

Assessment of the performance of a special

User Datagram Protocol
Identifying Packet Loss and Reordering Packets in

Keyed UDP Transmissions

Fábio Gil Machado

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática
(2º ciclo de estudos)

Orientador: Prof. Doutor Nuno Manuel Garcia dos Santos

Outubro de 2022

Assessment of the performance of a special User Datagram Protocol

 ii

Assessment of the performance of a special User Datagram Protocol

 iii

Declaração de Integridade

Eu, Fábio Gil Machado, que abaixo assino, estudante com o número de inscrição M7061

de/o Engenharia Informática da Faculdade Engenharia, declaro ter desenvolvido o

presente trabalho e elaborado o presente texto em total consonância com o Código de

Integridades da Universidade da Beira Interior.

Mais concretamente afirmo não ter incorrido em qualquer das variedades de Fraude

Académica, e que aqui declaro conhecer, que em particular atendi à exigida referenciação

de frases, extratos, imagens e outras formas de trabalho intelectual, e assumindo assim

na íntegra as responsabilidades da autoria.

Universidade da Beira Interior, Covilhã 10 /10 /2022

Fábio Gil Machado

Assessment of the performance of a special User Datagram Protocol

 iv

Assessment of the performance of a special User Datagram Protocol

 v

Acknowledgements

I would like to express my gratitude to my friend, professor and supervisor, Prof. Nuno

M. Garcia for his guidance, useful critiques and his high expertise in the formulation of

this dissertation.

A special thank you to Prof. Mário Freire, for giving me the opportunity to re enrol in this

course and resume my studies.

In addition, I am grateful for my parents and the opportunities they have provided during

my life.

Finally and most importantly, I wish to thank my loving girlfriend and my daughter, for

all their encouragement, support and especially patience throughout my work and

studies.

Assessment of the performance of a special User Datagram Protocol

 vi

Assessment of the performance of a special User Datagram Protocol

 vii

Resumo

O User Datagram Protocol (UDP) e outros protocolos semelhantes enviam dados de

aplicativos da máquina de origem para a máquina de destino dentro de datagramas ou

pacotes, sem qualquer controle sobre a transmissão ou métricas de sucesso. Esses

protocolos são muito convenientes para transmissão em tempo real porque a

inexistência de mecanismos complexos de confirmação torna a transmissão de dados

muito rápida. Em oposição, para suportar a funcionalidade e os recursos aprimorados de

um protocolo orientado à conexão, um conjunto de mecanismos é implementado com

base em alguns campos específicos do cabeçalho da unidade protocolar de dados. Esses

mecanismos resultam numa sobrecarga significativa em termos de aumento do número

de pacotes transmitidos, e isso pode traduzir-se em atrasos significativos, devido ao

número adicional de tarefas de comutação, roteamento e, eventualmente, devido a

procedimentos de comunicação mais complexos, como por exemplo, redimensionar a

janela de transmissão, e claro, atualizar os números de confirmação e a sequência. Os

dois extremos dessas modalidades de comunicação, um que não tem controle e outro que

permite controle total, resultaram na criação de um protocolo intermediário que permite

um grau limitado de conhecimento sobre o sucesso de uma transmissão, e até mesmo

para uma eventual reordenação de pacotes que chegam fora de sequência. Esta

dissertação apresenta resultados de simulação que confirmam a eficiência do novo

protocolo UDP quase confiável, chamado Keyed User Datagram Protocol (ou KUDP)

para transmissão de dados que inclui a capacidade de identificar quais pacotes foram

perdidos e reordenar os pacotes que foram recebidos na ordem errada apontando tarefas

futuras a serem desenvolvidas nesta pesquisa.

Palavras-chave

Algoritmo de reconstrução de cadeias de dados; Keyed User Datagram Protocol;

protocolo quase confiável; simulação de transmissão de dados

Assessment of the performance of a special User Datagram Protocol

 viii

Assessment of the performance of a special User Datagram Protocol

 ix

Abstract

The User Datagram Protocol (UDP) and other similar protocols send application data

from the source to the destination machine inside datagrams, without any type of control

on the transmission or success metrics. These protocols are very convenient for real time

transmission as the absence of complex control mechanisms tend to make the data

transmission adequately fast. In opposition, to sustain the increased functionality and

features of the connection-oriented protocol, a set of mechanisms is implemented based

on some specific fields of the segment header. These mechanisms result in a significant

overhead in terms of the increased number of transmitted packets, which in turn may

translate into significant delays, because of the additional number of switching and

routing tasks, and eventually, because of more complex communications procedures,

such as e.g. transmission window resizing, and of course, acknowledgement and

sequence numbers updating. The two extremes of these communication modalities, one

that has no control at all, and the other one that allows for full control, have resulted in

the creation of an intermediate protocol that allows for a limited degree of knowledge on

how successful a transmission was, and even for an eventual reordering of the packets

that arrive out of sequence. This dissertation presents simulation results that confirm the

efficiency of the new almost-reliable UDP protocol, named Keyed User Datagram

Protocol (or KUDP) for transmission of data that includes the ability to identify which

packets were lost and to reorder packets that were received out-of-order, and points

future tasks to be pursued in this research.

