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Abstract
Aim: Our main aim was to identify the distribution of, and potential mechanisms un-
derpinning, hybrid- rich zones –  regions with a disproportionate number of unique 
interspecific hybrids. We investigated whether coral reef fish hybrids coincided with 
factors such as phylogenetic relatedness, biogeographic barriers, species richness, 
geographic isolation, endemism, and oceanic currents.
Location: Global.
Time period: Contemporary.
Major taxa studied: Coral reef fishes.
Methods: We conducted a literature review and mapping to assess the taxonomic and 
global prevalence of hybridisation in coral reef fishes. We then fit Generalised addi-
tive models using a full- subsets and Bayesian framework to assess which variables are 
associated with hybrid- rich zones.
Results: We found 143 unique interspecific coral reef fish hybrids involving 204 spe-
cies –  which accounts for approximately 7% of coral reef fish species, indicating that 
hybridisation is as common in the sea as it is on land. Characteristic coral reef fish fam-
ilies were not homogeneously represented in our dataset, with particularly colourful 
groups standing out. Mapping our dataset revealed that coral reef fish hybrids are 
found worldwide, though some ecoregions (e.g., the Christmas and Cocos (Keeling) 
Islands, South Kuroshio, Hawaii, and Eastern Philippines) are more hybrid- rich than 
others. Our analysis revealed that mean surface current velocity, phylogenetic relat-
edness, and geographic isolation were the best predictors of hybrid richness in a given 
location.
Main conclusions: Phylogenetic distance between coral reef fish species may serve as 
a pre- condition for hybridisation to occur, lying between introgression and reproduc-
tive incompatibility. We also propose a novel mechanism, with oceanic currents driv-
ing long- distance larval dispersal events, transporting stray species to geographically 
remote sinks to maintain hybrid- rich zones.

K E Y W O R D S
biogeography, coral reef fishes, dispersal, geographic isolation, hybrid zone, hybridisation, 
hybrids, phylogenetic distance, surface currents, suture zone

[Correction added on 13 October 2022, 
after first online publication: article title 
has been updated to include the word 
‘coral’.]
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1  |  INTRODUC TION

Hybridisation is the interbreeding between genetically distinct 
individuals belonging to different biological species and evolu-
tionary lineages, producing offspring of mixed descent (Barton & 
Hewitt, 1985). Historically believed to be rare (Hubbs, 1955), hybri-
disation is now commonly observed in nature, with 25% of plant and 
10% of animal species known to interbreed (Mallet, 2005). Cases 
of hybridisation offer us ‘windows on evolutionary process[es]’ 
(Harrison, 1990) –  a unique opportunity to study what lies beneath 
adaptation, speciation, and reproductive isolation.

After the initial instance of hybridisation, F1 hybrids may sub-
sequently backcross with parental species, potentially leading to 
widespread introgression with evolutionary implications for parental 
species (Bernal et al., 2017). In coral reef fishes, hybrids are commonly 
detected through their intermediate physical attributes of their pa-
rental species, a method that has been supported in many studies by 
subsequent genetic analyses (e.g., Tea et al., 2020; Yaakub et al., 2006, 
2007). However, with the progression of backcrossing, hybrids become 
morphologically indistinguishable from their parent species, making 
them difficult to identify (Marie et al., 2007; McMillan et al., 1999; 
Yaakub et al., 2006). Recent advances in molecular approaches have 
provided opportunities to discover more of these hybrids.

Beyond the discovery of hybrids and backcrosses, hybridisation can 
be explored in a geographic context. Restricted regions in which popula-
tions of different biological species hybridise and produce viable offspring 
are called hybrid zones (Barton & Hewitt, 1985). Suture zones are narrow 
geographic regions characterised by secondary contact, where multi-
ple pairs of allopatric sister species interbreed (Barton & Hewitt, 1985; 
Hewitt, 1996; Remington, 1968). Although suture zone theory was initially 
described in terrestrial systems, where it remains an area of keen explo-
ration (Remington, 1968), studies focused on the marine realm have only 
gained traction in more recent years (Hobbs et al., 2021). To date, four 
tropical marine suture or hybrid zones have been described based on coral 
reef fishes: (a) Christmas and Cocos (Keeling) Islands (DiBattista, Whitney, 
et al., 2016; Hobbs et al., 2009; Hobbs & Allen, 2014; Marie et al., 2007; 
Payet et al., 2016; Salas et al., 2020); (b) the Socotra Archipelago (DiBattista 
et al., 2015); (c) between Papua New Guinea and the Solomon Islands 
(Gainsford et al., 2015, 2020; Hobbs et al., 2013; McMillan et al., 1999); 
and (d) Johnston Atoll (Lobel et al., 2020). These are stand- out regions that 
could have a disproportionate effect on the evolutionary processes of coral 
reefs as sources or sinks of evolutionary novelty.

