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Resumo

Materializar o primeiro voo de um dispositivo mais pesado do que o ar durante o século

XX constituiu certamente um grande marco na história da humanidade. Contudo, o voo

em si raramente constitui o objetivo final. Para se executar uma missão de forma efetiva,

é necessário determinar a trajetória a ser seguida de acordo com o objetivo da missão,

por exemplo minimizando o tempo decorrido, o comprimento da trajetória, etc. Como se

lida com tais problemas? Quais são as técnicas adequadas para resolvê-las? A Otimização

de Trajetórias é a disciplina que lida com estes tipos de problemas, e também o objeto

de estudo desta dissertação. Proponho o uso da Parametrização B-spline para a Otimiza-

ção de Trajetórias de Voo. Foi desenvolvido um código em Python que implementa o

método proposto, tendo sido obtido resultados promissores para os três exemplos estuda-

dos, provando assim a robustez e a versatilidade do método proposto. Trabalhos futuros

devem explorar diferentes tipos de missões, incluindo trajetórias espaciais, assim como

diversas combinações de waypoints. O estudo e a implementação dos sinais de controlo

que façam com que o veículo desejado siga a trajetória ótima determinada deverá consti-

tuir também um exercício interessante.

Palavras-chave

Parametrização B-spline, Python, Controlo Ótimo, Otimização de Trajetórias de voo.
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Resumo alargado

Introdução

Os pioneiros da aviação estavam principalmente interessados em atingir o impensável:

fazer com que um dispositivo mais pesado do que o ar voasse. O primeiro voo de um

dispositivo mais pesado do que o ar foi conseguido no século XX, constituindo um grande

marco para a humanidade no que diz respeito à engenharia aeronáutica.

Apesar do grande entusiasmo causado por estes primeiros passos, a verdade é que os pri-

meiros voos forammuito curtos e revelaram pouco controlo sobre o dispositivo, exigindo

grandes progressos nos princípios básicos de voo por parte de cientistas, e também diver-

sos experimentos usando planadores, para que se atingisse o voo prático.

Tendo sido atingido esse tal voo prático, novos desafios se revelaram, nomeadamente exe-

cutar um voo de um determinado ponto A até um ponto B de uma determinada forma,

seja minimizando o tempo decorrido, o comprimento da trajetória ou até o combustível

necessário. Este é exatamente o objeto de estudo da Otimização de Trajetórias, e também

o objeto de estudo do presente trabalho, estudar as técnicas de otimização de trajétorias,

focando mais tarde na Parametrização usando B-splines.

Diversos fatores têm vindo a dar nova vida à investigação acerca da Otimização de Tra-

jetórias (OT), sendo que na verdade foi sempre um tema de grande relevo. A crescente

preocupação com o impacto da emissão de poluentes atmosféricos, assim como da polui-

ção sonora nas proximidades dos aeroportos, traz ímpeto reforçado à OT, pois esta pode

ser uma chave importante. O novo paradigma do controlo de tráfego aéreo, tendendo para

rotas mais flexíveis e mais otimizadas, e o crescente desenvolvimento de veículos aéreos

não tripulados, completam o leque de motivos que levaram à escolha da OT como tema

para o presente trabalho, que se proprõe três objetivos fundamentais;

• Prover uma breve revisão acerca dos métodos de otimização;

• Implementar um código em Python que resolva os casos de estudos apresentados.

Pretende-se que o programa calcule a trajetória ótima (posição: latitude, longitude

e altitude) em função do tempo para um conjunto dewaypoints.

• Contribuição do autor: um framework universal para otimização preliminar de tra-

jetórias 4D usando parametrização B-spline.
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A dissertação está estruturada em cinco capítulos:

• Capítulo 1: Introdução.

• Capítulo 2: Teoria do Controlo Ótimo.

• Capítulo 3: Metodologia e Ferramentas.

• Capítulo 4: Resultados da simulação.

• Capítulo 5: Conclusão.

Teoria do Controlo Ótimo

O problema de otimização de trajetória é formulado em termos de problema de controlo

ótimo neste trabalho, pelo que se didicou um capítulo à sua teoria. A Teoria do Controlo

Ótimo é resultado do Cálculo de variações (ou cálculo variacional), os seus primeiros pas-

sos remontam ao século XVII. No entanto, conheceu grande êxito durante a década de

1960 com as suas aplicações no sector aeroespacial.

O objetivo de um Problema de Controlo Ótimo (PCO) diz respeito à determinação dos

sinais de controlo que fazem com que um processo satisfaça as restrições impostas e ao

mesmo tempo minimize (ou maximize) uma determinada medida de performance. A

formulação de um PCO requer:

1. uma descrição matemática (um modelo) do processo a ser controlado. O objetivo

é a obtenção da descrição matemática mais simples possível, que ajude no cálculo

preciso da resposta física do sistema a todos os sinais de entrada esperadas. De

forma geral o modelo é construído com recurso a equações diferenciais ordinárias;

2. a identifição das restrições físicas. Estas podem dizer respeito ao estado ou ao con-

trolo. Dependem efetivamente do sistema em estudo. As restrições do controlo re-

presentam a capacidade do sistema em alterar o seu estado;

3. a especificaçãode algumamedidade performance. Amedida deperformance refere-

se a um determinado parâmetro ou combinação de parâmetros que traduza a qua-

lidade desejada em quantidade numérica.

Tendo sido formulado o problema, é necessário identificar ummétodo que seja adequado

à sua resolução. Os métodos capazes de resolver PCO são variados, sendo que diferentes
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autores procedem à sua cetegorização de diferentes formas. Uma das possíveis categori-

zações divide as técnicas de otimização para resolução de PCO em três categorias:

• Métodos deProgramaçãoDinâmica: usamos critérios deHamilton-Jacobi-Bellman

para determinar o controlo ótimo.

• Métodos Indiretos: usam o cálculo de variações e o Princípio de Mínimo de Pon-

tryagin para derivar as condições necessárias de otimalidade.

• Métodos Diretos: consistem na discretização do PCO contínuo através da constru-

ção de uma sequência de pontos. Um conjunto finito de variáveis é obtido, em que

podem ser determinadas usando ferramentas de otimização adequadas.

A programação dinâmica é relativamente fácil de se entender e implementar. No entanto

não é adequada a problemas de grandes dimensões (i. e. com grande número de variá-

veis). Os métodos indiretos são capazes de produzir resultados altamente precisos, no

entando a derivação das condições de otimalidade pode ser muito complexa e suscetível a

erros. Por fim, osmétodos diretos apresentam-se como fortes candidatos à resolução de

problemas multidimensionais e de grandes dimensões, embora a implementação possa

ser desafiante. Tendo em conta os aspectos apresentados, foi decidido que um método

direto seria adequado ao tipo de problema em estudo.

Metodologia e Ferramentas

B-splines são o conceito central do método proposto neste trabalho, por este motivo é im-

portante apresentar os aspectos fundamentais dessa função matemática tão versátil. Co-

mecemospor considerar umdeterminado vetorT = (T0, T1, ..., Tn−1, Tn, Tn+1, ..., Tn+k), k ≥

1 e n ≥ 0. As funções B-spline normalizadas correspondentesNik de ordem k (grau k−1)

são definidas por:

Ni1(t) =


1, Ti ≤ t ≤ Ti+1

0, caso contrário.

para k = 1, e

Nik(t) =
(t− Ti)

(Ti+k−1 − Ti)
Ni,k−1(t) +

(Ti+k − t)

(Ti+k − Ti + 1)
Ni+1,k−1(t)

para k > 1, e i = 0, 1, ..., n. Usando tais funções, é possível contruir uma curva B-spline.

Considerando uma lista ordenada de pontos de controlo di ∈ Rm, m ≥ 1, uma curva
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B-spline é definida por

X(t) =

n∑
i=0

Nik(t)di,para T0 ≤ t ≤ tn+k

As curvas B-spline podem ser bastante úteis tanto para interpolação quanto para parame-

trização.

O problema específico que se pretende resolver neste trabalho é a determinação da tra-

jetória ótima para um veículo aéreo, minimizando uma medida de performance que será

apresentada de seguida. Consideremos as equações de navegação em coordenadas carte-

sianas, apresentadas sob forma matricial.



ẋ

ẏ

ż

v̇x

v̇y

v̇z


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





x

y

z

vx

vy

vz


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




ax

ay

az



Em que x, y e x correspondem às coordenadas cartesianas, enquanto que vx, vy e vz cor-

respondem à velocidade em cada eixo e ax, ay e az às acelerações. Empregando uma lin-

guagem dos PCO, o vetor de estado será

X =
[
x y z vx vy vz

]T
e o vetor de controlo será

u =
[
ax ay az

]T
Assim, pretende-se determinar a trajetória ótima X∗ correspondente ao controlo ótimo

u∗ que minimize a medida de performance

MinJ(x, u) =

∫ tf

t0

(ẋTQẋ+ uTRu)dt

sujeita às equações diferenciais de navegação já apresentadas, assim como outras limita-

ções em termos de velocidades e aceleraçõesmáximas. Pretende-se tambémque a solução

passe por um conjunto dewaypointsWj = (ϕj , λj , hj , tj), j = 1, 2, ..., p, p ≥ 2.

O método proposto consiste na parametrização tanto do controlo quanto do estado, re-
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presentando ambos em termos de curvas B-spline, sendo obtido assim:
x(t) =

∑n
i=1Nik(t)d

(x)
i

y(t) =
∑n

i=1Nik(t)d
(y)
i

z(t) =
∑n

i=1Nik(t)d
(z)
i

,


vx(t) =

∑n
i=1Nik(t)

′d
(x)
i

vy(t) =
∑n

i=1Nik(t)
′d

(y)
i

vz(t) =
∑n

i=1Nik(t)
′d

(z)
i

,


ax(t) =

∑n
i=1Nik(t)

′′d
(x)
i

ay(t) =
∑n

i=1Nik(t)
′′d

(y)
i

az(t) =
∑n

i=1Nik(t)
′′d

(z)
i

O problema é assim convertido num problema de programação não linear e pode ser re-

solvido usando ferramentas adequadas. O integral damedida de performance é calculado

recorrendo à regra de Simpson composta.

É importante referir-se que foi utilizado o sistemade coordenadas geodético para questões

de visualização dos resultados assim como a definição dos waypoints. No entanto, os

cálculos internos do programa utilizam um referencial cartesiano designado por Earth

Fixed Earth Centered, por possibilitar o uso de equações de navegação bastante simples.

Assim sendo, naturalmente foram utilizadas equações de conversão entre um referencial

e o outro.

Conclusão

Por forma a verificar a robustez do método proposto, foi implementado um código em

Python, tendo sido estudado três exemplos distintos de missões. Embora os resultados

sejam distintos em termos de qualidade e suavidade das trajetórias ótimas calculadas, os

resultados para os três exemplos estudados são considerados satisfatórios, comprovando

assim a robustez e a versatilidade do método proposto.