Keywords

Algorithm for Stream Reconstruction; Keyed User Datagram Protocol; almost reliable

protocol; data transmission simulation

Assessment of the performance of a special User Datagram Protocol

 x

Assessment of the performance of a special User Datagram Protocol

 xi

Table of contents

Acknowledgements iii

Resumo vii

Palavras-chave vii

Abstract ix

Keywords ix

Table of contents xi

List of figures xiii

List of tables xv

Acronyms xvii

Chapter 1 1

1. Introduction 1

1.1. Objective 1

1.2. Motivation 1

1.3. Contributions 2

1.4. Organisation 2

Chapter 2 3

2. State of the art 3

2.1. TCP Protocol 4
2.1.1. Overview 4
2.1.2. Three-Way Handshake 4
2.1.3. Reliability 5
2.1.4. Acknowledgement and Window Size 6

2.2. UDP Protocol 7
2.2.1. Overview 7
2.2.2. Connectionless and Unreliable 7

Chapter 3 9

3. KUDP Protocol 9

3.1. Overview 9

3.2. KUDP Research needs 13

Chapter 4 15

4. Stream Reconstruction Algorithm 15

Assessment of the performance of a special User Datagram Protocol

 xii

4.1. Definition 15

4.2. Evaluations and tests 16
4.2.1. Prepare tests 16
4.2.2. KUDP Algorithm Implementation 20
4.2.3. Run Tests 21
4.2.4. Test results 26

Chapter 5 31

5. Conclusions and future work 31

5.1. General conclusions 31

5.2. Future work 31

References 33

Attachments 35

Assessment of the performance of a special User Datagram Protocol

 xiii

List of figures

Figure 1 - TCP/IP Model vs OSI Model. 3

Figure 2 - TCP Three-Way Handshake. 5

Figure 3 - TCP ordered delivery. 6

Figure 4 - Acknowledgement and Window Size. 7

Figure 5 - UDP, connectionless and unreliable. 8

Figure 6 - KUDP, using one sending port and multiple receiving ports. 10

Figure 7 - KUDP, using multiple sending ports and one receiving port. 11

Figure 8 - KUDP, using multiple sending ports and multiple receiving ports. 12

Figure 9 - KUDP sublayer map. 13

Figure 10 - KUDP Algorithm interactions. 16

Figure 11 - Generate packets function. 18

Figure 12 - Generate drops function. 19

Figure 13 - Generate switches function. 20

Figure 14 - Compare initial array with final array function. 20

Figure 15 - KUDP Reconstruction Algorithm function. 21

Figure 16 - Configuration variables. 22

Figure 17 - Simulation execution. 23

Figure 18 - Console Output (Dropped packets). 24

Figure 19 - Console Output (Switched packets). 24

Figure 20 - Console Output (Final Array). 25

Figure 21 - Final simulation results. 26

Figure 22 - Efficiency of SRA for out-of-order packets and different key lengths. 28

Figure 23 - Efficiency of SRA for lost packets and different key lengths. 29

Assessment of the performance of a special User Datagram Protocol

 xiv

Assessment of the performance of a special User Datagram Protocol

 xv

List of tables

Table 1 - Efficiency of SRA for packets received out-of-order vs key length. 27

Table 2 - Efficiency of SRA for packets lost vs key length. 28

Assessment of the performance of a special User Datagram Protocol

 xvi

Assessment of the performance of a special User Datagram Protocol

 xvii

Acronyms

KUDP Keyed User Datagram Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

SYN Synchronization

ACK Acknowledgement

RFC Request for Comments

HTTPS Hyper Text Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

DHCP Dynamic Host Configuration Protocol

TFTP Trivial File Transfer Protocol

VoIP Voice Over Internet Protocol

SRA Stream Reconstruction Algorithm

Assessment of the performance of a special User Datagram Protocol

 xviii

Assessment of the performance of a special User Datagram Protocol

 1

Chapter 1

1. Introduction

The User Datagram Protocol (UDP) protocol is used around the world every day, to

support connectionless communications for example for real time transmission. It is

interesting to understand a little more how the two most used protocols work, TCP and

UDP. UDP doesn't have any kind of control over the transmitted data and the destination

host presents to the user the data exactly by the sequence that was received and even if

some packets are lost the destination has no manner to assess that, so the destination

application handles the data in a totally agnostic manner regarding the sequence it was

transmitted. On the opposite side of this data transmission set of features, we have the

Transport Control Protocol (TCP), with which the transmission of the different segments

of data is totally controlled and confirmed. This allows for extremely reliable data

transmissions, by means of a complex acknowledgment mechanism, and with the cost of

much slower data transmission rates. The new Keyed-User Datagram Protocol (KUDP)

[1] proposes a compromise between these two extremes, being termed an almost reliable

protocol. This protocol has incorporated one algorithm that is only executed in the

destination host, no acknowledgements are sent, and it allows some capacity to detect

losses and to reorder packets that were received out-of-order. This dissertation presents

the Stream Reconstruction Algorithm that is responsible for the features that power the

almost reliable KUDP data transmission protocol. It also presents the initial simulation

results regarding the operation of KUDP.

1.1. Objective

The main goal of this work is the study of the proposed stream reconstruction algorithm

and understanding if it’s possible its usage in a real environment. This proposed

algorithm will be capable of detecting packet loss and packets that are received out-of-

order, but it is necessary to run some test simulations to calculate its effectiveness. The

test results will be presented in this dissertation to make these public and motivate more

research by the technologic community.

1.2. Motivation

On February 7, 2019, a paper was published with a proposal for a new protocol, the Keyed

User Datagram Protocol, Concepts and Operation of an Almost Reliable Connectionless

Transport Protocol [1]. I am one of the authors of this article and I will explain what the

Assessment of the performance of a special User Datagram Protocol

 2

KUDP is. After the submission of this article many questions were raised, such as the

detection capability of the proposed algorithm. Who knows, in the near future, the

proposed protocol can be used in a real environment.