While various mechanisms have been identified that may promote 
the chances of hybridisation, relatively few studies have examined the 
formation or maintenance of hybrid or suture zones. However, several 
major potential drivers have been identified: (a) Hybridisation in coral 
reef fishes has been reported between deeply divergent lineages (Carlon 
et al., 2021; Tea et al., 2020), but it occurs more readily between closely 
related species (DiBattista et al., 2015; Montanari et al., 2014, 2016). 
This suggests that hybridisation may occur due to secondary contact 
between recently diverged species. (b) The Christmas– Cocos Islands su-
ture zone, for example, is posited to be the product of secondary contact 
at the Sunda Shelf biogeographic barrier –  where closely related Indian 
and Pacific Ocean populations with Plio- Pleistocene origins meet and 

interbreed (Marie et al., 2007; Salas et al., 2020). Biogeographic barriers 
thus represent areas of separation between allopatric and non- allopatric 
reef fish sister species (Hodge & Bellwood, 2016) and may represent 
areas in which they meet and hybridise. (c) Many researchers have also 
suggested that parental species abundances or species rarity may play 
a large role in promoting interbreeding (DiBattista et al., 2015; Hobbs 
et al., 2009; Marie et al., 2007; Montanari et al., 2014, 2016; Yaakub 
et al., 2006). (d) Another ecological factor to consider is species richness. 
Do species- rich regions have more hybrids simply because a greater num-
ber of species increases the chances of interbreeding? Or do regions with 
low numbers of species coincide with high niche availability for hybrids 
(Seehausen, 2004)? (e) Geographically isolated locations with variable 
environmental conditions and (f) endemism may also influence where 
hybridisation occurs (DiBattista et al., 2015). In the Socotra Archipelago 
suture zone, for example, where high endemism is observed (DiBattista, 
Choat, et al., 2016), four of the seven putative hybrids involved endemics 
(DiBattista et al., 2015). Endemism and geographic isolation have been 
shown to be tightly linked, such as in the Hawaiian Islands, where remote-
ness and endemism are high (25% –  Randall, 2007). However, geographic 
isolation alone cannot explain high rates of endemism in some regions. 
For example, endemism in the Marquesas (11.6% –  Randall & Earle, 2000) 
is explained by ecological conditions distinct to the region in addition to 
its geographic isolation (Gaither et al., 2015). Consequentially, endemism 
and geographic isolation should be explored as independent factors. (g) 
Lastly, specific factors such as the prevailing direction of major currents 
may facilitate interbreeding, by promoting connectivity and larval dis-
persal into particular regions (DiBattista et al., 2015; Salas et al., 2020). 
Therefore, summarising the literature thus far, the following conditions 
may be associated with marine hybrid or suture zones: genetic related-
ness, biogeographic barriers, abundance disparities, species richness, 
geographic isolation, endemism, and oceanic currents.

With threats to coral reefs climbing, understanding the evolu-
tionary processes that have given rise to their diversity is becoming 
increasingly urgent, particularly for coral reef fishes, one of the most 
species rich vertebrate groups in the world. The recent surge in stud-
ies of coral reef fish hybridisation has prompted the overarching aim 
of this study, which is to determine the distribution of, and factors 
that may underpin geographic variation in hybrid richness. In this 
study, we addressed the following questions:

1. What is the taxonomic prevalence and geographic distribution 
of interspecific coral reef fish hybrids on a global scale? and,

2. To what extent does hybrid richness correlate with hypothesised 
factors driving hybridisation including: genetic relatedness, 
 biogeographic barriers, species richness, geographic isolation, 
 endemism, and oceanic currents?

2  |  METHODS

2.1  |  Data collection and processing

A systematic literature review was conducted to find all reports of coral 
reef fish hybrids (Figure 1). To gather these data, we searched Google 
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2526  |    NG et al.

Scholar across all years for articles (all text, not including citations) that 
contained the following terms: “coral reef” AND (“hybrid” OR “intro-
gression” OR “backcross”) AND each of the 65 reef- associated fish 

families as delineated by Siqueira et al. (2020). Each output was indi-
vidually searched to retrieve reports on coral reef fish hybridisation. 
The reference list for each article was then searched for any additional 
sources that may have been missed from the Google Scholar search 
(e.g., physical identification books and guides). Only reports of hybrids 
observed in the wild and that identified the species involved in the 
cross were included in the dataset. All reported hybrids were included 
in the database regardless of the method of hybrid detection (e.g., in-
termediate colouration or genetic markers). The publication dates of 
the reports from our literature review ranged from 1956 to 2021 –  
suggesting hybrids from our study are relatively recent, contemporary, 
phenomena. Our goal was to identify ‘unique interspecific hybrids’, 
that is, a hybrid of two distinct species that represents a unique com-
bination within this study.

Data processing involved removing reports that were solely of 
introgressed or backcrossed individuals, since they start genetically 
resembling either parent species. These individuals are often only 
detected using molecular methods due to morphological similarities 
to their parents (see Introduction). Since molecular advances are re-
cent, backcrossed and introgressed individuals may not be well rep-
resented in the literature, and as such, their inclusion in our study 
may cause sampling bias.

