid urbanization, urban actors 

appropriate land in peri-urban social-ecological systems. Appropriation fragments peri-urban 

ecosystems while affecting the livelihoods of rural inhabitants by reducing land availability for activities 

such as agriculture. Little is known about how rural actors resist or accept these impacts and whether 

Ostrom’s design principles are useful in this context. I thus simulated the consequences of rural and 

urban actors’ decisions on emerging patterns of land use types in the urban periphery. I used game 

theory to describe competition for land and landscape composition, and configuration metrics to 

quantify the impacts of increasing rural resistance on landscape pattern. Landscape metrics (such as 

urban patch area, number of urban patches, clumping of urban patches, and edge density of urban 

patches) had a non-linear response to resistance to urbanisation. The results suggest that a small 

percentage of resisting rural actors can influence emerging landscape patterns. For example, resistance 

as low as 10% of the rural population to urbanisation was sufficient to influence the degree of clumping 

of urban areas. The responses of individual landscape properties varied for a given level of resistance. 

The non-linear and varying response of emerging landscape patterns to conflict among actors, and the 

presence of tipping points for ecological processes that depend on connectivity or area, can create 

significant opportunities and challenges for sustainable land use change in a spatially dynamic SES. I 

conclude that efforts to use Ostrom’s design principles to manage complex and dynamic landscapes 

such as peri-urban SESs must account for actor heterogeneity and the potential of actor resistance in 

achieving ecosystem sustainability.  
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4.2 Introduction 

The global sustainability of natural resource use depends on effective governance of human impacts on 

ecosystems. Ostrom’s design principles  (Ostrom 1990) are often invoked as best practices for the  

governance of common pool resources, such as water, pastures, and fisheries. Ostrom identified eight 

design principles (summarised in Chapter 1, Table 1.1) and linked them to social-ecological sustainability 

through her SES Framework (Ostrom 2007, 2009). The SES Framework provides a structured approach 

for a systematic evaluation of the governance of common pool resources, and supports additional 

empirical studies by describing the interlinkages and causal relationships between social and ecological 

components involved in common pool resource management (Binder et al. 2013, Partelow 2015, Tyson 

2017). Many scholars have proposed a commons based approach to manage natural resources in a peri-

urban SES (Vij and Narain 2016, Menatti 2017, Cerquetti et al. 2019). 

One of the main findings of Ostrom’s research was that groups can self-organise to devise effective 

institutional arrangements for the governance of the commons (Ostrom 1990, Schlager 2004). Design 

principle 3 emphasises participation of actors in collective decision making for effective governance of 

such resources. However, the validity of the design principle is challenging in situations of heterogeneity 

among actors, especially in complex and dynamic social-ecological systems (Fleischman et al. 2014a). 

Heterogeneity among actors such as conflicting resource-use interests, variable political influences and 

dominance, and variability in social, cultural, and economic status can lead to lack of cohesion, trust and 

give rise to situations of conflict among actors -  leading to unexpected outcomes in an SES (Vij and 

Narain 2016, Murunga  et al. 2021, Narain 2021). In addition, researchers have flagged the urgent need 

to move beyond the saturated focus on collaborative governance to understand other important 

processes, such as appropriation and resistance (Morrison et al. 2020b).  

In a peri-urban SES, heterogeneity among actors is recognized as one of the dominant actor group 

characteristics that influences outcomes, such as urban sprawl (Chirisa 2010, Magliocca et al. 2015). 

Actors also often have conflicting land use interests, varying socio-economic attributes, and cultural 

heterogeneity (Gashu Adam 2020). Local rural actors engaged in farm-related activities, for example, 

compete against urban actors seeking land use transformation for housing or industry. Additionally, 

governmental policies often support the urbanization of land in peri-urban areas, overruling traditional 

institutions and marginalising the responses of rural actors to the land use transformation (Patil et al. 

2018, Gashu Adam 2020). The actors in a peri-urban SES frequently lack the social cohesion, trust, and 

reciprocity that are important in developing norms and rules for natural resource governance (Baggio et 

al. 2016, Vij and Narain 2016). However, little is known about how these characteristics could generate 

unexpected outcomes in commons situations  (Vedeld 2000, Poteete and Ostrom 2004). 
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To understand the applicability of SES theory and design principle 3 to interactions among 

heterogeneous actors in spatially dynamic environments, it is important to understand the influence of 

cross-scale interactions (such as conflict) among heterogeneous actors at multiple social and spatial 

scales (Cox 2008, Ratner et al. 2013, Robinson et al. 2017). Based on previous observations of emerging 

land use patterns and conflicts among actors (Poteete and Ostrom 2004, Rauws and de Roo 2011, 

Magliocca et al. 2015), I hypothesized that responses of rural actors would affect decisions made by 

urban actors and that the nature of these responses could provide a mechanism that determines 

emerging land use patterns. To test this hypothesis, I used dynamic simulation models to explore the 

influence of rural-urban interactions on land use transformations, contrasting the results with a 

counterfactual in which there was no simulated conflict among urban and rural actors. Due to the 

anticipated relevance of cross-scale influences, I expected to find both non-random and non-linear 

relationships between emergent land use patterns and the degree of conflict between rural and urban 

actors. 

 

4.3 Methods 

In Chapter 2, I described the different components of the peri-urban SES and mapped them to the SES 

Framework. Chapter 2 also includes the detailed description of the model used here. To avoid 

redundancy, I now describe how I have used the model to test the hypothesis including experimental 

design, data description, and statistical methods used for the analysis.  

The Simulation Model  

For this analysis I focussed on capturing the lateral interactions among the actors and their influence on 

emerging landscape patterns as SES outcomes in the presence of other interacting social and ecological 

components.  

As discussed earlier in chapter 2, the urban cells were dominated by urban actors and the non-urban 

cells were mostly dominated by rural actors. In the model, ideally, as the population increased the urban 

actors within a cell collectively decide to move out of the cell and occupy a neighbouring cell called the 

target cell. The urban actors transformed the non-urban cell they move into, into urban land use. Actor 

groups dominating the target cell and urban actors who wanted to occupy the cell collectively decide to 

perform land-use transformation if the land-use policy allowed the transformation. However, in the 

model, the rural actors dominating the target cell can resist the rule to transform land-use or they can 

give up their position as rural actors and allow land-use transformation for the target cell.  

I have modelled the interactions (resist and comply) between urban actor groups and the actor group 

already occupying the target cell using the Hawk and Dove model of game theory. A player in a Hawk 



62 
 

and Dove game adopts a strategy to either compete (Hawk) or cooperate (Dove) (Kohli and Haslam 

2017). The game of cooperation and conflict was played between the actors at the cell level which 

means in the model, each cell could have either a hawk or dove strategy. I adapted Hawk and Dove 

strategies for both urban and rural actors in the peri-urban SES. In the model, an urban Hawk 

represented the cell with urban actors who wanted to compete or fight to acquire land parcels in the 

peri-urban SES for urban land use. An Urban Dove meanwhile was the cell where urban actors avoided 

conflict (or cooperate) with rural actors and mutually decide with rural actors not to appropriate a cell 

for urban land use. In the model, this implies that urban Doves were not interested in appropriating a 

land parcel. In peri-urban areas of the Global South, there are various reasons (such as value systems, 

lack of sufficient alternative jobs and skills, and a sense of security) as to why rural actors may not be 

ready to give up their land and allow land use transformation. I categorised those rural actors who 

resisted land-use transformations (e.g., by refusing to sell their land or staging protests to save 

agricultural land (Tyson 2017, Vidyarthi et al. 2017))  and fight against urban actors as rural Hawks. In 

the model, the cell in which dominant rural population adapted Hawk strategy was the rural Hawk. Rural 

Doves were the cells which were occupied by rural actors who were ready to give up land and comply 

with urban Hawk to allow land-use change for urban land-use. 

I modelled the spread of the urban population beyond the urban boundary into peri-urban areas and 

the emergence of different landscape patterns based on choices made by dominant actor group in each 

cell. At the start of the model (see Figure 2-3), I initialised each cell with LULC classes, LUZ, Z and 

population (including total population, urban population and rural population). As the urban population 

increased (due to migration or reproduction) and reached the carrying capacity, not all but a percentage 

of urban actors moved out of urban cells to seek more land for urban land uses. The urban actors could 

move into only one of their cell’s eight immediate neighbours (as in Moore’s neighbourhood window 

(Maria de Almeida et al. 2003)) at a given time. The urban actors used cell score (Equation 2.3, Chapter 

2) as the decision criterion and selected the cell with highest value of cell score. If the cell into which 

urban actor moved was not an urban cell, then the cell was reclassified as an ‘urban’ class .   

The focus of the study was to understand the interactions between rural and urban actors in presence 

of other interactions including the change in land-use policies and the spatial neighbourhood 

interaction. The urban actors, therefore, could transform a cell only if land-use policies allowed the 

transformation. Land-use policies were included using the score Z. The land-use policy sub-module 

estimated Z for each cell and updated the same periodically after every five years as described in 

Chapter 2. I kept the spatial scale (or governance scale) constant at landscape level for this chapter. 

Additionally, urban actors included the spatial neighbourhood information (SI, calculated using 

Neighbourhood Information sub-module) of the target cells in their decisions.  
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Experimental Design 

4.3.1.1 Simulated Data  

For this chapter, I used a data set with 100 simulated images. I maintained the number of classes and 

the level of heterogeneity constant for all the images and randomly assigned the patch sizes and 

distributions to all 100 images to add variability (see Figure 2-6 in chapter 2).  

In order to observe the impact of the response of the rural actors on resulting land-use patterns, I fixed 

the urban strategy to urban Hawk in the model and changed the strategy of rural actors in discrete steps 

by adjusting their level of resistance to urbanisation. I defined the level of resistance as the percentage 

of rural population resisting the change, which correspond to the percentage of rural Hawks in the 

landscape. I assigned a strategy to all the non-urban cells irrespective of their spatial location. The level 

of resistance ranged from one to 10 with a step size of 1. Each level represented the percentage of rural 

actors who adopted the strategy of Hawks (rural Hawks). For example, at level 1 meant that there were 

10% rural Hawks, at level 2 represented 20% rural Hawks, and level 10 meant 100% rural Hawks or 

maximum resistance. I also included level zero, with no rural Hawks. 

Hawks pay a cost for fighting against other Hawks in a Hawk and Dove model (Nowak & May 1992). In 

the model, the pay –off values was normalised between 0 and 1. Urban actors (urban Hawk) received a 

lower payoff when urban Hawks fought against rural Hawks and a higher payoff when they fought 

against rural Doves. The model used the pay-off urban actors received as input GT to estimate the cell 

score (Equation 2.3, Chapter 2). 

I ran the model on each of the 100 simulated images for 150 iterations for all 11 levels of resistance of 

rural actors (from 0 to 10). In the model, urban actors converted non-urban cells into urban class. As the 

area of interest had a finite space with 2500 cells, the landscape reached a saturation point, which I 

defined as the year beyond which the total urban area did not change significantly. I estimated the 

saturation point from the plot number of urban cells per iteration using the findchangepts function of 

Matlab (MATLAB 2016). I determined the iteration or the year when the slope of the curve depicting the 

number of urban cells first changed. I calculated the landscape configuration and composition metrics 

(discussed below) of the urbanizing landscape at the saturation point. 

4.3.1.2 Landscape configuration and composition metrics 

The aim of land-use policies is to have a sustainable landscape in a peri-urban SES which means to have 

an optimal distribution of land uses in the limited space (Botequilha Leitão and Ahern 2002). The land-

use transformation should serve economic needs but also maintain natural resources and provide social 

benefits. The LULC of land parcels are spatially interdependent and the resulting spatial patterns such as 

patch area and connectivity influence both social and ecological processes and resulting ecosystem 
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goods and services (Cumming et al. 2012, Banerjee et al. 2013). In conservation biology, conventional 

species-area relationship and island biogeography theory support the statistical relationship between 

various ecological processes such as species richness and various spatial characteristics of a landscape 

including habitat size, distance from the mainland, and patch complexity including edge effects and 

clumping of patches (Campos et al. 2013, Turner and Gardner 2015). Therefore, to test the policy’s 

success, I used standard landscape ecology metrics that measure the areas of different land uses 

(composition) and their shapes and relative positions to one another (configuration) (Turner and 

Gardner 2015). The metrics are used in quantifying the spatial dimension of landscape sustainability and 

contribute to landscape planning and management to address the sustainability goal (Botequilha Leitão 

and Ahern 2002). 

Table 4.1:  List of spatial configuration and composition metrics used to estimate the change in 

urbanization pattern as the level of resistance varied. Number of urban cells, total urban patch area, 

number of urban patches, edge density and clumpy index were estimated at class level for urban 

patches. Aggregation index and Mean Fractal dimension index was estimated at landscape level.  