1.3. Contributions

This work focuses on the study, analysis, implementation and test of a stream

reconstruction algorithm for the Keyed User Datagram Protocol to enable lost and out-

of-order packets detection. The main contribution of this work is to evaluate the

proposed algorithm and make some conclusions.

Two papers have been published, the first one, describing the mechanisms for the new

Keyed UDP protocol, published in IEEE Access [1], the second one, published in IEEE

Globecom 2020 [2], containing the description of the Stream Reconstruction

Mechanism and the KUDP simulation results.

1.4. Organisation

This dissertation is organised and structured in five chapters that demonstrate the

process used to accomplish the work’s objectives. The chapters are the following:

• Chapter 1: consists of a general introduction of the dissertation theme

presenting the objectives, motivations and contributions of the for the presented

evaluations and results;

• Chapter 2: consists in the state of the art looking for the OSI model and TCP/IP

model with focus on the transport layer (layer 4) analysing the definition, work

and applications of the TCP and UDP Protocol;

• Chapter 3: consists in a brief overview of Keyed User Datagram Protocol

explaining the concept and the usage of them;

• Chapter 4: consists in a Stream Reconstruction Algorithm definition and in all

steps to reproduce the evaluations and tests of the proposed algorithm for

detecting lost and out-of-order packets;

• Chapter 5: presents the conclusions of this study and proposals for future work.

Assessment of the performance of a special User Datagram Protocol

 3

Chapter 2

2. State of the art

In the world of technology nothing is right, nothing is wrong, because there are a lot of

ways to do the same thing. A long time ago, we had no rules, each one was able to create

typologies and different protocols from each other. These creations and inventions were

not compatible with the creations and inventions done by others so that's quickly

understood that isn’t the best approach.

In 1970, the OSI model was created, later standardised as the ISO (International

Organisation for Standardisation) reference model in 1983, with the main objective of

being the standard model for all communications between different devices, allowing

end-to-end communication.

The OSI Model is governed by seven layers, each one with a specific function:

• Application (Layer 7)

• Presentation (Layer 6)

• Session (Layer 5)

• Transport (Layer 4)

• Network (Layer 3)

• Data (Layer 2)

• Physical (Layer 1)

Figure 1 - TCP/IP Model vs OSI Model.

Assessment of the performance of a special User Datagram Protocol

 4

In this dissertation the focus is on Layer 4 (Transport) because that is where the TCP and

UDP protocols apply.

The transport layer is responsible for enabling the temporary communication session

between two applications and by data transmission between them. This layer is

responsible for tracking the individual communication between the source and the target

and managing the segmentation data to be transmitted to the target application.

TCP and UDP are internet protocols that determine how data is shared or transmitted

over the internet. They have different characteristics, but they are used for the same

purpose, sending packets to a remote IP, on the internet or on the local network. Both

have advantages and disadvantages and would be used on a case-by-case basis.

2.1. TCP Protocol

2.1.1. Overview

TCP, described in RFC 793 [3], is the most used protocol, as it is a connection-oriented

protocol and guarantees the delivery of packets between a sender and a receiver. When

a sender and receiver initiate communication, they establish a connection before sending

some data, there is a “pre-agreement” named Three-Way Handshake (SYN, SYN-ACK,

ACK).

This one is considered the most reliable delivery protocol as when some data is corrupted

or lost it can retransmit that specific data. This process of sending and receiving packets

occurs whenever you perform an action on the internet that uses the TCP protocol, for

example, opening a website, sending a message and others operations. It adopts a

delivery system that enumerates all packets and sends them in order and when one of

these packets is not sent correctly, the receiver sends a message to a sender to resend this

packet and soon after receiving this packet is able to receive the next one until the last.

They could sort and reconstruct data given by segment identification numbers and

sequences.

Flow control is used to regulate the amount of data transmitted to be more efficient and

adjust flows regardless of available throughput.

The most important feature of this protocol is error checking, to ensure that all

information sent is not corrupted at the destination. This verification and the TCP

sending process itself make it a very reliable protocol that is widely used by everyone.

2.1.2. Three-Way Handshake

Assessment of the performance of a special User Datagram Protocol

 5

How this “pre-agreement” called three-way handshake works, for example between a

client and a server:

• The session between the client and the server is always initiated by the client,

sending a connection request through a packet with the SYN flag enabled.

• Client sends to a random sequential number in this packet.

• Server responds using a SYN, ACK packet with its own random sequence number

and acknowledgment number (same as client number +1, e.g., client was sending

number 250 and server responds with number 251).

• To end the synchronisation, the client responds with an ACK packet with the

acknowledgment number (equal to the server number +1).

Figure 2 - TCP Three-Way Handshake.

Client: Server, are you there? (SYN)

Server: Yes, I am (ACK) and you, are you there? (SYN)

Client: Yes, I am (ACK)

2.1.3. Reliability

Reliability is one of the advantages when users need to ensure delivery of packages that

cannot be lost, and ordering is important. This data, if not in the correct order, is

unusable and unreadable.

All packets are marked with a number and a sequence to be able to reorder at the

destination. You can use different routes for delivering data to the destination, based on

different network paths, and depending on the best route for delivery. The best route

may be different during connectivity.

Assessment of the performance of a special User Datagram Protocol

 6

Figure 3 - TCP ordered delivery.

2.1.4. Acknowledgement and Window Size

The window size is the limit on how many bytes the sender can send without an

acknowledgment and is used to avoid congestion at the receiver. The receiver informs

the sender of its window size (buffer size). On the sender's side, the sender tries to make

sure that at any time it does not have more bytes in transit than the received one informed

it to send. The sender will wait for the acknowledgment message to transit more bytes

and continue data transmission. This process repeats until all transmission packets are

complete.

