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Abstract
This paper addresses two questions: (a) can we identify a sensible class of 2-parameter
persistence modules on which the rank invariant is complete? (b) can we determine
efficiently whether a given 2-parameter persistence module belongs to this class?
We provide positive answers to both questions, and our class of interest is that of
rectangle-decomposable modules. Our contributions include: on the one hand, a proof
that the rank invariant is complete on rectangle-decomposable modules, together with
an inclusion-exclusion formula for counting the multiplicities of the summands; on
the other hand, algorithms to check whether a module induced in homology by a
bifiltration is rectangle-decomposable, and to decompose it in the affirmative, with a
better complexity than state-of-the-art decompositionmethods for general 2-parameter
persistence modules. Our algorithms are backed up by a new structure theorem,
whereby a 2-parameter persistence module is rectangle-decomposable if, and only
if, its restrictions to squares are. This local characterization is key to the efficiency of
our algorithms, and it generalizes previous conditions derived for the smaller class of
block-decomposable modules. It also admits an algebraic formulation that turns out
to be a weaker version of the one for block-decomposability. By contrast, we show
that general interval-decomposability does not admit such a local characterization,
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even when locality is understood in a broad sense. Our analysis focuses on the case of
modules indexed over finite grids, the more general cases are left as future work.

Keywords Topological data analysis · Multiparameter persistence · Rank invariant

Mathematics Subject Classification 55N31 · 68R99

1 Introduction

A persistence module M over a subset U ⊆ R
d is a collection of vector spaces

{Mt }t∈U and linear maps ρt
s := M(s ≤ t) : Ms → Mt with the property that ρs

s is
the identity map and ρu

t ◦ ρt
s = ρu

s for all s ≤ t ≤ u ∈ U . Here s ≤ t if and only
if si ≤ ti for all i ∈ {1, 2, . . . , d}. In the language of category theory, a persistence
module M is a functor M : U → vec where vec is the category of vector spaces and
the partially ordered set U is considered as a category in the obvious way. In this
setting,morphisms between persistence modules are natural transformations M ⇒ N
between functors, defined by collections of linear maps {ϕt : Mt → Nt }t∈U such that
ϕt ◦M(s ≤ t) = N (s ≤ t)◦ϕs for all s ≤ t ∈ U . Their kernels, images and cokernels,
as well as products, direct sums and quotients of persistence modules, are defined
pointwise at each index t ∈ U . Similarly, an isomorphism between two persistence
modules is a natural isomorphism between them. We will refer to the case d = 1 as
single-parameter persistence, and for d ≥ 2 we will use the term multi-parameter
persistence.

Remark 1.1 Throughout this paper we will work exclusively with finite-dimensional
vector spaces over a fixed field k. When finite-dimensionality is emphasized we will
refer to the persistence module as being pointwise finite-dimensional (pfd).

Single-parameter persistencemodules are typically obtained through the application of
homology to a filtered topological space. This process is known as persistent homology
and has found a wide range of applications to the sciences, as well as to other parts
of mathematics such as symplectic geometry. See [16, 23] for an introduction to
persistent homology. What makes such persistence modules particularly amenable to
data analysis is that they can be completely described by multisets of intervals in R

called barcodes [14]. Such a collection of intervals can then in turn be used to extract
topological information from the data at hand, and further utilized in statistics and
machine learning. We now give an example of this structure theorem in the simple
case of U = {1, 2, 3} ⊆ R.

Example 1.2 Consider the following sequence of vector spaces and linear maps:

k2

[
1 1
0 1

]

−−−→ k2
[1 −1]−−−→ k.
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By replacing the basis {e1, e2} of themiddle vector space k2 with the basis {e1, e1+e2}
we get the following matrix representations of the linear maps

k2

[
1 0
0 1

]

−−−→ k2
[1 0]−−→ k = (

k
1−→ k

1−→ k
) ⊕ (

k
1−→ k → 0

)
.

The two persistence modules on the right-hand side are uniquely specified by their
supports {1, 2, 3} and {1, 2}, respectively. Their supports give rise to the barcodewhich
in this case is given by {{1, 2, 3}, {1, 2}}.
As illustrated by Example 1.2, a persistence module can be recovered from its barcode
thanks to the notion of indicator modules: for X × Y ⊆ R

2 and a subset Q ⊆ X × Y ,
the indicator module of Q, denoted kQ , is defined by

kQ,t =
{
k for t ∈ Q,

0 for t /∈ Q,
kQ(s ≤ t) =

{
Idk if s, t ∈ Q,

0 else.

By convention, we set k∅ = 0. A persistence module is an interval module if it is the
indicator module of an interval1. Note that, just as choosing a basis for a vector space is
not canonical, theremay bemanyways of decomposing a single-parameter persistence
module into a direct sum of such interval modules. However, just as for the dimension
of a finite-dimensional vector space, the associated barcode given by the multiset of
interval supports of the summands is independent of the chosen decomposition [1].

Another desirable property of single-parameter persistence modules M is that they
are completely described up to isomorphism by the rank invariant, i.e., the collection
of ranks r(s, t) = rank (M (s ≤ t)) for all s ≤ t . This can easily be verified in the
previous example, and more generally, for any pfd persistence module M indexed
over a finite set �1, n�, the following inclusion-exclusion formula (also known as the
persistence measure [10, 12]) gives the multiplicity m(s, t) of any interval �s, t� in
the barcode of M :

m(s, t) = r (s, t) − r (s − 1, t) − r (s, t + 1) + r (s − 1, t + 1). (1)

Many applications do however naturally come equippedwithmultiple parameters, and
for such applications it is natural to consider multi-parameter persistence modules, see
e.g. the introduction of [2] for an example of howmulti-parameter persistence connects
to hierarchical clustering. Let us first consider the simplest instantiation of 2-parameter
persistence modules, namely modules indexed by the square S = {a = (0, 0), b =
(1, 0), c = (0, 1), d = (1, 1)} ⊆ R

2.

1 In the poset X × Y , we say that Q is an interval if it is convex and zigzag path-connected, i.e., if between
any two points p, q ∈ Q, there exists a zigzag path p ≤ p1 ≥ p2 ≤ . . . ≥ pn ≤ q with pi ’s in Q.
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Example 1.3 The persistence module on the left-hand side below can be transformed
into the one on the right-hand side via a change of basis at the vertices:

k2 k2 k2 k2

k k k k

[
1 −1

0 1

] [
1 0

0 1

]

1

[
1

1

] [
0

1

]

1

[
0

1

] [
0

1

]

In turn, the persistence module on the right-hand side is the direct sum

k k

0 0

1

0

0 0

⊕ k k

k k

1

1

1 1

Just as in Example 1.2, these persistence modules are completely defined by their
support. We define the barcode of the aforementioned persistence module to be the
(multi-)set of supports of its summands, namely {{c, d}, {a, b, c, d}}.
Although commutative diagrams like the one in the previous example may appear
unwieldy at first glance, such persistencemodules can—just as in the single-parameter
case—be completely described (up to isomorphism) by a multiset of elements from

I := {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c}, {b, c, d}, {a, b, c, d}}, (2)

called intervals in the 2 × 2 grid. See e.g. [17, Fig. 13]. However, in contrast to the
single-parameter case, the rank invariant on persistence modules indexed by S is no
longer a complete invariant, i.e., it does not fully determine the isomorphism type of
such modules. For instance, two persistence modules with barcodes {{a, b, c}, {a}}
and {{a, b}, {{a, c}} are non-isomorphic yet exhibit the same rank invariant.