Foram identificados como possíveis trabalhos futuros a exploração de diferentes tipos de

missões (incluindo trajetórias espaciais) e combinações de conjuntos dewaypoints, assim

como o estudo e a implementação dos sinais de controlo que façam com que o veículo

desejado siga a trajetória ótima determinada.
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Abstract

Achieving the first heavier-than-air flight during the 20th century was certainly a great

landmark in human history. However, flight itself generally is not the final objective. To

perform the desired mission effectively, it is necessary to determine the path to follow ac-

cording to the objective, for instance minimizing the elapsed time, the path length, etc.

How do we deal with such problems? Which are the techniques to solve them? Trajec-

tory Optimization is the subject that deals with such problems, and the object of study

of the present dissertation. I propose to study the use of B-spline Parameterization for

Flight Trajectory Optimization. A Python code was developed to implement the proposed

method, revealing promising results for all three presented examples, proving the robust-

ness and versatility of the proposedmethod. Future studies should explore different types

of missions, including spatial trajectories, and various sets of waypoints. The study and

implementation of the control to stimulate the desired flying device to follow the deter-

mined optimal trajectory would also constitute an interesting exercise.

Keywords

B-spline Parameterization, Flight Trajectory Optimization, Python, Optimal Control

Problem.
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Chapter 1

Introduction

The development of consistent research work requires deep knowledge of the studied

field, together with good mastery of the technical skills required for the practical appli-

cations. However, it is also of great importance to present the main interest of the object

of study, which will be exactly the objective of the first section, to present the framework

where the present work fits, justifying its great significance today.

1.1 Motivation

The aviationpioneersweremainly interested in achieving the unthinkable,making aheavier-

than-air device fly. The first heavier-than-air powered flights were achieved in the course

of the 20th century [1], constituting a great achievement for mankind in aeronautical en-

gineering. Despite the excitement caused by those first steps of the aviation history, the

truth is that the first flights were not practical at all, there was very little control over

the flying devices. Furthermore, the available power plants were not robust or reliable,

making the task of achieving practical and controlled flight very difficult at the time.

Great progress on the basic principles of flight by scientists and inventors, together with

experimentation using gliders and steam-powered flyingmachines led aviation to a period

of extremely fast development. Whereas in the early years of the 20th century pioneers like

theWright brothers worked hard to perform some short and poorly controlled flights [2],

a couple of decades later the first commercial flights were taking-off, opening a new era

of fast development worldwide.

Achieving controlled powered flight led scientists and engineers to newchallenges, namely

performing a flight from point A to point B in a certain way, which could be minimizing

the elapsed time, the trajectory length, or even fuel consumption. That is exactly the ob-

ject of study of the present work, to study the trajectory optimization techniques, and later

focusing on B-spline parameterization.
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1.1.1 Current Commercial Flights Planning

Commercial air transport operation is a term commonly used to refer to an aircraft oper-

ation involving the transport of passengers, cargo, ormail for remuneration or hire [3]. In

this context, to ensure financial viability in addition to environmental concerns, one needs

to possess suitable tools in order to find an optimal trajectory for the aircraft. In formal

terms, this necessity is filled through the elaboration and submission of an operational

flight plan, which consists of the operator’s plan for the safe conduct of the flight based

on considerations of the aircraft performance, other operating limitations, and relevant

conditions on the route to be followed and at the aerodromes concerned.

For engineering purposes, one must translate airlines’ interest parameters such as cost

and pollutants emissions into more engineering-related parameters like fuel consump-

tion, noise levels, etc. In the present work, we will not be (directly) concerned about the

financial aspects of flight planning, our goal is to study mathematical trajectory optimiza-

tion methods.

1.1.2 Flight Phases

An aircraft flight may be divided into several phases [4] according to the required detail.

In a simple way, one can describe the different phases of a commercial flight as follows.

1. Pre-departure: preparation for flight. Includes all required services (fueling, clean-

ing, catering, ramp inspections, etc.), passenger boarding, cargo unloading and/or

loading, and other aspects depending on the purpose of each flight.

2. Taxi and Take-off: once all the passengers are on board, all cargo is loaded and all

doors are securely closed, the pilots will ask and eventually obtain clearance from

the airport control tower to taxi. Arriving at the runway, it is time to take off.

3. Climb: this phase includes the initial climb and the climb to cruise altitude. The take-

off requires a lot of power from the engines, therefore consuming a good amount of

fuel. The climb also requires great power, but in the climb phase, the power may

be reduced to slightly smaller power levels than in the take-off phase providing fuel

saving and noise reduction.

4. Cruise altitude: defined as the period following the initial climb during which the

aircraft is in level flight. In general terms, the cruise is the longest phase of flight,

depending on the traffic congestion it may include changing flight level to lower
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altitudes, but generally the aircraft climbs as it gets lighter due to fuel consumption.

5. Descent: the descent consists of the decrease in altitude, from cruise altitude to the

initial approach altitude. In a more theoretical way, it is defined as any time be-

fore approach during which the aircraft has a negative rate of climb for an extended

period. It starts around 20 minutes before the estimated time of arrival (ETA).

6. Approach: goes from around 1000 feet above the runway elevation to the beginning

of the landing flare.

7. Landing: goes from the precedent phase until the aircraft touches down and exits

the runway. It is also frequently referred to as Touchdown.

8. Taxi and post-flight: after landing, the aircraft rolls on the ground to get to a stand.

After this stage, the aircraft is prepared for a new flight (restarting the cycle) or is

stored at an appropriate place.

In addition to the described phases, in some cases, landing is abandoned due to some

impossibility. Then the Go-around phase takes place, naturally, it is an undesirable event.

The go-around is a situation where the pilot is about to touchdown but decides to apply

full power before the landing gear touches the ground.

1.1.3 Operational Flight Planning

Previously, a more theoretical definition of Operational Flight Planning (OFP) was given;

however, in practical terms, and for engineering purposes, the minimization of flight cost

must be seen as the determination of an appropriate route while carrying the minimum

legal and necessary fuel.

In fact, an OFP is an essential piece of document to make possible the realization of com-

mercial flights. First, is necessary the vehicle (an aircraft), second, the demand for flight

(passengers and/or cargo), and then a flight plan, which is filled by an airline in a standard

format, called ICAO format [5]. The flight plan is sent to the Air Traffic Control Authority.

A flight plan is an important tool for Air Traffic Control since it is used to assure that all

flights are assigned to a certain time slot to prevent mid-flight collision. If the time slot

required by the airline is already allocated to another flight, ATC proposes another time

slot.

The augmentation of air traffic flow during the past decade, as shown in Figure 1.1 [6], is

pushing ATC toward a more cost-effective and flexible model, where more optimized and
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Figure 1.1: Number of daily flights increases every year between 2014 and 2019 in EU (source: EASA).

less rigid routes can be used to increase airspace capacity [7]. Despite the present decrease

in the number of flights worldwide due to the Covid-19 pandemic, it is predictable that the

air traffic flow is going to continue to grow after this difficult period.

As a response to the aspect mentioned previously, the European Union (EU), through the

European Commission, launched an ambitious initiative in 2004 titled the Single Euro-

pean Sky (SES) to reform the architecture of European Air Traffic Management (ATM).

The key objectives of this European initiative are [8]:

• To restructure European airspace.

• To create additional capacity.

• To increase the overall efficiency of the ATM system.

The SES is a very ambitious project which is currently in the deployment phase. Since

our goal is not to investigate ATM aspects, and also a complete analysis of the SES project

would make content for an entire dissertation, it was decided to mention it considering

that the new paradigm introduced by SES supports the choice of Trajectory Optimization

as the subject of study. In fact, flexible and optimized trajectories seem to be one of the

keys to the future of ATM.

1.1.4 Environmental and Noise Concerns

In the beginning, the aviation sector was a symbol of power and wealth, only rich people

used to fly, for pleasure or business. As time passed the paradigm changed, the number
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of passengers, companies and operatorsmultiplied throughout the years, and commercial

flights assumed a major role in global mobility. Today, air travel is not an extravagance,

it is part of our lives as any other type of transportation.

As the number of passengers and flights increased, environmental concerns becamemore

andmore important since the greatmajority of commercial aircraft run on fossil fuel, con-

sequently discharging pollutants into the atmosphere. The augmentation of the number

of flights has clearly impacted the total emission.

Figure 1.2 [6] shows the emissions from a typical two-engine jet aircraft during 1-hour

flight carrying 150 passengers, according to the European Environmental Report (2019).

It is possible to notice that the greatest part of the emissions is associated with carbon

dioxide, which is a well-known gas due to its greenhouse effect.

Figure 1.2: Emissions from a typical two-engine jet aircraft during 1-hour flight carrying 150 passengers
(source: EASA).

Pollutants emissions reduction can be achieved either by performing improvements on

the aircraft aerodynamics (thus reducing the drag), improvements on the engines, or

through operational procedures improvements. A good example of operational improve-

ment is the case of Free Route Airspace (FRA), which consists of specified airspace within

which usersmay freely plan a route between a defined entry point and a defined exit point.

The estimated saved emissions between 2014 and 2019 due to the implementation of this

concept are more than 2.6 million tonnes of CO2 [6]. This fact shows that operational

procedure improvements still have a major role to play in terms of pollutants emission

reduction.

Now that the environmental concerns are referred to, let us superficially look at noise as-
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pects. Certain noise levels have a serious impact on both human and wildlife well-being

and health, as is acknowledged in several studies on the subject [9,10]. Since aviation op-

erations are generally quite noisy, it is necessary to observe closely the noise levels around

airports and aerodromes. For this purpose, on one hand, there are regulations by the re-

sponsible authorities such as EASA. On the other hand, there are the noise contours that

can be used in order to determine if the legal noise levels are not exceeded.

Figure 1.3 shows an example of an airport noise contour, an important tool. Themain axis

of the noise contour is aligned with the direction of the head of the runway as is expected

since it corresponds to the major direction of flight, along which the exhaust gases are

expelled. The engines are the main source of the noise.

Figure 1.3: Example of an airport noise contour (source: EASA).

Even though aircraft became less noisy throughout the years due to technological im-

provements mainly in the engines, the growing amount of air traffic in Europe suggests

that an important part of the population is exposed to problematic noise levels. Aircraft

noise is the third biggest source of noise exposure after road and rail traffic.

Fuel and noise concerns can be addressed in two ways:

• a) Technological improvements on aircraft: this solution consists of the de-

velopment of new and quieter aircraft. This can be achieved through the develop-

ment of new engines and/or improvements to the aerodynamics of the aircraft.
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• b) Operational improvements: several operational improvements can be im-

plemented, one of them is the Continuous Climb Operations (CCO) / Continuous

Descent Operations (CDO).

Wewill clearly be focused on operational improvements, through trajectory optimization.

CCO and CDO are important concepts since they make possible valuable fuel savings and

noise reduction during the approach compared to the traditional non-precision approach.

Figure 1.4 shows a Balanced Approach to airport noise management suggested by EASA.

Numbers 1 and 2 are mainly related to technological improvements while 3 and 4 are

related to operations.

Figure 1.4: Balanced Approach for airport noise management by EASA.

To conclude, the choice of trajectory optimization as the subject of study for the present

work is justified by its increasingly high importancenamely referred on the SESARproject,

as well as its importance in terms of noise management included in numbers 3 and 4 of

Balanced Approach for airport noise management presented by EASA.