Assessment of the performance of a special User Datagram Protocol

 7

Figure 4 - Acknowledgement and Window Size.

Many applications use this protocol when they need to ensure that all data is transmitted,

for example: HTTPS, HTTP, FTP, Telnet, SMTP, etc…

2.2. UDP Protocol

2.2.1. Overview

The UDP protocol, described in RFC 768 [4], is a connectionless protocol, but it allows

users to establish communication between a client and a server and allows the

transmission of data (packets) between them. In terms of functionalities, such as TCP,

this protocol is used to transmit data between two applications, but it has differences.

This protocol does not retransmit lost or corrupted data and if the destination does not

have all the packets the sender will not send the data again. It has no order data

reconstruction, no flow control and is a stateless protocol.

When a user needs to communicate with another user, for example, making a call just

with audio or with audio and video, there is an important premise, to establish this

communication in real time. In this case, it is impossible to use the TCP protocol, because

if there is a drop packet during the communication, the packet will be resent and the

communication and transmission, for example, in the call with audio and video, will be

not in real time.

UDP protocol enables communication between hosts and there is no packet checking to

guarantee real time.

2.2.2. Connectionless and Unreliable

Assessment of the performance of a special User Datagram Protocol

 8

The advantage of the UDP protocol is the connectionless and unreliable transmission to

be used in case of real-time communications when lost datagrams or data received out

of order does not matter.

Figure 5 - UDP, connectionless and unreliable.

Many applications use this protocol when they need to transmit information, but don't

care if the receiver receives it or not, for example: SNMP, DHCP, TFTP, VoIP, etc…

Assessment of the performance of a special User Datagram Protocol

 9

Chapter 3

3. KUDP Protocol

The KUPD protocol [1] proposed a compromise between the connectionless UDP and the

connection-oriented protocol TCP, without any changes in the UDP header structure.

Instead, it uses the port numbers in an innovative way. This chapter describes the

workings of the KUDP protocol.

3.1. Overview

Keyed User Datagram Protocol is an extended UDP protocol that applies Layer 4 of the

OSI model and uses standard UDP datagrams. When using the UDP protocol, we select

the port to use for sending datagrams and sent from the IP address of the source using a

pre-configured port 9000 (for example).

Considering the UDP protocol, KUDP was designed to reduce transmission overhead and

use different ports to send datagrams and not just between a source port and a

destination port.

The proposal of the KUDP Protocol is to send datagrams through multiple destination

ports, reserved and opened by the destination host, defined in the configuration

parameters of the specific application software to receive datagrams. KUDP protocols

can use three approaches:

• One sends port and multiple receive ports

Assessment of the performance of a special User Datagram Protocol

 10

Figure 6 - KUDP, using one sending port and multiple receiving ports.

• Multiple send ports and one receive port

Assessment of the performance of a special User Datagram Protocol

 11

Figure 7 - KUDP, using multiple sending ports and one receiving port.

• Multiple send ports and multiple receive ports

Assessment of the performance of a special User Datagram Protocol

 12

Figure 8 - KUDP, using multiple sending ports and multiple receiving ports.

The idea is to use multiple ports to create a sending sequence that allows the destination

to identify if any datagrams are lost or out of order.

How the KUDP protocol works:

1. If the sender has the following pre-configured ports for sending datagrams:

9000; 9001; 9002; 9003; 9004

2. If the receiver has the following ports pre-configured to receive datagrams: 6000

3. The sender will always use the ports to create a sequence: 9000;9001; 9002;

9003; 9004

4. The receiver knows the sender's ports when it receives the datagrams and can

identify lost and out-of-order datagrams.

Assessment of the performance of a special User Datagram Protocol

 13

5. After all sequence ports are used, the KUDP protocol repeats the process, reusing

all sequence ports again.

Assuming possible UDP combinations, counting source ports used when transmit data

is n, when count with destination port is n+1.

Using KUDP counting possible combinations counting source ports (s) and destination

ports (d), the possible combinations are s+d = n.

3.2. KUDP Research needs

One of the research needs is to give the KUDP protocol the ability to detect lost and out-

of-order datagrams.

To enable this capability, the proposal is to create an additional sublayer in the TCP/IP

transport layer and use the KUDP Protocol with this sublayer when the Flow

Reconstruction Algorithm is needed to ensure the reliability of this protocol.

Figure 9 - KUDP sublayer map.

Assessment of the performance of a special User Datagram Protocol

 14

Assessment of the performance of a special User Datagram Protocol

 15

Chapter 4

4. Stream Reconstruction Algorithm

4.1. Definition

The stream reconstruction algorithm (SRA) is an additional sublayer that allows the

KUDP protocol to detect lost and out-of-order datagrams. This sublayer requires the

implementation of an additional algorithm that will be executed at the receiver, without

any recognition, control or success metrics provided by the receiver to the sender. To

include more datagram headers, we will increase transmission overhead, so this is not

the best practice when we talk about a UDP based protocol, as this protocol is used for

real-time transmission and the main requirement is efficiency.

In this case, I will only use one port to send datagrams and ten ports to receive (one sends

port, and several receive ports, as shown in Figure X). I will simulate the lost and out-of-

order datagrams and identify the datagrams with a number (key of the port that receives

the datagram) and with a letter (to identify the sequence), for example 1a, 2a, …, 5a, 1b,

2b, … 5b, …, 5d for better understanding of the algorithm. In the following simulation we

will use 20 datagrams and only show the interaction of the first 10.