We also designed a systematic method to ensure that all unique in-
terspecific hybrids included in our dataset belonged to ‘coral reef fishes’. 
In our literature review, we searched for reports: (a) containing the term 
“coral reef” and (b) only of the 65 reef fish families delineated by Siqueira 
et al. (2020). We then checked that (c) each species involved in an inter-
specific hybrid pair from our dataset was classified as reef- associated 
by FishBase (Froese & Pauly, 2022). Finally, (d) we only included hy-
brids located in tropical ecoregions –  within the isocryme of 20 °C –  
which provides a likely measure of the latitudinal distribution limit for 
tropical marine taxa (Briggs, 1974; Siqueira et al., 2016). Overall, these 
measures ensure that the hybrids from our study are broadly within 
the limits of ‘coral reef fishes’. Indeed, approximately 86% (175/204) 
of the hybridising species in our study belong to the conservative ‘con-
sensus list’ of coral reef fish families (i.e., Acanthuridae, Apogonidae, 
Blenniidae, Carangidae, Chaetodontidae, Gobiidae, Holocentridae, 
Labridae, Lutjanidae, Mullidae, Pomacanthidae, Pomacentridae, 
Serranidae) occurring on coral reefs globally (following Bellwood & 
Wainwright, 2002 and Siqueira et al., 2021).

2.2  |  Taxonomic prevalence and geographic 
distribution

We summarised the taxonomic prevalence of coral reef fish hybrids 
in three ways. Firstly, we describe the number of unique interspe-
cific hybrid pairs per family to inform differences in hybrid richness 
among families. Secondly, we report the number of species involved 
in hybridisation per family to show whether hybrids are represented 
by a diversity of species in each family. Finally, we calculate the pro-
portion of hybridising species per family to account for the species 
richness of each family.

F I G U R E  1  Examples of coral reef fish parent species (left) and 
their respective hybrid (right) exhibiting intermediate phenotypes, that 
is, colouration and patterns: (a) Acanthurus achilles (top) × Acanthurus 
nigricans (bottom), (b) Centropyge flavissima (top) × Centropyge vrolikii 
(bottom), and (c) Chaetodon auriga (top) × Chaetodon ephippium 
(bottom). All photos provided by Yi- Kai Tea, with permission
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    |  2527NG et al.

For our geographic distribution and modelling analyses, we 
use ‘the number of unique interspecific hybrids’ = ‘hybrid rich-
ness’ as our response variable, since it became apparent that 
most of the literature did not report the frequency of hybrid oc-
currences (i.e., how many times a specific hybrid was observed in 
a given area). ‘Hybrid richness’, therefore, is the number of unique 
interspecific hybrids. This means that if a unique interspecific hy-
brid was reported multiple times within one ecoregion, it would 
only be counted once –  since we are reporting the richness rather 
than abundance. That given hybrid can also be reported across 
multiple ecoregions and is included in our dataset so long as it is 
a unique interspecific hybrid within that ecoregion (Supporting 
Information Table S1). The term ‘hybrid- rich zones’ is thus used to 
describe areas containing a high number of unique interspecific 
hybrid pairs.

We subsequently mapped the geographic locations of the 
unique interspecific hybrids to examine the global distribu-
tion of hybrid- rich zones. World vector data were plotted and 
obtained using packages ‘sf ’ (Pebesma, 2018), ‘rnaturalearth’ 
(South, 2017), ‘rnaturalearthdata’ (South, 2017) and ‘ggspatial’ 
(Dunnington, 2021). The central point of hybrid locations was 
then obtained by calculating the centroid of each ecoregion using 
the st_centroid function from the ‘sf ’ R package (Pebesma, 2018). 
This process clustered 160 individual geographic locations of coral 
reef fish hybrids into 65 marine ecoregions (Spalding et al., 2007). 
Locations were grouped into ecoregions because hybrid reports 
from our dataset rarely provided precise geographic coordinates, 
and locations were inconsistent in their level of specificity, rang-
ing from large to fine spatial scales. For example, hybrid reports 
have been described at the country level (e.g., Japan), regional 
level (e.g., South Japan), island chain level (e.g., Ryukyu Islands, 
South Japan), island level (e.g., Miyako- jima Islands, Ryukyu 
Islands, South Japan) and in some cases, even down to the reef 
level (Supporting Information Table S1). By clustering locations 
into ecoregions, we reduce the inconsistencies associated with the 
location of each reported hybrid. It also prevents the chance of 
double counting hybrids, for example in situations where the same 
interspecific hybrid was identified in both a specific location (e.g., 
Mombasa, Kenya) and a broad location (e.g., Kenya). We confirmed 
that ecoregion size (km2) was not correlated with hybrid richness 
(Supporting Information Figure S1f).

2.3  |  Predicting hybrid richness

Data for each of the hybrid richness predictors were publicly 
sourced (Table 1) and used to calculate average values at the 
ecoregion scale. To calculate phylogenetic distances between 
interspecific hybrids, we used the phylogenetic trees of reef- 
associated fishes produced by Siqueira et al. (2020). Siqueira 
et al. (2020) systematically selected which species were kept 
in the tree by beginning with the list of fish families with reef- 
associated species from Bellwood and Wainwright (2002). The 
‘rfishbase’ R package (Boettiger et al., 2012) was then used to cal-
culate the proportion of reef- associated species within each of 
these families. The chronogram by Rabosky et al. (2018) was sub-
sequently pruned for families with > 20% of reef- associated taxa 
and used as a backbone tree. Using the Taxonomic Addition for 
Complete Trees stochastic polytomy resolution algorithm (Chang 
et al., 2020), missing species were taxonomically assigned into the 
backbone tree, which resulted in a set of 100 near- complete reef 
fish trees with 6,257 tips each. Parental species that could not be 
detected as distinct species in the phylogenetic trees were filtered 
out of the dataset prior to all covariate calculations. These in-
cluded crosses between colour morphs (e.g., Dascyllus trimaculatus 
–  Salas et al., 2020), cryptic species (e.g., Ostorhinchus doederleini 
–  Gerlach et al., 2016), or inconclusive species identifications (e.g., 
Cirrhilabrus isosceles × cf. lunatus –  Tea et al., 2016). Phylogenetic 
distances (i.e., the sum of branch lengths separating two species in 
a phylogeny) between each hybrid parent species pair were meas-
ured using the conphenetic.phylo function from the ‘ape’ R package 
(Paradis & Schliep, 2019) and subsequently averaged per ecore-
gion. Averaging phylogenetic distance was required to predict 
hybrid richness per ecoregion and did not lead to unequal weight-
ing (Supporting Information Figure S2). In addition, ecoregion size 
(km2) was not correlated with phylogenetic distance (Supporting 
Information Figure S1e).