1.2 Objectives

The main objectives of this dissertation are pointed out below.

1. Optimization techniques: to provide an overview of themain optimization tech-

niques for solving Optimal Control Problems.
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2. Practical implementation: to implement a Python code to solve the cases of

study that are going to be presented. The code is intended to provide the optimal

path (position: latitude, longitude, and altitude) as a function of time for a given set

of waypoints.

3. Author’s contribution: a universal framework for preliminary 4D trajectory op-

timization using B-spline parameterization.

1.3 Thesis outline

The present work is structured as described below, comprising five chapters.

• Chapter 1: Introduction. Presents the motivation, as well as the context and im-

portance of flight trajectory optimization today.

• Chapter 2: Optimal control theory. Provides an overview of OCT, including the

theoretical aspects, an illustrative example, and also a brief review of the optimiza-

tion methods for solving OCP.

• Chapter 3: Methodology and tools. This chapter intends to present all methods

and tools used to reach the desired results. Includes a description of B-splines, the

specific problem statement, the proposed method, the coordinate systems used and

their conversion equations, and a brief description of the implemented code.

• Chapter 4: Simulation Results. Presents the graphical results obtained for the

three presented examples, using the proposed method and the implemented code.

• Chapter 5: Conclusion. Synthesizes the initial objectives and summarizes the ob-

tained results.
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Chapter 2

Optimal Control Theory

Since the trajectory optimization problem is going to be formulated in terms of Optimal

Control Problem (OCP) in thiswork, it is pertinent to present the theoretical fundamentals

behind it.

Optimal Control Theory represents the outcome of calculus of variations, and its first steps

go back to the 17th century; however, OCT knew its greatest success during the 1960s

through its aerospace applications [11].

The objective of an optimal control problem is to determine the control signals that will

cause a process to satisfy constraints and at the same timeminimize (ormaximize) some

performance measure [12]. The formulation of an OCP requires:

1. A mathematical description (or model) of the process to be controlled.

2. A Statement of the physical constraints.

3. Specification of some performance measure.

2.1 The Mathematical Model

Any control/trajectory optimization problem includes a modeling phase of the process.

The main objective is to obtain the simplest mathematical description that helps to accu-

rately compute the response of the physical system to all expected inputs. Themathemat-

ical models are generally described by ordinary differential equations (ODE) in the state

variable form.

ẋ(t) = f(x(t), u(t), t) (2.1)

Working with the mathematical model in the state variable form is convenient because:

1. The differential equations are ideally suited for digital or analog solutions.

2. The state form provides a unified framework for the study of nonlinear and linear

systems.
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3. The state variable form is invaluable in theoretical investigations.

A history of control input values during the interval [t0, tf ] is called a control history or

simply control, and a history of state values in the interval [t0, tf ] is called a state trajectory

and is denoted by x.

2.2 Physical Constraints

After defining the mathematical model, it is necessary to identify the physical constraints

on the state and control values. These constraints depend on the problem, if the system

under study is for instance an aircraft, the state constraints could be related to the position

(obstacles), velocity (due to transonic condition), or acceleration (structural limitations).

The control limitations represent the capacity of the system to change its state. Those

constraints are often related to the capability of the power plant (engines), the maximum

acceleration, etc.

A control history which satisfies the control constraints during the entire time interval

[t0, tf ] is called an admissible control; a state trajectory which satisfies the state variable

constraints during the entire time interval [t0, tf ] is called an admissible trajectory.

2.3 The Performance Measure

In order to evaluate the performance of a system quantitatively, it is necessary to select a

performance measure. The performance measure refers to a given parameter or combi-

nation of parameters that expresses the desired quality into numerical quantity. In some

cases, the problem statement may suggest the performance measure to be selected; how-

ever, in other cases, the selection may be difficult and a more subjective matter may be

required.

To better visualize the concept, let us consider a simple example: let us assume that an

aircraft is required to move from one point to another as quickly as possible. In this case,

the statement suggests that the elapsed time is the ideal performance measure to be min-

imized:

J = tf − ti (2.2)
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2.3.1 Minimum-Time

Problem: to transfer a system from an arbitrary initial state x(t0) = x0 to a specified

target set S in minimum time. The performance measure to be minimized is:

J = tf − t0 =

∫ tf

t0

dt (2.3)

tf being the first instant of time when x(t) and S intersect. A good example of this type

of problem is the interception of an aircraft or missile, generally, in combat scenes, one is

required to take an attacking aircraft down as fast as possible, from the decision moment.

2.3.2 Terminal Control

Problem: to minimize the deviation of the final state of a system xf from its target value

r(tf ). A possible performance measure is:

J = [x(tf )− r(tf )]
T [x(tf )− r(tf )] (2.4)

Or

J = [x(tf )− r(tf )]
TH[x(tf )− r(tf )] (2.5)

WhereH is a real symmetric positive semi-definite n× n weighting matrix.

2.3.3 Minimum-Control-Effort

Problem: To transfer a system from an arbitrary initial state x0 to a given target set

S, with minimum spending of control effort. The sense of the term ”minimum control

effort” depends upon the particular physical application, consequently, the performance

measure may take several forms. A possible example may be the total energy:
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J =

∫ tf

t0

u2(t)dt (2.6)

2.3.4 Tracking

Problem: to maintain the system state x(t) as close as possible to the target state r(T )

in the interval [t0, tff ].

Many other performance measures may be selected, based on the specific studied prob-

lem.

2.4 Systems Classification

In general terms, systems are described by the terms linear, nonlinear, time-invariant

and time-varying. Notations for each type of system are as follows.

• Nonlinear and time-varying

ẋ(t) = a(x(t), u(t), t)

• Nonlinear and time-invariant

ẋ(t) = a(x(t), u(t))

• Linear and time-varying

ẋ(t) = A(t)x(t) +B(t)u(t)

• Linear and time-invariant

ẋ(t) = Ax(t) +Bu(t)

2.5 General Optimal Control Problem

The OCP aims to find an admissible control u∗ which causes the system
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ẋ(t) = a(x(t), u(t), t) (2.7)

to follow an admissible trajectory x∗ that minimizes the performance measure

J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt (2.8)

u∗ is called an optimal control and x∗ an optimal trajectory.

2.6 An illustrative example

To summarise all the presented concepts, let us consider a simple example described in

Ref. [13]. As illustrated in Figure 2.1, the objective is tomove the vehicle from one position

and velocity to another position and velocity.

Figure 2.1: Illustration for the example of vehicle motion.

x denotes the position, thus the motion of the vehicle is governed by the differential equa-

tion ẍ = a, where a is the controlled acceleration. It is usual to write the system of equa-

tions governing the motion in the first order, which allows a uniform framework for all

types of problems.

Considering a fixed final time problem, the objective could be to make the transfer in a

given time while minimizing the control energy. The formal statement of the problem is:

find the acceleration history a(t) that minimizes the performance measure
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J =
1

2

∫ tf

t0

a2dt (2.9)

subject to the vehicle equations of motion


ẋ = v

v̇ = a

(2.10)

the prescribed initial conditions

t(0) = t0, x(t0) = x0, v(t0) = v0 (2.11)

and the prescribed final conditions

t(f) = tf , x(tf ) = xf , v(tf ) = vf (2.12)

To better visualize the example and compute the results, let us consider the values pre-

sented in Table 2.1 for the prescribed initial and final conditions:

Parameter Initial Final
t [s] 0 4
x [m] 0 200
v [m/s] 0 100

Table 2.1: Prescribed initial and final conditions for the vehicle’s motion example.

Figure 2.2 presents the results obtained for the example of themotion of a vehicle, assum-

ing that the acceleration is controlled, using the initial and final conditions presented in

Table 2.1.

Even though simple, this example is illustrative of what an optimal control problem con-

sists of. One is referred to [12–15] for further reading on OCT.
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(a) Position vs time. (b) Velocity vs time.

(c) Acceleration vs time.

Figure 2.2: Graphical results obtained for the vehicle motion example.

2.7 Optimization methods review

Themain goal of this study is to performoptimization of the flight trajectory of commercial

flights, general aviation flights, and UAVs flights. The most common way of formulating

trajectory optimization problems is using OCT, which ultimate goal is to find the control

u(t) thatminimizes (ormaximizes) the performancemeasure along the optimal trajectory.

Once the optimal control law is found, the optimal trajectory can be easily obtained. The

following section provides a brief overview of the main categories for solving trajectory

optimization problems, for further reading one is referred to Ref. [16].

In general, the hardest part of dealing with trajectory optimization problems is solving the

OCP, which formulation itself has its level of difficulty but finding the right (numerical)

method to solve OCP, and then implementing it may be challenging. Having the men-

tioned inmind, let us identify the methods that are suitable for solving OCP, which can be

categorized in several ways, one of them is presented below, dividing the techniques into

3 categories:
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• Dynamic Programming methods: uses Hamilton-Jacobi-Bellman optimality

criteria.

• Indirectmethods: use the calculus of variations andPontryagin’sMinimumPrin-

ciple to derive necessary conditions of optimality.

• Direct methods: constituted by shooting methods and collocation methods. It

consists in discretizing the continuous optimal control problem and constructing

a sequence of points. A finite set of variables is obtained that can be solved using

adequate optimization tools. One possible way is to convert the problem into a non-

linear programming problem (NLP)which can be solved using suitable optimization

tools.

2.7.1 Dynamic Programming

In the dynamic programmingmethod, the principle of optimality is used to find anoptimal

control law. The problem is divided into sub-problems that are linked by a recurrence

relation. For the sake of a better understanding, let us consider the multistage decision

process of Figure 2.3.

Figure 2.3: Multistage decision process illustration.

Considering the example, there are two ways to go from A to E: one A-B-E directly and

the other passing through C. Being JAB the cost for the section A-B, we have:

J∗
AE = JAB + JBE (2.13)

If A-B-E (directly) is the optimal path from A to E, then B-E (directly) is also the optimal

path from B to E. This way we are guided into Bellman’s Principle of Optimality [17]:

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision.
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Dynamic programming is a computational technique that extends the multi decision-

making using the principle of optimality to sequences of decisions, which combinedmake

an optimal policy and trajectory. This technique is simple and very effective for small

problems. However, when the problem to be solved involves large numbers of optimiza-

tion parameters as is the case of flight trajectory problems, it becomes computationally

ineffective, for this reason, we will not be particularly interested in this technique.

2.7.2 Indirect Methods

The core philosophy behind the indirect methods is finding an optimal solution by sat-

isfying optimality conditions instead of directly minimizing a cost criterion as it is done

in the case of direct methods, referred forward. Depending on the OCP, the optimality

conditions may lead to a two-point or multi-point boundary value problem (BVP). In a

few very particular cases, such as purely continuous, linear systems and quadratic costs,

the analytic solution of the BVP can be found. However, in most cases, it is necessary to

iteratively approach a solution using numerical methods.

As it is not reasonable to approach indirect methods without referring to Pontryagin’s

maximum (minimum) principle, let us briefly present its basic aspects. It was formulated

in 1956 by the mathematician Lev Pontryagin, being initially used for the maximization

of the terminal speed of a rocket. The formulation of this principle uses notions from the

classical calculus of variations, also used by Isaac Newton.