For this example, we have the following transmitted (Tx) and received (Rx) datagrams:

Tx = {1a, 2a, 3a, 4a, 5a, 1b, 2b, 3b, 4b, 5b, 1c, 2c, 3c, 4c, 5c, 1d, 2d, 3c, 4c, 5c}

Rx = {1a, 2a, 4a, 1b, 5a, 2b, 3b, 5b, 2c, 1c, 3c, 5c, 1d, 3d, 4d, 5d}

Four datagrams are lost (3a, 4b, 4c, 2d) and there are out-of-order datagrams 1b with 5a

and 2c with 1c.

With a key port 5 (n) and running each iteration with n-1 we can get amazing results and

most datagrams can be identified as lost or if they are out of order the algorithm can

identify and reorder these datagrams and put them in the correct order.

We can identify some points in the simulation using the presented algorithm:

At the point identified by all occurrences are 2a then the algorithm will assume this

datagram.

Assessment of the performance of a special User Datagram Protocol

 16

The point identified by the datagram 3b has more occurrences and the algorithm will

assume this, as it appears more times than 3c.

At the point identified by for the key port 4 there are no datagrams to place here, so

the algorithm will assume it is a lost datagram.

f identifies all datagrams that the algorithm does not detect, and may reflect different

reasons, the datagram was actually lost or in the n-1 interaction it could be detected, and

the datagram exists.

For this proposal of a Flow Reconstruction Algorithm there are many tests and proofs to

be done to guarantee the feasibility of its use in the real concept.

Figure 10 - KUDP Algorithm interactions.

4.2. Evaluations and tests

After the definitions, it's time to run tests and get concrete results on the use of the

proposed algorithm.

For this chapter, the Ruby language was used to implement the algorithm and create

some tests to ensure the feasibility of the proposed algorithm as a sublayer for the KUDP

protocol.

4.2.1. Prepare tests

Datagrams

Received
…

Port

key
Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg. Rec. Alg.

1a 1 1a 1a 1a

2a 2 2a 2a 2a 2a 2a

4a 3 4a f 4a f 4a f f

1b 4 1b 4a 1b 4a 1b 4a 1b f 4a

5a 5 f 5a 5a 5a 5a 5a 5a 5a 5a 5a

2b 1 1b 1b 2b 1b 2b 1b 2b f 2b f 1b

3b 2 2b 3b 2b 3b 2b 3b 2b 3b f 2b

5b 3 3b 5b 3b 5b 3b 5b 3b 5b 3c 3b

2c 4 f 2c f 2c f 2c f 2c f f

1c 5 5b 5b 1c 5b 1c 5b 1c 5c 1c 5c 5b

3c 1 f 1c 3c 1c 3c 1c 3c 1c …

5c 2 2c 2c 2c 5c 2c 5c f

1d 3 3c 1d 3c

3d 4 f

4d 5 f

5d 1 1d

7 8 9 101 2 3 4 5 6

1

2

3

Assessment of the performance of a special User Datagram Protocol

 17

The first step was the installation of RubyMine IDE (ruby’s IDE) to assist in the

implementation and design the code to simulate the use of the algorithm and its

implementation, and this can be installed using the student licence provided by

JetBrains for UBI students.

After that, the code for the simulation has been implemented, using the best practices by

the creations of different functions.

To enable the capacity to run a lot of simulations all inputs were generated automatically

and the unique manual configuration is the test configuration to define some parameters

for the execution. The use of 5 configuration variables allowed the execution of all tests:

• @num_exec: number of executions to be run for after being possible the average

calculation of all executions. The default value used in all simulations will be 100

• @key: defined key to be used for each simulation, in this case to simulate the

number of destination ports. In these simulations the following values will be

used: 5, 10, 15, 20, 50, 100, 200.

• @length: this configuration variable indicates the number of sequences to be

transmitted between all defined destination ports, e.g. if the k=5 and length=4

the number of transmitted packets will be 20 (1a, 1b, 2c, 4d -> port 9000 and 2a,

2b, 2c, 2d -> port 9001). The default value used for these simulations will be 4

• @drop_percentage: number of drops to be generated into the initial array with

all packets. Values that will be used for the simulation will be 1%, 3%, 5%, 10%,

15%, 20%, 25%

• @switch_percentage: number of switches to be generated into the initial array

with all packets. Values that will be used for the simulation will be 1%, 3%, 5%,

10%, 15%, 20%, 25%, 60% and 70%

The function generate_packets enables the creation of an array with the packets to be

used in the simulation. This function as inputs has the key and the length previously

configured as configuration variables. The char = 97 represents the letter a to be

incremented using the length value. As return value of this function and array to be used

in the simulation.

if key=10 and length=3 the total size will be 30 packets and the output array will be:

packets = [1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a, 1b, 2b, 3b,

4b, 5b, …,10c]

Assessment of the performance of a special User Datagram Protocol

 18

Figure 11 - Generate packets function.

After creating the packets array, to simulate dropping of some packets, the

generate_drop function was implemented. As input variables for the execution of this

function the previously created array (packets) and the percentage of drops previously

configured as a configuration variable (percent_drop). This method returns the array

of packets without the dropped packets, but for debug information in the following

example, the dropped packets will be printed to the console log just for knowledge and

to help the simulation.

Example using the previously generated array:

packets = [1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a, 1b, 2b, 3b,

4b, 5b, …,10c]

percent_drop = 10

At 30 total packets if you want 10% of drops the resulting array will be minus three

packets, like some that:

packets = [1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a, 1b, 2b, 3b,

4b, 5b, …,10c]

Assessment of the performance of a special User Datagram Protocol

 19

Figure 12 - Generate drops function.