Name of landscape metric Spatial Level Description 

Number of urban cells  Class Total number of the urban cells in the landscape 

Total Urban Patch Area (PA) Class  Sum of area occupied by the urban built-up 

Number of urban patches  (NP) Class  Total number of urban patches  

Edge Density (ED) Class Measure of edges associated with shape complexity  

of the resulting urban patches  

Clumpy Index (CLUMPY) Class Aggregation measure independent of landscape 

composition 

Aggregation Index (AI) landscape  Aggregation measure  

Mean Fractal Dimension index 

(FRAC_MN) 

landscape  Shape complexity measure based on perimeter area 

relationship 

 

4.3.1.3 Statistical Analysis of landscape metrics  

I first tested whether differences in the landscape patterns resulting from various levels of rural 

resistance were a result of a random process or not. I used null models to test the hypothesis. Null 

models exclude a mechanism or process of interest, acting as a counterfactual (Gotelli and Graves 

1996). For the null model, I tested the case when there was no resistance at all from the rural actors 

against land use transformations by urban actors which was at level 1 when the number of rural hawks 

were zero.   I used t-tests and estimated p-values to compare the result of landscape metrics for the null 

model to those from different levels of resistance.  

I then tested for the effect of confounding variables that may influence both the emerging landscape 

patterns and the level of resistance. If not accounted for, the confounding variables may lead to a 
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distortion of the true relationship between the response variable (landscape metrics) and the predictor 

variable (the level of resistance) (Skelly et al. 2012). In general, urbanization and changes in landscape 

metrics are interconnected (Yi et al. 2021) and the rate of urbanization may influence the results in the 

model. I checked for an influence of rate of urbanization on the relationship between landscape metrics 

and levels of resistance using linear regression (Pourhoseingholi et al. 2012).  

I first estimated the rate of urbanization by calculating the slope of the line representing the number of 

urban cells from zero iteration to the iteration at the saturation point for all levels of resistance. I then 

checked for the confounding variable which was the rate of urbanization and estimated the change in 

variance both before and after including the confounding variables. See 1.1.1.1.1.1Appendix C (section 

C.2), for the details.  

Fitting a curve to discrete data allows statistical inference of the relationship between the predictor and 

response variable and of the underlying mechanisms that relate the two variables (Johnson 1991, 

Frazier and Wang 2013, Turner and Gardner 2015). To perform curve fitting, I first calculated the mean 

value of landscape metrics estimated from the data set of 100 images. I then established that the mean 

value plots of landscape metrics are non-linear using effective degrees of freedom (edf). The edf reflects 

the degree of non-linearity between the driver and the response variable (Hunsicker et al. 2016). If edf = 

1 suggests that the relationship is linear; 1< edf <2 suggests a weak non-linear relationship and edf > 2 

suggests that the non-linearity in the relationship is high (Hunsicker et al. 2016). I fitted standard curves 

(power, log, logistic and exponential) on the mean values of the resistance level 1 to 10 using nls 

(Nonlinear Least Squares) function in R (RCoreTeam 2019). To find the best-fit curve I used three 

measures: AIC (Akaike Information Criteria) and log-likelihood. Lower AIC values indicate better fit 

whereas for log-likelihood the opposite applies. I estimated the inflection point for each curve using the 

function bese (library: inflection) of R (Christopoulos 2019). An inflection point indicates the location on 

a curve where the curve changes sign. In other words, it is the point where the dependent variable is 

most sensitive to the change in independent variable and is calculated from the double derivative of the 

equation of the curve (Frazier and Wang 2013). It is a point where a change in the direction of the curve 

occurs in a continuous function. 

4.4 Results 

Number of urban cells and the saturation point 

The results in Figure 4-1 highlight the effect of resistance of rural actors to the decisions made by urban 

actors as a function of degree of resistance. The urbanization happened rapidly for the low resistance 

level as compared to the higher resistance level. For instance, in 25 years more than 60% of the total 

area was urbanized when resistance level was 1 whereas for the same period only 18% of the total area 



66 
 

was covered by urban cells at resistance level 10. Urbanization was most rapid when there was no 

resistance from the rural actors—a condition for the null model. Under these conditions, about 70% of 

cells were urban in 25 years. 

   

 

Figure 4-1: Number of urban cells occupied at every iteration. For the purpose of clarity, I only include 

every alternate level of resistance. Blue line at year 24 marks the saturation points for level 1. I take the 

saturation point of level 1 as the point of reference for the landscape metrics. . In the figure, thick line 

represents the average value of amount of urban cells for each level of resistance and dotted line 

represent the variation (calculated as standard deviation) for all 100 images.  

Landscape metrics  

The response of the landscape metrics to varying level of resistance suggests that rural-urban 

negotiations have a strong and statistically significant effect on the emerging land use patterns (Figure 

4-2 and Table 4.2). For all six-landscape metrics the relationship was significant (p<0.05 after t-tests for 

100 images) with R2   > 0.9 for the least square fit of regression curves across the mean values for 

different level of resistance (Table 4.2).  

I found that the response of all six landscape metrics was not random (p<0.05) by conducting a two-

sample t-test to compare the result of null-model (resistance level 0) and resistance level 1 to 10.  

Interestingly, the resistance level after which the result of the t-test was significant varied for each 

landscape metrics (Table 4.2). For example, the number of urban patches and total urban patch was not 

random once the percentage of resisting rural actors reached 40%. For spatial configuration metrics 



67 
 

which includes clumpy index, edge density, mean fractal dimension index, and aggregation index the 

emerging patterns were significant even when the percentage of rural actors was low (<20%).  

Value of edf was greater than 1 for all landscape metrics, which confirmed a non-linear response to the 

varying level of resistance for all the metrics (Table 4.2). Total urban patch area and degree of clumping 

among urban patches followed a reverse logistic curve with a sharp curving sigmoid and a clear 

inflection point between level 4.5 and 3, respectively. As the total urban patch area increased, the urban 

patched coalesced and the number of urban patches decreased. The number of patches were lower at 

lower resistance level and increased with increase in level of resistance following a logistic curve. The 

quadratic curve of edge density indicates that a small change in the resistance level lead to significant 

changes in the shape complexity of the urban patches. The landscape level metrics also followed a non-

linear trend. The aggregation index followed a reverse logistic curve and mean fractal dimension (which 

represents the shape complexity) of all the patches in a landscape followed a quadratic curve.  
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b) 

d) 

e) 
f) 

a) 

c) 

Figure 4-2: Response of six landscape metrics to the varying level of resistance. (a) to (d) are class level metrics 

including (a) number of urban patches, (b) patch area, (c) edge density and (d) clumpy index showing the 

pattern in the urban built-up. Figure (e) aggregation index and (f) frac_mean index are landscape level metrics 

showing patterns at the landscape level. 
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Table 4.2: Curve fitted to the mean value of all six landscape metrics and the corresponding statistics.  

AIC and likelihood signify goodness of fit for each landscape metrics is available in the (Appendix C, table 

C.1 to C.6). 

 

 

I also checked for the cofounding variables for all the curves. I found that effect of rate of urbanization 

was mildly confounding as the change in R-square before and after addressing for confounders was not 

significant (<0.04). In addition, the significance of x and its power variants were still significant (p value 

<0.05, result of t-tests for 100 images), after addressing for the confounding variable. I therefore did not 

include the confounding variable in the curve fitting. 

4.5 Discussion  

My analysis confirms that rural-urban interactions influence the emerging land use pattern. The 

influence of rural-urban interactions on spatial composition and configuration metrics is non-random 

and non-linear. Koch et al. (2019) have shown that individual decisions in an urbanizing landscape affect 

emerging landscape level patterns. The results confirm that the landscape metrics follow a non-linear 

response curve to the varying resistance level of the actors. The non-linearity exists because the impact 

of  interaction among rural and urban actors on the landscape level patterns is not a process of simple 

aggregation; other contextual components of the peri-urban SES also influence the dynamics of the 

Landscape 
metrics  

Equations and 𝑹𝟐 value 
(x is the resistance level)  

Resistance level 
corresponding 
to the inflection 
point 

Resistance 
level at which 
t-test was 
significant 

Number of 
urban patches 

26.7127

1 + 20.42e(−0.2106x)
 , R2 = 0.9864 

 

7.5 4 

Total area of 
urban patches 

(
6.961×105

1+ex−4.493) + 67230, R2 = 0.9 

 

4.5 4 

Edge Density −0.0067x2 +0.09453x + 0.40862,  
R2 = 0.9802 
 

 Inflection point 
doesn’t exist for 
quadratic curve  

2 

Clumpy index (
0.0186

1+0.13e0.735x) + 0.975,R2 = 0.9846 

 

3 1 

Aggregation 
Index 

(
1.63

1+0.068e0.746x) +  96.99 , R2 = 0.9977 

 

3.5 2 

Mean Fractal 
Dimension 
index 

−0.00017x2 + 0.002261x+1.026,  
R2 = 0.9442 
 

Inflection point 
does not exist 
for quadratic 
curve 

2 
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system (Rauws and de Roo 2011). However, the response of each landscape metrics varies for the same 

level of resistance.  

For individual landscape metrics, I found that the response of each landscape metrics was different for a 

given level of resistance. For example, both clumpy and total urban patch area decreased with increase 

in resistance level, however, the inflection point for the clumpy index was at resistance level 3, whereas 

for urban patch area it was at resistance level 4.5. Further for the clumpy index, the outcome was 

significant at all levels of resistance when compared to the null model for all 100 images using t-test 

(p<0.05). For the urban patch area, the resistance from the rural actors was significant only after 

resistance level 3. The different inflection points and varying response curves of each landscape metrics 

showed that at each stage of conflict may influence landscape patterns and related ecological processes 

differently.    

In the model, the increase in the level of resistance from rural actors implies that urban actors are not 

left with many non-urban cells to appropriate and transform for urban land use. This is evident from the 

amount of urbanization. An increase in resistance from rural actors affected the number of cells that 

urban actors could transform for urban land use. Urban actors could transform some cells even when all 

rural actors resisted (level 10) because both urban hawks and rural hawks had an equal probability of 

winning the game. A decrease in urban patch area for higher level of resistance further confirmed the 

influence of resistance among actors on urbanization. However, the number of patches increased as the 

resistance level increased which means connectivity among urban patches was reduced (Elmi et al. 

2022).  A decrease in patch area and an increase in the number of patches together show that 

urbanization was patchier as the level of resistance increased (Ramachandra et al. 2012). Patchy urban 

areas implies mixed urban land-use which may contribute to lower levels of air pollution (Huang et al. 

2021). For example, researchers have found that mixed urban land use with high green spaces influence 

the particulate matter concentration in the atmosphere. Specifically, particulate matter concentration 

(PM2.5) is influenced by the complexity and aggregation of urban patches. In the model, the shape 

complexity of urban patches was highest when the level of resistance was between levels 5 and 6, 

however, the aggregation among urban patches (clumpy index) was comparatively less when the 

resistance level was lower than 5. Therefore, when half of the total rural actors resisted the land-use 

transformation, the spatial patterns of the landscape may contribute to less particulate matter 

concentration(Huang et al. 2021). The results show that the landscape patterns resulting from varying 

levels of resistance may have different implications for processes in a landscape. 

For understanding how a pattern influences the process, inflection points offer a critical reference point 

which signals a transition from one state to another (Frazier and Wang 2013). The inflection point 

showed the point where the change in landscape metrics was most sensitive to the level of reflectance. 
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For example, the inflection point for the total number of urban patches was at resistance level 7.5 and 

for the urban clumpy index, the inflection point was at level 3. Identifying inflection points for the 

landscape metrics gives additional information about resulting landscape patterns due to conflict among 

actors(Frazier and Wang 2013). For example, the Clumpy Index, which is the measure of aggregation of 

urban patches (low inflection point), is more sensitive to conflict among actors as compared to the 

number of patches (high inflection point). 

 

Modelling constraints and additional recommendation 

Models play an important role in theoretical investigations and extending SES theory (Ostrom 2007, 

Cumming 2011) by allowing analysis of interactions between one or more subsystems in a simplified yet 

systematic manner (Ostrom 2005). To explore mechanisms a model should be suitably interpretable, 

with a limited number of variables and parameters (Gotelli and Graves 1996, Cumming et al. 2012). The 

model developed here, like other simulation models, had its limitations. In the model, I focussed on the 

response of the rural actors irrespective of their spatial context. Spatial context such as the location of 

rural actors and their distance from urban areas or markets can influence the response of rural actors 

(Koch et al. 2019). While I have included the influence of LULC information of neighbouring cells in 

decision-making by the urban actors, further investigation is needed to include the influence of various 

spatial contextual factors in response of the rural actors such as the spatial location of peers, distance 

from the urban areas, marketplaces, and presence of other institutions/rules. In addition, biophysical 

characteristics and underlying ecological processes are also important drivers of outcomes in an SES 

(Epstein et al. 2013, Leslie et al. 2015, Vogt et al. 2015, Sharma et al. 2016). The presence (or absence) 

of biophysical factors and change in certain environmental conditions influence the decisions of rural 

actors to allow land-use transformations.  