Example 1.4 Consider the following two persistence modules:

k k2 k k k2 k

0 k k 0 k k

[
1

0

]
[
1 0

]
[
1

1

]
[
1 0

]

0

0

[
1

0

]

1

1

0

0

[
1

0

]

1

1

The diagram to the left can easily be seen to be composed of two interval summands
in the 3× 2 grid. By contrast, the diagram to the right is indecomposable: there exists
no change of basis for which this persistence module can be written as a direct sum of
persistence modules in a non-trivial way. Again, the two modules have the same rank
invariant.
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In the setting of no more than four columns and two rows, results from the field of
representation theory of quivers show that there exists a finite set of building blocks
(indecomposable modules) from which every persistence module can be built (via
direct sums, and up to isomorphism). Based on this, one can associate a well-defined
barcode-like structure to such amodule by counting themultiplicity of every summand
in the decomposition. The inclusion of such grids into topological data analysis was
inspired by a problem in materials science [17]. For five or more columns the theory
becomes increasingly complex. In particular, for six or more columns there is no way
to parametrize a set of building blocks in any reasonable way2. This is a major obstacle
to the development of the theory of multi-parameter persistence.

A natural question to consider then is whether one can endow multi-parameter
persistence modules with additional structure in order to enforce nice decomposition
theorems akin to that of single-parameter persistence. One such setting coming from
computational topology was identified in [3, 9], and further generalized in [11], where
it is shown that the so-called strongly exact 2-parameter persistence modules indexed
overR

2 are determined (up to isomorphism) by amultiset of particularly simple planar
rectangular regions called blocks. Basically, a block is either an upper-right or lower-
left quadrant, or a horizontal or vertical infinite band. The great advantage of this
condition is that it can be checked locally: a 2-parameter persistence module (called a
bimodule for short) is block-decomposable if, and only if, its restriction to any square
as in Example 1.3 is block-decomposable.

Contributions. In this paper we address two important follow-up questions:

� Can we work out conditions such as above for larger classes of bimodules?
� Can we identify classes of bimodules for which the rank invariant is complete?

Our answers to both questions are positive, and the two classes of bimodules turn out to
be the same, namely that of rectangle-decomposable bimodules, which by definition
are determined (up to isomorphism) by a multiset of rectangles, i.e., subsets R of the
form R = I × J ⊆ R

2 where I and J are intervals in R. Specifically, a bimodule is
rectangle-decomposable if it decomposes into a direct sum of rectangle modules, i.e.,
indicator modules of rectangles.

Our local condition for rectangle decomposability, called weak exactness, is a
weaker version of the condition for block decomposability, in that it allows all types
of rectangular shapes in the local squares’ decompositions, as opposed to just blocks.
More precisely, callingR the following subset of I:

R = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c, d}}, (3)

2 The underlying graph, called a quiver, is known to be of wild representation type.
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Definition 1.5 (weak exactness). Given subsets X ,Y of R, a persistence module
M : X × Y ⊆ R × R → vec is weakly exact if the barcode of the square

M(sx ,ty) Mt

Ms M(tx ,sy)

ρt
(sx ,ty )

ρ
(tx ,sy )
s

ρ
(sx ,ty )
s

ρt
(tx ,sy ) (4)

consists of elements from R for all indices s ≤ t in X × Y .

By comparison, the strong exactness condition replaces R by B = R \ {{b}, {c}}.
Example 1.6 The persistence module to the left below is strongly exact, while the one
to the right is only weakly exact, and the persistence modules in Example 1.4 are
not even weakly exact (each time the weak or strong exactness condition fails on the
outermost rectangle):

k k2 k2 k k2 k2

0 k k 0 k k

[
1

0

] [
1 0

0 1

] [
1

0

] [
0 0

0 1

]

0

0

[
0

1

]

1

[
0

1

]

0

0

[
0

1

]

1

[
0

1

]

Our analysis focuses on the case of modules indexed over finite grids3, the more
general cases are left as future work. Our contributions summarize as follows:

� In Sect. 2 we prove that the rank invariant is complete on the class of
rectangle-decomposable bimodules (Theorem 2.1). To this end, we general-
ize the inclusion-exclusion formula (1) to our setting. Note that our result also
follows indirectly from an inclusion-exclusion formula for a generalization of
the rank invariant for interval-decomposable modules [19, Prop. 7.13], but that
we provide an explicit statement together with a simple and direct proof.

� In Sect. 3 we show that the rank invariant of a simplicial bifiltration with a
total of n simplices can be computed in O(n4) time (Theorem 3.1). This result
in itself is not new, however, combined with our inclusion-exclusion formula,
it yields an O(n4) time algorithm for computing the barcode of a persistence
bimodule that is known to be rectangle-decomposable (Corollary 3.2). This
is an improvement over merely applying some state-of-the-art algorithm for
computing decompositions of general 2-parameter persistencemodules, which
would take O(n2ω+1) time where 2 ≤ ω < 2.373 is the exponent for matrix
multiplication [15].

3 A finite grid is the product of two finite subsets of R. Note that any finite grid can be identified with a
grid of the form �1, n� × �1,m� for appropriate choices of n,m ∈ N.
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� In Sect. 4 we propose an algebraic formulation of our weak exactness condition
(Definition 4.1). This formulation turns out to be equivalent to Definition 1.5
and to global rectangle-decomposability (the central mathematical result in the
paper), specifically:

Theorem 1.7 Let M be a pfd persistence module indexed over X × Y , where X ,Y
are finite subsets of R. Then, M is rectangle-decomposable if and only if M is weakly
exact.

� In Sect. 5 we leverage this result to derive an O(n2+ω)-time algorithm for
checking the rectangle-decomposability of persistence bimodules induced in
homology from simplicial bifiltrations with at most n simplices (Theorem 5.1).
Once again, this is an improvement over applying some state-of-the-art
algorithm for computing decompositions of general 2-parameter persistence
modules and then checking the summands one by one.

� In Sect. 6 we investigate the existence of similar local characterizations for
larger classes of interval-decomposable modules. First, we show that interval-
decomposability itself cannot be characterized locally, even when testing on
arbitrary strict subgrids and not just squares. Second, we show that decom-
posability with respect to certain classes of indecomposables in-between the
rectangle modules and the interval modules cannot be characterized locally
either when testing on squares.

� Finally, in Sect. 7 we show how rectangle-decomposable modules arise from
(sufficiently tame) real-valued functions on a topological space. This is then
used to give a new proof of the pyramid basis theorem of [3].

2 Completeness of the Rank Invariant

Suppose in this section that X ,Y are subsets of Z.