To illustrate Pontryagin’s Minimum Principle let us consider the problem of determining

the control function u(t) that minimizes the performance index given by

J = Φ(x(tf )) +

∫ tf

t0

F (x(t), u(t))dt (2.14)

Subject to

ẋ = f(x, u), x(t0) = x0, x(tf ) = xf (2.15)

The Hamiltonian functionH(x, u, p) is defined as
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H(x, u, p) = F (x, u) + pT f(x, u) (2.16)

where p is the co-state vector. Even though the entire derivation of the principle will not

be presented, it is worth mentioning that p is selected to correspond to the solution of the

differential equation

∂H

∂x
+ ṗT = 0T (2.17)

Then, the necessary conditions for u ∈ U to minimize (2.14) subject to (2.15) are

ṗ = −
(
∂H

∂x

)T

(2.18)

H(x∗, u∗, p∗) = min
u∈U

H(x, u, p) (2.19)

If the final state xtf is free, then in addition to (2.18) and (2.19) conditions, it is required

that (2.20) end-point condition is satisfied.

p(tf ) = ∇xΦ|t=tf (2.20)

The equation (2.18) is called the adjoint or costate equation.

2.7.3 Direct Methods

Direct methods consist of the transcription of the infinite-dimensional problem into a

finite-dimensional Nonlinear Programming (NLP) problem. This transcription can be

achieved by implementing a control parameterization constructed using arbitrarily cho-

sen analytical function, as in shootingmethods, or by implementing a piecewise approx-
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imation of both control and state variables based on a polynomial sequence of arbitrary

degree, as in collocationmethods.

In both cases, the transcribeddynamical system is integrated along the time interval [t0, tf ].

The search and determination of the optimal set of discretization parameters are formu-

lated as an NLP problem, which is then solved computationally using efficient numerical

optimization tools. Figure 2.4 illustrates the described categorization for direct methods.

Figure 2.4: Direct methods categorization.

2.7.3.1 Direct shooting

In the direct shooting (and multiple direct shooting), the parameterization is performed

on the controls u(t) only, the dynamic constraints are integrated making use of conven-

tional numerical methods for instance Runge-Kutta family, and the Lagrange term in the

cost function is approximated by a quadrature. The parameterization of the control vari-

ables is expressed as

u(t) =
N∑
k=1

ckqk(t) (2.21)

where qk(t) are known functions and ck are the parameters to be determined from the

optimization. Algorithm 1 presents a basic algorithm for the Direct ShootingMethod [16].

Algorithm 1 Basic Algorithm of the Direct Shooting Method

1: Input: Initial Guess of Parameters in Control Parameterization.
2: Output: Optimal Values of Parameters and Optimal Trajectory.
3: while Cost is Not at a Minimum and Constraints Not Satisfied do
4: Integrate Trajectory from t0 to tf ;
5: Compute Error in Terminal Conditions;
6: Update Unknown Initial Conditions By Driving Cost to Lower Value;
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In general terms, themultiple direct shooting diverges from direct shooting as the studied

interval is divided into subintervals, where the direct shooting is then applied to each

subinterval, as illustrated by Figure 2.5 [16].

Figure 2.5: Illustration of the Direct Multiple Shooting Method (source: A. V. Rao).

In this case, continuity of the state is imposed at the interfaces as

x(t−i ) = x(t+i ) (2.22)

2.7.3.2 Collocation methods

Local collocation is one of the two direct collocation methods. This family of methods is

considered bymany experts as themost powerfulmethods for solving general OCP. Direct

collocation consists of state and control parameterization, where the state and control are

approximated using a specified functional form.

For global collocation, the direct solution for the OCP is searched by enforcing the evalu-

ation of the state and control vectors in discrete collocation points throughout the entire

problem domain.

2.7.4 Solving Method discussion

Having formulated the problem, it is essential to choose a method to solve it. Choosing

a solving method depends highly on the nature of the problem (consequently on its size)

and also on the amount of time that one can invest in implementing the solution.
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In general, methods for solving an OCP are divided into two categories, the indirect meth-

ods and the directmethods. The first category entails the derivation of the optimality con-

ditions, while in the second category the solution to the problem is approximated in some

suitable way. In this section a third category wasmentioned, the dynamic programming.

Now let us evaluate the attributes and the limitations of each category of numerical meth-

ods for solving OCP, which are presented on Table 2.2, to decide on which technique to

use.

Method category Attributes Limitations
Dynamic
Programming

Easy to understand and implement. Exponential increase of its size -> un-
suitable for use om flight optimization.
Problems arise from nonsmoothness of
the value function.

Indirect Methods
Capable of producing highly accurate
results

Entails derivation of optimality condi-
tions (susceptible to errors).

After establishing the BVP, the solution
is quite straightforward.

Co-state variables are not representa-
tive of real physical entities -> challeng-
ing initial guess.
Analytical derivation to establish BVP
may vary significantly based on the
problem -> limited applicability and
flexibility of the technique.

Direct Methods
Does not require derivation of optimal-
ity conditions, avoiding possible errors.

Implementation may be more challeng-
ing compared to other categories.

After converting the problem into NLP,
it can be easily solved since NLP solvers
are well developed and very efficient.
Can deal with large multidimensional
problems as is the case of flight trajec-
tory optimization.

Table 2.2: Comparative table of Attributes and Limitations of each numerical method for solving OCP.

Considering all the aspects, it was decided that aDirectMethodwould fit well the purpose

of the present work.
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Chapter 3

Methodology and Tools

This chapter aims to present all the tools used to build the proposed method as well as

those used to produce the results of the implemented examples; these are the problem

statement, the basics of B-splines, the proposed method, the coordinates systems, and

the respective conversion equations, and a brief description of the implementation’s ar-

chitecture.

3.1 Problem Statement

Our objective is to determine the state (trajectory or path) x(t) ∈ Rn, and the control

u(t) ∈ Rm that optimizes a given performance measure

J = Φ[x(tf ), tf ] +

∫ tf

t0

L[x(t), u(t), t]dt (3.1)

subject to dynamic constraints,

ẋ(t) = f [x(t), u(t), t] (3.2)

path constraints,

Cmin ≤ C[x(t), u(t), t] ≤ Cmax (3.3)

and boundary conditions

ϕmin ≤ ϕ[x(t0), t0, x(tf ), tf ] ≤ ϕmax (3.4)

3.1.1 The Navigation Equations

Equation 3.5 presents the equations of navigation, in terms of matrix representation.
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

ẋ

ẏ

ż

v̇x

v̇y

v̇z


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





x

y

z

vx

vy

vz


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




ax

ay

az

 (3.5)

Employing the OCP language, the state variables are

X =
[
x y z vx vy vz

]T
(3.6)

where

• x: Cartesian x coordinate.

• y: Cartesian y coordinate.

• z: Cartesian z coordinate.

• vx: velocity in the x axis.

• vy: velocity in the y axis.

• vz: velocity in the z axis.

and the control variables are

u =
[
ax ay az

]T
(3.7)

where

• ax: acceleration in the x axis.

• ay: acceleration in the y axis.

• az: acceleration in the z axis.

As a result, trajectory optimization may be formulated in terms of Optimal Control Prob-

lem as follows.
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Our goal is to determine an optimal state trajectory, X, corresponding to the optimal

control, u,

MinJ(x, u) =

∫ tf

t0

(ẋTQẋ+ uTRu)dt (3.8)

subject to



ẋ = vx

ẏ = vy

ż = vz

v̇x = ax

v̇y = ay

v̇z = az

(3.9)

and other constraints, such as maximum velocities and/or accelerations.

3.2 B-splines

As B-splines are going to be a fundamental aspect of the proposed method, it is essential

to present its basics, otherwise, it would be difficult or impossible for some readers to

understand the presented solution.

To begin, consider a given knot vector T = (T0, T1, ..., Tn−1, Tn, Tn+1, ..., Tn+k), k ≥ 1 and

n ≥ 0, the corresponding normalized B-spline functions Nik of order k (degree k − 1) is

defined by

Ni1(t) =


1, Ti ≤ t ≤ Ti+1

0, otherwise
(3.10)

for k = 1, and
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Nik(t) =
(t− Ti)

(Ti+k−1 − Ti)
Ni,k−1(t) +

(Ti+k − t)

(Ti+k − Ti + 1)
Ni+1,k−1(t) (3.11)

for k > 1, and i = 0, 1, ..., n.

Using B-spline functions it is possible to build a B-spline curve. Let us consider a given

set of ordered control points di ∈ Rm,m ≥ 1, 0 ≤ i ≤ n, and the vector of knots points T ,

a B-spline curve of k order is defined by

X(t) =

n∑
i=0

Nik(t)diforT0 ≤ t ≤ tn+k (3.12)

where Nik(t) is the B-spline function defined in equations 3.10 and 3.11.

B-spline curves are a very useful tool for both interpolation and parameterization. Con-

sidering a set of data points Pi ∈ Rm, 0 ≤ i ≤ n, the b-spline of k order interpolation

problem is stated as follows [18]:

• (1) to find the knot vector T = (T0, T1, ..., Tn−1, Tn, Tn+1, ..., Tn+k),

• (2) the parameter value ti for each Pi, 0 ≤ i ≤ n, and

• (3) the control points di

such that the resulting b-spline curve defined by 3.12 satisfies the relation

X(ti) = Pi, ∀i = 0, 1, ..., n. (3.13)

To compute a B-spline interpolation, first we choose the knot vector T , so that the B-spline

functions Nik(t) can be defined. For open curves, the first k Ti’s must be equal and also

the last k Ti’s. The knots may be equally spaced for example. Applying 3.12 together with

3.13 we obtain

d0N0k(ti) + d1N1k(ti) + ...+ dnNnk(ti) = Pi. (3.14)
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Engaging the matrix form, the equation becomes

Ad = P, (3.15)

where

A =


N0k(t0) N1k(t0) ... Nnk(t0)

N0k(t1) N1k(t1) ... Nnk(t1)
...

...
...

...

N0k(tn) N1k(tn) ... Nnk(tn)

 , (3.16)

d = (d0, d1, ..., dn)
T and P = (P0, P1, ..., Pn)

T .

Now that B-spline functions and curves are presented, let us introduce the derivative. The

first derivative of a B-spline curve is given by

X(t)′ =
n∑

i=1

Nik(t)
′di (3.17)

where

Nik(t)
′ = k

Ni,k−1(t)

ti+k − ti
− k

Ni+1,k−1(t)

ti+k+1 − ti+1
(3.18)

Note that to define the derivative of a B-spline curve the only data needed are the control

points di. The proof of 3.17 is given by [19].

3.3 Proposed method

We propose to solve 4D Trajectory Optimization Problem through a series of waypoints.