Implication of actors’ conflict on the SES outcomes 

The latest wave of privatisation of rural and agricultural land en masse, particularly in the cities of the 

Global South such as Kolkata and Colombo, has gained global attention under the new critique of ‘land 

grabbing’  (Hettiarachchi et al. 2019). However, detailed study of appropriation and resistance in peri-

urban SESs remains comparatively sparse (Morrison et al. 2020a). An SES perspective and Ostrom’s 

design principles can provide a systematic way to govern the use of resources in a peri-urban SES, 

especially when top-down approaches for natural resource governance are ineffective in controlling 

ecological degradation (Haase et al. 2014, Vij and Narain 2016, Okpara et al. 2018, Zhang et al. 2019). 

Individual actors who share common goals, sentiments and demands across space-time and using 

similar methods can act autonomously over various points in time and enforce transformative changes 

for natural resource management (Ernstson 2011). For instance, in the urban areas of Stockholm, social 
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actors came together to enforce the establishment of the National Urban Park in the city (Ernstson 

2011). However, conflicts (such as socio-economic and cultural differences) among actor groups can 

hamper collective action efforts for sustainable resource management (Murunga  et al. 2021). For 

example, in urbanizing landscape of Bengaluru, the previously used commons such as lakes are 

increasingly becoming unavailable to rural actors who depend on them for their livelihood and day to 

day activities resulting in conflicts, encroachment and urban sprawl (Unnikrishnan et al. 2016, Mundoli 

et al. 2017). I show that these interactions at the group level between rural and urban actors with 

conflicting land use interest are inherently complex. The interactions at the individual level have a non-

linear influence on landscape level patterns. Non-linearity and presence of inflection point imply that 

the extrapolation of the interactions across scale is not straightforward and can produce significant 

challenges for sustainable land use changes  (Turner and Gardner 2015, Milkoreit et al. 2018).  

Challenges for sustainable land use transformations in a peri-urban SES are further aggravated by 

varying levels of conflict. The results show that the heterogeneity among actors influences different 

landscape metrics at different stages of conflicts. Each landscape metric is associated with different 

aspects of a spatial pattern (Turner and Gardner 2015) and may affect a different ecological process. The 

characteristics of spatial patterns identified by the landscape metrics are in turn associated with 

different ecological processes such as the movement of organisms (connectivity), spread of natural 

disasters, and nutrient distribution (Turner and Gardner 2015) that underpin different ecosystem 

services and flows (Banerjee et al. 2013). As the level of resistance increases, the diverse array of 

ecological processes (and eventually associated ecosystem services and flows) are affected at different 

levels. The link between marginal change in the level of resistance and its influence on different 

ecological processes can contribute to understanding and developing better policies.  

In addition, for managing sustainable land use transformations and developing related policies, requires 

the handling of multiple objectives in an urbanizing landscape. For example, the objective to maintain 

contiguous agricultural land goes hand-in-hand with developing infrastructures such as roads and 

highways for urban development. I show that models can guide policy decisions linking local 

stakeholders to broader institutional context by evaluating the outcomes of conflict across scale (Ratner 

et al. 2013). Identifying inflection points, which are widely used in management literature as switching 

points(Arin et al. 2021), can help in identifying the points of rapid change in social-ecological systems 

that may contribute to explore transition pathways that can contribute to the development of strategies 

in spatially dynamic landscape (Milkoreit et al. 2018, Mathias et al. 2020). 
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4.6 Conclusion 

Management of resources in a peri-urban SES is often challenging and complex. Degradation of 

traditional institutions around the commons, overlap and/or gaps in policy, and the influx of actors 

(formal and informal) with little or no connection with existing social-ecological interdependencies 

require explicitly recognizing cross-scale interactions (Cox 2008, Unnikrishnan et al. 2016, Mundoli et al. 

2017). The non-linear and varying response of emerging landscape patterns to conflict among actors, 

and the presence of tipping points for ecological processes that depend on connectivity or area, can 

create significant challenges for sustainable land use change in a spatially dynamic SES. I show that to 

operationalize Ostrom’s Design Principle for a commons-based approach for governing resources in a 

spatially dynamic SES requires including actors and recognizing conflict among actors involved in the 

decision-making process. Lastly, achieving the desired set of landscape level outcomes calls for the 

heterogeneity among actors to be compensated for the potential impact of resistance. 

In the next chapter, I address the third research question where I once again focus on design principle 3 

and explore how actors with limited local knowledge can contribute to informed decision making by 

harnessing local spatial information.  
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Chapter 5 : Spatially informed decisions and landscape heterogeneity 

influence collective governance for sustainable peri-urban 

landscapes 

 

5.1 Abstract  

Peri-urban SESs are spatially dynamic landscapes experiencing degradation of natural resources and loss 

of related ecosystem goods and services. Best practice (specifically, Ostrom’s design principles) 

emphasises a collective approach to governing resources in all SES, whereby all actors should participate 

in decisions that affect them. However, for rulemaking to be effective, actors should have enough local 

knowledge and capacity to contribute usefully to decision-making. In peri-urban SES, urban actors often 

have limited knowledge of rural elements of a peri-urban SES but still wield stronger influence in 

landscape governance than rural actors wield. I explored the applicability of Ostrom’s design principles to 

such situations, whereby a group of actors have limited local knowledge and instead, harness local spatial 

information such as neighbouring land-use land cover to inform decision-making. I hypothesized that 

urban actors can regulate the influence of existing landscape conditions on emerging landscape patterns 

by explicitly including neighbourhood information in decision-making. I used dynamic simulation models 

to explore the influence of spatially explicit decisions on patterns of green spaces left after urbanization. 

I calculated the percentage change in spatial composition and configuration of the green spaces before 

and after urbanization for high and low heterogeneity landscapes. Multivariate analysis showed that 

patch area metrics could explain most of the variation in the results. The change in patch area metrics 

followed a sigmoidal curve in response to the varying level of neighbourhood information for both 

landscapes. For high heterogeneity landscapes, the percentage change in patch area was higher than the 

low heterogeneity landscapes for the same level of neighbourhood information. As preference for the 

neighbourhood information increased, the difference between the patch metrics for high and low 

heterogeneity reduced. My results show that urban actors can regulate the influence of existing landscape 

conditions on emerging landscape patterns by explicitly including local spatial information in the decision-

making. Urban actors can therefore bridge the gap between peri-urban areas and policymaking by 

harnessing local land use information for making spatially conscious choices. My analysis sheds new light 

on cross-scale interactions in spatially dynamic landscapes. 

5.2 Introduction  

Urban populations have increased across the globe from 30% of the global total in the 1950s to 55% in 

2018, with urban spaces expanding even faster (Elmqvist et al. 2013, United Nations 2019).  As cities 

continue to physically expand beyond their traditional boundaries against a backdrop of increasing 
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urban populations and rising demand for ecosystem goods and services, the urban periphery in many 

locations is experiencing rapid land use transformation, resulting in a complex mix of urban, rural and 

natural landscape elements (Elmqvist et al. 2013). Peri-urban areas serve as important functional spaces 

for the wellbeing of urban centres while also supporting livelihoods of local rural dwellers (Narain 2009, 

Vij and Narain 2016). Their complex, transitional nature makes natural resource governance extremely 

challenging and often controversial (Žlender 2020). Diverse and conflicting resource use, rapidly 

changing demography, a lack of clarity on ownership, and gaps or overlap in institutions and policies are 

common (Shaw 2005, Mundoli et al. 2017, Žlender 2020). Without effective governance, peri-urban SESs 

will continue to experience degradation of natural resources and loss of related ecosystem goods and 

services (Ravetz et al. 2013, Hedblom et al. 2017). Unintended consequences of decades of economic 

reforms and intensification of private investment in India, for example, have led cities like Delhi and 

Bengaluru to continually expand beyond their initial boundaries, resulting in the loss of important 

cultivable land, forest area and green spaces (Das 2017).  

 

Governance in peri-urban SESs is typically centralised and top-down, with local government actors often 

playing a dominant role. In such cases, local institutions located in urban centres, distant from the urban 

periphery, are unable to resolve resource degradation in an urbanizing landscape (Zhang et al. 2019, Lei 

et al. 2021). For instance, many cities in India and China are unable to control urban sprawl and informal 

settlements, regardless of having zoning systems and urban master plans in place (Zhang et al. 2019). 

The breakdown of zoning plans occurs partly because top-down approaches ignore the self-organizing 

capabilities of the informal actors in an urbanizing landscape (Scott 1998). Both formal (including 

government agencies) and informal actors (e.g. landowners and farmers) influence natural resource 

governance in peri-urban SESs and can therefore play a central role (Boonstra and Boelens 2011, 

Cerquetti et al. 2019). Vij and Narain (2016) have shown that actors at a local level can successfully 

adapt to changes and evolve norms and rules accordingly in a peri-urban SES. Scholars, therefore, have 

proposed a commons-based approach for the governance of natural resources in a peri-urban SES (Vij 

and Narain 2016, Menatti 2017, Cerquetti et al. 2019). 

 

Commons scholars acknowledge the existence of complex relationships between social and ecological 

components that together influence the sustainability of natural resource use. They recommend 

Ostrom’s design principles as best practice for designing institutional arrangements related to common 

pool resources such as fisheries, irrigation, and pasture. Researchers are increasingly recognizing that 

collective action theory and common pool resources are embedded within a larger SES context 

(Anderies et al. 2007, Partelow 2018). This recognition has led to the use of Ostrom’s design principles 

and the SES Framework in a broader social-ecological systems discourse that moves beyond traditional 
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small-scale common pool resources. The SES Framework provides a theory-neutral list of exhaustive and 

generalizable variables that researchers have utilised to diagnose the environmental issues in a large-

scale complex SES (Partelow 2018). However, there are gaps in understanding how and whether 

Ostrom’s design principles and the SES Framework are applicable in complex and dynamic social-

ecological systems such as in a peri-urban SES.  

 

Ostrom’s design principles emphasise the participation of those affected by the rules in modifying the 

rules for the effective management of resources (Ostrom 1990). Local actors, who often have long 

standing associations with ecosystems and depend on the SES for their livelihood, in turn, have low-cost, 

fine spatial scale information that can contribute to the development of effective management 

strategies (Cox et al. 2010, Herse et al. 2020, Sen and Nagendra 2020). In a peri-urban SES, the actor 

groups can be broadly categorised in to rural and urban actors based on their varying relationship and 

understanding of the SES complexity and land use interest (Gashu Adam 2020). Rural actors in a peri-

urban SES typically have a long-standing association with peri-urban SES and depend on the resources 

for their livelihood. As local conditions change, local actors can perceive changes faster and can 

contribute to adapting the rules for natural resource governance appropriately (Cox et al. 2010, Herse et 

al. 2020, Owusu Ansah and Chigbu 2020). Inner-city dwellers or urban actors, on the other hand, come 

from urban centres to appropriate resources such as land to develop it for residential, recreational, and 

industrial purposes (Žlender 2020). Urban actors appear to be the ones appropriating resources from 

peri-urban SES such as land and water with limited understanding of the complexity in the peri-urban 

SES and impact of their decision on the social-ecological outcomes (Tidball and Stedman 2013, Mundoli 

et al. 2017). Urban actors and their choices therefore largely influence land use transformations in peri-

urban SES. Because, rising demands and needs of urban dwellers influence land-use policies, and 

therefore, the policies are often skewed in favour of urban growth (Purushothaman and Patil 2017, 

Owusu Ansah and Chigbu 2020, Žlender 2020). However, it is not clear as to how urban actors with 

limited local knowledge and dominant influence on policymaking can contribute to more informed and 

responsible decision making in a peri-urban SES.  

 

I explored the applicability of Ostrom’s design principles to situations in which a group of actors have 

limited local knowledge and instead, harness local spatial information such as LULC in the local 

neighbourhood to inform decision-making. Various factors drive the choices of urban actors that 

influence land use transformations at fine spatial scales, such as local environmental characteristics, 

policies, social and economic factors (Barredo et al. 2003). Surrounding land uses also influence the local 

decision making process (Verburg et al. 2004, Braimoh and Onishi 2007). For example, urban actors 

often prefer to develop new residential areas next to existing residential neighbourhoods (Braimoh and 
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Onishi 2007). Land use patterns often exhibit spatial autocorrelation (Verburg et al. 2006). Since urban 

actors appear to take spatially conscious decisions, they have the potential to drive landscape level 

outcomes in a peri-urban SES. I hypothesized that urban actors regulate the influence of existing 

landscape conditions on emerging landscape patterns by explicitly including neighbourhood information 

in decision-making. I tested my hypothesis using dynamic simulation models to explore the impact of 

localised knowledge, expressed through policy, on landscape pattern, and contrasting the results with a 

counterfactual when no neighbourhood information is included in decision-making. In the model, I 

varied the weight given to neighbourhood information by the urban actors in the decision-making. 