To measure geographic isolation per ecoregion, we first cal-
culated a radius that represented the median distance between 
all ecoregion centroids in our study. Geographic isolation was 
then calculated as 'the distance from one ecoregion centroid to 
the nearest ecoregion centroid ÷ the number of ecoregions within 
the radius’. Therefore, this metric takes into consideration both 
geographic distance and isolation from other ecoregions. This 

TA B L E  1  Data sources for the hybrid richness modelling predictors

Predictor Data source

Biogeographic barriers Bellwood and Wainwright (2002); DiBattista, Choat, et al. (2016), Floeter 
et al. (2008); Hodge and Bellwood (2016); Lessios and Robertson (2006); Luiz 
et al. (2012); Rocha (2003); Rocha et al. (2007)

Mean current velocity (m/s) Bio- ORACLE v2.2 (Assis et al., 2018), ‘sdmppredictors’ R package v2.10.0 (Bosch & 
Fernandez, 2021)

Endemics, species richness Rabosky et al. (2018)

Phylogenetic distances (branch lengths) Siqueira et al. (2020)
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2528  |    NG et al.

measure appeared to represent isolation well –  with Hawaii rep-
resenting the most remote and Northeast Sulawesi represent-
ing the most connected ecoregion. Biogeographic barriers used 
in our study were based on congruent vicariance events of coral 
reef fishes (Table 1). Only soft barriers were taken into consider-
ation because hard barriers (e.g., Isthmus of Panama) cannot be 
physically crossed today and our study focuses only on contem-
porary hybridisation (i.e., hybrid reports published within the last 
65 years). Barriers were plotted using geom_curve and geom_line 
functions in R package ‘ggplot2’ (Wickham, 2011) and then con-
verted into geographic coordinates. Distance from an ecoregion 
to a biogeographic barrier was measured as the geographic dis-
tance (in kilometres) from the centroid of each ecoregion to the 
closest point on a barrier using the function distHaversine in the 
‘geosphere’ R package (Hijmans et al., 2019). Mean surface current 
velocity per ecoregion was extracted from raster data layers (Assis 
et al., 2018; Bosch & Fernandez, 2021) and represented monthly 
averages between 2000 to 2014 (Table 1).

Global species richness and endemics data were retrieved from 
Rabosky et al. (2018). These data are organised as total species or 
endemic richness values per 150- km2 geographic grid cell. We first 
intersected the coordinates from the Rabosky et al. (2018) dataset 
and our dataset to identify which grid cells were contained within 
each ecoregion. Mean species and endemic richness values per 
ecoregion were subsequently calculated (i.e., the sum of grid cell val-
ues contained within each ecoregion ÷ the number of grid cells per 
ecoregion). Endemism was measured as the proportion of endem-
ics (mean) to species richness (mean) per ecoregion. No correlation 
was detected between species richness and endemism and between 
ecoregion size (km2) and the number of endemics, species richness, 
or endemism (Supporting Information Figure S1). As an alternative 
to calculating mean values of species and endemic richness per 
ecoregion, we also used the species by ecoregion data from Rabosky 
et al. (2018) to calculate total values of species and endemic richness 
per ecoregion. Due to a lack of an endemics by ecoregion dataset, 
the species by ecoregion dataset was used to count the number of 
endemics per ecoregion. Species were flagged as endemics if they 
were only found in a single ecoregion. To test the efficacy of using 
the species and endemic richness means per ecoregion based on grid 
cell data, we replicated the modelling steps below using total species 
and endemic richness values per ecoregion.