The generate_switch was implemented too, to create the automatism to put packets

out-of-order. As input for the execution of this function the packets array previously

generated (packets) and the percentage of switched packets previously configured as a

configuration variable (percent_switch). In this function the result will be a new array

with the exchanged packets:

packets = [1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a, 1b, 2b, 3b,

4b, 5b, …, 10c]

percent_switch = 10

At 30 total packets, if you want 10% of switches, the resulting array will have to go up

and down 3 switched packets:

packets = [1a, 3a, 2a, 4a, 5a, 7a, 6a, 8a, 9a, 10a, 1b, 2b, 3b,

5b, 4b, …, 10c]

Assessment of the performance of a special User Datagram Protocol

 20

Figure 13 - Generate switches function.

After executing the previous functions and the designed algorithm, it's time to compare

the results and to make this comparison the compare_ini_final was implemented. As

input variables of this function the initial array generated by the function

generate_packets (packets_ini) and the final array after the execution of the drops

or switch function and the algorithm (packets_final). This function will do a complex

comparison between these two arrays and calculate the percentage of matches.

The expected value is 100 % that will reflect the capacity of the tested algorithm to

recover from all drops or all switched packets.

Figure 14 - Compare initial array with final array function.

4.2.2. KUDP Algorithm Implementation

To implement the algorithm, the first step is to seek their definition, understand the

interactions and apply the definition according to the code that reflects them.

Assessment of the performance of a special User Datagram Protocol

 21

First, two input variables are needed, the array of packages (packets) after drops and

switches and the key used to generate these.

Follow the algorithm:

Figure 15 - KUDP Reconstruction Algorithm function.

4.2.3. Run Tests

After implementing all the below method, you can run tests and it is only necessary to

change 4 variables to run it:

• Define the number of executions for this test (@num_exec)

• Define the key to be used (@key)

• Define the number of sequences to be used (@length)

• Define the percentage of drops (@drop_percentage)

Assessment of the performance of a special User Datagram Protocol

 22

• Define the percentage of switch (@switch_percentage)

Figure 16 - Configuration variables.

After that it is necessary to execute all the methods in the following sequence:

• generate_packets

• generate_drop

• generate_switch

• kudp_algorithm

• compare_ini_final

Follow the usage example:

Assessment of the performance of a special User Datagram Protocol

 23

Figure 17 - Simulation execution.

If the file with all the code like the name kudp.rb is needed, run this command:

Assessment of the performance of a special User Datagram Protocol

 24

ruby kudp.rb

How to interpret console output results:

Figure 18 - Console Output (Dropped packets).

• DROPPED PACKETS: Packets dropped identification (Figure 18).

• DROPPED FINAL ARRAY: Final packets array after running the

generate_drop function (Figure 18).

Figure 19 - Console Output (Switched packets).

• SWITCHED PACKETS: Switched packets identification and if the move was

to up or down (Figure 19).

Assessment of the performance of a special User Datagram Protocol

 25

• SWITCHED FINAL ARRAY: Final packets array after running the

generate_switch function (Figure 19).

Figure 20 - Console Output (Final Array).

• FINAL PACKETS ARRAY: Array of final packages after executing the

kudp_algorithm function with the number of occurrences that find the package

at this position (Figure 20):

o 5a – packet identification

o 2 – found in 2 occurrences

If you fund an empty space, this package is lost. In this case, packet 3a is a lost packet.

Assessment of the performance of a special User Datagram Protocol

 26

Figure 21 - Final simulation results.

• Packets (each execution): Generated packets for each defined execution in

configuration variable @num_exec.

• Final Packets – TOTAL (all executions): Number of total packets used to

run the simulation.

• Final Result % (efficiency): SRA efficiency percentage.

• Generated Drops %: Real drops percentage used in the simulation.

• Generated Switches %: Real switches percentage used in the simulation.

• Final out-of-order %: Real percentage of out-of-order packets identified by

SRA.

• Final lost packets %: Real percentage of lost packets identified by SRA.

4.2.4. Test results

In this point will be presented the simulation results that reflect the efficiency of the

Keyed User Datagram Protocol (KUDP) for transmission data that includes the capability

to identify lost and out-of-order packets and reorder them.

For this simulation a large number of tests will be run and the average will be calculated

to ensure the reliability of the results obtained.

First tests are just swapping packets for testing the algorithm capability to detect the out-

of-order packets. Different relevant keys (k) will be assumed and the value of packet

switches will also be incremented to see how far the algorithm is able to detect them.

Assume only one source port and multiple destination ports, k reflects the number of

destination ports used in this simulation.

Assessment of the performance of a special User Datagram Protocol

 27

In the following simulation it is possible to see the ability to recover the packets to the

correct order in percentage based on the relationship of a key and a certain percentage

of switches.

Table 1 - Efficiency of SRA for packets received out-of-order vs key length.

 1.00% 3.00% 5.00% 10.00% 15.00% 20.00% 25.00% 60.00% 70.00%

k=5 99.95% 99.75% 99.20% 96.95% 94.40% 91.45% 88.55% 75.50% 75.10%

k=10 100% 100% 100% 100% 99.95% 99.90% 99.75% 92.37% 90.07%

k=15 100% 100% 100% 100% 100% 99.98% 99.93% 97.61% 94.24%

k=20 100% 100% 100% 100% 100% 100% 99.97% 99.06% 97.53%

k=50 100% 100% 100% 100% 100% 100% 100% 99.99% 99.97%

k=100 100% 100% 100% 100% 100% 100% 100% 100% 99.99%

k=200 100% 100% 100% 100% 100% 100% 100% 100% 100%

From the simulation described above in the table, it is possible to extract a lot of relevant

information:

• k<10: There is no ability for the algorithm to retrieve all packets

• k=15: The algorithm has the availability to detect and reorder 15% of switches

where this percentage of switches is the acceptable value.