Based on previous studies (Koch et al. 2019) I expect to find a non-random relationship between 

emerging land-use patterns and  spatially explicit decisions made by urban actors. 

 

5.3 Methods 

I explored influence of micro-level interactions on emerging landscape patterns by varying the 

preference for neighbourhood information in decisions related to land use transformation. I first 

mapped the components of the peri-urban SES to the SES Framework to define the building blocks of 

the model and then simulated the emergence of landscape pattern as already discussed in Chapter 2.  

I now discuss how I used the model described in Chapter 2 and set up relevant experiments to test my 

core hypothesis.  

Model description  

I simulated the movement of urban actors and the resulting urban expansion into rural areas using a 

modified version of the reaction-diffusion equation (Chapter 2). A classic reaction-diffusion equation is a 

deterministic equation with a constant diffusion coefficient that regulates the movement of actors. In 

addition to the diffusion coefficient, I have included a factor (called cell score) that determines the 

direction of diffusion of urban actors based on the decisions made by the urban actors. I estimated the 

cell score numerically in the model (see equation 5.1 below). 

 

At the start of a model run, the model initialised all cells in the landscape with a LULC class, LUZ, Z, and 

population including total population, urban population and rural population (see Chapter 2). Urban 

actors dominate the urban cells and rural actors dominated the non-urban cells. At every iteration, the 

urban actors collectively decided to move out of the cell, once the cell reached its carrying capacity, into 

one of the cells within the immediate neighbourhood window. The neighbourhood window consists of 

eight cells in the eight directions (N, E, W, S, N-E, N-W, S-E, and S-W). Dispersal of actors through space 

and resulting land-use change involves multiple interactions including the interaction of actors with the 

existing institutions such as land-use policies, other actors occupying the cell of interest and current 
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LULC conditions (Basse et al. 2016). In the model, the urban actors selected only those cells from the 

eight neighbourhood window where the land-use policies allowed land use transformation. Out of the 

selected cells, the urban actor group in the cell interacted with actors groups occupying the selected 

target cells to appropriate a cell for urban land use. These interactions were captured using game theory 

in the model (Chapter 2 and Chapter 4). In reality, urban actors have specific spatial neighbourhood 

preferences when selecting an area to develop (Aburas et al. 2016).  In the model, I explicitly included 

local spatial factors that influence decision-making and land use transformation by urban actors 

(Barredo et al. 2003, Verburg et al. 2004, Verburg et al. 2006). The urban actors considered the LULC 

information of the cells in the vicinity of the potential target cells ((Verburg et al. 2006), henceforth, 

‘neighbourhood information’) and had a choice to include the neighbourhood information when making 

decisions (Verburg et al. 2006, Aburas et al. 2016). The neighbourhood information was calculated as SI 

in the model using the submodule - Spatial neighbourhood Information (Chapter 2). All decisions were 

taken at the cell level by the actors. I captured the interactions of actors using the cell score. Once a cell 

with the highest score was selected, a fraction of the total urban actors in the cell moved into the 

selected cell. If the cell into which urban actors moved belonged to a non-urban class, the model 

reclassified the cell into urban built-up. 

The model followed the process iteratively for all cells in the landscape for every iteration, to simulate 

the gradual build-up and expansion of urban actors into the peri-urban areas of a developing city. 

 

The urban actors use the cell score calculated in the model using equation 5.1, to identify a suitable cell 

to move into:  

CellScore = Z[ SI + (1 − ) GT]   Equation 5.1 

The three variables were neighbourhood information (SI) interaction with rural actors (GT), and land-use 

zone (Z). For each iteration the model estimated the neighbourhood information (SI) using the 

enrichment factor given by Verburg et al. (2004). GT captured the interaction between the urban actors 

and the actors occupying the target cell. GT is the pay-off that urban actors receive on interacting with 

actors in the target cell. The pay-off indicates the benefits of moving into a target cell. Urban actors 

prefer to move into cells with higher pay-off.  Parameter  controlled the preference urban actors gave 

to the neighbourhood information against the preference they  gave to the pay-off received as a result 

of interaction with actors in the target cell, when selecting a cell. Z is the score based on the LUZ of the 

target cell (Table 2.3). The description of sub-modules used to calculate SI, GT and LUZ-S is given in 

Chapter 2 (section 2.2.4).  
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Figure 5-1: Example of (a) low and (b) high heterogeneity images developed for the model. Both datasets 

consisted of 50 images. The level of LULC heterogeneity was constant in each data set, however, the 

arrangement of patches varied within a data set.  

Experimental design   

The aim of the experiment was to capture the influence of existing landscape conditions and actors’ 

decisions to include the neighbourhood information on the emerging landscape patterns. To capture the 

impact of varying landscape conditions I developed two sets of 50 simulated images using the NLMR 

package in R (Sciaini et al. 2018). The land units and actors had the same attributes as discussed in 

Chapter 2. However, the spatial heterogeneity of LULC classes varied for the two sets of images. The first 

set had (Figure 5-1 (a)) landscapes with low spatial heterogeneity and the second set (Figure 5-1(b)) had 

landscapes with higher spatial heterogeneity. Within each set, I maintained the degree of spatial 

heterogeneity as constant and changed the arrangement of patches among images of each set to induce 

variability in the dataset. I performed 150 iterations for both low and high heterogeneity landscapes. 

Each iteration corresponds to one year. 

I varied the amount of neighbourhood information included in the decision-making by varying the 

weight parameter (, equation 5.1), from zero to 1 with a step size of 0.05 between each model run, for 

both high and low heterogeneity landscapes. A higher value of  meant urban actors gave higher 

preference for the neighbourhood information as compared to the pay-off from the target cell. For 

example,  = 0.5 means urban actors gave equal preference for both neighbourhood information and 

the target cell value in the decision making, and =0 means no neighbourhood information was included 

in the decision-making. In the model, the urban actors gave preference to the cells that had higher 
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amount of urban neighbourhood (estimated as SI) and avoid converting cells closer to green spaces such 

as forests, wetlands and grasslands.   

I compared the results for low and high heterogeneity landscapes across different level of 

neighbourhood information represented by value of  . Each level corresponds to the weight given to 

the neighbourhood information in the land use transformation decisions made by the urban actors. 

There were in total 21 levels of neighbourhood information. Levels 1 to 21 correspond to , which 

varied from 0 to 1 with a step size of 0.05. Level 1 corresponds to  = 0, which was the case when no 

neighbourhood information was included in the decision making and level 21 corresponds to  = 1 when 

only neighbourhood information of the cell was included in the decision making.  

Estimating outcomes and statistical analysis  

I calculated the number of cells corresponding to green spaces left after urbanization and the number of 

urban cells in the landscape for each iteration.  

Optimal distribution of land uses in the limited space along with preservation of green spaces is 

important for landscape sustainability in an urbanizing landscape and is also one of the aims of the land-

use policies (Botequilha Leitão and Ahern 2002, Santo-Tomás Muro et al. 2020). The spatial pattern of a 

landscape influences social and ecological processes and in turn influences ecosystem goods and 

services (Banerjee et al. 2013). For example, spatial composition and configuration affects the species 

richness and interactions, and ecosystem processes such as nutrient retention and surface water run-off 

(Turner et al. 2012). Therefore, to test the success of policies in the peri-urban SES, I calculated the 

number of green spaces left after urbanization and also, estimated landscape metrics of the green 

spaces. Landscape metrics are standard measures used in ecology to quantify area of different patches 

(composition) and their shapes and relative positions (configuration) (Turner and Gardner 2015), that 

allow us to measure the spatial sustainability of a landscape and inform landscape planning and 

management (Botequilha Leitão and Ahern 2002).  

Table 5.1 : Summary of spatial configuration and composition metrics. The change in landscape metrics 

of green spaces were estimated as outcomes in the peri-urban SES 

Name of landscape metrics Landscape 

Property 

Description 

Number of urban cells  composition Total number of urban cells in the landscape 

Number of green cells  composition  The number of green cells left in the landscape 

after urbanization. The model counted the cells 

belonging to forest, grassland, and wetland LULC 

together as green cells. 

Total Patch Area of urban patches 

(PA) 

composition Sum of area occupied by green patches 
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Number of urban patches (NP) composition  Total number of green patches  

Edge Density (ED) configuration Measure of edges associated with shape 

complexity of the resulting green patches 

Clumpy Index (CLUMPY) configuration Aggregation measure independent of landscape 

composition 

 

In the model, urban actors converted the non-urban cells they appropriated in the landscape into urban 

cells at each iteration. Since the total land area was finite, the total number of urban cells reached a 

saturation point after a certain number of iterations. The saturation point was the point in time after 

which the number of cells per iteration did not change significantly. I used the findchangepts function of 

Matlab to detect the saturation point at which the slope of the curve first shifted (MATLAB 2016).  

I calculated landscape metrics for green cells for each level of neighbourhood information at the start 

and end of urbanization and estimated the percentage change in the landscape metrics. The end of 

urbanization was set as the time when the slope reached the saturation point.  

I checked for a confounding effect of initial landscape conditions (patch area, edge density, number of 

patches and clumpy index) on the percentage change in four landscape metrics for both high and low 

heterogeneity landscape using an Analysis of Covariance (ANCOVA) (Pourhoseingholi et al. 2012). I first 

performed ANOVA on the percentage change of each landscape metrics to assess if there was a 

statistically significant difference among group means across different level of neighbourhood 

information. I used the aov function in R to assess the significance of the outcome using p-value estimates 

(RCoreTeam 2019).  

The null model provides a counterfactual by excluding the mechanism of interest (Gotelli and Graves 

1996). I compared the percentage difference of each landscape metric across varying level of 

neighbourhood information against the null model to confirm whether the observed land use patterns 

were a result of a random process. The model run in which urban actors did not include any 

neighbourhood information in decision-making ( = 0) was as used as the null model. I performed a two-

sample t-test and estimated p-value to compare the result of null model against the resultant change in 

landscape metrics across different level of neighbourhood information.  

In a landscape, patch area influences other landscape metrics (clumpy index, edge density, and number 

of patches) which may mask the actual relationship between varying level of neighbourhood information 

and the landscape metrics. I used partial constrained correspondence analysis (pCCA) to estimate the 

relative importance of neighbourhood information in explaining the variability in the clumpy index, edge 

density and number of urban patches. pCCA is an extension of constrained canonical analysis (CCA) which 

is used to perform the analysis by controlling the effects of covariates (Beasley and Kneale 2002). For the 
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analysis, I used CCA in the vegan package of R (Oksanen et al. 2020). Percentage change of patch area 

metrics was set as covariate in the analysis. Implementation of pCCA report the inertia (or variability) that 

was explained by the level of neighbourhood information (independent variable) after accounting for the 

inertia explained by percentage change in patch area. I used permutation test to assess the significance 

of resultant pCCA models.  

To compare the response of varying level of neighbourhood information in high and low heterogeneity 

landscapes I fitted curves to percentage change in patch area using the nls function in R and estimated 

the inflection point using the inflection package in R (Christopoulos 2019, RCoreTeam 2019). The inflection 

point gives the location on the curve where the percentage change in patch metrics was most sensitive to 

the level of neighbourhood information (Frazier and Wang 2013). In mathematics, statistics and 

economics, inflection points are used to identify statistical thresholds (Arin et al. 2021). It is a point where 

a change in the direction of curve occurs in a continuous function. To assess dissimilarity between two 

response curves I performed a two-sample Kolmogorov-Smirnov test (ks.test in R; RCoreTeam (2019).  The 

results give a dissimilarity index D and p-value <0.05 implies that the two curves belong to different 

distribution. 

5.4 Results 

Number of urban cells, number of green cells, and saturation point 

For both high and low heterogeneity landscapes the amount of urbanization decreased, and the number 

of green cells left after urbanization increased, with an increase in the level of neighbourhood 

information from 1 to 21 which is the change in  . 



83 
 

 

 

 

 

 

 

For both the high and low heterogeneity landscapes, the amount of urbanization decreased as the level 

of neighbourhood information increased in the decision making (Figure 5-2). At year 50 and level 4 ( = 

0.2), when preference for the neighbourhood information was low, the number of urban cells was high 

(~1750 for low heterogeneity landscapes and for ~2250 high heterogeneity landscapes, respectively). By 

contrast, for the same year, at level 12 ( = 0.6) when the preference for neighbourhood information 

was high, the number of urban cells was low (~ 1300 for low heterogeneity landscapes and ~2150 for 

high heterogeneity landscapes, respectively). The results of the t-test suggest that the value of group 

means was different between the null model (level 0) and different levels of the neighbourhood for both 

high and low heterogeneity landscapes  (p-value <0.05 for 50 images).  For low heterogeneity 

landscapes, p-value was significant (p-value <0.05) from level 8 onwards ( = 0.4) and for high 

heterogeneity landscapes, p-value significant (p-value< 0.05) from level 10.  