We used statistical models to explore the effects of the pre-
dictors on the global distribution of hybrid richness –  represented 
by the number of unique interspecific hybrids per ecoregion. 
Generalised additive models (GAMs) were run using the full- 
subsets modelling approach (Fisher et al., 2018) to fit models of 
all possible variable combinations and to explore the relative im-
portance of each covariate. The model, which included all six co-
variates, was fit using the ‘mgcv’ R package (Wood & Wood, 2015). 
Prior to model fitting, covariates were scaled and log- transformed 
to reduce skew and achieve normality. Variables were subse-
quently back- transformed for visualisation purposes. To account 
for data overdispersion, we fit the GAMs with a negative binomial 

distribution and log link function. We used the effective degrees 
of freedom (edf), a summary statistic estimated from GAMs, to 
preliminarily detect which covariates exhibited strong, nonlin-
ear relationships with hybrid richness (Hunsicker et al., 2016; 
Wood, 2006). An edf = 1 is synonymous with a linear relation-
ship, an edf > 1 and ≤ 2 is weakly nonlinear, and an edf > 2 indi-
cates a highly nonlinear relationship (Hunsicker et al., 2016; Zuur 
et al., 2009). Smoothing functions were fit with a cubic regression 
spline, restricted to k = 4, and were only applied to covariates 
with an edf > 2 to reduce overfitting and ensure ecological inter-
pretability of the models. Only phylogenetic distance exhibited 
a highly nonlinear relationship (i.e., edf > 2) with hybrid richness; 
therefore, all other variables were incorporated into the model as 
linear predictors.

Candidate model sets were subsequently constructed using 
the ‘FSSgam’ R package (Fisher et al., 2018) and compared using 
Akaike's information criterion for small sample size (AICc) and 
AICc weight values (wAICc) (Burnham & Anderson, 2004). The 
relative importance scores for each covariate were calculated by 
summing wAICc values across all candidate models containing the 
variable, with higher scores representing increased predictor im-
portance to the response variable (Burnham & Anderson, 2002; 
Fisher et al., 2018). Although all predictors were examined, only 
models with up to five predictor variables were included in any 
single candidate model to improve the ecological interpretability 
of our models. Models containing predictors with correlation co-
efficients (r) ≥ .28 were excluded from the candidate set to prevent 
collinearity issues among predictor variables (Fisher et al., 2018; 
Graham, 2003).

We refit the top model from the full- subsets approach 
(Supporting Information Table S3) for Bayesian inference using the 
‘brms’ R package (Bürkner, 2021). The GAM incorporated weakly in-
formative priors for the population- level effects and a gamma prior 
for the estimates of shape. We fit the model with three chains of 
15,000 iterations each, including a 7,500 warmup and a thinning rate 
of 10. Convergence was assessed using the R̂  statistic and a visual 
inspection of trace plots. We found that the chains were well mixed 
and converged on a stable posterior and that the draws showed 
no evidence of autocorrelation. The model was validated using 
‘DHARMa’ residuals (Hartig, 2021) and posterior probability checks. 
All analyses were conducted within the R 4.1.3 (R Core Team, 2022) 
Statistical and Graphical Environment.

3  |  RESULTS

3.1  |  Taxonomic prevalence

We report a total of 143 unique interspecific hybrids involving 17 
families, 45 genera and 204 species (Figure 2), with only five (3.5%) 
of them being intergeneric. Intergeneric hybridisation was observed 
in three families –  Labridae, Lutjanidae and Serranidae. These hybrid 
reports originated from 101 references published between 1956 and 
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    |  2529NG et al.

2021 (Appendix 1; Supporting Information Table S1). Of the 2,488 
reef- associated species in the coral reef fish consensus list families, 
about 7% (175/2488) are involved in interspecific hybridisation.

The Chaetodontidae and Pomacanthidae have the most repeated 
interspecific hybrids (Figure 2a) and represent over half (74/143) of 
the total number of unique interspecific hybrids. Additionally, of 
the 204 coral reef fish species involved in hybridisation, over 40% 
(88/204) belong to these two families (Figure 2b). The families with 
the greatest proportion of species reported to hybridise are the 
Pomacanthidae, Chaetodontidae and Siganidae (Figure 2c). Only five 
families –  Pomacanthidae, Chaetodontidae, Siganidae, Acanthuridae 
and Albulidae –  have more than 15% of species hybridising per fam-
ily (Figure 2c).

The species most frequently reported to hybridise (n ≥ 13) 
were Acanthurus nigricans, Centropyge vrolikii and Centropyge fla-
vissima (Figure 1) –  all of which belong to species complexes (i.e., 
a group of organisms with uncertain species boundaries). The most 
widely reported (i.e., the highest number of reported locations, not 
ecoregions) hybrid crosses were C. flavissima × C. vrolikii (n = 11) 
(Figure 1b), Acanthurus achilles × A. nigricans (n = 8) (Figure 1a) and 
Holacanthus bermudensis × Holacanthus ciliaris (n = 8). The majority 
(87/143) of the unique interspecific hybrids were only reported in a 
single location.

3.2  |  Geographic distribution

Coral reef fish hybrids are found in many locations around the globe, 
with a total of 229 interspecific hybrids spanning 65 of the 112 tropi-
cal ecoregions (Figure 3; Supporting Information Table S2). The four 
most hybrid- rich zones are the Christmas– Cocos Islands (n = 19), 
Hawaii (n = 15), South Kuroshio (n = 14) and Eastern Philippines 
(n = 13) (Figure 3). The remaining 61 ecoregions contain ≤ 9 unique 
interspecific hybrids each (Figure 3; Supporting Information Table 
S2).

