
Ecology and Evolution. 2022;12:e9610.	 ﻿	   | 1 of 13
https://doi.org/10.1002/ece3.9610

www.ecolevol.org

Received: 27 October 2022  | Accepted: 23 November 2022
DOI: 10.1002/ece3.9610  

R E S E A R C H  A R T I C L E

Field-based adipose tissue quantification in sea turtles using 
bioelectrical impedance spectroscopy validated with CT scans 
and deep learning

Sara Kophamel1  |   Leigh C. Ward2 |   Dmitry A. Konovalov3 |   Diana Mendez4 |   
Ellen Ariel1 |   Nathan Cassidy5 |   Ian Bell6 |   María T. Balastegui Martínez7 |    
Suzanne L. Munns1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1College of Public Health, Medical 
and Veterinary Sciences, James Cook 
University, Townsville, Queensland, 
Australia
2School of Chemistry and Molecular 
Biosciences, The University of 
Queensland, St Lucia, Queensland, 
Australia
3College of Science and Engineering, 
James Cook University, Townsville, 
Queensland, Australia
4Australian Institute of Tropical Health 
and Medicine, Townsville, Queensland, 
Australia
5North Queensland X-Ray Services, 
Townsville, Queensland, Australia
6Department of Environment and Science, 
Queensland Government, Townsville, 
Queensland, Australia
7Department of Animal Medicine and 
Surgery, CEU Cardenal Herrera University, 
CEU Universities, Valencia, Spain

Correspondence
Sara Kophamel, College of Public Health, 
Medical and Veterinary Sciences, James 
Cook University, 1 James Cook Dr, 
Townsville QLD 4814, Australia.
Email: sara.kophamel@my.jcu.edu.au

Funding information
James Cook University (International 
Postgraduate Research Scholarship); 
North Queensland X-Ray Services; 
Queensland Parks and Wildlife Service 
(Department of Environment and Science, 
Queensland Government); Sea World 
Research and Rescue Foundation, Grant/
Award Number: SWR/6/2019

Abstract
Loss of adipose tissue in vertebrate wildlife species is indicative of decreased nu-
tritional and health status and is linked to environmental stress and diseases. Body 
condition indices (BCI) are commonly used in ecological studies to estimate adipose 
tissue mass across wildlife populations. However, these indices have poor predic-
tive power, which poses the need for quantitative methods for improved popula-
tion assessments. Here, we calibrate bioelectrical impedance spectroscopy (BIS) as 
an alternative approach for assessing the nutritional status of vertebrate wildlife in 
ecological studies. BIS is a portable technology that can estimate body composition 
from measurements of body impedance and is widely used in humans. BIS is a predic-
tive technique that requires calibration using a reference body composition method. 
Using sea turtles as model organisms, we propose a calibration protocol using com-
puted tomography (CT) scans, with the prediction equation being: adipose tissue mass 
(kg) =  body mass − (−0.03 [intercept] − 0.29 * length2/resistance at 50 kHz +  1.07 * 
body mass − 0.11 * time after capture). CT imaging allows for the quantification of 
body fat. However, processing the images manually is prohibitive due to the extensive 
time requirement. Using a form of artificial intelligence (AI), we trained a computer 
model to identify and quantify nonadipose tissue from the CT images, and adipose 
tissue was determined by the difference in body mass. This process enabled estimat-
ing adipose tissue mass from bioelectrical impedance measurements. The predictive 
performance of the model was built on 2/3 samples and tested against 1/3 samples. 
Prediction of adipose tissue percentage had greater accuracy when including imped-
ance parameters (mean bias = 0.11%–0.61%) as predictor variables, compared with 
using body mass alone (mean bias = 6.35%). Our standardized BIS protocol improves 
on conventional body composition assessment methods (e.g., BCI) by quantifying adi-
pose tissue mass. The protocol can be applied to other species for the validation of 
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1  |  INTRODUC TION

1.1  |  Conventional methods for body composition 
assessment

Assessing body composition is an integral component of ecologi-
cal, behavioral, and evolutionary studies in vertebrate wildlife. The 
macro-composition of the body (i.e., adipose tissue and nonadipose 
tissue) changes when nutritional intake is mismatched with the nu-
tritional requirements (Ward, 2018a). Fat, primarily adipose tissue, is 
the primary energy store in vertebrates. The mobilization of energy 
reserves is especially important in vertebrate animals exposed to 
prolonged fasting, or in females undergoing vitellogenesis (Hamann 
et al., 2002; Lignot & LeMaho, 2012). The loss of adipose tissue has 
also been linked to chronic stressors such as anthropogenic and 
environmental threats, climate change, and diseases (Karasov & 
del Rio,  2020; Price & Valencak, 2012). The standard, field-based 
method for assessing body composition in sea turtles is to deter-
mine body condition indices (BCI), such as Fulton's condition fac-
tor (K  =  body mass/straight carapace length3 * 10,000; Bjorndal 
et al., 2000; Harris et al., 2017). These indices are simple to obtain 
and do not require extensive training (Harris et al.,  2017; Wilder 
et al., 2016) but have poor predictive power for quantifying adipose 
tissue (Stevenson & Woods Jr., 2006; Wilder et al., 2016). Robust 
alternatives that can be applied in the field would enhance our un-
derstanding of sea turtle population health.

