
18 October 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

An hybrid linear algebra framework for engineering

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1622382 since 2017-03-01T14:22:40Z



An hybrid linear algebra framework for

engineering

Paolo Viviani1,2, Marco Aldinucci1, and Roberto d’Ippolito2

1Computer Science Department, University of Torino, Italy
2Noesis Solutions NV, Leuven, Belgium

Abstract

The aim of this work is to provide developers and domain experts
with simple (Matlab-like) interface for performing linear algebra tasks
while retaining state-of-the-art computational speed. To achieve this goal
we extend Armadillo C++ library is extended in order to support with
multiple LAPACK-compliant back-ends targeting different architectures
including CUDA GPUs; moreover our approach involves the possibility
of dynamically switching between such back-ends in order to select the
one which is most convenient based on the specific problem and hardware
configuration. This approach is eventually validated within an industrial
environment.

1 Introduction

Dense linear algebra plays a key role in a large number of scientific and industrial
applications, spanning from machine learning to computational fluid dynamic, in
this context the need for performing such operations as fast as possible is a well
known challenge in computer science. The presented work is aimed towards the
creation of a software stack that allows the acceleration of dense linear algebra
tasks on heterogeneous architectures without any specific expertise in GPU and
parallel programming.
In order to understand the design choices involved in the presented approach,
it is useful to list a number of requirements derived from a specific industrial
use case, which represented the main driving force to the development of this
library:

1. State-of-the-art performance on heterogeneous CPU-GPU platforms.

2. Support for advanced linear algebra operations like linear system solving
and matrix decompositions.

3. C++ API.

1



4. Simple interface (possibly similar to MATLAB).

5. Hidden parallelism and GPU specific operations (i.e. memory transfer).

6. Capability to switch from CPU to GPU implementation at runtime.

7. Licensing compatible with commercial use.

8. Support for both Linux and Windows.

The analysis of these requirements and a review of the available tools that
would possibly fits such needs highlighted the lack of an off-the-shelf solution in
this case, nevertheless one of the targets is to keep the code to be maintained
to a minimum, this led to a library approach where existing state-of-the-art
components are extended in order to interoperate, being then used as building
blocks of a custom implementation.

2 Architecture

The de-facto standard framework for dense linear algebra is the LAPACK-
/BLAS stack: it is implemented by many vendors, but it presents a complex
API, unsuitable for being employed by a domain expert. The idea behind this
work is to identify one or more LAPACK compliant back-ends that allow to
perform such operations on CPUs and GPUs in a flexible way, then to wrap
them with a convenient high-level interface.

For the presented work, the software stack consits in a front-end library and
two back-ends: one dedicated to hybrid platforms with CUDA GPUs and the
other dedicated to multicore CPUs. The choice for the wrapper library falls
on Armadillo C++ template library [4], which has a clean and textbook-like
syntax (deliberately similar to MATLAB) and provides a standard LAPACK-
/BLAS interface. For what concern the back-ends we relied on MAGMA [1]
(Hybrid/GPU) and OpenBLAS (CPU) [5], which are both well-regarded, state-
of-the-art, implementations of the LAPACK and BLAS libraries. The use of
Magma allowed us to hide all the GPU specific tasks (like device memory allo-
cation) from the user, since they are completely performed by the library, which
can be then used as a drop-in replacement for LAPACK.
To accelerate direct BLAS calls made by Armadillo we leverage the nvBLAS
library [3] provided by NVidia which can dynamically offload such operations
to cuBLAS when convenient, otherwise it relies on a CPU BLAS implementa-
tion, which in this case is OpenBLAS. Figure 1 depicts the components of the
presented library and its architecture.

2.1 Dynamic back-end switching

The key feature of this implementation is the ability to switch between the
two back-ends dynamically at runtime, it allows to fall-back on a CPU-only



CPUCUDA GPU

Armadillo Lapack interface
Armadillo BLAS 

interface

Magma OpenBLAS

Magma 
BLAS

cuBLAS OpenBLAS

nvBLAS

Figure 1: Architecture of the presented library.

implementation when a CUDA GPU is not available and it is possible to always
choose the most convenient back-end for a given hardware configuration and
matrix size, moreover the user code does not need to be modified when porting
it between different platforms.
This result has been achieved by modifying Armadillo’s LAPACK interface by
means of C++11 function pointers, this approach allowed to keep the code to
be maintained internally to a minimum and it is flexible enough to make the
integration of additional back-ends straightforward.
Listing 1 shows the typical usage of the presented framework, which includes a
very small number of additional lines of code with respect to standard Armadillo
code, in this sense it cuts down the development time and the learning curve
for a domain expert who needs to implement a complex business logic.

1 // Check if supported CUDA driver and device are present, then initializes

Magma

2 arma::arma_magma_init();

3 // Set the Magma back-end at runtime

4 arma::arma_set_back-end(1);

5 arma::arma_set_device(0);

6 // Domain logic

7 // ...

8 // Finalizes Magma back-end for a clean exit

9 arma::magma_finalize();

Listing 1: Typical usage.

3 Results and future work

The presented library has been thoroughly tested also within an industrial en-
vironment and it proved itself fully compliant to the requirements listed above.



It allowed the domain experts to achieve significantly better performance with
respect to the previous internal implementations, while speeding up the devel-
opment thanks to its textbook-like API.
We will also present different comparison between the two back-ends, that will
show the existence of a break-even point for the two back-ends: for matrices
smaller than a certain threshold OpenBLAS is faster, while the situation is re-
versed for larger matrices. Moreover, the size that represents this threshold
varies depending on the specific hardware configuration, to the extreme case
where there is no break-even for Magma due to a very low-end GPU. In this
sense there is no preferred back-end in principle and this justifies the need for
the runtime switching capability, as the back-end of choice can be defined based
on the platform.

As a further development, from the point of view of the industrial applica-
tion, the main concern is to extend the support for multiple hardware archi-
tecture, namely to support GPUs from different vendors; this is expected to be
achieved via the use of clMagma [2], but its early development stage prevented
us from making a working implementation. Whether a LAPACK replacement
supporting OpenCL would be available in the future, the integration in the pre-
sented library would be straightforward.
On the performance side it would be interesting to test if other implementations
of LAPACK, like PLASMA [1], can eventually achieve faster execution times
when compared to the back-ends presented here. Also in this case, it would be
trivial to add a different computing back-end to the framework, given that it
provides a LAPACK-like API.
At last, we envisioned the possibility to exploit the thread safety of all the
components (with some caveats) in order to perform computations on different
back-ends in a concurrent way, hence providing an additional layer of paral-
lelism.

4 Acknowledgments

This work has been partially supported by ITEA2 project 12002 MACH, the
EU FP7 REPARA project (no. 609666), and the NVidia “GPU research center”
programme.

References

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects. J. Phys.: Conf. Ser.,
180:012037, 2009.

[2] C. Cao, J. J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. To-
mov. clmagma: high performance dense linear algebra with opencl. In



S. McIntosh-Smith and B. Bergen, editors, IWOCL, pages 1:1–1:9. ACM,
2014.

[3] NVIDIA Corporation. Cuda toolkit documentation. http://docs.nvidia.
com/cuda/eula/index.html.

[4] C. Sanderson. Armadillo: An open source C++ linear algebra library for
fast prototyping and computationally intensive experiments. In NICTA,
Australia, 2010.

[5] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi. Augem: Automatically generate
high performance dense linear algebra kernels on x86 cpus. In Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, pages 25:1–25:12, New York, NY, USA, 2013.
ACM.