Consider a set of ordered waypoints Wj = (ϕj , λj , hj , tj), j = 1, 2, ..., p, p ≥ 2. The state

3.6 and the control 3.7 are parameterized as B-spline curves
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
x(t) =

∑n
i=1Nik(t)d

(x)
i

y(t) =
∑n

i=1Nik(t)d
(y)
i

z(t) =
∑n

i=1Nik(t)d
(z)
i

. (3.19)

Recalling from 3.17 that the derivative of a B-spline curve depends on the same control

points that the b-spline curve itself, we have


vx(t) =

∑n
i=1Nik(t)

′d
(x)
i

vy(t) =
∑n

i=1Nik(t)
′d

(y)
i

vz(t) =
∑n

i=1Nik(t)
′d

(z)
i

. (3.20)

and


ax(t) =

∑n
i=1Nik(t)

′′d
(x)
i

ay(t) =
∑n

i=1Nik(t)
′′d

(y)
i

az(t) =
∑n

i=1Nik(t)
′′d

(z)
i

. (3.21)

This means that having defined the knot vector, the optimization problem parameters are

going to be the control points di. The performance measure integral is performed nu-

merically using the Composite Simpson’s rule, presented forward; this method is simple,

provides fast calculations, and yet produces sufficiently accurate results for the purpose

of the present work. Consider an interval over [a, b]; we have

∫ b

a
f(x)dx ≈ h

3

[
fa + 2

n
2
−1∑

j=1

f(x2j) + 4

n
2∑

j=1

f(x2j−1) + fb

]
(3.22)

n being an even integral that verifies h = (b − a)/n, and xj = a + jh, for j = 0, ..., n.

The associated error term is −((b− a)/180)h4f (4)(µ), µ ∈ (a, b), fa = f(a), and fb = f(b).

Having the parameterized problem, it becomes a simpleNonlinear ProgrammingProblem

that can be solved using available implemented techniques.
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3.4 Coordinate Systems and Conversion

3.4.1 Coordinate Systems

In this work, two coordinate systems are used: the geodetic coordinate system and the

Earth Centered Earth Fixed (ECEF) coordinate system. The geodetic coordinates are used

to define the waypoints and to visualize the results, mainly because the default coordinate

system used for navigation is the geodetic coordinate system and also because it enables

better understanding and interpretation of the results.

The ECEF coordinate system is usedmainly for internal calculations. Figure 3.1 illustrates

both ECEF and geodetic coordinate systems.

Figure 3.1: Geodetic and ECEF coordinate systems (Creative Commons license, source).

3.4.2 Conversion between Geodetic and Geocentric

The geocentric coordinates are related to the geodetic coordinates by the following for-

mulae [20]:

X = (h+ n) cosϕ cosλ (3.23)

Y = (h+ n) cosϕ sinλ (3.24)
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Z = (h+ n− e2n) sinϕ (3.25)

where

n =
a√

1− e2 sin2 ϕ
(3.26)

3.4.3 Conversion between Geocentric and Geodetic

The algorithm to compute geodetic coordinates ϕ, λ, h from Cartesian coordinatesX,Y, Z

starts with the following sequence of formulae:

p =
X2 + Y 2

a2
(3.27)

q =
1− e2

a2
Z2 (3.28)

r =
p+ q − e4

6
(3.29)

s = e4
pq

4r3
(3.30)

t =
3

√
1 + s+

√
s(2 + s) (3.31)

u = r

(
1 + t+

1

t

)
(3.32)

v =
√

u2 + e4q (3.33)

w = e2
u+ v − q

2v
(3.34)
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k =
√
u+ v + w2 − w (3.35)

D =
k
√
X2 + Y 2

k + e2
(3.36)

Then, the geodetic coordinates ϕ, λ, and h are computed by

ϕ = 2arctan
Z

D +
√
D2 + Z2

(3.37)

λ = 2arctan
Y

X +
√
X2 + Y 2

(3.38)

h =
k + e2 − 1

k

√
D2 + Z2 (3.39)

3.5 Implementation Architecture

Now that the mathematical aspects of the proposed solution are presented, let us look

at the structure of the implemented solution. The examples presented in the next chap-

ter were solved using a Python code implemented for this specific purpose. Figure 3.2

presents a synthesis of the structure of the implemented code, which can be found in Ap-

pendix B, containing the waypoints for example 1.

First, the necessary modules are loaded: Numpy, Scipy and pymap3d (for referential

conversion), and also some specific functions. Then, the waypoints’ matrix is created,

containing the time, the latitude, the longitude, and the altitude, each line of the matrix

corresponding to one waypoint.

Follows the creation of the knot vector, according to the desired number of discretization

points, greater than or equal to the number of waypoints. The knot vector necessarily

contains the time values of each waypoint, guaranteeing that the solution will include the

waypoints. Then the objective functions are defined. It is important to mention that the

calculations were made for each axis independently since the equations of each axis are

not related.
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START

Import modules

Define waypoints matrix

Construct knot vector
that
contains the time values
from waypoints.

Create objective functions.

Convert waypoints to
xyz cooridnates. Create
bounds lists

Include waypoints values
into bounds. Create ini-
tial guess vector.

Define differential con-
straints.

Solve

Post-processing Plot

RETURN

Figure 3.2: Synthesis of the code implemented to solve the Optimization Problem using the proposed
method.

The waypoints are converted using the formulae 3.23-3.25 from geodetic to geocentric co-

ordinates because the equations of navigation require such conversion. A list of bounds

for each state and control is created to guarantee that each state and control do not as-

sume values out of reach. At each discretization point, upper bound and lower bound are

imposed; at waypoints, the values corresponding to the position, upper bounds and lower

bounds have the same value.

Next, the waypoints values are included in the bounds, guaranteeing that the solution will

necessarily include the waypoints. To promote a faster convergence to the solution, initial

guesses vectors are created. For the position, the initial guess between each waypoint

corresponds to the value of the later waypoint, and for the velocity, an average velocity is

calculated using the waypoints.

The last steps include the definition of the functions representing the differential con-

straints, solving the optimization problem using the function minimize from Scipy, and

plotting the results using matplotlib. For further information, one is invited to analyze

the full code in the Appendix B.
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Chapter 4

Simulation Results

To demonstrate the capacity and robustness of the proposed method as well as the imple-

mented code, let us consider two examples from [21], the first representing a typical civil

flight, and the second presents a round trip about Covilhã city. Finally, the last example

uses waypoints from a commercial flight from Funchal (Madeira) to Lisbon.

4.1 Example 1

The first example refers to a typical civil flight. Table 4.1 presents the waypoints for this

first example. Table 4.2 presents the convergence data for example 1. It is worth noticing

that nomajor constraints violationwas obtained, meaning that the solution passes exactly

through the defined waypoints.

# t[s] λ[deg] ϕ[deg] h[m]

1 0 -7.493055556 39.82380833 400
2 126 -7.493611111 39.84300556 500
3 252 -7.494166667 39.85927222 600
4 288 -7.494722222 39.87773889 600
5 432 -7.494861111 39.91396111 700
6 594 -7.495000000 39.94871667 800
7 756 -7.495833333 39.98751111 800
8 882 -7.496388889 40.02142222 800
9 1008 -7.496944444 40.06275556 800
10 1170 -7.497500000 40.09205000 800
11 1332 -7.498055556 40.13682222 800
12 1494 -7.498611111 40.18511944 750
13 1620 -7.500000000 40.23539722 650
14 1728 -7.500555556 40.28389444 600

Table 4.1: Waypoints for Example 1.

Axis Iterations Function Evaluations Optimality Constraints violation Execution time [s]

x 178 20933 9.88e-05 4.72e-10 24
y 44 4719 9.99e-05 2.12e-08 5.8
z 179 21054 9.87e-05 1.16e-09 24

Table 4.2: Convergence data of example 1.

Figure 4.1 presents the optimal trajectory obtained for example 1, overall, the optimal

trajectory is smooth.
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(a) 3D Trajectory.

(b) Latitude vs time.

(c) Longitude vs time. (d) Altitude vs time.

Figure 4.1: Graphical results obtained for example’s 1 optimal trajectory.

4.2 Example 2

The second example refers to a round trip around Covilhã City. Table 4.4 presents the

waypoints for this second example. Table 4.3 presents the convergence data for example

2.

Axis Iterations Function Evaluations Optimality Constraints violation Execution time [s]

x 131 16380 5.12e-05 6.09e-10 18
y 232 29510 6.76e-05 6.83e-10 31
z 614 79170 1.00e-04 2.58e-10 84

Table 4.3: Convergence data of example 2.

Figure 4.2 presents the optimal trajectory obtained for example 2, overall, the optimal

trajectory is smooth. This example is the one that presents the best results in terms of

trajectory quality and smoothness.
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# t[s] λ[deg] ϕ[deg] h[m]

1 0 -7.47935 40.26508056 700
2 50.4 -7.493844444 40.26541667 750
3 82.8 -7.507930556 40.26605278 800
4 183.6 -7.526755556 40.27744167 1100
5 259.2 -7.534744444 40.29329444 1500
6 306 -7.524202778 40.30540833 1350
7 349.2 -7.5091 40.31254167 1250
8 432 -7.495969444 40.31637778 1150
9 489.6 -7.475677778 40.31813333 1000
10 565.2 -7.456869444 40.31474444 850
11 630 -7.449011111 40.29787778 810
12 694.8 -7.452633333 40.27941944 760
13 766.8 -7.460391667 40.27061111 730
14 795.6 -7.470616667 40.26656944 710
15 835.2 -7.47935 40.26508056 700

Table 4.4: Waypoints for Example 2.

(a) 3D Trajectory.
(b) Latitude vs time.

(c) Longitude vs time. (d) Altitude vs time.

Figure 4.2: Graphical results obtained for example’s 2 optimal trajectory.
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4.3 Example 3

The last example refers to a commercial flight route between Funchal (Madeira) and Lis-

bon. Table 4.5 presents the waypoints for this last example. Table 4.6 presents the con-

vergence data for example 2.

Overall, this example is the one that presented less satisfactory results. This could be

related to the trajectory length, meaning that more knot points would be needed. This

solution was investigated but the size of the problem increases greatly embarrassing the

program’s conversion to the solution.

# t[s] λ[deg] ϕ[deg] h[m]

1 0 -16.758467 32.711281 304.8
2 62 -16.695576 32.705135 982.98
3 103 -16.644567 32.691029 1234.44
4 128 -16.613459 32.704807 1584.96
5 520 -16.144129 33.107113 5623.56
6 1015 -15.391731 33.780537 8549.64
7 1701 -14.263916 34.762093 10972.8
8 2196 -13.392849 35.497421 10972.8
9 2949 -12.02631 36.583282 10972.8
10 3325 -11.293011 37.10408 10972.8
11 3635 -10.682294 37.529018 10972.8
12 3947 -10.089949 37.935974 7330.44
13 4198 -9.706839 38.232933 4396.74
14 4512 -9.290833 38.551212 1242.06
15 4651 -9.195855 38.669266 746.76
16 4765 -9.158298 38.739395 312.42

Table 4.5: Waypoints for Example 3.

Axis Iterations Function Evaluations Optimality Constraints violation Execution time [s]

x 377 70612 6.31e-05 2.84e-11 74
y 1719 238107 9.70e-06 4.07e-08 360
z 2993 415193 3.50e-06 2.16e-08 460

Table 4.6: Convergence data of example 3.
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(a) 3D Trajectory. (b) Latitude vs time.