1.2  |  Bioelectrical impedance spectroscopy

Bioelectrical impedance spectroscopy (BIS), which falls under the 
category of bioelectrical impedance analysis (BIA) methods, is con-
sidered an accurate, portable, quick, affordable, and noninvasive 
method that has been used to predict body composition in humans 
(Lemos & Gallagher, 2017; Ward, 2018b), fishes (Ćurić et al., 2017), 
and in domestic and laboratory animal research (Muller et al., 2021; 
Ward et al., 2009). BIS measures the opposition of biological tis-
sues to the flow of an electric current (impedance). The resulting 
impedance values (or more correctly its component, resistance) are 
used, in combination with body mass and length measurements, to 
predict nonadipose tissue. Adipose tissue is then calculated from 
the nonadipose tissue estimates by difference with body mass 

(Van Marken Lichtenbelt, 2001). For additional information on the 
rationale behind the chosen impedance parameters and on how to 
conduct impedance measurements on sea turtles, we refer the in-
terested reader to Kophamel et al. (2023). The portability and ease 
of use of BIS devices make them especially attractive for assessing 
threatened species in the field. However, the successful application 
of BIS for wildlife assessments requires the adoption of standard-
ized protocols, identification and control for potential confounding 
factors, and appropriate calibration and validation (Haus et al., 2017; 
Kophamel et al., 2023; Ward et al., 2009). Noninvasive methods for 
body composition assessment, such as diagnostic imaging tools, 
were found to strongly correlate with the reference calibration 
method (i.e., chemical analyses). Diagnostic imaging tools are there-
fore suitable for BIS calibration where chemical analyses of threat-
ened species are undesirable (Ross et al., 1991; Wyatt et al., 2015).

Integrating adipose tissue data in sea turtle monitoring programs 
could help to identify drivers of population declines or measure 
the effectiveness of a conservation program (IUCN – SSC Species 
Conservation Planning Sub-Committee,  2017). Nutritional status 
assessment can serve as indicators for population decrease and 
population viability (Deem et al., 2001; Page-Karjian et al., 2020). 
Monitoring nutritional status, in combination with foraging ground 
assessments, population abundance, and demographic parameters, 
can provide an early warning about potential anthropogenic and en-
vironmental threats, which might have long-lasting consequences 
on health status and on the turtles' habitat (Deem & Harris, 2017). 
The combined and simultaneous monitoring of both sea turtle habi-
tat and nutritional status might thus provide a clearer picture of the 
impacts of threats on foraging and nesting sites, and on sea turtle 
population health. The integration of monitoring programs with ad-
ipose tissue data may also serve as a guidance for state agencies, 
researchers, and NGOs wishing to enhance conservation efforts on 
other threatened species.

The aims of this study were to conduct paired BIS and computed 
tomography (CT) measurements on a model species (green turtle, 
Chelonia mydas), to develop a fully automated process for adipose 
tissue identification and quantification from the CT scans by using 
a form of artificial intelligence (i.e., convolutional neural networks, 
CNN), and to use these data to calibrate a BIS body composition 
device for field-use. This study also provides a novel automated pro-
tocol for CT image processing that can be adapted to other sea turtle 
species and to other taxa.

BIS and to provide robust information on the nutritional and health status of wildlife, 
which, in turn, can be used to inform conservation decisions at the management level.

K E Y W O R D S
adipose tissue, Bland–Altman, body condition, body fat, nutritional status, sea turtle

T A X O N O M Y  C L A S S I F I C A T I O N
Ecoinformatics, Ecophysiology
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2  |  MATERIAL S AND METHODS

2.1  |  Animals

This study was conducted in North Queensland, Australia, between 
June 2019 and March 2021. The sample consisted of n = 49 green 
turtles (Chelonia mydas): n =  25 wild and immature turtles caught 
from Cleveland Bay (19°13′05″S, 146°55′19″E) and Toolakea Beach 
(19°08′40″S, 146°34′40″E), and n = 24 captive turtles sourced from 
the Turtle Health Research Facility at James Cook University that 
had been transferred from Heron Island (Queensland, Australia). See 
Kophamel et al.  (2023) for husbandry details. Turtles were trans-
ported to shore immediately after capture. The sex of the captured 
turtles was unknown. The inclusion criteria for all animals were to 
be clinically healthy and to have a carapace width of less than 55 cm 
(width limitation of the CT scanner gantry). A complete physical ex-
amination was performed by a qualified veterinarian (SK) and only 
animals that appeared healthy, in a good body condition (visual as-
sessment), and without evident injuries, tumors, or limb amputations 
were used in the study. Impedance devices assume a constant hy-
dration fraction and a certain body geometry (i.e., individuals with 
four limbs present; Kophamel et al., 2023). Lethargic animals may 
not be normally hydrated, and turtles with missing limbs will have a 
different body geometry than turtles with all limbs present. These 
characteristics could alter the impedance measurements, which un-
derscores the importance of excluding dehydrated animals and ani-
mals with missing limbs when performing a calibration study unless 
these limitations are accounted for in the predictive models.