Theorem 2.1 The isomorphism type of any pfd rectangle-decomposable persistence
module M over X × Y is fully determined by the rank invariant of M.

The proof consists in showing that the multiplicitym(s, t) of each individual rectangle
module k�sx ,tx �×�sy ,ty� in the decomposition of M is given by the inclusion-exclusion

formula (7) below, which involves only the rank invariant r : (X × Y )2 → N of M—
with the convention that r(s, t) = 0 whenever s � t . This formula is the analogue,
in the category of rectangle-decomposable pfd bimodules, of the inclusion-exclusion
formula (1) for counting the multiplicities of interval summands in one-parameter
persistence.

Fix arbitrary indices s ≤ t ∈ X ×Y . Recall that the rank of (A⊕ B)(s ≤ t) is equal
to the sum of the ranks of A(s ≤ t) and B(s ≤ t). Meanwhile, for any summand kR

of M , the rank of kR(s ≤ t) is 1 if s, t ∈ R and 0 otherwise. Therefore, r (s, t)
counts (with multiplicity) the number of summands of M whose rectangle support
contains both s and t . Then, denoting by m(s, t+) the number of (rectangle) sum-
mands whose support contains t and has s as lower-left corner, we have the following
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inclusion-exclusion formula:

m(s, t+) = r (s, t) − r ((sx − 1, sy), t) − r ((sx , sy − 1), t) + r ((sx − 1, sy − 1), t).

(5)

This formula can be interpreted as follows: a rectangle containing t has s as lower-left
corner if and only if it contains s but neither (sx −1, sy) nor (sx , sy−1); and it contains
both (sx − 1, sy) and (sx , sy − 1) if and only if it contains (sx − 1, sy − 1).

Using the same approach at t , we can nowcompute the numberm(s, t) of summands
of M whose support has s as lower-left corner and t as upper-right corner (i.e., is the
rectangle �sx , tx� × �sy, ty�). The corresponding inclusion-exclusion formula is:

m(s, t) = m(s, t+) − m(s, (tx + 1, ty)
+) − m(s, (tx , ty + 1)+)

+ m(s, (tx + 1, ty + 1)+).
(6)

Combining (5) and (6) together gives the desired inclusion-exclusion formula for the
multiplicity m(s, t) of the summand k�sx ,tx �×�sy ,ty� in the decomposition of M from
the rank invariant, hence completing the proof of Theorem 2.1, namely:

m(s, t) = r (s, t) − r ((sx − 1, sy), t) − r ((sx , sy − 1), t) + r ((sx − 1, sy − 1), t)

− r (s, (tx + 1, ty)) + r ((sx − 1, sy), (tx + 1, ty))

+ r ((sx , sy − 1), (tx + 1, ty)) − r ((sx − 1, sy − 1), (tx + 1, ty))

− r (s, (tx , ty + 1)) + r ((sx − 1, sy), (tx , ty + 1))

+ r ((sx , sy − 1), (tx , ty + 1)) − r ((sx − 1, sy − 1), (tx , ty + 1))

+ r (s, (tx + 1, ty + 1)) − r ((sx − 1, sy), (tx + 1, ty + 1))

− r ((sx , sy − 1), (tx + 1, ty + 1))

+ r ((sx − 1, sy − 1), (tx + 1, ty + 1)).

(7)

3 Computing the Rank Invariant and Rectangle Decompositions

Let F be a simplicial bifiltration with n simplices in total. Assume without loss of
generality that F is indexed over the grid G = �1, n�× �1, n�, for any larger indexing
grid must contain arrows with identity maps that can be pre- or post-composed, and
any smaller grid can be enlarged by inserting arrows with identity maps. Assume
further that each arrow F(i, j) → F(i+1, j) or F(i, j) → F(i, j+1) is either an identity
map or the insertion of a single simplex. We also fix a homology degree p.

Theorem 3.1 Given the above input, the rank invariant of the persistence bimodule M
induced by F in p-th homology can be computed in O(n4) time.

A proof of this result can be found in Morozov’s Ph.D. thesis [22, Sect. 4.4.2]. We
reproduce it below for completeness, with a slight adaptation that allows us to avoid
assuming that F is 1-critical4. Before giving the proof, let usmention that this theorem,

4 Let us also point out that the algorithm given in the conference version of this paper [6] was incorrect.
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( i, j )

(1 , 1)

( n, n )

(1 , 1)

( n, n )

S (
i+
1 ,
j )

S (
i,j
)

(1, 1)

( n, n )

S (
1 ,
j +
1)

S (
1 ,
j )

Fig. 1 Left: the stair S(i, j). Center: transitioning from S(i, j) to S(i+1, j) via a sequence of O(n) intermediate
paths with two steps each. Right: transitioning from S(1, j) to S(1, j+1)

combined with the inclusion-exclusion formula (7), gives an O(n4)-time algorithm to
compute the barcode of F assuming that M is rectangle-decomposable: once the rank
invariant of M has been computed, iterate over all the pairs (s, t) with s ≤ t ∈ G and,
for each one of them, apply the formula in constant time to get the multiplicity of the
rectangle module k�sx ,tx �×�sy ,ty� in the decomposition of M . Thus,

Corollary 3.2 Computing the decomposition of a rectangle-decomposable module
over X × Y induced in homology by a bifiltration with n simplices in total can be
done in O(n4) time.

This complexity compares favorably to that of the currently best known algorithm
for computing direct-sum decompositions of general persistence bimodules5, which
is O(n2ω+1) where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [15].

Let us now provide the algorithm for Theorem 3.1. First, we provide a simplified
algorithm that runs in O(n2+ω) time. Consider all the paths of the form (1, 1) →
· · · → (i, 1) → · · · → (i, j) → · · · → (n, j) → · · · → (n, n) in the n × n grid,
where (i, j) ∈ �1, n�2 is arbitrary, as illustrated in Fig. 1 (left). We call such a path
a stair, denoted by S(i, j), and we call the corresponding index (i, j) its nosing. Note
that all the stairs whose nosing is of the form (i, 1) or (n, j) are in fact identical to
the path (1, 1) → · · · → (n, 1) → · · · → (n, n), while all the other stairs with
different nosings are different. The key observation is that, for any pair of comparable
indices (i, j) ≤ (i ′, j ′), the stair with nosing (i, j ′) passes through both indices.
Computing the rank invariant can then be done by iterating over all the stairs, for
instance in lexicographical order of the coordinates of their respective nosings, and
for each such stair S(i, j), by computing the persistence barcode of the 1-parameter
restriction F |S(i, j) and then using this barcode to report the ranks between all the grid
indices encountered along the path. This takes O(nω) per stair, using the 1-parameter
persistence algorithm based on fast matrix multiplication [21], and as there are O(n2)
stairs in total, the overall running time of the algorithm is O(n2+ω).