Figure 5-2: Number of urban cells per iteration for (a) low and (b) high heterogeneity landscapes from 

year 0 to 150. The vertical red lines shows the saturation point which is at year 44 for the low 

heterogeneity landscape and at year 28 for the heterogeneity landscapes. The solid lines represent the 

mean value of urban cells for all 50 images and area between dotted lines shows the standard deviation 

(variation) in the data. For neighbourhood level 16 and 20, there is complete overlap of the variation and 

mean values. 
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Figure 5-3: Number of green cells left after urbanization at every iteration for different levels of 

neighbourhood information for all the years for both (a) the low heterogeneity and (b) high 

heterogeneity landscapes. The solid line is the mean value of number of green cells at each level of 

neighbourhood information, averaged for all 50 images. The area under dotted line shows the variation 

in the data set.  The number of green cells decrease as the urbanization progresses for low and high 

heterogeneity landscapes. 

For both high and low heterogeneity landscapes, as the level of neighbourhood information increased 

the number of green spaces left after urbanization was higher (Figure 5-3). At year 50 and level 4, when 

the preference for the neighbourhood information was low, an average of 300 green cells were left after 

urbanization in the low heterogeneity landscapes and an average of 150 green cells were left in the high 



85 
 

heterogeneity landscapes. By contrast, at level 12 (= 0.6) when preference for the neighbourhood 

information was higher, an average of 450 green cells were left in the low heterogeneity landscapes and 

an average of 200 green cells were left in the high heterogeneity landscape. The results of the null 

model for the number of green cells left after urbanization were found to be the same as in the case of 

number of urban cells. In addition, for both high and low heterogeneity landscapes, there was a 

significant change in outcome at level 13 in number of urban cells and number of green spaces.  

The response of urbanization was different for both the high and low heterogeneity landscapes. At level 

1 ( = 0.05), for the  high heterogeneity landscapes the urban cells reached saturation point at year 28 

whereas for the low heterogeneity landscapes time taken to reach the saturation point was 44 years  

(Figure 5-2). In addition, the total number of green cells left at the saturation point across all levels of 

neighbourhood information varied between low and high heterogeneity landscape. For example, at 

level 1, the amount of green space left after urbanization was high for the  low heterogeneity 

landscapes (~290 cells) compared to the high heterogeneity landscapes (~183 cells). 

Landscape metrics of green spaces  

  

Figure 5-4: Percentage change in landscape metrics of green spaces for both the high and low 

heterogeneity landscapes 

The percentage change in the landscape metrics, for both the high and low heterogeneity landscapes at 

their respective saturation point, varied across the level of neighbourhood information. However, once 
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the level of neighbourhood information reached beyond 0.62, the change in the landscape metrics 

almost coincided for both the landscapes across all four landscape metrics.  

The result of the one-way ANOVA test showed no confounding effect of values of the initial landscape 

metrics on the percentage change estimated for the landscape metrics after urbanization for the dataset 

of 50 images  (p-value <0.05).  

The results of the t-test suggest that value of group means was different between the null model and 

different level of neighbourhood for both patch area and edge density, for both the high and low 

heterogeneity landscapes  (p-value <0.05 for 50 images). However, the null model analysis was different 

for the high and low heterogeneity landscape for clumpy index and number of patches. For clumpy 

index and number of patches, the difference between group means of the null model and different level 

of neighbourhood was significant (p-value <0.05) in the high heterogeneity landscapes but not 

significant in the low heterogeneity landscape.   

Multivariable Analysis using partial constrained correspondence analysis  

Multivariate analysis using pCCA of the percentage change in the three landscape metrics (NP, Clumpy 

index and ED) with level of neighbourhood information as the explanatory variable and percentage 

change in patch area as the covariate showed that most of the variability in the three metrics was 

explained by conditional variable which was the percentage change in patch area. This was true for both 

the low and high heterogeneity landscapes. For the low heterogeneity landscapes, 80.6% of variation 

was explained by percentage change in in patch area, whereas 2% of variation was explained by 

neighbourhood information. For the high heterogeneity landscapes, 83.7% of variation was explained by 

percentage change in patch area and 5.9% of variation was explained by neighbourhood information. 

The permutation test showed that pCCA models was significant for both low (F = 6.359, p = 0.01) and 

high (F = 29.621, p = 0.01) heterogeneity landscapes (See appendix D, Figure C.5)  
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Curve fitting and patch area metrics 

 

Figure 5-5: Normalized and transformed values of percentage change in patch area of green spaces for 

both high (orange) and low heterogeneity (blue) landscapes with corresponding fitted curves. 

The response of change in the patch area was non-linear to the varying level of neighbourhood 

information (Figure 5-5). For both the high and low heterogeneity landscapes, change in the patch area 

followed a sigmoid curve with r-square >0.95 for both the curves. The Kolmogorov-Smirnov test showed 

that the two curves were significantly dissimilar from each other (D = 0.45, p <0.05). The curves follow a 

similar pattern and with the inflection point at  = 0.625 which lies between level 13 and 14 of the 

neighbourhood information, for both the curves. However, the magnitude of percentage change for the 

high heterogeneity landscapes was higher as compared to the low heterogeneity landscapes. For 

example, at the inflection point, the percentage change in patch area was 41.31% for the high 

heterogeneity landscapes and for the low heterogeneity landscapes; it was comparatively lower 

(28.43%).  

5.5 Discussion 

My results demonstrate that, under the assumptions and conditions of the model, urban actors can 

effectively regulate emerging landscape patterns and conserve green spaces during urbanization by 

explicitly including spatial neighbourhood information of the land units in their decision 

making. Hersperger et al. (2013) have shown that actors influenced the process of urbanization, 

particularly land use densities in different Swiss cities depending on choices and decisions actors made 

at the local level.  In the model, actors selected a target cell based on the benefits the actors received 
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from transforming a target cell and the LULC in the neighbourhood of the target cell. If the actors 

emphasised more on the benefits from the target cell as their decision criteria for land use 

transformation, the amount of urbanization increased and the number of green spaces left after 

urbanization decreased. However, when the actors preferred the land units within the urban 

neighbourhoods the number of suitable land units was limited which influenced the amount of 

urbanization and therefore, the number of urban cells decreased as the preference for neighbourhood 

information increased. In addition, number of green spaces preserved increased. The results confirmed 

that decisions made at the local level by urban actors influenced the resulting landscape level patterns 

of green spaces for both the high and low heterogeneity landscapes. 

The results of the null model analysis show a significant difference between group means for the 

amount of urbanization and the number of green spaces between level zero and the rest of the levels, 

for both high and low heterogeneity landscapes. Similarly, the null model analysis for landscape metrics 

shows a significant difference between group means of patch area at level zero vs rest of the levels of 

neighbourhood information for both high and low heterogeneity landscapes. It is clear that the results 

were not random and neighbourhood information,  when included in the decision making at local level, 

had a significant influence on the emerging landscape patterns (Koch et al. 2019).  

One of the several measures of spatial sustainability in urbanizing landscapes is the number of green 

spaces preserved (Santo-Tomás Muro et al. 2020). In the model, the urban actors made spatially 

conscious decisions and preferred to transform the cells which had a higher amount of urban 

neighbourhood. In the process, the actors avoided the cells which had more green spaces in their 

neighbourhood. The local level decisions also influenced the land-use policies that update the land use 

zones of the cells periodically based on the existing LULC of the landscape. Therefore, local level 

decisions together with land-use policies preserved more green spaces as the amount of spatial 

information increased in the decision making. However, the number of green spaces alone is not a 

sufficient measure of landscape sustainability. The pattern of green patches also influences underlying 

ecological processes and ecosystem services in a landscape  (Botequilha Leitão and Ahern 2002, Turner 

and Gardner 2015).  

For the patterns observed in the case of a clumpy index, edge density, and the number of patches, I 

found that the patch area metrics heavily confounded the variation observed in each of the three 

landscape metrics. Flather and Bevers (2002) have shown that the patch area is enough to explain 

landscape-level changes than the spatial patterns themselves. In the model, patch area metrics 

explained most of the variation in emerging landscape patterns across varying levels of neighbourhood 

information. Therefore, for further analysis, I focussed on the results of patch area metrics.  
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The results of the null model analysis show that the change in patch area metrics followed a non-

random response for both low and high heterogeneity landscapes, which allowed the response to be 

readily modelled. The changes in patch area for low and high heterogeneity landscapes followed a non-

linear, sigmoid, curve as the weight of the neighbourhood information changed. Existing spatial 

conditions influenced decisions made across social levels and the outcomes in an SES as observed in the 

case of forests (Sharma et al. 2016) and fisheries (Leslie et al. 2015). Zasada et al. (2017) have also 

acknowledged the influence of existing spatial heterogeneity on decision-making and landscape policies. 

There was a difference in the resultant patterns for the low and high heterogeneity landscapes. I 

observed that magnitude of change was different for the high and low heterogeneity landscapes even 

though the response curve followed a similar trend for the two sets of landscapes. The inflection point 

or the statistical threshold at which a significant change in the patch area of green spaces was observed, 

was the same for both high and low heterogeneity landscapes (at around  = 0.62). However, the 

percentage change in patch area was higher for the high heterogeneity landscapes as compared to the 

low heterogeneity landscapes. It was further confirmed by the results of the number of urban cells and 

the number of green spaces, where a significant difference was observed between levels 12 and 13 (at 

around level 0.62) for both high and low heterogeneity landscapes. However, the number of green 

spaces left after urbanization was higher for low heterogeneity landscapes compared to high 

heterogeneity landscapes.     

The landscape conditions such as LULC heterogeneity influences the decisions at the local spatial level, 

which in turn affects the resulting landscape patterns. In addition, the distance between the two curves 

reduced after the inflection point (at neighbourhood level = 0.625). This further indicates that by giving 

higher preference for the neighbourhood conditions at local levels, local actors can mask the 

influence of existing landscape heterogeneity on the emerging landscape patterns to some extent. 

However, the resulting patterns may vary depending on the initial landscape conditions.  

To allow simplified and systematic analysis of mechanisms in complex systems I limited the number of 

variables and parameters in the model, as recommended for such analysis (Gotelli and Graves 1996, 

Ostrom 2005, Cumming et al. 2012). I have limited the neighbourhood effect to the cells among the 

immediate neighbours. However, spatial correlation can exist beyond this immediate neighbourhood 

and decays with distance (Barredo et al. 2003, Verburg et al. 2006). Therefore, a more realistic 

understanding of the neighbourhood effect would include cells beyond those that are directly adjacent. 

In addition, in a transforming landscape the preferences of urban actors for certain neighbourhoods 

includes various factors that may both attract and repel (Barredo et al. 2003, Verburg et al. 2006). For 

example, repulsion might occur when actors seeking residential land choose to stay away from an 

industrial neighbourhood. In the model, the urban actors only consider the ‘attraction’ factor; further 



90 
 

research is needed on the influence of negative spatial externalities that cause ‘repulsion’ among land 

use parcels.  

Harnessing local spatial information  

In a landscape, information about the classes is the interface between existing landscape conditions 

including biophysical and ecological features and the local social interactions and decision-making 

process (Hersperger et al. 2018). The LULC in the spatial neighbourhood is one of the factors that 

influence decisions of land use transformation at local level and is an integral part of various land 

dynamic studies (Barredo et al. 2003, Verburg et al. 2004). It is based on Tobler’s first law of geography, 

“everything is related to everything else, but near things are more related than distant things” (Tobler 

1970).  I show that urban actors can contribute to informed decision-making in an urbanizing landscape 

by harnessing local spatial information such as LULC information to make spatially conscious decisions. 

Motivation to include urban actors in landscape governance  

Peri-urban areas typically suffer from weak landscape governance resulting in various socio-economic-

environmental issues such as urban sprawl, poor infrastructure, insecure land tenure, social conflicts, 

and loss of ecosystem goods and services (Nuhu 2018). Plans and policies for natural resource 

management in peri-urban areas also suffer from the problem of scale and ecological misfit (Epstein et 

al. 2015, Cheok et al. 2020). Urban planners and policymakers often initiate broad-scale decisions such 

as declaring an area as a conservation zone or transforming land use for building highways or industries, 

yet urban sprawl remains common in peri-urban areas (Zhang et al. 2019). It is difficult for actors from 

urban centres to understand the intrinsic and dynamic geographic relationships that exist in a peri-urban 

SES, due to peri-urban SESs being spatially remote and disconnected from the more stable urban 

political centres (Shaw 2005).  