The health status of each turtle was further examined with 
biochemical and hematological analyses, which are detailed in 
Kophamel, Rudd et al. (2022). The curved carapace length (CCL) and 
straight carapace length (SCL) were measured twice from the nu-
chal scute to the caudal tip of the supracaudal scute, to the nearest 
millimeter, with the average value being recorded. Body mass was 
measured to the nearest 0.01 kilogram (kg) by suspending each tur-
tle in a custom harness from a digital hanging scale. Body tempera-
ture was measured using a thermocouple (8402-20 Thermistor 237 
Thermometer, Cole-Palmer Instruments), and by inserting the probe 
5 cm into the cloaca (Flint, 2013; Stacy & Innis, 2017). Animal char-
acteristics are detailed in the Appendix S1, Table A2.

All experimental procedures were completed within the 
same day and were approved by Animal Ethics (permit number 
A2525), the Great Barrier Reef Marine Park Authority (permit 
numbers G18/40749.1 and G19/42769.1), and the Department of 
Environment and Science, Queensland Government (permit num-
bers SPP18-001167 and SPP18-001167-1).

2.2  |  Bioelectrical impedance spectroscopy

Bioelectrical impedance measurements were performed using 
a BIS device (SFB7, Impedimed), that measures resistance and re-
actance to an applied harmless, alternating electric current at 256 

logarithmically-spaced frequencies in the range of 3–1000 kHz. 
Device calibration was verified daily. BIS measurements were car-
ried out 1.5 ± 2.0 h postcapture. Each animal was first placed prone 
on a nonconductive surface and their eyes covered with a noncon-
ductive cohesive bandage to reduce stress. After disinfecting the 
skin with 70% ethanol, resistance measurements were taken by at-
taching electrode leads to two needles (27-gauge × ½ inch needle, 
Terumo, Japan) inserted 2 mm sub-dermally in the right forelimb and 
in the right hindlimb (Figure 1), following the methods described in 
Kophamel et al. (2023). Electrodes were 3 cm apart, with the distal 
electrode applying the current and the proximal electrode sensing 
the voltage. Ten sequential measurements, with an interval of 5 s, 
were taken without removing the electrodes. The complete proce-
dure, from animal preparation and examination to impedance meas-
urements, took no longer than 15 min per animal and did not require 
anesthetizing or sedating the animals. See Kophamel et al.  (2023) 
for full details on the BIS standardization procedure and precision 
(i.e., intra-animal variability) estimates in sea turtles. The extracted 
data of interest were resistance at infinite frequency (Rinf, predictor 
of total body water and nonadipose tissue); resistance at zero fre-
quency (R0, predictor of extracellular water); intracellular resistance 
(Ri, an index of intracellular water); and, for comparison with stud-
ies using the more affordable single-frequency (50 kHz) impedance 
devices, resistance at 50 kHz (R50), reactance at 50 kHz (Xc50), and 
phase angle at 50 kHz (PhA50). Resistance data are required to es-
timate nonadipose tissue, from which adipose tissue can be derived 
by difference in body mass.

2.3  |  Computed tomography scans

Each turtle was secured in the prone position by wrapping loosely 
in a towel and placing within a cardboard box (Figure 2). Eyes were 
covered with a cohesive bandage to reduce visual stimuli and stress. 
Optimal soft-tissue contrast was achieved using a peak kilovolt-
age (kVp) of 120 and a tube current of 320 milliamperage (mA). 
Volumetric data of total body scans were acquired in helical scan 
mode, with 1.25 mm slice thickness and spacing between slices set 
at 0.625 mm (Optima CT660 16 slice scanner, GE Medical Systems; 
and Aquilion Lightning 160). The typical number of CT slices per ani-
mal was around 1600. In this study, the total number of slices was 
approximately 80,000, and approximately 50,000 CT slices were 
used in the final calculations. Turtles were released 4 to 5 h postcap-
ture; wild turtles were returned to their capture location, and cap-
tive turtles returned to their usual housing.

2.4  |  Automated adipose tissue quantification

Adipose tissue Hounsfield units (HU; i.e., attenuation ranges) 
were identified by three-dimensional rendering using a commer-
cially available, validated software for DICOM (Digital Imaging and 
Communications in Medicine) visualization and body composition 
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analysis (NovaPACS, Novarad™; Appendix S1, Figure A1), following 
the methods described in Gibby et al. (2017), Depersio et al. (2019), 
and Newman et al. (2019). The location of adipose tissue on the CT 
scans was confirmed with the previous necropsy information from 
stranded and euthanized animals and with the identification cri-
teria provided by other authors (Stacy et al., 2017; Valente, 2008; 
Wyneken, 2001). A two-step hybrid approach was then implemented 
to perform the fully automated adipose tissue quantification.

In the first step, the direct per-pixel HU-thresholding yielded 
segmentation masks with negligible areas of false negatives (i.e., 
adipose tissue areas identified as nonadipose tissue), and with sig-
nificant areas of false positives (i.e., nonadipose tissue areas iden-
tified as adipose tissue). False positives were further divided into 
four groups (referred to as ABCD masks from now on): (A) skin folds, 
eyes, the epidural space, and artifacts resulting from metal identi-
fication tags; (B) transition from the respiratory tract to pulmonary 
soft-tissue areas; (C) pericardial region (i.e., heart region); and (D) 
gastrointestinal tract (GIT) contents. The CT scanner table was also 
falsely identified as adipose tissue.