In order to reduce the overall complexity to O(n4), we exploit the additional obser-
vation that, to transition between two consecutive stairs in lexicographical order of the
coordinates of their nosings, say S(i, j) and S(i+1, j), one can go through a sequence
of O(n) intermediate paths of the form (1, 1) → · · · → (i, 1) → · · · → (i, k) →
5 Let us also point out that our approach does not suffer from the limitation of the algorithm of [15], which
is that no two generators or relations in a minimal presentation of M can have the same grade.
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(i + 1, k) → · · · → (i + 1, j) → · · · → (n, j) → · · · → (n, n), where k ranges
from 2 to j − 1, as illustrated in Fig. 1 (center). Any two consecutive paths in this
sequence differ only at a single cell of the grid �1, n�2, therefore the restrictions of F
to these two paths either do not differ, or differ by one simplex being inserted one
step earlier or later, or by two consecutive simplex insertions being exchanged. In any
situation, the persistence barcode can be updated in O(n) time using the vineyards
algorithm [13]. The update of the barcode from S(i, j) to S(i+1, j) then takes O(n2)
time. Likewise, we can compute the barcode of F |S(1, j+1) by transitioning from S(1, j)
via an intermediate sequence of O(n) paths differing at a single cell in the grid each
time, as illustrated in Fig. 1 (right). Thus, the barcode of F |S(1, j+1) is also obtained
in O(n2) time, and so the overall running time of the algorithm is reduced to O(n4).
This concludes the proof of Theorem 3.1.

4 Algebraic Formulation of Weak Exactness

As shown in [5, 11], a persistence module M : X × Y ⊆ R × R → vec is strongly
exact if, and only if, the following sequence induced by (4) is exact for all indices
s ≤ t ∈ X × Y :

Ms
(ρ

(tx ,sy )
s ,ρ

(sx ,ty )
s )

M(tx ,sy) ⊕ M(sx ,ty)

ρt
(tx ,sy )

−ρt
(sx ,ty )

Mt . (8)

Similarly, we can characterize weak exactness (Definition 1.5) algebraically:

Definition 4.1 (algebraic weak exactness). A persistence module M : X × Y ⊆ R ×
R → vec is called algebraically weakly exact if the following equalities hold for all
s ≤ t ∈ X × Y :

Im ρt
s = Im ρt

(tx ,sy)
∩ Im ρt

(sx ,ty)
, Ker ρt

s = Ker ρ
(tx ,sy)
s + Ker ρ

(sx ,ty)
s .

This condition holds in particular when the sequence (8) is exact, but not only. Indeed,
as can be checked easily, any rectangle (not just block) module is algebraically weakly
exact. So is any rectangle-decomposable pfd persistence bimodule, since the property
is obviously preserved under taking direct sums of pfd persistence bimodules. The
converse holds as well:

Theorem 4.2 (decomposition of algebraically weakly exact pfd bimodules). For any
algebraically weakly exact pfd persistence module M over a finite grid (X × Y ,≤),
there is a unique multiset RM of rectangles of X × Y such that:

M ∼=
⊕

R∈RM

kR .

Since this result holds in particular for persistence bimodules indexed over squares, it
ensures that a pfd persistencemodule over a square is algebraicallyweakly exact if, and
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only if, it is rectangle-decomposable. Hence the equivalence between weak exactness
(Definition 1.5) and algebraic weak exactness (Definition 4.1), and the correctness of
Theorem 1.7.

The rest of this section is devoted to the proof of Theorem 4.2. From this point
on, and until the end of the section, whenever we talk about weak exactness we refer
consistently to the algebraic formulation from Definition 4.1.

4.1 A Preliminary Remark Concerning Submodules and Summands

A morphism f : M → N between two persistence modules over (X × Y ,≤) is a
monomorphism (resp. epimorphism) if for every t ∈ X ×Y , ft : Mt → Nt is injective
(resp. surjective). We say that a monomorphism f : M → N between two persistence
modules M and N splits if there is a morphism g : N → M such that g ◦ f = IdM . If
every monomorphism with domain M splits, we say that M is an injective persistence
module.

It is not true that any submodule of a persistence module is a summand. However,
if f : M → N is a monomorphism between two persistence modules M and N which
splits, it is well known that there is a direct sum decomposition N ∼= M ⊕Coker( f ).
Therefore, an injective submodule of a persistence module is a summand thereof. In
our analysis we will often use the following result:

Lemma 4.3 For any indices k ∈ �1, n�, l ∈ �1,m�, the indicator module k�1,k�×�1,l�
is an injective persistence module over �1, n� × �1,m�.

Proof This lemma is a consequence of [5, Lem. 2.1] since the subset �1, k� × �1, l�
is clearly a directed ideal of the poset �1, n� × �1,m�, following the definition of [5,
Sect. 2.1]. ��

4.2 Proof of Theorem 4.2

Uniqueness of the decomposition follows directly from Krull–Schmidt–Remak–
Azumaya’s theorem [1], since the endomorphism ring of any rectangle module is
clearly isomorphic to k and thus local.We therefore focus on the existence of a decom-
position into rectangle summands. Our proof proceeds by induction on the poset of
grid dimensions (n,m), also viewed as a subposet of R

2 equipped with the product
order:

• Our base cases are when n = 1 or m = 1. The result is then a direct consequence of
Gabriel’s theorem [18], which asserts that M decomposes as a direct sum of interval
modules, each interval being a rectangle of width 1.

• Fix n > 1 and m > 1, and assume that the result is true for all grids of sizes n′ ×m′
such that (n′,m′) < (n,m). Fix a persistencemoduleM over �1, n�×�1,m� that is pfd
and weakly exact. Observe that M has finite total dimension

∑
t∈�1,n�×�1,m� dim Mt ,

so we know from a simple induction that M decomposes as a direct sum of
indecomposables—see [5, Theorem 1.1] for a more general statement. As any sum-
mand of a weakly exact module is again weakly exact, we may restrict our attention
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to pfd indecomposable modules. For the sake of contradiction, assume that M is pfd,
weakly exact, indecomposable, and not isomorphic to a rectangle module. Then:

Claim 4.4 The map ρ
(n,m)
(1,1) is zero.

Proof Suppose the contrary. Then we have Ker ρ(n,m)
(1,1) � M(1,1). Let α be from

M(1,1) \ Ker ρ(n,m)
(1,1) . The submodule N of M spanned by the collection of images

(ρ
(i, j)
(1,1)(α))(i, j)∈�1,n�×�1,m� is isomorphic to k�1,n�×�1,m�, an injective persistence

module by Lemma 4.3. Hence, N is a summand of M , contradicting that M is not
isomorphic to a rectangle module. ��
Claim 4.5 The space M(1,1) maps injectively to the nodes of the grid �1, n − 1� ×
�1,m − 1�.

Proof Let us restrict M to the grid �1, n − 1� × �1,m�. The restriction—denoted
by N—may no longer be indecomposable, however it is still pfd and weakly exact,
therefore our induction hypothesis asserts that N decomposes as a finite (internal)
direct sum where each summand is isomorphic to some rectangle module. Consider
any one of these summands, say N ′ ∼= kR′ , such that (1, 1) ∈ R′. Then, we claim
that (n − 1, 1) ∈ R′ as well. Indeed, otherwise, one can extend N ′ to a persistence
module over �1, n�×�1,m� by putting zero spaces on the last column n. This yields an
injective rectangle submodule of M (Lemma 4.3), and therefore a rectangle summand
of M—a contradiction.