(c) Longitude vs time. (d) Altitude vs time.

Figure 4.3: Graphical results obtained for example’s 3 optimal trajectory.
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Chapter 5

Conclusion

The present work intended to study the use of B-spline Parameterization for Flight Trajec-

tory Optimization problems formulated in terms of Optimal Control Problem. The basic

aspects of Optimal Control Theory were presented, together with an overview of the suit-

ablemethods for solvingOCP. Allmethods and tools that were used to compute the results

were also presented.

To test and prove the robustness of the proposed method, three flight trajectory exam-

ples were presented: one civil aviation flight, one round trip around Covilhã City, and

one commercial flight route between Funchal (Madeira) and Lisbon. Overall, the imple-

mented Python code, using the proposed method, was able to obtain satisfactory results,

producing smooth trajectories with minimal constraints violation.

Among the three examples, the second example presented themost accurate results, which

may be related to the total time. Longer trajectories presented less satisfactory results,

which may be improved by adding more discretization points; however, this leads to an

enormous increase in the problem’s size.

Future studies should include multiple simulations with different sets of waypoints to

assess the best configuration of waypoints and convergence tolerance to produce good

trajectories for different cases. Furthermore, the use of the proposed method for space

trajectories optimization should be considered, as well as the study and implementation

of the control to stimulate the desired flying device to follow the determined optimal tra-

jectory for both atmospheric and spatial trajectories.
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B-spline Parameterization Based Flight Trajectory 
Optimization 

Rose A. C. Teixeira and K. Bousson 

Abstract: Achieving the first heavier-than-air powered flight in the course of the 20th 
century was certainly a great landmark in human history. However, flight itself 
generally is not the final objective. To perform the desired mission effectively, it is 

necessary to determine the path to follow according to the objective, for instance 
minimizing time, path length, etc. Trajectory Optimization is the subject that deals 
with such problems, and the object of study of the present work. We propose the use 
of B-spline as a parameterization method for flight trajectory optimization problems 
formulated in terms of Optimal Control problems; satisfactory results were obtained 
using the Python language. 

Keywords: B-spline Parameterization, Optimal Control, Trajectory Optimization 

1. Introduction 

1.1. Motivation 

The aviation pioneers were mainly interested in achieving the unthinkable, 
making a heavier-than-air device fly. The first heavier-than-air powered flights were 
achieved during the 20th century [1], constituting a great achievement for mankind in 
aeronautical engineering. Great progress on the basic principles of flight by scientists 
and inventors and experimentations using gliders and steam-powered flying 
machines led aviation to a period of extremely fast development. Whereas in the 
early years of the 20th century pioneers like the Wright brothers worked hard to 
perform some short and poorly controlled flights [2], a couple of decades later the 
first commercial flights were taking-off, opening a new era of fast development 
worldwide. Achieving controlled powered flight led scientists and engineers to new 
challenges, namely performing a flight from point A to point B in a certain way, 
which could be minimizing the elapsed time, the trajectory length, or even the fuel 
consumption. Trajectory optimization is exactly the subject of the present work. 

The augmentation of air traffic flow during the past decade in the European 
Union [3] is pushing Air Traffic Control toward a more cost-effective and flexible 
model, where more optimized and less rigid routes can be used to increase the 
airspace capacity [4]. As a response, the European Union, through the European 
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Commission, launched an ambitious initiative in 2004 titled the Single European Sky 
(SES) to reform the architecture of the European Air Traffic Management (ATM). The 
key objectives of this European initiative are [5]: to restructure European airspace, 
create additional capacity, and increase the overall efficiency of the ATM. 

In addition to ATM performance improvement, environmental and noise 
concerns may also be addressed through trajectory optimization. Commercial flight 
pollutants emissions are a major concern today. In fact, reductions in pollutants and 
noise emissions can be achieved either by improving aircraft aerodynamics (thus 
reducing drag), improving engines, or through operational procedures. An example 
of operational improvement is the Free Route Airspace (FRA) concept, and both 
Continuous Climb Operations (CCO) and Continuous Descent Operations (CDO). 
Although trajectory optimization from the point of view of ATM is not the subject of 
the present paper, all aspects presented show the great importance of flight trajectory 
optimization. In addition, the fast-growing market of unmanned aerial vehicles also 
contributes to the necessity of consistent research on flight trajectory optimization. 
We will be looking at the mathematical aspects of trajectory optimization, 
fundamentally using Optimal Control principles. 

1.2. Goals 

• Optimization techniques – a brief overview of optimization techniques. 

• Practical implementation – to implement a Python code to solve the case 
study problem. 

• Authors’ contribution: a universal framework for preliminary 4D trajectory 
optimization using B-spline parameterization. 

2. Optimal Control Theory 

We are going to formulate the trajectory optimization problem in terms of 
Optimal Control Problem (OCP). Optimal control theory (OCT) represents the 
outcome of the calculus of variations, and its first steps go back to the 17th century; 
however, OCT knew its greatest success during the 1960s through its aerospace 
applications [6].  The objective of an OCP is to determine the control signals that will 
cause a process to satisfy constraints and at the same time minimize (or maximize) a 
specified performance index [7]. The formulation of an OCP requires: 

1. A mathematical description (or model) of the process to be controlled. 
2. A statement of the physical constraints. 
3. Specification of the performance measure. 

2.1. The mathematical model 

Any control/trajectory optimization problem includes a modeling phase of the 
process. The main objective is to obtain the simplest mathematical description that 
helps to accurately compute the response of the physical system to all expected input. 
The mathematical model is generally described by ordinary differential equations 
(ODE) in the state variable space form. 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡). (1) 
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2.2. Physical constraints 

After defining the mathematical model, it is necessary to identify the physical 
constraints on the state and control values. These constraints depend on the problem, 
for instance, if the studied system is an aircraft the state constraints could be related 
to the position (obstacles), velocity (due to transonic condition), or acceleration 
(structural limitations). The control limitations represent the capacity of the system 
to change its state. These constraints are often related to the powerplant (engines), 
the maximum acceleration, etc. 

2.3. The performance measure 

To evaluate the performance of a system quantitatively, a performance 
measure is necessary. The performance measure refers to a given parameter or 
combination of parameters that expresses the desired quality into numerical 
quantity. Let us consider an example: let us assume that an aircraft is required to 
move from one point to another as quickly as possible. In this case, the statement 
clearly suggests the elapsed time as an ideal performance measure 

𝐽 = 𝑡𝑓 − 𝑡0 = ∫ 𝑑𝑡
𝑡𝑓

𝑡0

. (2) 

2.4. Optimization methods 

Solving the OCP is, in general, the hardest part of dealing with trajectory 
optimization problems. Finding the right method to solve the OCP, and 
implementing it, is also part of the process, and is challenging. The methods suitable 
for solving OCP are various, one possible categorization divides the techniques into 
3 categories: 

• Dynamic programming methods: use Hamilton-Jacobi-Bellman optimality 
criteria. 

• Indirect methods: use calculus of variations and Pontryagin’s Minimum 
Principle (PMP) to derive the necessary conditions of optimality. 

• Direct methods: consists of discretizing the continuous OCP and constructing 
a sequence of points. A finite set of variables is then obtained which can be 
solved using adequate optimization tools. 

For further reading on OCT, one is referred to [6]-[10]. 

3. Methodology and Tools 

3.1. B-splines 

As B-splines are going the be a fundamental aspect of the proposed method, it 
is essential to present its basics. To begin, consider a given vector 𝑇 =
(𝑇0, 𝑇1, … , 𝑇𝑛−1, 𝑇𝑛 , 𝑇𝑛+1, … , 𝑇𝑛+𝑘), 𝑘 ≥ 1 and 𝑛 ≥ 0, the corresponding normalized B-
spline functions 𝑁𝑖𝑘 of order 𝑘 (degree 𝑘 − 1) are defined by [11]: 

𝑁𝑖1(𝑡) = {
1, 𝑇𝑖 ≤ 𝑡 ≤ 𝑇𝑖+1,
0,               otherwise

, for 𝑘 = 1 and (3) 
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𝑁𝑖𝑘(𝑡) =
(𝑡 − 𝑇𝑖)𝑁𝑖,𝑘−1(𝑡)

(𝑇𝑖+𝑘−1 − 𝑇𝑖)
+
(𝑇𝑖+𝑘 − 𝑡)𝑁𝑖+1,𝑘−1(𝑡)

(𝑇𝑖+𝑘 − 𝑇𝑖+1)
(4) 

for 𝑘 > 1 and 𝑖 = 0, 1,… , 𝑛. Using B-spline functions it is possible to build a B-spline 
curve. Given an ordered list of control points 𝑑𝑖 ∈ ℝ

𝑚 (𝑚 ≥ 1), 0 ≤ 𝑖 ≤ 𝑛, and a knot 
vector 𝑇, a B-spline curve of 𝑘 order is defined by 

𝑋(𝑡) = 𝑑𝑖𝑁𝑖𝑘(𝑡) for  𝑇0 < 𝑡 < 𝑇𝑛+𝑘 . (5) 

Now that B-spline functions and curves are presented, let us introduce the derivative. 
The first derivative of a B-spline curve [12] is given by 

𝑋(𝑡)′ =∑ 𝑁𝑖𝑘(𝑡)
′𝑑𝑖

𝑛

𝑖=0
, (6) 

𝑁𝑖𝑘(𝑡)
′ =

(𝑘) (𝑁𝑖,𝑘−1(𝑡))

𝑡𝑖+𝑘 − 𝑡𝑖
−
(𝑘) (𝑁𝑖+1,𝑘−1(𝑡))

𝑡𝑖+𝑘+1 − 𝑡𝑖+1
 . (7) 

3.2. Problem formulation 

Let us begin presenting the equations of navigation, represented by (8) in terms 
of matrix notation. 

[
 
 
 
 
 
𝑥̇
𝑦̇
𝑧̇
𝑣̇𝑥
𝑣̇𝑦
𝑣̇𝑧]
 
 
 
 
 

=

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑣𝑥
𝑣𝑦
𝑣𝑧 ]
 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

[

𝑎𝑥
𝑎𝑦
𝑎𝑧
] (8) 

Employing an OCP language, the state vector 𝑋, and the control vector 𝑢, are 

𝑋 = [𝑥 𝑦 𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧]𝑇 (9) 

𝑢 = [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑇 , (10) 

𝑥: cartesian x coordinate 𝑣𝑥: velocity in the x-axis 𝑎𝑥: acceleration in the x-axis. 
𝑦: cartesian y coordinate 𝑣𝑦: velocity in the y-axis 𝑎𝑦: acceleration in the y-axis. 

𝑧: cartesian z coordinate 𝑣𝑧: velocity in the z-axis 𝑎𝑧: acceleration in the z-axis. 

As a result, trajectory optimization problem is formulated in terms of OCP as 
follows. Our goal is to determine an optimal state trajectory, 𝑋, corresponding to the 
optimal control, 𝑢, that minimizes the performance measure specified forward, 

𝑀𝑖𝑛 𝐽(𝑋, 𝑢) = ∫ (𝑥̇𝑇𝑄𝑥̇ + 𝑢𝑇𝑅 𝑢)
𝑡𝑓

𝑡0

𝑑𝑡 , (11) 

subject to (8), and other constraints as maximum velocities and/or accelerations. 