In the second step, the deep learning semantic-segmentation 
CNNs were trained to identify the false-positive pixels (i.e., 

nonadipose tissue) using the widely accepted U-Net semantic-
segmentation CNN architecture (Figure 3; Ronneberger et al., 2015). 
An open-sourced machine learning framework (PyTorch) was used 
for implementing the U-Net (Paszke et al., 2019) and was adapted 
from Yakubovskiy  (2020). U-Nets were trained by segmenting 
three training masks for each of the three animals representing 
small (34.4 cm SCL), medium (46.5 cm SCL), and large size (56.4 cm 
SCL) animals. For each of the three animals, every second CT slice 
was enlarged two-fold, from the original 512 × 512 pixels to a 
1024 × 1024 gray-scale image, and manually segmented into ABCD 
masks (Figures 2 and 3). As the table-related pixels were very sim-
ilar between slices, every 20th slice was segmented for identifying 
the false-positive pixels from the CT scanner table. Segmentation 
resulted in a total of 6292 ABCD masks and 151 table masks. U-
Nets were trained for the CT scanner table masks, the GIT masks (D 
mask), and the combined ABC masks. Due to the simple geometri-
cal shape of the CT table, an 11-layer VGG-based (Visual Geometry 
Group) CNN classification was used as an image features encoder 
in the CT table U-Net (vgg-11bn PyTorch ImageNet pretrained ver-
sion; Simonyan & Zisserman, 2014). By contrast, a 34-layer ResNet 
CNN was used as the image features encoder in the D mask and ABC 

F I G U R E  1 Anatomical locations for placing bioelectrical impedance spectroscopy (BIS) electrode needles on a juvenile green turtle 
(Chelonia mydas), using a handheld SFB7 BIS device. Electrode placement was standardized at consistent anatomic markers. Distally placed 
electrodes (red and black) introduce the current and proximally placed electrodes (yellow and blue) record voltage using a high input 
impedance voltmeter. Current-receiving and current-introducing electrodes are inserted 2 mm subdermally and placed ≥3 cm apart to avoid 
current inferences. Anatomical positions of the electrodes are standardized using reference scales (orange). On the right front limb, the 
longest scale at the limb periphery is used as a reference. The recording electrode (yellow) is placed at the medial side of this scale and the 
current-introducing electrode (red) is placed at the distal margin. In the right hind limb, the scale medial to the claw is used as a reference. 
The recording electrode (blue) is placed at the medial side of this scale, and the current-introducing electrode (black) is placed at the distal 
margin. Figure sourced from Kophamel et al. (2023).
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masks U-Nets (He et al., 2016). Due to the required high segmenta-
tion accuracy, each final network version consumed approximately 
1 week of continuous training on a single NVIDIA GTX1080 GPU 
available for this project. Technical details of the training are beyond 
the scope of this publication and will be published separately. Total 
body volume and adipose tissue volume (in cm3 and as %) were de-
termined and adipose tissue mass (kg) calculated by multiplying the 
total body mass (as measured by digital scale) by the fractional adi-
pose tissue percentage.

2.5  |  Statistical analyses

Data are presented as mean ± SD or median with interquartile range, 
as appropriate. The HU ranges for adipose tissue quantification by 
CT scans were determined using generalized additive models. Model 
selection and validation for HU ranges were conducted as described 
below. Stepwise multiple linear regression analysis was used to de-
velop the prediction equations for nonadipose tissue mass estima-
tions, from which adipose tissue mass was derived by difference 
with body mass. The dependent variable was adipose tissue mass (% 
and kg) as predicted by the automated CT scan method (i.e., criterion 
method), and the predictor variables were impedance indices calcu-
lated with SCL and CCL as measures for body length (i.e., length2/

Rinf, length2/R0, length2/R50, length2/Ri, and length2/Xc50), total 
body mass (kg), and time after capture (h) (Kophamel et al., 2023). 
Tukey's post-hoc multiple comparison tests were conducted to as-
sess the effects of predictor variables on the dependent variable (R 
package emmeans, α = 0.05; Lenth, 2016). The final model selections 
were based on the corrected Akaike Information Criterion (Barton & 
Barton, 2015), on diagnostic residual plots, and on the fit of the data 
to the selected model. Predictive power of the selected model was 
examined by refitting the model on a randomized subsample (1/3 of 
the original sample size). Additional correlations between variables 
were assessed using the concordance correlation coefficient and 
Pearson's correlation coefficient (strong correlation assumed when 
p < .05 and r > .5).