By our claim,M(1,1) maps injectively to the nodes (i, 1) for i ∈ �1, n−1�. Similarly,
by restricting M to the grid �1, n�×�1,m−1�, we deduce that M(1,1) maps injectively
to the nodes (1, j) for j ∈ �1,m − 1�. Then, by weak exactness, we have

∀(i, j) ∈ �1, n − 1� × �1,m − 1�, Ker ρ(i, j)
(1,1) = Ker ρ(i,1)

(1,1) + Ker ρ(1, j)
(1,1) = 0,

so M(1,1) maps injectively to all the nodes of the grid �1, n − 1� × �1,m − 1�. ��
Claim 4.6 The spaces M(1,1) and M(n,m) arezero.

Proof By weak exactness and Claim 4.4, we have

M(1,1) = Ker ρ(n,m)
(1,1) = Ker ρ(n,1)

(1,1) + Ker ρ(1,m)
(1,1) .

Assuming for a contradiction thatM(1,1) �= 0, we have that at least one of the two terms

on the right-hand side of the above equation must be non-zero—say Ker ρ(n,1)
(1,1) �= 0.

Let α �= 0 be an element in that kernel. By Claim 4.5, its images at the nodes of
�1, n−1�×�1,m−1� are non-zero.Meanwhile, its images at the nodes of {n}×�1,m�
are zero, by composition. There are two cases:

� either ρ(1,m)
(1,1) (α) = 0, in which case the images of α at the nodes of �1, n�×{m}

are also zero, which implies that the persistence submodule of M spanned by
the images of α is isomorphic to k�1,n−1�×�1,m−1�;
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� or ρ
(1,m)
(1,1) (α) �= 0, in which case, for all i ∈ �1, n − 1�, we have

α /∈ Ker ρ(1,m)
(1,1)

(Claim 4.5)= Ker ρ(1,m)
(1,1) + Ker ρ(i,1)

(1,1) = Ker ρ(i,m)
(1,1) ,

which implies that the images of α at the nodes of �1, n−1�×{m} are non-zero
as well. Hence, the persistence submodule of M spanned by the images of α

is isomorphic to k�1,n−1�×�1,m�.

In both cases, the persistence submodule of M spanned by the images of α is an
injective rectangle module (Lemma 4.3), hence a rectangle summand of M—a con-
tradiction.

By applying vector-space duality pointwise to M , we obtain an indecomposable
module M∗ of the grid �1, n�op × �1,m�op—which is isomorphic to �1, n� × �1,m�
as a poset. This persistence module is still pfd, and still weakly exact as well since the
equations of weak exactness are stable under vector-space duality (kernels become
images, sums become intersections, and vice-versa). Hence, by the first part of the
proof, M∗

(1,1) = 0, i.e., the space at node (n,m) of M is zero, hence the result. ��
Claim 4.7 The space M(1,m) is zero.

Proof Assume for a contradiction that M(1,m) �= 0. Call N the restriction of M to
the grid �1, n − 1� × �1,m�. By our induction hypothesis, N decomposes as a finite
(internal) direct sum where each summand is isomorphic to some rectangle module.
Since M(1,m) �= 0, at least one of these rectangles contains the node (1,m). Among
such rectangles, take one—say R′ = �1, i�×� j,m�—that has lowest lower-left corner,
and call N ′ the corresponding summand of N . Denote by N ′′ the rest of the internal
decomposition of N , i.e., N = N ′ ⊕ N ′′.

First, we claim that i = n − 1. Indeed, otherwise we can extend N ′ to a rectangle
persistence submodule N̄ ′ of M by putting zero spaces on the last column n, and N ′′
to another persistence submodule N̄ ′′ by putting the internal spaces of M on the last
column, so that M = N̄ ′ ⊕ N̄ ′′—a contradiction.

Second, we claim that j ∈ �2,m − 1�. Indeed, j ≥ 2 since by Claim 4.6 we know
that M(1,1) = 0. Meanwhile, if j were equal to m, then N ′ would go to zero on the
last column of �1, n�× �1,m� since M(n,m) = 0 by Claim 4.6, and so we could extend
N to a rectangle persistence submodule N̄ ′ of M by putting zero spaces on the last
column, and N ′′ to another persistence submodule N̄ ′′ by putting the internal spaces
of M on the last column, so that M = N̄ ′ ⊕ N̄ ′′—a contradiction.

Consider now the space N(1, j) = M(1, j), and take a generator α of the subspace

N ′
(1, j)

∼= k. By Claim 4.6 we know that the map ρ
(n,m)
(1, j) is zero, so by weak exactness

we have α = αh + αv for some αh ∈ Ker ρ(n, j)
(1, j) and αv ∈ Ker ρ(1,m)

(1, j) . We claim
that αh /∈ N ′′

(1, j). Indeed, otherwise we would have

ρ
(1,m)
(1, j) (α) = ρ

(1,m)
(1, j) (αh) + ρ

(1,m)
(1, j) (αv) = ρ

(1,m)
(1, j) (αh) ∈ ρ

(1,m)
(1, j)

(
N ′′

(1, j)

) ⊆ N ′′
(1,m),

thus contradicting our assumption that N = N ′ ⊕ N ′′ with the support of N ′ contain-
ing (1,m). Likewise, for any node t ∈ R′ we have ρt

(1, j)(αh) /∈ N ′′
t , for otherwise we
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would get a contradiction from

ρ
(tx ,m)
(1, j) (α) = ρ

(tx ,m)
(1, j) (αh) = ρ

(tx ,m)
t

(
ρt

(1, j)(αh)
) ∈ ρ

(tx ,m)
t (N ′′

t ) ⊆ N ′′
(tx ,m).

Thus, the persistence submodule Nh of N generated by αh is isomorphic6 to N ′ and in
direct sumwith N ′′.Wecan therefore exchange N ′ for Nh in the internal decomposition
of N . Since Nh is mapped to zero on the last column of �1, n� × �1,m�, we can
extend it to a rectangle persistence submodule N̄ h of M by putting zero spaces on
the last column, meanwhile we can extend N ′′ to another persistence submodule N̄ ′′
by putting the internal spaces of M on the last column, so that M = N̄ h ⊕ N̄ ′′—
a contradiction. ��
Claim 4.8 M(1, j) = 0 for all j ∈ �1,m�.

Proof The result is already proven7 for j = m by Claim 4.7. Let then j ∈ �1,m − 1�.
Call N the restriction ofM to the grid �1, n�×�1,m−1�. By our induction hypothesis,
N decomposes as a finite (internal) direct sum where each summand is isomorphic
to some rectangle module. Assuming for a contradiction that some summand N ′ has
a support R′ that intersects the first column, we know from Claim 4.7 that N ′ maps
to zero at node (1,m). By composition, N ′ maps to zero as well at the nodes on the
last row m. Therefore, as in the proof of Claim 4.7, we can extend N ′ to a rectangle
summand of M by putting zero spaces on row m, thus reaching a contradiction. ��

It follows from Claim 4.8 that M itself is not supported outside the rectangle
R = �2, n� × �1,m�. The induction hypothesis (applied to the restriction of M to R)
implies then that M decomposes as a direct sum of rectangle modules, which raises a
contradiction. This concludes the induction step and the proof of Theorem 4.2.