3.3. Proposed method 

We propose to solve 4D Trajectory Optimization Problem through a series of 

waypoints. Consider a set of waypoints 𝑊𝑗 = (𝜑𝑗, 𝜆𝑗, ℎ𝑗, 𝑡𝑗), 𝑗 = 1, 2,… , 𝑝, 𝑝 ≥ 2. The 

state (9) and control (10) are parameterized as B-spline curves: 
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{
 
 

 
 𝑥(𝑡) =∑ 𝑁𝑖𝑘(𝑡)𝑑𝑖

(𝑥)
𝑛

𝑖=1

𝑦(𝑡) = ∑ 𝑁𝑖𝑘(𝑡)𝑑𝑖
(𝑦)

𝑛

𝑖=1

𝑧(𝑡) = ∑ 𝑁𝑖𝑘(𝑡)𝑑𝑖
(𝑧)

𝑛

𝑖=1

,

{
 
 

 
 𝑣𝑥(𝑡) = ∑ 𝑁𝑖𝑘(𝑡)′𝑑𝑖

(𝑥)
𝑛

𝑖=1

𝑣𝑦(𝑡) = ∑ 𝑁𝑖𝑘(𝑡)′𝑑𝑖
(𝑦)

𝑛

𝑖=1

𝑣𝑧(𝑡) = ∑ 𝑁𝑖𝑘(𝑡)′𝑑𝑖
(𝑧)

𝑛

𝑖=1

,

{
 
 

 
 𝑎𝑥(𝑡) =∑ 𝑁𝑖𝑘(𝑡)

′′𝑑𝑖
(𝑥)

𝑛

𝑖=1

𝑎𝑦(𝑡) =∑ 𝑁𝑖𝑘(𝑡)
′′𝑑𝑖

(𝑦)
𝑛

𝑖=1

𝑎𝑧(𝑡) =∑ 𝑁𝑖𝑘(𝑡)
′′𝑑𝑖

(𝑧)
𝑛

𝑖=1

. (12) 

This means that having defined the knot vector, the optimization parameters 
are going to be the control points 𝑑𝑖. The performance measure integral is performed 
numerically using the Composite Simpson's rule. Having the problem parameterized, 
it becomes a simple Nonlinear Programming Problem that can be solved using 
available implemented techniques. 

4. Simulations 

To demonstrate the performance of the proposed method as well as the 
developed code, let us present one example, from [13]. Table 1 presents the list of 
waypoints. Figures 1, 2, 3, and 4 present respectively the results for the 3D trajectory, 
the latitude as a function of time, the longitude as a function of time, and the altitude 
as a function of time. The results obtained present smooth trajectories, there were no 
constraint violations and the solver achieved fast convergence. For the discretization, 
45 points were used meaning that 2 points were added between each waypoint. The 
stop tolerance was set to 𝑔𝑡𝑜𝑙 = 10−4. 

Fig. 1: 3D trajectory. Fig. 2: Latitude vs Time. 

Fig. 4: Altitude vs Time. 

 

Fig. 3: Longitude vs Time. 
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Table 1: List of 
waypoints for the 
example. 
 

 

 

 

 

 

 

Conclusion 

In this work, we proposed the use of B-splines as parameterization method for 
flight trajectory optimization problems. A code was implemented to solve the 
example, producing satisfactory results. B-splines are powerful tools as they enable 
the definition of smooth curves using a relatively low number of control points. 
Additionally, the derivatives are easily calculated, making them ideal for the studied 
problem. The work and the code developed are the ideal tools for preliminary 
determination of optimal trajectory for UAVs for example. Further studies may 
include the project of the controller to make the vehicle follow the optimal route. 
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Time [s] Latitude [°] Longitude [°] Altitude [m] 

0 -7,47935 40,26508 700 

50,4 -7,49384 40,26542 750 

82,8 -7,50793 40,26605 800 

183,6 -7,52676 40,27744 1100 

259,2 -7,53474 40,29329 1500 

306 -7,5242 40,30541 1350 

349,2 -7,5091 40,31254 1250 

432 -7,49597 40,31638 1150 

489,6 -7,47568 40,31813 1000 

565,2 -7,45687 40,31474 850 

630 -7,44901 40,29788 810 

694,8 -7,45263 40,27942 760 

766,8 -7,46039 40,27061 730 

795,6 -7,47062 40,26657 710 

835,2 -7,47935 40,26508 700 
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#------------------------------------Modules-----------------------------------# 

import numpy 

import numpy as np 

import scipy 

from scipy.optimize import minimize 

from scipy.interpolate import BSpline 

from scipy.interpolate import splrep 

from scipy.optimize import NonlinearConstraint 

from scipy.integrate import simps 

from pymap3d import geodetic2ecef, ecef2geodetic 

 

#-------------------------------------Data-------------------------------------# 

#waypoints [time, lat, long, h] 

#Example 1 

Wps1 = np.array([[0,     39.82380833, -7.493055556,    400], 

                [126,   39.84300556, -7.493611111,    500], 

                [252,   39.85927222, -7.494166667,    600], 

                [288,   39.87773889, -7.494722222,    600], 

                [432,   39.91396111, -7.494861111,    700], 

                [594,   39.94871667, -7.495,          800], 

                [756,   39.98751111, -7.495833333,    800], 

                [882,   40.02142222, -7.496388889,    800], 

                [1008,  40.06275556, -7.496944444,    800], 

                [1170,  40.09205,    -7.4975,         800], 

                [1332,  40.13682222, -7.498055556,    800], 

                [1494,  40.18511944, -7.498611111,    750], 

                [1620,  40.23539722, -7.5,            650], 

                [1728,  40.28389444, -7.500555556,    600]]) 

 

#Example 2 

Wps2 = np.array([[0,     40.26508056, -7.47935,        700], 

                [50.4,  40.26541667, -7.493844444,    750], 

                [82.8,  40.26605278, -7.507930556,    800], 

                [183.6, 40.27744167, -7.526755556,    1100], 

                [259.2, 40.29329444, -7.534744444,    1500], 

                [306,   40.30540833, -7.524202778,    1350], 

                [349.2, 40.31254167, -7.5091,         1250], 

                [432,   40.31637778, -7.495969444,    1150], 

                [489.6, 40.31813333, -7.475677778,    1000], 

                [565.2, 40.31474444, -7.456869444,    850], 

                [630,   40.29787778, -7.449011111,    810], 

                [694.8, 40.27941944, -7.452633333,    760], 

                [766.8, 40.27061111, -7.460391667,    730], 

                [795.6, 40.26656944, -7.470616667,    710], 

                [835.2, 40.26508056,  -7.47935,       700]]) 

 

#Example 3 

Wps3 = np.array([[0,    32.711281,  -16.758467, 304.8], 

                [62,    32.705135,  -16.695576, 982.98], 

                [103,   32.691029,  -16.644567, 1234.44], 

                [128,   32.704807,  -16.613459, 1584.96], 

                [520,   33.107113,  -16.144129, 5623.56], 

                [1015,  33.780537,  -15.391731, 8549.64], 

                [1701,  34.762093,  -14.263916, 10972.8], 

                [2196,  35.497421,  -13.392849, 10972.8], 

                [2949,  36.583282,  -12.02631,  10972.8], 

                [3325,  37.10408,   -11.293011, 10972.8], 

                [3635,  37.529018,  -10.682294, 10972.8], 

                [3947,  37.935974,  -10.089949, 7330.44], 

                [4198,  38.232933,  -9.706839,  4396.74], 

                [4512,  38.551212,  -9.290833,  1242.06], 

                [4651,  38.669266,  -9.195855,  746.76], 

                [4765,  38.739395,  -9.158298,  312.42]]) 

 

Opts = [1, 2, 3, 4] #options 



2/7 
 

opt = 0 

 

while True: 

    try: 

        while not (opt in Opts): 

            print("Please, select the desired option, entering the \ 

corresponding #:\n", 

              "1. Example 1: typical civil flight.\n", 

              "2. Example 2: round trip around Covilhã.\n", 

              "3. Example 3: Commercial flight Funchal -> Lisbon.\n", 

              "4. Exit") 

            opt=int(input()) 

        break 

    except: 

        print("Option invalid. Try again...") 

 

if opt == 1: 

    Wps=Wps1 

    vmin = -100 

    vmax = 100 

    amin = -10 

    amax = 10 

    gtol = 0.0001 

    maxiter = 1500 

elif opt == 2: 

    Wps=Wps2 

    vmin = -220 

    vmax = 220 

    amin = -10 

    amax = 10 

    gtol = 0.0001 

    maxiter = 2000 

elif opt == 3: 

    Wps=Wps3 

    vmin = -220 

    vmax = 200 

    amin = -10 

    amax = 10 

    gtol = 0.00001 

    maxiter = 5000 

elif opt == 4: 

    exit() 

 

 

 

now = len(Wps) #number of waypoints 

ti = Wps[0, 0] 

tf = Wps[now-1, 0]  

nop = (now-1)*3 #number of discretization points 

 

vec_conc_point = [1/(now-1)]*(now-1)  

 

for i in range(now-1): 

    aux = np.linspace(Wps[i,0], Wps[i+1,0], int(nop*vec_conc_point[i])+1) 

    if i ==0: 

        T = aux 

    else: 

        T = np.concatenate((T, aux[1:len(aux)])) 

 

phi_i, lam_i, h_i = (Wps[0, 1], Wps[0, 2], Wps[0, 3]) 

phi_f, lam_f, h_f = (Wps[now-1, 1], Wps[now-1, 2], Wps[now-1, 3]) 

 

q1=q2=q3=1/(vmax**2) 

r1=r2=r3=1/(amax**2) 
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#------------------------------------------------------------------------------# 

#-------------------------------Main program-----------------------------------# 

#------------------------------------------------------------------------------# 

 

#-------------------------------Objective Function-----------------------------# 

def objectivex(Bsolx): 

    X = Bsolx[0:len(T)] 

    vx = Bsolx[len(T):2*len(T)] 

     

    new_T, dx, k = splrep(T, X) 

    X_dot = BSpline(new_T,dx,k).derivative(1)(T) 

    U1 = BSpline(new_T,dx,k).derivative(2)(T) 

    return(  simps( q1*X_dot**2 + r1*(U1)**2 , T) ) 

 

def objectivey(Bsoly): 

    Y = Bsoly[0:len(T)] 

    vy = Bsoly[len(T):2*len(T)] 

 

    new_T, dy, k = splrep(T, Y) 

    Y_dot = BSpline(new_T,dy,k).derivative(1)(T) 

    U2 = BSpline(new_T,dy,k).derivative(2)(T) 

    return( simps( q2*Y_dot**2 + r2*(U2)**2 , T) ) 

 

def objectivez(Bsolz): 

    Z = Bsolz[0:len(T)] 

    vz = Bsolz[len(T):2*len(T)] 

 

    new_T, dz, k = splrep(T, Z) 

    Z_dot = BSpline(new_T,dz,k).derivative(1)(T) 