Equation accuracy was assessed using Bland–Altman analyses 
with 95% levels of agreement (LOA), which display mean bias and 
LOA between the predicted adipose tissue values obtained with 
the CT and the BIS methods (Table 1; Appendix S1, Figure A2). The 
Bland and Altman plot assesses whether the mean adipose tissue 
value for a population (estimated with the BIS method) is close to the 
measured reference adipose tissue value (CT method). More specif-
ically, the plot quantifies the bias (i.e., predictive error) and range 
(i.e., limits) of agreement that includes 95% of the differences be-
tween two methods (Altman & Bland, 1983; Bland & Altman, 1986). 
Mean bias refers to the accuracy of adipose tissue mass predictions 

F I G U R E  2 Standardization protocol for calibrating a bioelectrical impedance spectroscopy (BIS) device for adipose tissue quantification 
in green turtles (Chelonia mydas, n = 49) using whole-body computed tomography (CT) scans. The calibration consists of five steps, which 
comprise (1) conducting electrical conductivity (i.e., body impedance) measurements with a BIS device; (2) performing CT scans on the 
animals that were assessed with the BIS device; (3) training a convolutional neural networks (CNN) model on the CT scans to automate the 
identification of false-positive pixels; (4) identifying and quantifying the adipose tissue volume from the CNN model; and (5) assessing the 
accuracy of the calibration with Bland–Altman analyses. For additional information on the technical details behind bioelectrical impedance 
measurements in sea turtles, we refer the interested reader to Kophamel et al. (2023).
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at the population level, and lower and upper LOA refer to the in-
dividual level (i.e., an individual could be anywhere within the 95% 
LOA limits). Smaller mean bias and narrower LOA values imply higher 
accuracy and a lower magnitude of error for adipose tissue estima-
tion by the BIS method at the population and individual levels. If the 
mean bias is narrow, but the LOA limits are wide, accuracy at the 
population level will still be high, but since the margin of error in the 
predicted adipose tissue value for an individual is wide, the accuracy 
of the adipose tissue mass prediction at the individual level will be 
reduced. Precision (i.e., intra-animal variability) estimates of the im-
pedance measurements, which determine whether BIS is suitable for 
estimating adipose tissue changes in individual turtles over time, are 
detailed in Kophamel et al. (2023).

The accuracy of adipose tissue predictions by the BIS method 
was further compared using mean absolute percentage error 
(MAPE; Table  1), Passing and Bablok regressions (Appendix  S1, 
Figure  A3), and maximum allowed difference, which indicated 
the predefined agreement level for a sample size of n = 49 at 80% 
power and α = 0.05 (Table 1). Differences below this limit are ir-
relevant or neglectable (Lu et al., 2016). The last step consisted 
in extrapolating the most accurate predictive model to the whole 
sample (n =  49/49), which resulted in a final prediction equation 
recommended for future studies. To assess the accuracy of body 
mass as sole predictor variable for adipose tissue mass estima-
tion, an additional model using body mass as predictor variable 

(excluding impedance index) was created for comparison purposes 
with the best-fitting model.

All statistical analyses were produced with R statistical software, 
using the package ggplot2 for data visualization (Hadley, 2016; R 
Core Team, 2019). The datasets for assessing the validity of our work 
(.xlsx, .ods., and .csv formats) are available at James Cook University 
Data Repository under the following link: https://doi.org/10.25903/​
gzf1-8e56 [doi:10.25903/gzf1-8e56] (Kophamel, Ward, et al., 2022). 
Description of the parameters used in the statistical models and a 
list of abbreviations are detailed in the appendices (Appendix  S1, 
Figure A2, and Appendix S1, section “Description of parameters and 
codes used in the dataset”).

3  |  RESULTS

3.1  |  Adipose tissue attenuation ranges

The neck, sub-carapace, mesenteric, and hindlimb regions 
were visually identified as the main contributors to adipose tis-
sue mass. Individual adipose tissue HU ranged from mean 
HUmin = −32.2 ± 33.8 to mean HUmax = 10.1 ± 16.5 (n = 49), and 
mean adipose tissue resulting from the impedance measurements 
was estimated to be 6.5 ± 3.7%. Additional animal characteristics are 
displayed in the Appendix S1, Table A2.

F I G U R E  3 Flowchart and workflow to create an automated adipose tissue quantification in green turtles (Chelonia mydas, n = 49) using 
whole-body computed tomography (CT) scans and convolutional neural networks (CNN). The workflow consists of (1) training the CNN 
model for adipose tissue identification from the flowchart and workflow to create an automated adipose tissue quantification in green 
turtles (Chelonia mydas, n = 49) using whole-body CT scans and CNN. The workflow consists of (1) training the CNN model for adipose tissue 
identification from the CT scans; (2) validating and evaluating the model performance; and (3) building the final model, which enables the 
calculation of total adipose tissue volume, from which adipose tissue mass can be derived. Please refer to Zopfs et al. (2020) for a detailed 
explanation of the generic CNN model for adipose tissue identification and quantification.
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3.2  |  Adipose tissue quantification

The models generated to predict adipose tissue mass from nonadi-
pose tissue mass had an improved fit when impedance index (i.e., 
length2/resistance), morphometric data (i.e., body mass), and time 
after capture were included as explanatory variables (Table 1), as 
these variables have been shown to alter impedance measurements 
in green turtles, if not accounted for (Kophamel et al., 2023). The 
most accurate equation that resulted from the prediction group 
(n = 33/49) used the impedance index SCL2/R50 and had a mean 
bias of 0.11% and LOA of −8.52% to 8.95% (Equation 1, Figure 3; 
Table 1).