5 Algorithm for Checking Rectangle Decomposability

As in Sect. 3, let F be a simplicial bifiltration with n simplices in total, and let us
assume without loss of generality that F is indexed over the grid G = �1, n�× �1, n�.
We further assume that each arrow F(i, j) → F(i+1, j) or F(i, j) → F(i, j+1) is either an
identity map or a single simplex insertion, and we fix a homology degree p.

Given this input, how fast can we check whether the persistence bimodule M
induced in p-th homology decomposes into rectangle summands?An obvious solution
is to first decompose M from the data of F , then to check the summands one by one.
As explained in Sect. 3, the currently best known algorithm for decomposition runs in
time O(n2ω+1), where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [15].
The advantage of the algebraic weak exactness condition from Sect. 4 is that it can be
checked locally, which reduces the total running time to O(n2+ω). Below we sketch
the algorithm:

6 Note that we do not need to check that αh goes to zero when leaving R′, since by assumption R′ reaches
row m and, as we saw earlier, i = n − 1 so R′ reaches column n − 1 as well.
7 It is also proven for j = 1 by Claim 4.6, although we do not use this fact in the proof.
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(i) Compute the rank invariant r : �1, n�2 × �1, n�2 → N of M .
(ii) Compute invariants for kernels and images, denoted by κ : �1, n�2 × �1, n�2 →

N and ι : �1, n�2 × �1, n�2 → N respectively, which return the dimensions of

Ker ρ
(sx ,ty)
s + Ker ρ

(tx ,sy)
s and of Im ρt

(sx ,ty)
∩ Im ρt

(tx ,sy)
respectively at indices

s ≤ t , and zero elsewhere.
(iii) For each pair of indices s ≤ t , check whether r(s, t) = ι(s, t) and r(s, s) −

r(s, t) = κ(s, t). If any such equality fails, then answer that M is not rectangle-
decomposable. Otherwise, answer that M is rectangle-decomposable.

We now provide further implementation details and analyze the algorithm on the
fly: Step (i) has already been detailed in Sect. 3 and runs in O(n4) time. Step (iii)
obviously runs in O(n4) time, and its correctness comes from the commutativity of
the square in (4): indeed, commutativity implies that Im ρt

s ⊆ Im ρt
(sx ,ty)

∩ Im ρt
(tx ,sy)

and Ker ρ
(sx ,ty)
s + Ker ρ

(tx ,sy)
s ⊆ Ker ρt

s , so checking weak exactness for this square
amounts to checking equality between the dimensions of the various spaces involved,
hence the equations.

For Step (ii), we first compute, for each t = ( j, l) ∈ G, the barcode of the zigzag
module8 induced in homology by the following zigzag of simplicial complexes:

F(1,l) · · · F( j−1,l) Ft F( j,l−1) · · · F( j,1) .

(9)

We then do the same with the following zigzag, for each s = (i, k) ∈ G:

F(i,n) · · · F(i,k+1) Fs F(i+1,k) · · · F(n,k) .

(10)

Then, for each indices (i, k) = s ≤ t = ( j, l), by restriction, the dimension of
Im ρt

(i,l) ∩ Im ρt
( j,k) is given by the number of intervals in the barcode of (9) that

span the subzigzag F(i,l) Ft F( j,k) , while (dually) the dimension of

Ker ρ(i,l)
s +Ker ρ( j,k)

s is given by r(s, s) minus the number of intervals in the barcode
of (10) that span the subzigzag F(i,l) Fs F( j,k) (the proof of these simple
facts is given in Appendix A). Regarding the running time: since the zigzags (9)&(10)
involve O(n) simplex insertions and deletions each, their barcode computation takes
O(nω)using the algorithmbasedon fastmatrixmultiplication [21]. Then, eachbarcode
having O(n) intervals, the computation of the dimensions and their storage in tables
of integers representing the invariants κ and ι takes O(n). This is true for each choice
of indices s ≤ t , hence a total running time in O(n2+ω + n3) = O(n2+ω).

8 A zigzag module is a persistence module indexed over a poset of the form
• • · · · • , where double-headed arrows mean that the actual arrows can
be oriented either forward or backward. Such modules always decompose into direct sums of interval
modules [4, 8].
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As a consequence,

Theorem 5.1 Checking the rectangle-decomposability of the bimodule induced in
homology by a bifiltration with n simplices in total can be done in O(n2+ω) time.

6 Local Characterizations for Larger Classes of Indecomposables

Theorem1.7 ensures that rectangle-decomposability of a given persistencemodule can
be checked locally by considering restrictions to commutative squares. A natural next
question to consider is then: to what extent can interval-decomposability be locally
determined when allowing for intervals of more general shape than rectangles? In
this section we provide two negative results: We show that interval-decomposability
itself cannot be characterized locally, even when testing on arbitrary strict subgrids.
Then we show that decomposability into a class of interval modules strictly containing
rectangle modules cannot be locally determined by means of restrictions to squares.

6.1 Characterizing Interval-Decomposability

6.1.1 Testing on Totally Ordered Subsets

Denote byTSub (X×Y ) the set of all totally ordered subsets of X×Y . It has been shown
in [5, 14] that any pfd persistence module indexed over a totally ordered set is interval-
decomposable. Therefore, if M is a pfd persistence bimodule indexed over X × Y ,
the restriction M|Q is interval-decomposable for any Q ∈ TSub (X × Y ). Hence, any
indecomposable module over X × Y that is not of pointwise dimension 0 or 1 (such
as the one defined in Example 1.4) is a counter-example to the existence of a local
characterization of interval-decomposability over totally ordered subsets.

6.1.2 Testing on Squares

Recall that the restriction of a pfd persistence module over X ×Y to any commutative
square is interval-decomposable (see e.g. [17, Fig. 13]). Therefore, any indecom-
posable module over X × Y that is not of pointwise dimension 0 or 1 (see again
Example 1.4) is a counter-example to the existence of a local characterization of
interval-decomposability over squares.

6.1.3 Testing on Finite Grids of Bounded Size

Our analysis proceeds in two steps: first we consider the special casewhere X×Y is the
finite grid �1, n+1�2, then we extend the analysis to the case of general finite product
posets. The intuition behind our constructions is given in the following section.

6.1.3.1. A minimal indecomposable. Let n ≥ 2 be an integer, and consider the
poset Dn given by the following Hasse diagram:
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1 n + 2

2

. . .

n

n + 1

Denote by ιi the inclusion of the i-th axis k ↪→ kn , and by δn the injection into the
diagonal t ∈ k �→ (t, . . . , t) ∈ kn . Let Mn denote the persistence module over Dn—
which can be easily be seen as a subposet of R

2—given by the following diagram:

k
ι1 kn

k

ι2

. . .

k

ιn

k

δn

Lemma 6.1 The persistence module Mn satisfies:

� Mn is indecomposable with local endomorphism ring;
� for any i ∈ �1, n + 1�, the restriction Mn

|Dn\{i} decomposes as follows:

Mn
|Dn\{i}

∼=
⊕

j∈�1,n+1�\{i}
k{ j,n+2},

where k{ j,n+2} is the indicator module of the set { j, n + 2}.