3.3  |  Modelling summary

The top model (i.e., the model with the highest predictive power as 
selected by AICc) consisted of (a) current velocity, (b) geographic 
isolation, (c) phylogenetic distance, and (d) biogeographic barriers 
(Supporting Information Table S3). The second top model con-
tained all the same variables except for biogeographic barriers 
(Supporting Information Table S3). Both models were equivalent 
to one another (Supporting Information Table S3), suggesting that 
the inclusion of biogeographic barriers does not significantly im-
prove the model. The top model was able to explain a fair amount 
of variability [34% median; 18– 48% credible interval (CI)] in the 
richness of coral reef fish hybrids. Among all variables tested, 
current velocity was the most important variable, followed by 
phylogenetic distance and geographic isolation (Figure 4a). Both 
current velocity (mean estimate = .46; 95% CI = .24 to .70) and 
geographic isolation (mean estimate = .24; 95% CI = .05 to .44) 
exhibited a strong positive effect on hybrid richness (Figure 4). 
Phylogenetic distance, the only covariate fit with a smoother, 

F I G U R E  2  (a) The number of unique interspecific hybrids per coral 
reef fish family, (b) the number of species found to hybridise per family 
out of 204 species in total, (c) the proportion of species per family 
involved in hybridisation. The total number of species in each family 
was obtained from FishBase (Froese & Pauly, 2022) and is shown in 
parentheses next to each family name in (c). Fish silhouettes were 
sourced from ‘fishualize’ (Schiettekatte et al., 2022) and represent the 
coral reef fish family with the highest count or proportion
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exhibited significant ‘wiggliness’, suggesting a nonlinear relation-
ship with hybrid richness (Supporting Information Table S4). For 
phylogenetic distance, hybrid richness increases from 0 to about 
20 branch lengths of distance, although with high variability, but 
drops steadily after reaching a peak at about 20 branch lengths 
(Figure 4c). This suggests that hybridisation is more likely where 
parent species are relatively closely related, when compared to 
places with extremely closely or more distantly related species 
pairs. The distribution of phylogenetic distances between hybrids 
per ecoregion was indeed significantly smaller compared to null 

mean phylogenetic distances per family for species occurring in 
each ecoregion (Supporting Information Figure S3). Although bio-
geographic barriers exhibited a negative effect on hybrid richness 
(mean estimate = −.20; 95% CI = −.44 to .02), the coefficient CI 
overlaps with zero, suggesting a potentially weaker effect. In ad-
dition, biogeographic barriers had the lowest relative importance 
among all covariates in the top model (Figure 4a). Endemism and 
species richness were found to be poor predictors and are unlikely 
to influence hybrid richness (Figure 4a). Overall, our results did 
not change (Supporting Information Tables S3 and S5; Figure 4 and 

F I G U R E  3  The global distribution of hybrid richness (i.e., the number of unique interspecific hybrids) per tropical ecoregion (n = 65) with 
biogeographic barriers (black lines) (details in Table 1). Size and colour of the circles directly correspond to the number of unique interspecific 
hybrids per ecoregion. World map projection –  Robinson projection

F I G U R E  4  (a) Relative importance scores from the full- subsets modelling exploring the influence of six variables: mean surface current 
velocity (CV), mean phylogenetic distance between hybrid parent species (PD), geographic isolation (GI), distance to biogeographic barriers 
(BB), mean species richness (SR) and endemism (EN), on hybrid richness. Scores represent summed Akaike's information criterion for 
small sample size (AICc) weights across the candidate model set. Relationship between hybrid richness and the top model covariates: (b) 
mean surface current velocity, (c) mean phylogenetic distance between hybrid parent species, (d) geographic isolation and (e) distance to 
biogeographic barriers; solid lines represent Bayesian mean posterior estimates and shaded regions represent 95% credible intervals
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Supporting Information Figure S4) regardless of how species rich-
ness or endemism was measured (see Methods).

4  |  DISCUSSION

4.1  |  What is the taxonomic prevalence and 
geographic distribution of coral reef fish hybrids on a 
global scale?

Coral reef fishes commonly hybridise, with approximately 7% of spe-
cies involved in interbreeding, which closely aligns with other ter-
restrial animal species (10%; Mallet, 2005). Coral reef fish hybrids 
are also found across the globe, although some ecoregions –  namely 
the Christmas– Cocos Islands, South Japan, Hawaii and Eastern 
Philippines –  stand out as hybrid- rich zones, in alignment with pat-
terns found in Hobbs et al. (2021). Disparities in taxonomic repre-
sentation of coral reef fish families, however, are evident. Highly 
species rich families such as the Blenniidae and Gobiidae exhibit 
no evidence of hybridisation, while less species rich families such 
as the Chaetodontidae and Pomacanthidae have the most unique 
interspecific hybrids and numbers of species involved in hybridisa-
tion. Detection bias is the most likely explanation for these results 
(Montanari et al., 2016), with species in both the Chaetodontidae 
and Pomacanthidae exhibiting bright colours and striking patterns 
(Figure 1), while blennies and gobies are often small- bodied and 
cryptic, and thus, easily overlooked (Brandl et al., 2018). The same 
taxonomic bias is prevalent in terrestrial examples such as in birds 
of paradise and butterfly groups such as Heliconius (Mallet, 2005). 
Despite substantial development in genetic tools, hybridisation is al-
most always initially detected using intermediate phenotypes usually 
based on colours (Figure 1), which, coupled with our taxonomic bias, 
likely leads to an underestimation in the number of species involved 
in hybridisation. Despite this sampling bias, hybridisation in coral 
reef fish appears to be taxonomically widespread and occurs within 
some of the most species rich families (e.g., Serranidae, Labridae, 
Pomacentridae, Apogonidae, Scorpaenidae and Tetraodontidae; 
Froese & Pauly, 2022).