Ostrom has suggested including local actors in the decision making for effective natural resource 

management (Ostrom 1990) . To strengthen landscape governance in areas going through transitions, 

local actors must be involved in landscape governance (Nuhu 2018). Local rural actors, such as farmers 

and landowners, have local knowledge, specific needs and requirements, and insights into economic and 

societal rationales including knowledge of social conflict. Urban actors, on the other hand, often have 

limited local knowledge and understanding of the complexities involved in a peri-urban SES. However, 

urban actors have unique characteristics that emphasise the involvement of urban actors in decision-

making and planning for the effective management of resources in peri-urban SES. Urban actors are 

spatially ‘extra-regional’; they typically come from beyond the urban periphery and interact with peri-

urban areas at a fine spatial scale (Morrison 2007). The governmental policies around urbanization are 

influenced by the needs and demands of urban actors (Patil et al. 2018). Urban actors are capable of 
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‘jumping scale’ as they are politically more connected to the planners and policymakers in the urban 

centres than rural actors (Morrison 2007). By engaging both urban and rural actors more actively in peri-

urban policy making and setting up collaborations, planners can harness social networks to achieve 

sustainable outcomes in human-dominated social-ecological systems (Ernstson et al. 2010).   

Motivations for urban actors to participate in landscape governance in peri-urban areas  

Urban actors are often known to appropriate resources and influence land use transformations in peri-

urban areas with limited understanding of the social-ecological implications of their actions (Tidball and 

Stedman 2013). In addition, traditional environmental studies about stewardship patterns for 

conservation of natural spaces emphasize upon indigenous knowledge and long-standing association of 

rural communities with place (Gurney et al. 2017). However, non-native dwellers such as urban actors 

can be custodians of natural spaces and contribute to conserving them (Sarker 2020, Sen and Nagendra 

2020). Complex SESs with a diversity of actors, such as peri-urban areas, call for approaches that involve 

new settlers, non-native dwellers, and non-local actors. Involving urban actors as an integral part of the 

SES along with opportunities to engage can encourage and reinforce their involvement and stewardship 

for ecological sustainability such as conservation of green spaces that will allow urban actors to nurture 

a positive dependency on the resource (Tidball and Stedman 2013, Murphy et al. 2019).   

5.6 Conclusion 

The actor groups in a peri-urban SES are diverse and each has unique characteristics and roles to play in 

contributing to the better management of resources in a peri-urban SES. Non-native actors such as 

urban actors can contribute to addressing social and ecological mismatch in policies related to peri-

urban areas by making spatially conscious decisions at the local level and therefore, can regulate the 

cross-scale feedback between landscape and landscape governance. To implement Ostrom’s design 

principle 3 in a peri-urban area requires adapting the design principle by including diverse actor groups 

in the decision making based on their unique characteristics.  

In the following chapter I summarize my findings and give a broad picture of how my thesis contributes 

to extend SES theory.  
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Chapter 6 : General discussion  

SES theory embedded in complex adaptive systems gives an opportunity to understand land use change 

systems as a coupled SES. I have explored the applicability of Ostrom’s design principle 2 and 3 for large 

scale spatially dynamic SES, such as peri-urban SESs. I have sought to test and reflect upon how 

Ostrom’s design principles and commons approach can be used and extended to accommodate dynamic 

concepts of space and scale relevant to peri-urban SESs.  

6.1 Key findings  

Chapter 2: The model  

There has been a shift from using models for prediction to using models to understand and explain the 

complexities in a system by focussing on a subset of variables and processes (Moallemi et al. 2020). 

Treating models as ‘boundary objects’ with a  unifying platform to bring multiple disciplines and 

perspectives together in SES studies (Parker et al. 2008). In Chapter 2, I explain how I developed an 

exploratory modelling approach to systematically test hypotheses and investigate the relevance of the 

design principles for a spatially dynamic SES. 

Specifically, I used the SES Framework to guide model development for a peri-urban SES. The SES 

Framework has primarily been used as a diagnostic tool for small-scale common pool resources, with 

characteristics such as single-resource use, homogenous actors, and defined system boundaries. 

However, the focus has now shifted to using the SES Framework for large and complex SESs (Partelow 

2018). I operationalised the SES Framework by developing a model to facilitate spatially explicit analysis 

of the interactions in a peri-urban SES. In the model, I explored feedback and cross-scale interactions 

between spatial and institutional scales to answer multiple questions of space and scale relevant to peri-

urban governance. The influence of interactions and feedback between actors’ decisions at the cell 

level, land-use policies defined at regional spatial scales and the existing spatial conditions of the 

landscape on the emerging landscape level spatial patterns were explored.  

I used a modified reaction-diffusion approach to develop a GIS-based hybrid-CA model which is simple 

and scalable.  The model captures the movement of urban population into peri-urban areas and 

emerging land-use patterns as outcomes using the reaction-diffusion equation. The model captures 

decisions taken by actors at the cell level. The urban actors collectively take a decision at the cell level 

to move into non-urban cells and transform the cells into urban land use. The urban actors select 

locations for urban land use based on the social and ecological characteristics of the cells in the 

neighbourhood. In the model, the urban actors take decisions to select a cell based on a set of criteria 

including land-use policies of the target cell (governance system), the response of rural actors already 
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occupying the target cell (lateral interactions), and the LULC in the immediate neighbourhood of the 

target cell (spatial contextual information). The urban actors first select the cells for which the land-use 

policies allowed land use transformation. Rural and urban actor groups then interact at the cell level, 

where rural actor groups may resist the decision to transform cells dominated by the rural actors. 

Further, urban actors may decide only to transform cells based on the LULC of other cells in the 

neighbourhood of the target cell. I developed sub modules to calculate the three factors and integrate 

concepts of game theory and spatial context with the reaction-diffusion equation.  

Chapter 3: Institutional misfit 

I explored the question of institutional fit between the governance system and the spatial characteristics 

of a landscape in a spatially dynamic SES. As per design principle 2, there should be congruence between 

the rules and local ecological conditions (Ostrom 1990, Cox et al. 2010). However, in a peri-urban SES 

the ecological conditions of the landscape vary and are subjective to the spatial extent considered. 

Therefore, the term local is elusive in the case of peri-urban SES. To inform the term local for design 

principle 2, I explored the environmental feedbacks between institutions and landscape heterogeneity.  

The spatial heterogeneity of the landscape underpins the ecological patterns and the ecological 

conditions that influence the land-use policy in urbanizing landscapes. I explored the influence of 

landscapes for two different levels of spatial heterogeneity on land-use policies and resulting land-use 

zones. In a landscape, spatial heterogeneity in a landscape is sensitive to spatial extent. I tested the 

influence of varying spatial scales of decision-making on the emerging landscape patterns for high and 

low heterogeneity landscapes. I found that for the design principle to be effective in a spatially dynamic 

landscape, the spatial extent of decision-making should not be limited to administrative boundaries but 

should also consider the existing landscape conditions such as the spatial heterogeneity of LULC classes.  

Institutional misfit is a common problem in the management of natural resources (Epstein et al. 2015). 

The spatial fit of institutions is further complicated when the landscapes are dynamic. The results of 

chapter 3 suggest that the spatial extent of decision making shouldn’t be fixed as usually is the case in 

small-scale common pool resources but should be flexible to include the spatial dynamics of the 

landscape (Dressel et al. 2018). 

Chapter 4: Rural Urban interactions  

Ostrom’s design principle 3 emphasises on the participation  in the design of local rules and decision 

making (Ostrom 1990). Involving actors in the decision-making improve the outcomes for natural 

resource management. However, actors can collectively make decisions resulting in successful outcomes 

if they exhibit trust, social cohesion, and reciprocity among themselves (Baggio et al. 2016). In a peri-

urban SES, the actors are heterogeneous and often have conflicting resource use interests.  



94 
 

Heterogeneity among actors is a common characteristic of a large complex SES, which contributes to a 

lack of successful outcomes in an SES (Fleischman et al. 2014a). Conflict among actors can lead to 

unexpected outcomes in an SES (Murunga  et al. 2021). It is often hard to understand the relationship 

between actor heterogeneity and outcomes due to various interacting factors (Fleischman et al. 2014a). 

Using the model, I have explored the influence of conflict among rural and urban actors on the emerging 

landscape patterns by limiting the number of influencing factors in the model.  

In Chapter 4, I explored the influence of conflict among urban and rural actors on landscape level 

patterns in an urbanizing landscape using a combination of game theory and reaction-diffusion model 

(Hadzikadic et al. 2010). I used the Hawk and Dove model from game theory to capture the interactions 

among the urban and rural actors at the cell level. The response of rural actor group varied from cell to 

cell in a landscape at every iteration, which influenced the decision of urban actors to transform cells for 

urban land use and therefore, influenced the resulting land use patterns. I found that the emerging 

landscape patterns were non-linear, and the response of each landscape metrics varied for the same 

level of resistance among the rural actors. This shows that the impact of the interactions among actors is 

a complex aggregation process at the landscape level. Further, the non-random patterns suggest that 

conflicts among actors can be modelled which provides an opportunity for informing policies. For 

example, the inflection points estimated in the case of patch area metrics, number of patches, and 

clumpy index can contribute to identifying social-ecological tipping points.  

The chapter emphasises on involving actors in decision making and recognizing conflict among actors for 

governing resources in a spatially dynamic SES. The chapter is an attempt to go beyond the usual 

discussion of collaborative governance rules and explore the influence of actor appropriation and 

resistance on the ecological outcomes in a large SES (Morrison et al. 2020b). 

Chapter 5 : Spatial Neighbourhood Information  

As landscapes are continually transforming, there is a need for a revised definition of actors and their 

involvement in the decision-making process (Sarker 2020). Design principle 3 emphasises the 

participation of local actors in decision making because they have local knowledge and have an 

understanding of the complexities involved in an SES (Ostrom 1990). However, a peri-urban SES is 

unique in terms of the actors involved. Non-local urban actors who come from within the city centres to 

appropriate resources from a peri-urban SES lack sufficient knowledge and understanding of the 

implication of their actions on the SES outcomes (Tidball and Stedman 2013). However, they have a 

strong influence on the process of urbanization and the policies that influence the peri-urban SES 

(Purushothaman and Patil 2017).  
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In Chapter 5, I explored how actors with limited local knowledge can contribute to informed decision-

making. In the model, urban actors influenced the landscape level patterns by explicitly including the 

local spatial information in their decision making at the cell level. The results of this chapter show that 

existing landscape conditions, such as landscape heterogeneity, can influence outcomes in an SES. By 

explicitly including the spatial information in their decision making urban actors can regulate the 

influence of existing landscape conditions on emerging landscape patterns. I combined ideas from land 

system studies and the commons approach by harnessing local spatial information actors with limited 

knowledge can contribute to informed decision-making. 

Chapter 5 shows that to implement Ostrom’s design principle 3 in a peri-urban SES, it is important to 

recognize diversity among actor groups and their unique characteristics and accordingly adapt the 

design principle for the effective governance of resources in the SES.  

6.2 Contribution to SES Research  

In summary, my research has contributed to SES theory in two broad ways. First, I have extended the 

commons approach for natural resource governance by exploring the relevance of the design principles 

for a spatially explicit dynamic SES. Second, I have also contributed to a more holistic understanding of 

land-use change as a set of complex interactions between social and ecological systems. I explain each 

of these contributions in turn below. 

Contribution to the commons approach 

I have operationalised the SES Framework for a spatially dynamic system and explored the applicability 

of design principles in a peri-urban SES.  

In the SES Framework and related studies, ecological components and theories are often overlooked or 

are not explicitly included in understanding their influence on outcomes (Vogt et al. 2015, Partelow 

2018). I have explicitly included the ecological dimension of the peri-urban SES represented by spatial 

heterogeneity of the LULC classes as landscape conditions. I explored the influence of landscape 

conditions on the interactions and the outcomes in the SES. For example, I interrogated the influence of 

spatial heterogeneity on spatial scale of decision-making in Chapter 3 and showed how the spatial 

heterogeneity and decisions at finer spatial scale together influence the landscape level patterns in an 

urbanizing landscape in Chapter 5. 

In an SES involving a terrestrial resource system such as a peri-urban SES, the associated spatial 

properties of the components significantly influence the dynamics of the SES and therefore should be 

included in the analysis. However, the implications of spatial properties in the context of design 

principles remain elusive. I focussed on spatial extent and spatial context as two spatial properties 
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(other than landscape heterogeneity). In Chapter 3, I demonstrated the influence of varying spatial 

extent on the social-ecological feedbacks and outcomes in the SES. Decision-making at the local spatial 

level was also influenced by the local spatial conditions such as the presence or absence of certain LULC 

classes in the neighbourhood (Verburg et al. 2006). In Chapter 5, I explored the potential of using spatial 

neighbourhood information or spatial contextual information explicitly for informed decision making by 

the urban actors at local level.  

In addition, each chapter explores the applicability of the design principles in a peri-urban SES.  

The results of Chapter 3, for example, show that design principle 2 could guide the issue of spatial fit 

between institutions and landscape by aligning the spatial extent of local decision making with spatially 

sensitive local ecological processes. 