Proof It is straightforward to check that Mn has endomorphism ring isomorphic to k,
which is local. Therefore, Mn is indecomposable. Now, if i = n + 1 then the decom-
position of Mn

|Dn\{i} is obvious, while if i ∈ �1, n� then a simple change of basis in the
space Mn

n+2 yields an isomorphism between Mn
|Dn\{i} and Mn

|Dn\{n+1} via the identi-
fication Dn \ {i} � Dn \ {n + 1}, which brings us back to the case where i = n + 1.

��

6.1.3.2. Negative result for the poset �1, n + 1�2 Given n ≥ 2, define the following
persistence module over �1, n + 1�2, where dotted lines stand for zero maps or chains
of zero maps, unspecified solid lines stand for identity maps, and dashed lines stand
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for chains of identity maps:

Nn :=

k kn kn kn kn

0 k kn kn kn

. . . kn kn

0 0 k kn

0 0 0 k

ι1

ι2

ι2

ιn

ιn

δn

(11)

In more abstract terms, defining the monomorphism of posets:

ϕ :
Dn ↪→ �1, n + 1�2,

i �→
{

(i, n + 2 − i) if i �= n + 2,

(n + 1, n + 1) if i = n + 2,
(12)

we have

Nn � Ranϕ Mn . (13)

This can be easily seen from the description of right Kan extensions of persistence
modules as “floor”modules [7, Sect. 2.5].More precisely, we have for t ∈ �1, n+1�2:

Nn
t = lim←− Mn|ϕ≥t

,

where ϕ≥t denotes the upset {u ∈ Dn | ϕ(u) ≥ t}. Internal morphisms for s ≤ t
in �1, n + 1�2 are given by the universality of limits.

Proposition 6.2 For n ≥ 2, the persistence module Nn satisfies:

(i) Nn is not interval-decomposable;
(ii) for any strict subgrid X ′ × Y ′

� �1, n + 1�2, the restriction Nn
|X ′×Y ′ is interval-

decomposable.

Proof The monomorphism ϕ being fully faithful, Lemma B.1 implies that the endo-
morphism ring of Nn is isomorphic to that of Mn , which is local by Lemma 6.1.
Hence, Nn is indecomposable, and since it is not of pointwise dimension 0 or 1, it is
not an interval module. This proves item (i). For (ii), since any strict subgrid X ′ × Y ′
of �1, n + 1�2 misses at least one row or one column of �1, n + 1�2, we will merely
show that the restriction of Nn to �1, n+1�2 \C , whereC denotes an arbitrary column
of �1, n + 1�2, is interval-decomposable. Indeed, the result for �1, n + 1�2 \ R where
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R is a row of �1, n+1�2 is obtained analogously, and then the result for the restriction
of Nn to any strict subgrid X ′ × Y ′ follows by restriction.

A column C of �1, n + 1�2 contains exactly one point of the form (i, n + 2 − i)
for an i ∈ �1, n + 1�. We denote by Ci the column containing the point (i, n + 2− i).
Hence, the corestriction of ϕ|Dn\{i} to �1, n + 1�2 \ Ci is well defined, denote it by
ϕi : Dn \ {i} ↪→ �1, n + 1�2 \ Ci , and we can easily see that

Nn
|�1,n+1�2\Ci

� Ranϕi

(
Mn

|Dn\{i}
)
. (14)

Moreover, for any j ∈ �1, n + 1� \ {i}, the module Ranϕi k{ j,n+2} is clearly an inter-
val module, and in particular the finite direct sum

⊕
j∈�1,n+1�\{i} Ranϕi k{ j,n+2} is

pointwise-finite dimensional. For instance, Ranϕn+2 k{1,n+2} is isomorphic to

k k k k

0 0 k k

. . . k

0 0 0

0 0 0

(15)

Therefore, using Lemma 6.1 and the fact that pfd right Kan extensions commute with
direct-sums of pfd modules [7, Rem. 2.16], we get an interval-decomposition:

Ranϕi

(
Mn

|Dn\{i}
) �

⊕
j∈�1,n+1�\{i}

Ranϕi k{ j,n+2},

hence the result by (14). ��
Proposition 6.2 immediately implies a similar result for more general finite grids.

Corollary 6.3 If X ,Y are arbitrary finite subsets of R with |X | ≥ 3, |Y | ≥ 3, then
there exists a pfd persistence module M indexed over X × Y such that:

� M is not interval-decomposable;
� for any subgrid X ′ × Y ′

� X × Y with |X ′| < min(|X |, |Y |) or |Y ′| <

min(|X |, |Y |), the restriction M|X ′×Y ′ is interval-decomposable.

Proof Letm = min(|X |, |Y |). Sincem ≥ 3, we can define a persistence module M on
X × Y by copy-pasting the spaces and maps of Nm−1 to the most bottom-left subgrid
of size m × m of X × Y , and by setting all other spaces and maps to zero. The result
follows then from Proposition 6.2. ��
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6.2 Local Characterizations for Other Classes of Interval-Decomposable Modules

Since rectangle-decomposability can be characterized locally on squares, while gen-
eral interval-decomposability cannot, it is natural to ask what happens with classes of
indecomposables standing in-between the rectanglemodules and the interval modules.
Theorem 6.4 below shows that certain such classes cannot be characterized locally
on squares either. In the following, we use the notations of (2) for the intervals of
a square—note that only two of these intervals are not rectangles, namely {a, b, c}
(called bottom hook) and {b, c, d} (called top hook).

Theorem 6.4 Let X ,Y be arbitrary finite subsets of R such that |X | ≥ 2 and |Y | ≥ 2,
and that (|X |, |Y |) �= (2, 2). Then, there exists a pfd persistence module M indexed
over X × Y such that:

� M is not interval-decomposable;
� for any square Q of X × Y , the restriction M|Q is interval-decomposable and

its barcode is included in R ∪ {{b, c, d}}.
The same result holds for R ∪ {{a, b, c}}.
Proof Recall that the persistencemodule to the right of Example 1.4 is indecomposable
with local endomorphism ring. Since it is not of pointwise dimension 0 or 1, it is not
interval-decomposable. Furthermore, direct inspection reveals that its restrictions to
squares are all interval-decomposable,with their barcodes included inR∪{{b, c, d}}—
in fact in R except for the restriction to the outermost square whose barcode is made
of one copy of {b, c, d}. Thus, when |X | ≥ 3 and |Y | ≥ 2, we can copy-paste the
spaces and maps of this bimodule to the most bottom-left subgrid of size 3 × 2 of
X ×Y , and set all other spaces and maps to zero, to get our module M . When |X | ≥ 2
and |Y | ≥ 3, the result is proven similarly using the following vertical analogue of the
previous bimodule:

k k

k k2

0 k

1

1

[
1

0

] [
1 0

]

0
0

[
1

1

] .