4.2  |  What factors are associated with hybrid- rich 
zones?

4.2.1  |  Currents

Oceanic currents, phylogenetic relatedness, and geographic isola-
tion were the only factors that we found to strongly inform patterns 
of hybrid richness. The inclusion of oceanic currents as one of the 
three explanatory factors was most unexpected. Currents has only 
been suggested as a potential mechanism carrying larvae from ad-
jacent areas into hybrid- rich zones by DiBattista et al. (2015) and 
Salas et al. (2020), but it was never tested. Based on our observa-
tions and surface water oceanography, we propose a larval dispersal 

model whereby strong currents may transport and trap vagrant coral 
reef fishes over long distances to specific regions (Figure 5). This 
potential pathway begins with the North Equatorial Current (NEC), 
which hits the eastern coast of the Philippines and bifurcates north 
and south, forming the Kuroshio Current (KC) and Mindanao Current 
(MC), respectively (Figure 5; Toole et al., 1990).

The MC, Indonesian Throughflow (ITF) and South Equatorial 
Current (SEC) have the potential to disperse Pacific Ocean larvae 
to isolated islands of the Indian Ocean such as the Christmas– Cocos 
Islands. One of the suggested larval dispersal pathways for the or-
nate spiny lobster, Panulirus ornatus, for example, has been described 
to begin in the east coast of the Philippines, travel through the MC 
and ITF, out of the Lombok Strait and into the Indian Ocean (Dao 
et al., 2015). A similar pattern may be occurring for coral reef fish lar-
vae. Salas et al. (2020) proposed that the SEC and the ITF may bring 
Pacific Ocean Dascyllus trimaculatus larvae to the Christmas Islands, 
resulting in a cross between genetically distinct Pacific and Indian 
Ocean lineages of the species. The semi- annually reversing South 
Java Current may also carry Indian Ocean larvae to the Christmas– 
Cocos Islands through the SEC (Sprintall et al., 1999).

The warm KC has been described as a transport system, carry-
ing tropical fishes from the Philippines and Taiwan to Japan (Kuriiwa 
et al., 2014). As one of the world's major ocean currents, with the 
potential of reaching mean maximum daily surface velocities of 
about 1.2 m/s (Yang et al., 2015), it may have the capacity to reach 
the Hawaiian Islands through the Kuroshio extension of the North 
Pacific Current (Hourigan & Reese, 1987) and follow onto the NEC. 
This pattern of dispersal has been supported by the presence of 
West Pacific fishes (e.g., Centropyge interrupta and Myripristis mur-
dan –  Pyle, 1999; Mundy, 2005) and limpets (e.g., Cellana spp. –  Bird 
et al., 2011) in the north- western Hawaiian Islands. Colonisation 
into the Hawaiian Islands and Johnston Atoll is more likely to come 
from the nearest reef habitats in the Northern Line Islands (Wood 
et al., 2014), where multiple vagrants have been hypothesised 
to arrive from (Gosline, 1955; Lobel et al., 2020; Randall, 2007). 
Colonisation pathways into Hawaii from both the West and South 
Pacific, however, cannot be excluded (Craig et al., 2010).

While currents can promote larval dispersal, they can also act 
as barriers to dispersal. Highly turbid and fast- moving currents from 
the Ganges and Indus River systems, for instance, formed the Mid- 
Indian Ocean Barrier, resulting in genetically distinct populations on 
each side (Hodge & Bellwood, 2016). Currents, in effect, may trap 
hybrid- rich zones by impeding larval connectivity and causing isola-
tion between populations. There are also interesting terrestrial par-
allels. Hewitt (1996) suggested that a hybrid zone could represent 
stable and long- lived areas of low density or dispersal. For example, 
for over 25 years, the size and position of Heliconius butterfly hy-
brid zones in the Amazon basin remained stable while located in a 
region with remarkedly high precipitation rates. Rosser et al. (2014) 
hypothesised that it was in fact the high rainfall that trapped hybrid 
zones at the base of the Andes mountains, preventing movement of 
butterflies –  in a manner similar to marine currents trapping species 
on an island. It appears that in both terrestrial and marine habitats, 
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climatic or environmental factors may shape the position and stabil-
ity of hybrid- rich zones.

4.2.2  |  Isolation

Our results provide support that hybrid richness is also driven by 
increased geographic remoteness. It is likely that rare, long distance 
dispersal events shape isolated hybrid- rich zones such as those on 
the Hawaiian, Christmas and Cocos (Keeling) Islands. For example, 
Abudefduf abdominalis and the invasive Abudefduf vaigiensis were 
transported to the highly remote Johnston Atoll likely through 
the Northern Line Islands (Lobel et al., 2020). These species now 

commonly hybridise in Hawaii (Coleman et al., 2014). This mecha-
nism could also work counterintuitively. Geographically isolated 
regions may act as sources rather than sinks of larvae, as demon-
strated by asymmetric larval export from Hawaii to the West Pacific 
in Zebrasoma flavescens (Eble et al., 2011) and Scarus rubroviolaceus 
(Fitzpatrick et al., 2011). This could help explain patterns of high hy-
brid richness observed in West Pacific regions such as South Japan 
and Eastern Philippines (Figures 3 and 5). Overall, the strength and 
direction of major current systems coupled with the dispersive and 
long pelagic larval duration of most marine taxa, appear to under-
pin hybrid- rich zones. In effect, these currents have the potential 
to ‘spray’ vagrants to far flung locations where conspecifics may be 
rare, thereby enhancing the chances for hybridisation.