• k>100: Packets recover increase exponentially and more than 60% can be

recovered.

Now you are thinking, to have k=100, a lot of ports are needed to receive packets, that's

true, but to have 60% of exchanges something is wrong with the communication between

the two machines. In my opinion until 15% of switches are acceptable, if there are more,

something is wrong.

In the next graph (Figure 22) you can better assimilate the previous information

provided in the table.

Assessment of the performance of a special User Datagram Protocol

 28

Figure 22 - Efficiency of SRA for out-of-order packets and different key lengths.

Next tests are just simulating drop packets for testing the algorithm capability to detect

these drops. Like in previous tests, different relevant keys (k) will be assumed and the

value of packet drops will also be incremented to see how far the algorithm is able to

detect them. Assume only one source port and multiple destination ports, k reflects the

number of destination ports used in this simulation.

In the following simulation it is possible to see the ability to detect drop packets in

percentage based on the relationship of a key and a certain percentage of drops.

Table 2 - Efficiency of SRA for packets lost vs key length.

 1.00% 3.00% 5.00% 10.00% 15.00% 20.00% 25.00%

k=5 100% 100% 100% 99.75% 99.10% 97.50% 95.40%

k=10 100% 100% 100% 99.88% 99.50% 97.82% 96.00%

k=15 100% 100% 100% 99.97% 99.90% 99.25% 96.30%

k=20 100% 100% 100% 100% 99.98% 99.25% 97.15%

k=50 100% 100% 100% 100% 100% 99.70% 97.57%

k=100 100% 100% 100% 100% 100% 99.93% 98.38%

k=200 100% 100% 100% 100% 100% 100% 99.10%

From the simulation described above in the table, it is possible to extract a lot of relevant

information:

• k<15: The algorithm has the capability to detect up to 5% of drops

Assessment of the performance of a special User Datagram Protocol

 29

• k=50: up to 15% of drops can be detected

• k=200: up to 20% of drops can be detected

As said in the switches test results, until 15% of drops are acceptable, after that something

wrong with the connection is assumed.

In the next graph (Figure 23) you can better assimilate the previous information

provided in the table.

Figure 23 - Efficiency of SRA for lost packets and different key lengths.

After these simulations results the nice to have k is 50 to at least be able to recover up to

15% of switch packets and 15% of dropped packets.

The UDP is used for fast data transmission, without any kind of control or success metric

and when used there are no mechanisms to detect lost or out-of-order packets and the

receiver only will show the packets that have been received by the received order.

With the Keyed UDP the fast transmission will be achieved like UDP, because it uses the

same datagrams headers and size, but with one difference, that is the capability that

KUDP have to detect lost and out-of-order packets without any kind of control or success

metric, just looking for packets received in a lot of ports with a simple algorithm that

enables this detection.

Assessment of the performance of a special User Datagram Protocol

 30

Assessment of the performance of a special User Datagram Protocol

 31

Chapter 5

5. Conclusions and future work

5.1. General conclusions

The UDP is used when fast data transmission is necessary and doesn't require any kind

of control or success metric. In the case of the TCP the transmission is more expensive

because of the control mechanisms implemented to the packets control, but it allows lost

packets retransmission and grants that packet will be received by the correct sequence

using acknowledgements numbers.

For the Keyed User Datagram Protocol the recommended usage is for multimedia real

time communications, where the receiver machine can apply the proposed algorithm to

grant some success metrics without any kind of additional features or changes into the

datagrams headers. The KUDP can be used when data integrity is relevant, but if some

packets are lost or the algorithm can’t reorder them the system is not compromised and

is able to recover in the next transmission slot.

The proposal of KUDP, as described in [1] will use the format of the UDP datagram with

zero overhead or any datagram headers changes.

In the previous simulation a lot of scenarios were covered, using different keys with

different kinds of severity when talking about lost and out-of-order packets. As expected,

longer keys return higher efficiency results.

5.2. Future work

As additional research, the combined occurrence of packets received out-of-order and

packets lost needs to be addressed, keeping the ratios for these two types of events at a

realistic level. Unfortunately, it was not possible to search the literature for realistic levels

of packets arriving out-of-order or for packets that were lost.

Assessment of the performance of a special User Datagram Protocol

 32

Assessment of the performance of a special User Datagram Protocol

 33

References

[1] N. M. Garcia, F. Gil, B. Matos, C. Yahaya, N. Pombo and R. I. Goleva, "Keyed User

Datagram Protocol: Concepts and Operation of an Almost Reliable Connectionless

Transport Protocol," in IEEE Access, vol. 7, pp. 18951-18963, 2019, doi:

10.1109/ACCESS.2018.2886707.

[2] F. M. Gil, N. M. Garcia, B. Matos, N. Pombo, R. Goleva and C. Dobre, "Identifying

Packet Loss and Reordering Packets in Keyed UDP Transmissions," 2020 IEEE

Globecom Workshops (GC Wkshps, 2020, pp. 1-5, doi:

10.1109/GCWkshps50303.2020.9367443.