A peri-urban SES consists of heterogeneous actors that have multiple and contested land use interests, 

varying influence on the policy-making and different levels of local knowledge. The results of Chapter 4 

show that to apply design principle 3 which suggests involving those affected by rules in the decision-

making, it is important to account for the heterogeneity among actors (Patterson 2017). The 

heterogeneity among actors and resultant conflict lead to the emergence of non-linear responses, which 

provides both challenges and opportunity to address sustainable management of resources.  

The dominant actors in a large-scale complex SES may not be the ones with sufficient local knowledge 

and understanding of the complexities (Patterson 2017). In Chapter 5, I have shown that by explicitly 

including local neighbourhood information in their decision making, social actors can compensate for 

lack of knowledge and contribute to informed decision-making.  

Contribution to land-use change studies and land-use change models 

In the last few decades, researchers have developed various models to predict LULC change and 

urbanization (Mustafa et al. 2017). However, there is an increasing need to develop theories and models 

for land use change analysis through the lens of social-ecological systems (Verburg et al. 2019). The 

models are expected to capture the complexity of social-ecological systems including actors, institutions 

and spatially explicit interactions. On one hand, CA-based models are simple and rule-based, which are 

useful in exploring self-organizing systems. On the other hand, ABM models can explicitly include actors’ 

behaviour unlike CA-based models (Gotts et al. 2019, Ren et al. 2019). However, ABM based models are 

specific to case studies and require a large amount of ground data (Ren et al. 2019). With the availability 

of high processing computing systems and visualization methods, researchers are now developing 

hybrid models which explicitly include actors’ behaviour and spatially explicit interactions (Mustafa et al. 

2017, Pratomoatmojo 2018).  My model falls in the category of the hybrid models which combines a 

rule-based approach (for land-use policies updated), and explicitly includes actors’ behaviour at the cell 
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level (game theory) and spatial interactions among cells (spatial neighbourhood) using the cell score in a 

reaction-diffusion equation. The model explores the interactions and feedback among various 

components of a peri-urban SES including actors’ decisions, landscape conditions, and land-use policies 

and their influence on the landscape-level patterns using simulated data.  The aim of the model is to 

explore and test hypotheses instead of predicting land-use patterns by operationalizing the SES 

framework.  The model, therefore, contributes to recent studies  (Foster and Iaione 2019, Myers 2020) 

that are exploring the design principles and the SES framework for urban and peri-urban settings. 

Further, from a modelling perspective, the model includes a limited number of variables which makes it 

simple and tractable. It is also scalable and can be expanded to include more variables for future use. 

The Land-Use Policy sub-module captures the changes in the LUZs for each cell influenced by emerging 

landscape patterns, using a rule-based approach. In Chapter 3, I used the submodule to explore 

environmental feedbacks (Wu and Hobbs 2002) between institutions and landscape heterogeneity to 

address the question of spatial fit, thus, contributing to a better understanding of the cross-scale 

dynamics in land use change (Seppelt et al. 2018). Researchers have shown that actors’ decision at local 

level influence the policies (Hersperger et al. 2013). In the model, I have included implicit feedbacks 

between actors and land-use policies. Actors make decision at local level that influence the landscape 

level patterns which in turn influence the land-use policies as land-use policies are updated based on the 

existing landscape patterns at the time t.  

Verburg et al. (2015) and Verburg et al. (2019) have emphasised on the need to account for variation in 

interactions among decision-makers at local level and resulting cross-scale dynamics in land use change. 

I have used game theory based Hawk and Dove model together with the reaction-diffusion equation to 

explore the varying social interactions at a fine spatial scale and resulting cross-scale dynamics in 

Chapter 4. The results of Chapter 4 show that understanding and modelling the dynamics of interactions 

among the actors and emerging landscape patterns can contribute to identifying SES tipping points and 

exploring new transition pathways in dynamic landscapes (Milkoreit et al. 2018, Mathias et al. 2020, 

Morrison et al. 2020b). 

Researchers in land use studies have recognized the importance of spatial autocorrelation and resulting 

structural spatial dependencies and interactions in emerging land use patterns (Verburg et al. 2006). In 

Chapter 5, I have shown how the dynamics between neighbourhood spatial patterns and local level 

decisions can be harnessed to understand self-organization and emergent land use patterns in a 

landscape.  
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6.3 Limitations  

There are three main limitations to this study. First, I have used simulated images to represent the 

terrestrial resources system. I have focused on two dimensional (2-D) features such as water bodies, 

grasslands and forest patches, however, in a landscape; there are also linear or one-dimensional 

features (1-D) such as roads that may affect the dynamics of the landscape and preferences of the 

actors (Roques & Bonnefon 2016). For example, the presence of a road network may increase the 

connectivity and proximity to the market for the rural actors, which may influence their decisions to 

comply or resist land use transformations (in Chapter 4) and eventually may affect the emergence of 

land use patterns. Further, combining single urban land use is not sufficient to capture heterogeneous 

preferences among actors, as there are different kinds of urban built-up with different needs and 

preferences such as industrial areas vs residential areas.  

Second, the actors form a complex mosaic in a peri-urban SES. It is hard to have a clear distinction 

between actors’ choices in a peri-urban SES (Nagendra et al. 2013). I have focused on a broad category 

of urban and rural actors where urban actors are the ones appropriating land specifically for urban land 

use and have a comparatively higher influence on policymaking. I have included the diversity among 

actors’ responses in Chapter 4 in form of change in the percentage of actors resisting the land use 

transformation. Further, in Chapter 5 I have included changes in preferences among urban actors with 

change in LULC classes in the spatial neighbourhood. However, the diversity among actors is much more 

complex and dynamic in a peri-urban SES. For example, rural-urban migration influences the 

preferences of actors to land use transformations. The choices of actors and their attributes vary along 

the rural-urban continuum, which does not necessarily follow a fixed gradient (Vidyarthi et al. 2017, 

Murali et al. 2019). For example, the changes in biophysical factors such as depletion of sufficient water 

quantity in a local neighbourhood and spatial dynamics such as the development of a road network 

influence actors’ preferences for different land uses as the landscape urbanizes. The socio-spatial 

patterns also influence actors’ preferences for land use transformations such as peer-influence to sell 

land in urban fringes influences landscape heterogeneity and emerging land use patterns (Koch et al. 

2019, Narain 2021).   In addition, there is a need to include the economic variables that influence actors’ 

decision and resulting spatial patterns (Magliocca et al. 2015) . 

Finally, the multi-tiered structure of the SES Framework provides a rich set of variables to organize and 

support model building and hypothesis testing for larger SESs (Binder et al. 2013). However, I found that 

the original SES Framework has limitations and lacks sufficient support for exploring dynamics including 

feedbacks (Partelow and Winkler 2016, Anderies et al. 2019). This can be because the structure of 

feedback and interactions among components of the system beyond tier-one of the SES Framework are 

not explicitly identified (Anderies et al. 2019). For example, resource users and governance system 
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components of the first tier identify the user groups and social components. However, it is difficult to 

structure the interactions explicitly among heterogeneous actors, say rural and urban actors, in an SES 

using the SES Framework.  

6.4  Recommendations 

Methodological challenges 

To keep the model simple and tractable, I have made some assumptions and included limited variables 

in the model that may limit the outcomes. However, there are various spatial, social and economic that 

influence actors’ decisions that need to be integrated in the model for a better understanding of human-

decision making. Linear spatial features such as the presence of a road network or a river stream 

influence the decisions for land use transformation. The linear features can be included as an additional 

spatial layer in the model. However, there are dynamics associated with the features such as the 

development of a new road network as the urbanization progresses and it may influence actors’ 

decisions at later stages of urbanization.  Models such as EFFortS-LGraf by Salecker et al. (2019) can 

generate simulated scenarios for agricultural landscapes. The output of the EEForts-LGraf model can be 

used as input to my model to include the effect of linear features. In addition to spatial variables, there 

is a need to explore the influence of economic variables on actors’ decisions and behaviour. One way to 

do this is to explore economic agent based-models (Magliocca et al. 2015). Another assumption in the 

model was that only urban actors migrated and moved away from the city centre. However, migration is 

a two-way process which may influence the outcomes. The next challenge is to include migration as a 

factor in the model. 

Ways to extend the Ostrom’s SES Framework  

I have shown that the SES Framework with its multi-tiered structure allows mapping of complexities 

involved in a peri-urban SES. However, the interactions within a peri-urban SES are spatially dynamic 

and continually evolving. Scholars favor a gradient approach over a  rural-urban dichotomy to address 

the complexities in a peri-urban SES (Nagendra et al. 2013).  For example, actors’ choices are dynamic 

and transformative along the continuum. Therefore, it would be interesting to analyze actors’ 

preferences in a larger spatial and social context. One way to do so would be to connect the SES 

Framework with the Ecosystem Services concept (Partelow and Winkler 2016). Ecosystem service 

choices often vary among actors in peri-urban areas depending on their socio-economic and spatial 

attributes such as level of income, gender, education and access to natural resources and markets 

(Murali et al. 2019). Using Ecosystem Services choices as indicators can help in addressing the dynamics 

in actors’ choices based on their spatial locations and social preferences.  
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In a landscape, the spatial units are interlinked and change in a particular land use influences the LULC in 

the neighbourhood and related ecological functions in the landscape (Verburg et al. 2006, Banerjee et 

al. 2013). This in turn influences the ecosystem services and flows (Banerjee et al. 2013), actors’ 

preferences (Chapter 5) and rules (Chapter 3).  To understand the interactions in a dynamic landscape it 

is important to include the interlinkages among resource units within a resource system explicitly. The 

concept of Ecosystem Services can help in extending the SES Framework to include the interlinkages in a 

landscape. However, the concept of Ecosystem Services includes an understanding of Ecosystem 

Services flows, trade-offs and Ecosystem Services bundles. The next challenges is to look for suitable 

methods to include the concept of Ecosystem Services with the SES framework.   

Further, I suggest using the SES Framework with a combination of other frameworks that include 

different components of an SES and feedbacks more explicitly such as the robustness framework for 

answering the questions of dynamics, trade,-offs and resilience in an SES (Anderies et al. 2019). One 

such framework is the Coupled Infrastructure Systems (Anderies et al. 2004, Anderies et al. 2016, 

Anderies et al. 2019) framework, where the interactions among SES components are explicit, including a 

typology to describe the process that further helps in addressing the dynamics and feedbacks involved 

in an SES. 

Urban planning and civic engagement for peri-urban areas 

To have higher civic engagement between the policy makers, planners, and the different stakeholders it 

is important to recognize the potential of actors to self–organise. For example, actors with limited local 

knowledge (Chapter 5) or with limited influence on policy-making (Chapter 4) can influence the 

emerging landscape patterns. Therefore, I recommend that planners and policy managers consider the 

sufficient representation of different group of actors in planning exercises. Planning across different 

spatial scales should also take into account baseline landscape heterogeneity (Chapter 5). However, in 

my thesis I have only explored two design principles. The next challenge is to explore the suitability of 

other design principles in the context of landscape studies.  

Linking the design principles to land system science 

Operationalizing Ostrom’s design principles particularly for larger SESs such as terrestrial SESs requires 

understanding the concept of space and spatial dynamics as potential factors that influence the 

interplay between the components of the SES including institutions (Cumming 2011). The application of 

design principles and analysis of institutions in a spatially explicit context can benefit from the 

integration of theories related to land system change such as theories of land-use spill overs and 

displacement, land-sparing, intensification and rebound effects (Meyfroidt et al. 2018).  For example,  

the theory of leakage and indirect land use change explains the effect of land use change at local and 
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distant places, resulting from policy interventions at the national or regional level (Meyfroidt et al. 2018, 

Turner et al. 2020) and therefore, in turn, can facilitate the exploration of the causal relations or 

mechanisms of interactions and their outcomes at broader spatial scale  (Cumming et al. 2020).  

There is a gap in theoretical understanding of the causal interplay between ecological dynamics and 

institutions (Cumming and Epstein 2020, Cumming et al. 2020). On the other hand, there is an increased 

emphasis on addressing land use changes as integrated social-ecological systems with explicit attention 

to institutions (Turner et al. 2012, Meyfroidt et al. 2018, Turner et al. 2020). Linking design principles to 

the developments in land use change studies through theories and frameworks can further contribute to 

addressing this gap. For example, Turner et al. (2020) has proposed a framework that aims at explaining 

the causal variables related to land use change by including the most of the variables and interlinkages 

existing in a land system. They have explicitly included links to biophysical subsystems and the 

institutions in the framework. Similarly, using Ecosystem Services concept can be useful as it connects 

the ecosystem function and structures to the human well-being (Millennium Ecosystem 2005, Meyfroidt 

et al. 2018). Such frameworks and concepts can contribute to addressing the gaps in contextual 

understanding of the interlinkages between institutions and biophysical processes across scales (Turner 

et al. 2020).  