The best-fit equations for predicting adipose tissue mass from 
BIS measurements of impedance indices (a) SCL2/R50 and (b) CCL2/
R50 in the prediction group (n =  33/49) of green turtles (Chelonia 
mydas). SCL2/R50 and CCL2/R50 are the impedance index (length2/
resistance at 50 kHz) calculated using SCL and CCL; body mass is the 
total weight (kg); and time after capture refers to the hours that have 
passed since capturing the animal.

The impedance indices that resulted in the lowest error ranges were 
length2/resistance at infinite frequency (length2/Rinf), length2/re-
sistance at 50 kHz (length2/R50), and length2/resistance at zero fre-
quency (length2/R0), which are reflective of extracellular water (Rinf) 
and total body water (R0, R50) (Table 1). See Kophamel et al.  (2023) 
for details on how to measure and interpret resistance parameters in 
sea turtles. The mean bias between CT and BIS estimations of adipose 
tissue ranged from 0.11% to 0.61%, and LOA ranged from −9.06% to 
10.24% (predictor variables length2/Rinf, length2/R50, length2/R0, 
and length2/Ri; Table 1 and Appendix S1, Figure A2).

The BIS-  and CT-derived adipose tissue mass estimates were 
highly correlated (R2 > 0.99), irrespective of the tested resistance 
parameters (Rinf, R50, R0, Ri). Summary statistics of the equation 
coefficients used to estimate adipose tissue mass with imped-
ance indices length2/Rinf, length2/R50, length2/R0, and length2/
Ri, and including CCL or SCL, are included in Table  1. The final 
prediction equation (Equation  2), which is recommended for use 
in future studies on green turtles, was generated by applying the 
best-fit model to the whole sample (n =  49/49). By contrast, adi-
pose tissue estimated from body mass alone resulted in a larger 
mean bias (6.35%, measure of population-level accuracy) and wider 
LOA (−4.93% to 9.40%, measure of predictive accuracy in indi-
vidual animals). Furthermore, the BIS method was over 50 times 
more accurate in predicting adipose tissue at the population level, 
compared with solely using body mass (mean biases of 0.11% and 
6.35%, respectively).

Final equations for predicting adipose tissue mass from BIS 
measurements of impedance indices (a) SCL2/R50 and (b) CCL2/R50 
in green turtles (Chelonia mydas). Equations (a) and (b) resulted from 
applying the most accurate prediction model (Table 1) to the whole 
sample (n  =  49/49). SCL2/R50 and CCL2/R50 are the impedance 
index (length2/resistance at 50 kHz) calculated using SCL or CCL; 
body mass is the total weight (kg); and time after capture refers to 
the hours that have passed since capturing the animal.

4  |  DISCUSSION

Bioelectrical impedance spectroscopy analysis enabled quantifying, 
analyzing, and interpreting body composition data in green turtles. 
We propose an automated in vivo quantification of adipose tis-
sue mass using whole-body CT scans. The use of CNN in a deep 
learning approach facilitated a fully automated body composition 
assessment. In addition, our suggested protocol can be used for 
standardizing adipose tissue quantification in other species and taxa.

Prediction of adipose tissue mass at the population level was 
highly accurate (mean bias of 0.11% for adipose tissue estimated by 
the BIS method), compared with assessments at the individual level 
(95% limits of agreement, LOA, of −8.52 to 8.95% for adipose tissue 
estimated by the BIS method). The BIS method is therefore partic-
ularly well-suited for field-based population assessments. Despite 
the larger LOA for individual measurements (i.e., lower accuracy at 
the individual level), since intra-animal variability was extremely low 
and precision of measurement very high (Kophamel et al., 2023), BIS 
is suitable to assess changes in adipose tissue in individual turtles 
over time, such as repeated sampling of adult females during nesting 
season and turtles temporarily held in rehabilitation centres or per-
manently living in captivity (e.g., aquaria). While the mean difference 
between methods (bias) represents accuracy at the population level, 
the limits of agreement indicate confidence in method agreement 
for an individual (Figure 4; Table 1; Appendix S1, Figure A2). Since 
the precision of the technique is extremely high, BIA can be used to 
assess adipose tissue data in individual turtles over time even if indi-
vidual accuracy (agreement with the reference method) is relatively 
weak. As an example, if a turtle has 2% of adipose tissue and this 
value increases to 3% in the next season, the BIS device will still pick 
up on the 1% increase even if the estimated absolute adipose tissue 
does not match the true absolute value. In other words, BIA can de-
tect a 1% change in adipose tissue, even if the agreement to adipose 
tissue estimated by CT scans is lower for individuals, compared with 
the population level. Animal health professionals could thus use the 
BIS technique with confidence to determine whether the turtles 
are gaining or losing adipose tissue over time. The implications of 
tracking adipose tissue over time are manyfold: in nesting females, 

(a)Adipose tissuemass (kg)=Bodymass− (−0.06 [intercept]

−0.32∗SCL2∕R50+1.09∗bodymass−0.14∗ time after capture)

(1)
(b)Adipose tissuemass (kg)=Bodymass− (−0.04 [intercept]

−0.30∗CCL2∕R50+1.09∗bodymass−0.14∗ time after capture)

(a)Adipose tissuemass (kg)=Bodymass− (−0.03 [intercept]

−0.29∗SCL2∕R50+1.07∗bodymass−0.11∗ time after capture)

(2)
(b)Adipose tissuemass (kg)=Bodymass− (−0.01 [intercept]

−0.28∗CCL2∕R50+1.07∗bodymass−0.10∗ time after capture)
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the link between adipose tissue and reproductive success could be 
further explored by using BIA; in rehabilitating turtles, adipose tis-
sue might provide details on treatment efficacy and/or dietary sup-
plementation; and in captive animals, which commonly suffer from 
obesity and resulting liver problems (Stacy & Innis, 2017; Stewart 
et al., 2016), adipose tissue levels could be compared to those of wild 
animals to adjust their diet accordingly.