F I G U R E  5  (a) The global distribution of hybrid richness in relation to mean surface current velocity (m/s); (b) the hypothesised current 
pathway dispersing stray coral reef fish to hybrid- rich zones. The North Equatorial Current (NEC) bifurcates north and south at the east 
coast of the Philippines into both the Kuroshio Current (KC) and the Mindanao Current (MC) (Toole et al., 1990). The KC carries larvae 
and adults from the Philippines to Japan (Kuriiwa et al., 2014) and can extend its flow to the Hawaiian Islands through the North Pacific 
Current (NPC), subsequently looping back into the NEC (Hourigan & Reese, 1987). The MC, on the other hand, flows into the Indonesian 
Throughflow (ITF), which carries Pacific Ocean larvae into the Indian Ocean (Bray et al., 1996) with the potential of reaching the Christmas– 
Cocos Islands due to the pull of the South Equatorial Current (SEC). Indian Ocean larvae have the potential of reaching the Christmas– Cocos 
Islands through the South Java Current (SJC). Size and colour of circles directly correspond to the number of unique interspecific hybrids per 
ecoregion. World map projection –  Robinson projection
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4.2.3  |  Phylogenetic distance

We also found evidence to suggest that phylogenetic distance influ-
ences hybrid richness. Specifically, higher hybrid richness was found be-
tween species that share a moderately close phylogenetic distance. This 
is consistent with existing literature. Generally, hybridisation occurs 
most frequently among closely related species such as incipient spe-
cies (i.e., those undergoing speciation) or sister taxa (Mallet, 2005). For 
example, of the 15 hybrid pairs found in the Christmas– Cocos Islands 
by Hobbs and Allen (2014), nine crosses represented hybridisation be-
tween Indian and Pacific Ocean sister species. While hybridisation has 
been described between distantly related species (Carlon et al., 2021; 
Tea et al., 2020), there is still a broad agreement that limited genetic dis-
tance and potential for heterospecific mating are strongly intertwined. 
Closely related taxa are more likely to share biological, ecological and be-
havioural traits, which can increase the probability of interbreeding and 
production of fertile offspring (Montanari et al., 2014). Furthermore, hy-
brid viability and fertility are likely to decline with greater evolutionary 
divergence because of genetic incompatibilities (Abbott et al., 2013). 
This is supported by laboratory hybridisation experiments, where pre-  
and post- mating compatibility are negatively correlated with genetic 
distance and thus time since species divergence (Mallet, 2005). In ter-
restrial and freshwater systems, divergences in mitochondrial DNA 
(mtDNA) are generally below 2% for hybridising species (Mallet, 2005). 
In marine hybrid pairs, mtDNA divergences between species generally 
range between 2 and 6% (Coleman et al., 2014; DiBattista et al., 2012; 
DiBattista, Whitney, et al., 2016). Our findings therefore support the 
hypothesis that heterospecific mating between closely related coral 
reef fish species is likely the dominant form of hybridisation.

Interestingly, our results exhibit a significant nonlinear pattern 
between phylogenetic and hybrid richness. Hybrid richness is low 
when phylogenetic distance is both below and above the peak 
(Figure 4c). Crosses between very closely related parents may not be 
detected as hybrids due to a masking effect from introgression and 
species that are too distantly related are likely to encounter genetic 
incompatibilities resulting in unsuccessful hybridisation.

4.3  |  Future research

A more balanced research effort to include species rich families 
such as the Blenniidae and Gobiidae is needed to counter the ap-
parent taxonomic bias in the literature. This would allow a more 
accurate representation of hybrid- rich zones among coral reef 
fishes. Additionally, most researchers have suggested that dispari-
ties in parental abundances (i.e., rarity of a species due to low local 
population density; Rabinowitz, 1981) promote the chances of in-
terbreeding. However, a lack of data on species- specific coral reef 
fish abundances at key locations where hybrids are found precluded 
our ability to include this predictor in our model. To discern whether 
species rarity is indeed a critical factor in hybrid- rich zones may re-
quire more geographically focused research.

5  |  CONCLUSIONS

Hybridisation in coral reef fishes is a common, global, phenom-
enon, although some regions such as the Christmas– Cocos Islands 
do demonstrate higher hybrid richness relative to other areas. The 
presence of these hybrid- rich zones suggests that certain regional 
factors may provide favourable conditions for hybridisation. We 
found that surface current velocities, phylogenetic distance, and 
geographic isolation are strongly associated with hybrid- rich re-
gions, whereas variables such as biogeographic barriers, endemism, 
and species richness were not. The level of phylogenetic relatedness 
may be a pre- condition for hybridisation to occur, while surface cur-
rent strength and isolation may create the environmental context of 
larval dispersal to geographically distant regions, that promote the 
formation of hybrid- rich zones.
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