[3] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI

10.17487/RFC0793, September 1981, https://www.rfc-editor.org/info/rfc793

[4] Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768,

August 1980, https://www.rfc-editor.org/info/rfc768

https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc768

Assessment of the performance of a special User Datagram Protocol

 34

Assessment of the performance of a special User Datagram Protocol

 35

Attachments

The code to generate the simulation is present in the next attachment:

kudp.rb file

#Counts (Global Vars)

@drops = 0.00

@switch = 0.00

@packets_out_of_order = 0.00

@packets_null = 0.00

def generate_packets(key, length)

 char = 97

 packets = []

 length.times { |i|

 key.times { |j|

 packets.push("#{j+1}#{(i+char).chr}")

 }

 }

 packets

end

def generate_drop(percent_drop, packets)

 packets.size.times { |i|

 if (rand(0.00...1.01) <= (percent_drop / 100)) && packets[i] != nil

 puts "#{packets[i]} -> DROPPED"

Assessment of the performance of a special User Datagram Protocol

 36

 packets.delete(packets[i])

 @drops += 1

 end

 }

 return packets

end

def generate_switch(percent_switch, packets)

 packets.size.times { |i|

 if (rand(0.00...1.01) <= (percent_switch / 100)) && packets[i+1] != nil

 puts "V - #{packets[i]}"

 puts "^ - #{packets[i+1]}"

 switch = packets[i]

 packets[i] = packets[i+1]

 packets[i+1] = switch

 @switch += 1

 end

 }

 return packets

end

def kudp_algorithm(packets, key)

 iterations = Array.new(packets.size) { Array.new(20) }

 packets.size.times { |i|

 (key/2).times { |j|

 if packets[i+j] != nil

 packet = packets[i+j]

Assessment of the performance of a special User Datagram Protocol

 37

 insert = i+1

 while packet != nil

 if iterations[i][insert-1] == nil && ((insert%key) == packet.to_i || ((insert%key) == 0 && key ==
packet.to_i))

 iterations[i][insert-1] = packet

 packet = nil

 end

 insert = insert + 1

 end

 end

 }

 }

 ordered = []

 (iterations[iterations.size-1].size).times { |i|

 lines = {}

 (iterations.size).times { |j|

 if iterations[j][i] != nil && lines[iterations[j][i].to_sym]

 lines[iterations[j][i].to_sym] += 1

 elsif iterations[j][i] != nil

 lines[iterations[j][i].to_sym] = 1

 end

 }

 ordered.push(lines.max_by{|pack,value| value})

 }

 i = (ordered.size) - 1

 while i > 0

 j = 0

 while j < i

Assessment of the performance of a special User Datagram Protocol

 38

 if (ordered[i] != nil && ordered[j] != nil)

 if (ordered[i][0] == ordered[j][0]) && (ordered[i][1] >= ordered[j][1])

 ordered[j] = nil

 elsif (ordered[i][0] == ordered[j][0]) && (ordered[i][1] < ordered[j][1])

 ordered[i] = nil

 end

 end

 j += 1

 end

 i -= 1

 end

 ordered

end

def compare_ini_final(packets_ini, packets_final)

 sum = 0.00

 (@key*4).times{ |i|

 if packets_final[i] != nil && packets_ini[i] == packets_final[i][0].to_s

 sum += 1

 end

 if packets_final[i] != nil && packets_ini[i] != packets_final[i][0].to_s

 @packets_out_of_order += 1

 end

 if packets_final[i] == nil

 @packets_null += 1

 end

 }

 result = (sum * 100) / packets_ini.size

Assessment of the performance of a special User Datagram Protocol

 39

 result

end

#Config Variables ---

@num_exec = 100

@key = 5

@length = 4

@drop_percentage = 20.00

@switch_percentage = 0.00

#--

exec = 0

result = 0

while exec < @num_exec do

puts "EXEC: #{exec}"

#Generate packets--

packets = generate_packets(@key, @length)

packets_ini = packets.clone

#--

Drop (Percent Drop ex: 10.00 % | 20.00 % | 30.00 %)--------------------

puts "DROPPED PACKETS:"

packets_dropped = generate_drop(@drop_percentage, packets)

puts "DROPPED FINAL ARRAY"

puts packets_dropped

#--

Switch (Percent Switch ex: 10.00 % | 20.00 % | 30.00 %)----------------

puts "SWITCHED PACKETS:"

packets_switched = generate_switch(@switch_percentage, packets_dropped)

Assessment of the performance of a special User Datagram Protocol

 40

puts "SWITCHED FINAL ARRAY"

puts packets_switched

#--

KUDP Algorithm --

final = kudp_algorithm(packets_switched, @key)

#--

Sum of all executions--

result = result+compare_ini_final(packets_ini, final)

puts "FINAL PACKETS ARRAY"

puts final

#--

RESULTS ---

puts "------------------------------------"

puts "Packets (each execution)"

puts packets_ini.size

 exec +=1

end

puts "Final Packets - TOTAL (all executions)"

puts ((@key * 4) * @num_exec)

puts "Final Result % (efficiency)"

puts ((result / @num_exec)+ ((@drops * 100)/ ((@key * 4) * @num_exec)))

puts "Generated Drops %"

puts ((@drops * 100)/ ((@key * 4) * @num_exec))

puts "Generated Switches %"

puts ((@switch * 100)/ ((@key * 4) * @num_exec))

puts "Final out-of-order %"

puts ((@packets_out_of_order * 100)/ ((@key * 4) * @num_exec))

puts "Final lost packets %"

Assessment of the performance of a special User Datagram Protocol

 41

puts ((@packets_null * 100)/ ((@key * 4) * @num_exec))

#--

		2022-10-10T17:08:59+0100