The LOA found here are similar to those previously reported 
in human clinical studies using diagnostic imaging as a calibration 
method (Forde et al., 2015; Tewari et al., 2018; Zopfs et al., 2020). 
Agreement metrics (mean bias and LOA) varied depending on im-
pedance parameters; with Rinf, R50, and R0 providing the closest 
agreement. We suggest using the impedance index length2/R50, 
since this can be obtained using the simpler and less expensive 
single-frequency (i.e., 50 kHz) bioelectrical impedance devices. 
Consequently, Equation 2 is recommended for use in future stud-
ies to quantify body composition from impedance measurements. 
BIS devices, in contrast to single-frequency devices, use a range 

of frequencies to measure impedance and allow the quantifica-
tion of body water compartment volumes, which is of importance 
in human clinical studies (Kyle et al., 2004; Yamada et al., 2013). 
For adipose tissue estimation based on total body water, however, 
single-frequency devices are considered as suitable as BIS devices 
(Brantlov et al., 2017).

Calibration of the BIS device was conducted by using deep learn-
ing, which enabled the automated adipose tissue identification and 
quantification. Deep learning approaches in ecology facilitate the 
classification, regression, and modeling of data (Borowiec et al., 2022). 
For example, deep learning has been used to identify, classify, and es-
timate the density of individuals, populations, and species (Christin 
et al., 2019). The resulting predictive models have enabled the con-
ducting of diversity assessments and have supported conservation 
and resource management projects (Christin et al.,  2019). Deep 
learning approaches that were originally developed for humans can 
be easily transferred to other species, since the modeling aspect 
would not significantly change (Ditria et al., 2020). In some cases, the 
performance levels of vertebrate wildlife species have outperformed 
those of human studies (Traore et al., 2018). In comparison to con-
ventional machine learning processes, deep learning enables an auto-
mated feature extraction from large amounts of input data (e.g., CT 
scans), which overcomes the time limitations of semi-automated and 
manual approaches. The multifactorial applicability of deep learning 
in ecology and the high performance in identification and classifica-
tion tasks make this technique highly attractive for developing and/or 
validating new methods for threatened species research.

BIS was over 50 times more accurate in predicting adipose tis-
sue at the population level, compared with solely using body mass, 
from which BCI is derived. Moreover, the precision of BIS was con-
sistent with repeatability values reported in human clinical studies 
(Kophamel et al., 2023). The high precision and accuracy of BIS in 
green turtles confirm the suitability of the technique for sea turtle 
monitoring programs and endorse BIS as a robust alternative to con-
ventional morphometric measures and BCI.

4.1  |  Future directions and study limitations

Adipose tissue prediction at the individual level—A disadvantage of 
the BIS method is that the accuracy of adipose tissue prediction at 
the individual level was significantly lower than at the population 
level. Adipose tissue cannot be reliably determined in individual 
turtles when the determination error is larger than the typical abso-
lute adipose tissue value. Conversely, the high accuracy of imped-
ance measurements at the population level, in comparison to solely 
using body mass as predictor variable for adipose tissue, highlights 
its suitability to estimate adipose tissue across sea turtle popula-
tions or to assess differences across foraging or nesting aggrega-
tions. However, since intra-animal variability was extremely low 
and thus the precision of measurement was very high (Kophamel 
et al., 2023), BIS can be used to  assess changes in adipose tissue in 
individual turtles over time (i.e., repeated sampling).