 

6.5 Conclusion 

In conclusion, I have used a model based approach to explore and provide new insights into the spatial 

interplay between governance and landscape change and extend SES theory for spatially explicit SES. I 

have used an explanatory model approach to test Ostrom’s Design Principles for large-scale dynamic 

SES. The model is scalable and can be easily extended to include additional variables and theories. 

The thesis contributes to ongoing research in the area of large, complex, and dynamic SES using 

Ostrom’s design principles (Cox 2014, Tyson 2017). I have particularly focussed on design principle 2 and 

3. I have shown that for the design principles to be effective researchers have to adapt the design 

principles to include the unique characteristics of a peri-urban SES including evolving institutions, actor 

heterogeneity, and spatial characteristics of the terrestrial resource system. 

The institutions in a dynamic SES such as peri-urban SES are continually evolving and spatial 

characteristics including LULC patterns of the resource system influence the evolution of institutions. I 

have shown that to operationalize design principle 2 for a spatially dynamic SES, one has to explicitly 

define the term ‘local’ as relative rather than fixed that is, as a spatial extent of decision-making based 

on landscape heterogeneity. The analysis thus extends the understanding of the fit between landscape 

governance and spatial processes for large SESs.  
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The complex and dynamic landscapes such as peri-urban SES have diverse groups of actors each with 

unique characteristics, such as limited local knowledge, conflicting resource-use, and varying levels of 

influence on institutions and policies. The actors’ interactions at the fine spatial scale in the SES vary, 

which influences the response of emerging landscape level patterns. Therefore, to include the local 

actors in the decision making as emphasised in design principle 3, one must account for actor 

heterogeneity and the potential of actor resistance in achieving ecosystem sustainability.  

I also conclude that actors with limited local knowledge can contribute to informed decision making in 

urbanizing landscapes by explicitly considering the neighbourhood LULC to inform their choices for land 

use transformation. In a peri-urban SES where often the policymakers are spatially distant from the 

urban periphery, the urban actors can bridge the gap between policymakers at urban centres and peri-

urban areas by making spatially conscious decisions at local level and therefore, can regulate the cross-

scale feedback between landscape and landscape governance. 

In sum, by operationalizing design principles for a terrestrial resource system with multiple land use, I 

have shown how SES theory offers the opportunity to address questions and inform solutions for 

landscape governance from the systems thinking perspective. The thesis contributes to extending 

existing SES theory to better understand feedbacks and cross-scale interactions in dynamic SESs, thus 

contributing to a more general, quantitative theory for social-ecological systems. 
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 : Supplementary materials for Chapter 2 

Results of Sensitivity Analysis  

b) High Heterogeneity 

landscape 

a) Low Heterogeneity 

landscape 
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Figure A.1 : The two box plots show the variability in the number of urban cells at time = 50 year for 

different value of level of neighbourhood information when input landscape heterogenenity was (a) low 

and (b) high.  

 

Figure A.2: The box plot shows the variability in number of urban cells at t= 50 when input landscape 

heterogeneity was varied from low to high when the level of neighbourhood information was constant.  
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 : Supplementary materials for Chapter 3 

 

Summary Statistics of Multiple Regression  

Table B.1: Low heterogeneity landscape (y = Number of urban cells at the Change point 1(ChgPt1)) 

 

Table B.2: Low heterogeneity landscape (y = Gradient at the Change point 1(ChgPt1) 

 

 

 

 

 

Independent 
variable 

Significance of 
the variable 

Coefficient 
value  

t-stat Regression Model  p-
Value and R-square 

Spatial extent 
for LUZ update 
(ChgPt1) 

Patch Area  0.0731 0.003380 1.818         P-value : 0.317  

R-Square : 0.04509 

Regional (44) 

Edge Density 0.8972     -92.644460 -0.130 Regional 

SDPatch 0.1880     -0.002148 -1.328 Regional 

Patch Area  0.149 2.870e-03 1.459      P-value : 0.3785  

R-Square : 0.03955  

 

Local (48) 

Edge Density 0.338 -7.290e+02 -0.964 Local 

SDPatch 0.672 -7.273e-04 -0.425   Local 

Patch Area  0.161 2.836e-03 1.415  P-value : 0.3007  

R-Square : 0.03955  

 

Null (33) 

Edge Density 0.622 -3.819e+02 -0.496 Null 

SDPatch 0.811 -4.176e-04 -0.240 Null 

Independent 
variable 

Significance of 
the variable 

Coefficient 
value  

t-stat Regression Model  p-
Value and R-square 

Spatial extent 
for LUZ update 
(ChgPt1) 

Patch Area  0.155 5.355e-05 1.435    P-value : 0.452 

R-Square : 0.03382 

Regional (44) 

Edge Density 0.774     -4.124e+00 -0.288    Regional 

SDPatch 0.119         -5.117e-05 -1.577 Regional 

Patch Area  0.243     3.800e-05  1.176 P-value : 0.4728 

R-Square : 0.03233 

 

Local (48) 

Edge Density 0.168 -1.730e+01 -1.393 Local 

SDPatch 0.558     -1.656e-05 -0.589 Local 

Patch Area  0.236   5.513e-05 1.194      P-value : 0.565 

R-Square : 0.02627 

 

Null (33) 

Edge Density 0.408     -1.476e+01 -0.832     Null 

SDPatch 0.708     -1.512e-05 -0.377 Null 
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Table B.3: High heterogeneity landscape (y = Number of urban cells at the Change point 1(ChgPt1)) 

 

 

Table B.4: High heterogeneity landscape (y = Gradient at the Change point 1 (ChgPt1)) 

Independent 
variable 

Significance 
of the 
variable 

Coefficient 
value  

t-stat Regression Model  
p-Value and R-
square 

Spatial extent 
for LUZ update 
(ChgPt1) 

Patch Area  0.517     -0.0001649 -0.650 
P-value : 0.4478 

R-Square : 0.02715 

Regional (44) 

Edge Density 0.299     6.3798112   1.044   Regional 

SDPatch  0.406     0.0001342   0.834     Regional 

Patch Area  0.837 3.002e-05 0.207    P-value : 0.5601  

R-Square : 0.02112 

Local (48) 

Edge Density 0.281 3.793e+00 1.084 Local 

SDPatch 0.926 -8.549e-06 -0.093 Local 

Patch Area  0.615 -9.887e-05 -0.505    P-value : 0.6232  

R-Square : 0.0181 

Null (33) 

Edge Density 0.322 4.698e+00 0.996 Null 

SDPatch 0.586 6.788e-05 0.547  Null 

 

 

 

 

 

 

 

Independent 
variable 

Significance of 
the variable 

Coefficient 
value  

t-stat Regression Model  p-
Value and R-square 

Spatial extent 
for LUZ update 
(ChgPt1) 

Patch Area  0.863 -1.299e-03 -0.173 P-value : 0.4863 

R-Square : 0.02497 

 

Regional (44) 

Edge Density 0.197 2.349e+02 1.299 Regional 

SDPatch 0.851 8.970e-04 0.188 Regional 

Patch Area  0.488     5.871e-03 0.696 P-value : 0.508 

R-Square : 0.02379 

 

Local (48) 

Edge Density 0.258 2.310e+02 1.137 Local 

SDPatch 0.451 -4.046e-03 -0.757 Local 

Patch Area  0.824 1.378e-03 0.223     P-value : 0.6994 

R-Square : 0.01467 

 

Null (33) 

Edge Density 0.277 1.623    e+02 1.093 Null 

SDPatch 0.661   -1.719e-03 -0.440 Null 
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 : Supplementary material for Chapter 4  

 

C.1 Amount of urbanization across different levels of resistance 

 

Figure B.1: Number of urban cells at all levels of resistance (0 to 10). As the level of resistance among 

rural actors increase the amount of urbanization decreases. For example, when the level of resistance 

was 1 (10% of rural Hawks) the amount of urbanization was about 2250 cells (violet line) at 50th year 

whereas for the same year the amount of urbanization was 510 cells (orange line) when level of 

urbanization was 100% i.e. all rural actors were rural Hawks. In the figure, thick line represents the 

average value of amount of urban cells for each level of resistance and dotted line represent the 

variation (calculated as standard deviation) for all 100 images.  

C.2 Checking for the confounders   

To address confounding variables statistically logistic regression, linear regression, and ANCOVA are 

three common methods (Pourhoseingholi et al. 2012). For chapter 4, the independent variable (level of 

resistance) was a categorical variable and the confounding variable (rate of urbanization) was a 

continuous variable, hence, I used ANCOVA. However, the initial assumptions of linearity and  

homogeneity were violated (Field et al. 2012).  Therefore, I performed linear regression on interaction 

between intendent variable and the confounding variable and estimated regression coefficient with and 

without confounders. For all landscape metrics, the change in regression coefficient was greater than 
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10%. However, when I addressed the coefficient in the resulting curves we found that the change in R-

square value was <0.01. In addition, the coefficient of level of resistance and its power terms were 

significant (with p-value <0.05) for before and after addressing for confounding variables. Hence, the 

confounding was mild and it did not add much information (Field et al. 2012), therefore, I dropped the 

confounding variable from the analysis.  

C.3 Result of Curve fitting  

The following tables show the goodness of fit test of the standard curves to the mean value of 

respective landscape metrics.  

Table C.1: Goodness of fit measures for mean values of number of patches across resistance levels (from 

1 to 10). The logistic curve was the best fitting cure for Patch Area 

Standard Curves  AIC  Log likelihood 

Exponential 8.375051 -1.187525 

Power 22.6095 -8.304751 

Log 36.08806 -15.04403 

Logistic (sigmoidal) 22.8592 -8.4296 

 

Table C.2: Goodness of fit measures for mean values of Patch Area across resistance levels (from 1 to 10). 

The logistic curve was the best fitting cure for Patch Area.  

Standard Curves  AIC  Log likelihood 

Exponential 270.554 -120.703 

Power 249.406 -132.277 

Log 260.2597 -127.1298 

Logistic (sigmoidal) 244.846 -119.4232  

 

 

Table C.3: Goodness of fit measures for mean value of Edge Density across resistance levels (from 0 to 1). 

The power curve fits best for the Edge density function.  

Standard Curves  AIC  Log likelihood 

Exponential -17.38417 11.69208 

Power -33.93269 
 

19.96635 

Log -16.86541 11.4327 

Logistic (sigmoidal) 208.369 -102.1845 
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Table C.4: Goodness of fit measures for mean value of Clumpy index of urban patches across resistance 

levels (1 to 10). Log was best fitting curve. 

Standard Curves  AIC  Log likelihood 

Exponential -92.11443 48.3836 
 

Power -107.4907 55.72903 
 

Log -105.4547 
 

55.72735 
 

Logistic (sigmoidal) -128.0799 69.03997 

 

Table C.5: Goodness of fit measures for mean value of Aggregation Index (landscape level metrics) across 

the resistance level (1 to 10). Log was the best fitting curve. 

Standard Curves  AIC  Log likelihood 

Exponential -2.514411 4.257205 

Power 10.5754 -2.287698 

Log -9.536308 

 
7.768154 

 

Logistic (sigmoidal) 18.26796 

 
-6.133978 

 

Table C.6: Goodness of fit measures for mean value of Fractal Mean Index (landscape level metrics) 

across the resistance level (1 to 10). Log was the best fitting curve. 

Standard Curves  AIC  Log likelihood 

Exponential -98.70242 

 
52.35121 

Power -119.399 

 
63.69951 

 

Log -103.5536 

 
54.77682 

Logistic (sigmoidal) 208.3688 

 
-102.1844 
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 : Supplementary material for Chapter 5 

Patch Area  

 

Figure D.1: Patch Area at initial value and at saturation point for different values of neighbourhood 

information. Red dotted line shoes mean patch area for the initial landscape.  
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Number of patches (NP) 

 

Figure D.2: Number of patches at initial value and at saturation point for different values of 

neighbourhood information. Red dotted line shows mean patch area for the initial landscape. 

Edge Density  

  

Figure D.3: Edge Density at initial value and at saturation point for different values of neighbourhood 

information. Red dotted line shows mean patch area for the initial landscape. 
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Clumpy index 

 

Figure D.4: Clumpy Index at initial value and at saturation point for different values of neighbourhood 

information. Red dotted line shows mean patch area for the initial landscape. 
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Multivariate analysis using pCCA 

 

Figure D.5: Ordination diagram for low and high heterogeneity landscape for percentage change in  NP, 

Clumpy Index and ED as response variable, level of neighbourhood information as explanatory variable 

and  PA as covariate. It is clear from the ordination diagram where the response variables represented by 

points are clustered around the center. Arrows (blue clusters in the ordination diagram) represent the 

explanatory variable and the length of the arrows represent the correlation with ordination axes (Beasley 

and Kneale 2002). As the lengths of arrow are much smaller, the cluster shows that the explanatory 

variables are not very closely related to pattern observed among the response variables.   
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