Taking the duals9 of the previously constructed persistence modules yields the result
forR ∪ {{a, b, c}}. ��

7 New Proof of the Pyramid Basis Theorem

In [9] the authors show that a large pyramidal diagramcanbe associated to a sufficiently
tame real valued function f : X → R. We briefly recall their construction. Under the

9 See the end of the proof of Claim 4.6 for more details on duality.
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assumption that the function is ofMorse type, there exists a finite set of critical values
a1 < a2 < . . . < an , and we may choose real values si satisfying

−∞ < s0 < a1 < s1 < . . . < an < sn < +∞.

Here the idea is that the preimage of [si , si+1] deformation retracts onto the fiber over
ai+1, and that the fiber is constant (up to homotopy) between critical values. This gives
a way of studying how the topology of the fibers connect across scales.

Denoting X j
i = f −1[si , s j ] and j

i X = Xi
0 ∪ Xn

j , obvious inclusions yield a com-
mutative diagram, such as the following one for n = 2:

(X2
0, X

2
0) (X2

0,
2
2X)

(X1
0, X

1
0) (X2

0, X
1
0) (X2

0,
2
1X) (X2

0,
1
1X)

(X0
0, X

0
0) (X1

0, X
0
0) (X2

0, X
0
0) (X2

0,
2
0X) (X2

0,
1
0X) (X2

0,
0
0X)

X0
0 X1

0 X2
0 (X2

0, X
2
2) (X2

0, X
2
1) (X2

0, X
2
0)

X1
1 X2

1 (X2
1, X

2
2) (X2

1, X
2
1)

X2
2 (X2

2, X
2
2)

Building on the work of [9], it is shown in [3] that the above diagram, upon appli-
cation of homology, decomposes into a direct sum of interval modules, where each
interval is the intersection of a rectangle in Z

2 with the pyramid above. This result is
referred to as the pyramid basis theorem. We now give a new proof of this fact using
Theorem 4.2. More precisely, we show the following:

Theorem 7.1 (pyramid basis theorem). The homology pyramid as constructed in [9]
is interval-decomposable, where the intervals are restrictions of rectangles in Z

2 to
the pyramid.

To simplify the notation we prove the case for n = 2 and it will be evident that the
argument generalizes. First, extend the homology diagram to a bimodule on a finite
grid as follows:

0 0 Hp(X2
0, X

2
0) Hp(X2

0,
2
2X) PO2 PO3

0 Hp(X1
0, X

1
0) Hp(X2

0, X
1
0) Hp(X2

0,
2
1X) Hp(X2

0,
1
1X) PO1

Hp(X0
0, X

0
0) Hp(X1

0, X
0
0) Hp(X2

0, X
0
0) Hp(X2

0,
2
0X) Hp(X2

0,
1
0X) Hp(X2

0,
0
0X)

Hp(X0
0) Hp(X1

0) Hp(X2
0) Hp(X2

0, X
2
2) Hp(X2

0, X
2
1) Hp(X2

0, X
2
0)

PB1 Hp(X1
1) Hp(X2

1) Hp(X2
1, X

2
2) Hp(X2

1, X
2
1) 0

PB3 PB2 Hp(X2
2) Hp(X2

2, X
2
2) 0 0
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Here PBi denotes pullback and POi denotes pushout. Inductively these are defined
(up to canonical isomorphism) by

PB1 = ker
(
Hp(X

0
0) ⊕ Hp(X

1
1) → Hp(X

1
0)

)
,

PB2 = ker
(
Hp(X

1
1) ⊕ Hp(X

2
2) → Hp(X

2
1)

)
,

PB3 = ker
(
PB1 ⊕ PB2 → Hp(X

1
1)

)
.

and dually for the pushouts, with kernels replaced by cokernels. By Theorem 4.2 it
suffices to show that the extended diagram is weakly exact. The fact that any square
with vertices on the original “pyramid” is strongly exact (i.e., the sequence (8) induced
by such a square is exact) follows from the exactness of the relative Mayer–Vietoris
sequence.Moreover, as remarked in [5, Sect. 5.1], the extension of the pyramid to pull-
backs and pushouts preserves strong exactness (and thus weak exactness). It remains
to consider squares with a 0 vector space as either its top-left or bottom-right corner.
The fact that such squares are weakly exact is an easy consequence of commutativity.
We conclude that the bimodule shown above is weakly exact and therefore rectangle-
decomposable. The restrictions of the rectangle summands to the original homology
pyramid give the intervals in the pyramid basis theorem.

Appendix A: Proof of the Simple Facts from Sect. 5

Lemma A.1 Consider the following commutative square (left) and pfd persistence
bimodule indexed over it (right):

•c •d C δ D

•a •b A

β

α
B

γ

Then

dim (Im γ ∩ Im δ) = # {intervals of type •c •d •b in the barcode

of the zigzag C
δ

D B
γ };

dim (Ker α + Ker β) = dim A − # {intervals of type •c •a •b in the

barcode of the zigzag C A
β α

B }.

Proof We only prove the first equality, as the second one follows by duality. Take

an interval decomposition of the zigzag C
δ

D B
γ

, and pick a basis
(ξ1, . . . , ξl) of D that is compatible with this decomposition. This means that each
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basis element ξi lies in the span of a unique interval summand of the zigzag at D.
Then, by restriction we have:

ξi ∈ Im γ ⇐⇒ ξi ∈ Span (summands of type •d •b )

+ Span (summands of type •c •d •b );
ξi ∈ Im δ ⇐⇒ ξi ∈ Span (summands of type •c •d )

+ Span (summands of type •c •d •b ).

The spans of distinct summands being in direct sum in D, we deduce that

ξi ∈ Im γ ∩ Im δ ⇐⇒ ξi ∈ Span (summands of type •c •d •b ).

Hence the result. ��

Appendix B: Endomorphism Rings of Kan Extensions

Lemma B.1 Let P and Q be two subposets ofRd , M beapfd persistencemodule over P
and ϕ : P ↪→ Q be a fully faithful monomorphism of posets. Then, the endomorphism
ring of Lanϕ M (resp. of Ranϕ M) is isomorphic to that of M.

Proof We prove the result for left Kan extensions, the case of right Kan extensions
being similar. Since ϕ is fully faithful, we have by [20, Cor. X.3.3] that

ϕ∗(Lanϕ M) � M, (16)

where ϕ∗ denotes the functor “pre-composition by ϕ” going from the category of
pfd persistence modules over Q to the category of pfd persistence modules over P .
Moreover, the universality property of Kan extensions gives a natural isomorphism:

Hom (Lanϕ M,−) � Hom (M, ϕ∗(−)). (17)

Combining these two equations, we get

End(M) = Hom(M, M)
(16)� Hom (M, ϕ∗(Lanϕ M))

(17)� Hom (Lanϕ M,Lanϕ M) = End (Lanϕ M). ��
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