F I G U R E  4 Bland and Altman plot (Altman & Bland, 1983; Bland 
& Altman, 1986) of the differences between adipose tissue (AT) 
estimates (%) from CT and bioelectrical impedance spectroscopy 
(BIS via SCL2/R50) (Y axis) and the mean of each pair of AT 
estimates (kg) from CT and BIS via SCL2/R50 (X axis) in green 
turtles (Chelonia mydas). There was a bias of 0.11 units (%) between 
the two AT estimates, which is the gap between the mean of the 
differences in AT estimates (black solid line) and the zero line (black 
dotted line), representing no mean difference in AT estimates. The 
95% limits of agreement (LOA, black dashed lines) represent a 95% 
prediction interval, such that 95% of differences in AT estimated 
by the two methods fell between −8.52% and 8.95%. While the 
mean difference between methods (bias) represents accuracy at 
the population level, the limits of agreement indicate confidence 
in method agreement for an individual. The regression line (blue 
solid line) and its 95% confidence interval (gray area) show the 
relationship between the dependent variables on the Y axis 
(differences between AT estimates from CT and BIS measurements) 
and the independent variables on the X axis (mean of each pair of AT 
estimates from CT and BIS measurements). The lowest mean bias 
and LOA were generated using straight carapace length2/resistance 
at 50 kHz (SCL2/R50) as predictor variable (Table 1). Please refer 
to the Appendix S1, Figure A2 for Bland and Altman plots using 
other impedance parameters, and to Giavarina (2015) for a detailed 
explanation on how to use and interpret Bland and Altman plots.
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Animal selection—Our study was limited to animals with a maxi-
mum carapace width of 55 cm due to the gantry size of the CT scan-
ner (typical CT scanner found in human imaging centres; limited 
access to CT scanners with larger gantry sizes and close to the turtle 
capture sites), and due to the inability of obtaining body composition 
data in a nondestructive manner by using another method. We as-
sumed that the parametrization of the model would not significantly 
change with the inclusion of larger turtles and that any extrapolation 
of the procedure to full-size adult turtles would be predicated on 
the assumptions of proportionality of body change. Although the 
proposed methods can be transferred to larger animals and to other 
species, future studies might benefit from testing the calibration 
protocol across a wide range of life stages that represent the broad 
range of body sizes seen in the population.

Sample size and cross-validation—Funding, permitting, and time 
constraints restricted sample size and cross-validation. The sample 
size used in our study was limited (n = 49 animals), and cross-validation 
should ideally be undertaken in a completely independent popula-
tion. Random data splitting was used instead of cross-validation 
(Stevens,  2013). Nevertheless, the small mean biases and accept-
able LOA confirmed the accuracy of the calibration for impedance 
indices length2/R0, length2/R50, length2/Rinf, and length2/Ri (Smith 
Jr. et al., 2009). The maximum allowed difference indicated that our 
sample size would allow detection of a difference in adipose tissue 
mass of <0.8 kg for impedance indices length2/R0, length2/R50, 
length2/Rinf, and length2/Ri (Lu et al., 2016). We also confirm that 
the accuracy of the technique was especially high for population as-
sessments (mean bias of 0.11% to 0.61% for impedance indices).

Calibration against a single reference method—We calibrated the 
BIS device against a single reference method (i.e., CT scans) due to 
species constraints, funding, permitting, and time limitations. CT 
scanning was chosen as a calibration method since it shows a similar 
accuracy to chemical analyses and dilution methods for body com-
position assessment (Ishioka et al., 2005; Kim et al., 2018; Kobayashi 
et al., 2013). In addition, CT scans are noninvasive, which is highly 
advantageous when working with threatened species. Other in vivo 
methods proposed for adipose tissue estimation in vertebrates are di-
lution methods using tracers (Nagy, 1989; Pagano & Williams, 2019; 
Shaffer, 2011). The suitability of each method depends on the target 
species and should be determined with caution. Reptiles in particu-
lar pose additional challenges, as dilution methods, such as doubly-
labeled water methods, are confounded by high water flux in some 
species (e.g., sea turtles; Jones et al., 2009; Price, 2017). Additional 
ethical or regulatory (access in protected species) constraints such 
as the degree of invasiveness, the need for anesthesia, and sam-
pling duration might further hinder the collection of biological data. 
Diagnostic imaging tools such as CT scans or magnetic resonance 
imaging are increasingly used as alternative methods to estimate 
the body composition of wildlife and companion animals (Barba 
et al.,  2018; Clelland et al.,  2018; De Persio et al.,  2019; Eastick 
et al., 2021; Gimmel et al., 2020; Kim et al., 2018). CT is widely es-
tablished in human and veterinary medicine and provides reliable re-
sults for adipose tissue mass estimation (Mattsson & Thomas, 2006; 

Zopfs et al., 2020). Due to these reasons, we decided to use CT scans 
as the calibration method of the BIS device.

Accuracy of the CNN architecture—The trained U-Net semantic-
segmentation CNN architecture is only as accurate as the masks 
they were trained on. The creation of highly accurate training masks 
is a very time-consuming process (i.e., an operator might need 
2–3 weeks of full-time work per animal). Segmentation of CT images 
was therefore trained on only three animals to ensure the highest 
possible training quality.

Misclassified tissue areas—Due to similar tissue densities, areas 
of the gastrointestinal tract might have been misclassified as adi-
pose tissue, and adipose tissue areas of the mesenteric region might 
have been missed. This is a clear limitation of the CNN approach. To 
address this issue, all adipose tissue masks resulting from the CNN 
procedure were visually confirmed for each animal. Masks that did 
not correctly display the adipose tissue areas were edited, and the 
algorithm was re-fit until the visual assessment of the final masks 
was satisfactory. Therefore, the number of misclassified pixels can 
be assumed negligible.

5  |  CONCLUSIONS

The proposed BIS method represents an improvement over cur-
rent methods due to its quantitative nature, higher accuracy, and 
tissue-specificity for body composition assessment in sea turtles 
and potentially other species. Bioelectrical impedance devices are 
extremely time-efficient once the final prediction equations for the 
target species have been established and are relatively affordable 
($1–10 k AUD for a portable device). Our approach will help to iden-
tify changes in nutritional status across populations and can support 
timely and effective conservation action in sea turtles and other ver-
tebrate wildlife.
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