    U3 = BSpline(new_T,dz,k).derivative(2)(T) 

    return( simps( q3*Z_dot**2 + r3*(U3)**2 , T) ) 

 

#----------------------------------Bounds--------------------------------------# 

xi, yi, zi = geodetic2ecef(phi_i, lam_i, h_i, deg=True) 

xf, yf, zf = geodetic2ecef(phi_f, lam_f, h_f, deg=True) 

 

 

#convert waypoints to XYZ 

for i in range(now): 

    phi = Wps[i, 1] 

    lam = Wps[i, 2] 

    h = Wps[i, 3] 

    x, y, z = geodetic2ecef(phi, lam, h, deg=True) 

 

    Wps[i, 1] = x 

    Wps[i, 2] = y 

    Wps[i, 3] = z 

 

bx = (None, None) 

bvx = (vmin, vmax) 

bax = (amin, amax) 

by = (None, None) 

bvy = (vmin, vmax) 

bay = (amin, amax) 

bz = (None , None) 

bvz = (vmin, vmax) 

baz = (amin, amax) 

 

#X axis 

bndsx = [bx]*len(T) + [bvx]*len(T) + [bax]*len(T) 

 

bndsx[0] = (xi, xi) 

bndsx[len(T)-1] = (xf, xf) 
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#Y axis 

bndsy = [by]*len(T) + [bvy]*len(T) + [bay]*len(T) 

     

bndsy[0] = (yi, yi) 

bndsy[len(T)-1] = (yf, yf) 

 

#Z axis 

bndsz = [bz]*len(T) + [bvz]*len(T) + [baz]*len(T) 

     

bndsz[0] = (zi, zi) 

bndsz[len(T)-1] = (zf, zf) 

 

#Include waypoints into boundary vector & initial guesses improving 

X0 = np.zeros(3*len(T), float) 

Y0 = np.zeros(3*len(T), float) 

Z0 = np.zeros(3*len(T), float) 

 

count = 0 

count_local = 0 

i=0 

for j in range (len(T)): 

    if (i < now ): 

        t = Wps[i, 0] 

        if t == T[j]:  

            bndsx[j] = (Wps[i, 1], Wps[i, 1]) 

            bndsy[j] = (Wps[i, 2], Wps[i, 2]) 

            bndsz[j] = (Wps[i, 3], Wps[i, 3]) 

            if i > 0 and count > 0 : 

                X0[j-count_local:count]= np.ones(len(X0[j-count_local:count]))\ 

                *Wps[i-1, 1] 

                X0[j-count_local +len(T):count+len(T)]= (Wps[i, 1]-Wps[i-1,1])\ 

                /(Wps[i, 0] - Wps[i-1, 0]) 

                 

                Y0[j-count_local:count]= np.ones(len(Y0[j-count_local:count]))\ 

                *Wps[i-1, 2] 

                Y0[j-count_local +len(T):count +len(T)]=(Wps[i, 2]-Wps[i-1,2])\ 

                /(Wps[i, 0] - Wps[i-1, 0]) 

                 

                Z0[j-count_local:count] =np.ones(len(Z0[j-count_local:count]))\ 

                *Wps[i-1, 3] 

                Z0[j-count_local +len(T):count+len(T)]=(Wps[i, 3]-Wps[i-1, 3])\ 

                /(Wps[i, 0] - Wps[i-1, 0]) 

                count_local = 0 

            i = i+1 

        count_local = count_local+1     

        count = count + 1 

 

#--------------------------------Constraints-----------------------------------# 

#Define constraints (Velocity and acceleration in each axis) 

def cons_vx (Bsolx): #X 

    X = Bsolx[0:len(T)] 

    vx = Bsolx[len(T):2*len(T)] 

    ax = Bsolx[2*len(T):3*len(T)] 

     

    new_T, dx, k = splrep(T, X) 

    X_dot = BSpline(new_T,dx,k).derivative(1)(T) 

 

    return ( vx - X_dot ) 

 

def cons_ax (Bsolx): #X 

    X = Bsolx[0:len(T)] 

    vx = Bsolx[len(T):2*len(T)] 

    ax = Bsolx[2*len(T):3*len(T)] 

     

    new_T, dx, k = splrep(T, X) 
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    X_dot2 = BSpline(new_T,dx,k).derivative(2)(T) 

 

    return ( ax - X_dot2 ) 

 

def cons_vy (Bsoly): #Y 

    Y = Bsoly[0:len(T)] 

    vy = Bsoly[len(T):2*len(T)] 

    ay = Bsoly[2*len(T):3*len(T)] 

 

    new_T, dy, k = splrep(T, Y) 

    Y_dot = BSpline(new_T,dy,k).derivative(1)(T) 

 

    return ( vy - Y_dot ) 

 

def cons_ay (Bsoly): #Y 

    Y = Bsoly[0:len(T)] 

    vy = Bsoly[len(T):2*len(T)] 

    ay = Bsoly[2*len(T):3*len(T)] 

 

    new_T, dy, k = splrep(T, Y) 

    Y_dot2 = BSpline(new_T,dy,k).derivative(2)(T) 

 

    return ( ay - Y_dot2 ) 

 

def cons_vz (Bsolz): #Z 

    Z = Bsolz[0:len(T)] 

    vz = Bsolz[len(T):2*len(T)] 

    az = Bsolz[2*len(T):3*len(T)] 

 

    new_T, dz, k = splrep(T, Z) 

    Z_dot = BSpline(new_T,dz,k).derivative(1)(T) 

 

    return ( vz - Z_dot ) 

 

def cons_az (Bsolz): #Z 

    Z = Bsolz[0:len(T)] 

    vz = Bsolz[len(T):2*len(T)] 

    az = Bsolz[2*len(T):3*len(T)] 

 

    new_T, dz, k = splrep(T, Z) 

    Z_dot2 = BSpline(new_T,dz,k).derivative(2)(T) 

 

    return ( az - Z_dot2 ) 

 

cons_bound = np.zeros(len(T), float) 

consvx = NonlinearConstraint(cons_vx, cons_bound, cons_bound) 

consax = NonlinearConstraint(cons_ax, cons_bound, cons_bound) 

consvy = NonlinearConstraint(cons_vy, cons_bound, cons_bound) 

consay = NonlinearConstraint(cons_ay, cons_bound, cons_bound) 

consvz = NonlinearConstraint(cons_vz, cons_bound, cons_bound) 

consaz = NonlinearConstraint(cons_az, cons_bound, cons_bound) 

 

consx = [consvx, consax] 

consy = [consvy, consay] 

consz = [consvz, consaz] 

 

#----------------------------------Solve---------------------------------------# 

print("\nPerforming optimization on x axis ...") 

print("x axis optimization results:") 

solx = minimize(objectivex , X0, bounds=bndsx, constraints = consx, \ 

                method='trust-constr', \ 

            options={'disp': True, 'gtol':gtol,'maxiter':maxiter, 'verbose':1}) 

 

print("\nPerforming optimization on y axis ...") 

print("y axis optimization results:") 
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soly = minimize(objectivey , Y0, bounds=bndsy, constraints = consy,\ 

                method='trust-constr', \ 

            options={'disp': True, 'gtol':gtol,'maxiter':maxiter, 'verbose':1}) 

 

print("\nPerforming optimization on z axis ...") 

print("z axis optimization results:") 

solz = minimize(objectivez , Z0, bounds=bndsz, constraints = consz, \ 

                method='trust-constr', \ 

            options={'disp': True, 'gtol':gtol, 'maxiter':maxiter, 'verbose':1}) 

 

#-------------------------------Post processing--------------------------------# 

T_plot = np.linspace(ti, tf, 1000) 

 

new_T, dx, k = splrep(T, solx.x[0:len(T)]) 

Sol_x = BSpline(new_T,dx,k)(T_plot) 

Sol_vx = BSpline(new_T,dx,k).derivative(1)(T_plot) 

Sol_ax = BSpline(new_T,dx,k).derivative(2)(T_plot) 

 

new_T, dy, k = splrep(T, soly.x[0:len(T)]) 

Sol_y = BSpline(new_T,dy,k)(T_plot) 

Sol_vy = BSpline(new_T,dy,k).derivative(1)(T_plot) 

Sol_ay = BSpline(new_T,dy,k).derivative(2)(T_plot) 

 

new_T, dz, k = splrep(T, solz.x[0:len(T)]) 

Sol_z = BSpline(new_T,dz,k)(T_plot) 

Sol_vz = BSpline(new_T,dz,k).derivative(1)(T_plot) 

Sol_az = BSpline(new_T,dz,k).derivative(2)(T_plot) 

 

Sol_Phi = [] 

Sol_Lam = [] 

Sol_h = [] 

 

#Convert results from XYZ to Phi, Lam, h 

for i in range (len(T_plot)): 

    phi, lam, h = ecef2geodetic(Sol_x[i], Sol_y[i], Sol_z[i], deg=True) 

    Sol_Phi.append( phi ) 

    Sol_Lam.append( lam ) 

    Sol_h.append( h ) 

 

#-------------------------------------Plot-------------------------------------# 

import matplotlib.pyplot as plt 

print("\nPlot...") 

#3D 

fig = plt.figure(1) 

ax = fig.add_subplot(111, projection='3d') 

ax.plot(Sol_x,Sol_y,Sol_z,'k-') 

ax.set_xlim(min(Sol_x),max(Sol_x)) 

ax.set_ylim(min(Sol_y),max(Sol_y)) 

ax.set_zlim(min(Sol_z),max(Sol_z)) 

ax.set_xlabel('x [m]') 

ax.set_ylabel('y [m]') 

ax.set_zlabel('z [m]') 

 

 

fig = plt.figure(2) 

ax = fig.add_subplot(111, projection='3d') 

ax.plot(Sol_Phi,Sol_Lam,Sol_h,'k-') 

ax.set_xlim(min(Sol_Phi),max(Sol_Phi)) 

ax.set_ylim(min(Sol_Lam),max(Sol_Lam)) 

ax.set_zlim(min(Sol_h),max(Sol_h)) 

ax.set_xlabel('φ [º]') 

ax.set_ylabel('λ [º]') 

ax.set_zlabel('h [m]') 
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#2D 

#X, Y, Z Position 

plt.figure(3) #X  

plt.plot(T_plot,Sol_x,'k-',lw=2,label=r'$x$') 

plt.legend(loc='best') 

plt.xlabel('Time [s]') 

plt.ylabel('X coordinate [m]') 

 

plt.figure(4) #Y 

plt.plot(T_plot,Sol_y,'k-',lw=2,label=r'$y$') 

plt.legend(loc='best') 

plt.xlabel('Time [s]') 

plt.ylabel('Y coordinate [m]') 

 

plt.figure(5) #Z 

plt.plot(T_plot,Sol_z,'k-',lw=2,label=r'$z$') 

plt.legend(loc='best') 

plt.xlabel('Time [s]') 

plt.ylabel('Z coordinate [m]') 

 

 

 

#Pi, Lam, h Position 

plt.figure(6) #Phi 

plt.plot(T_plot,Sol_Phi,'k-',lw=2,label=r'$φ$') 

plt.legend(loc='best') 

plt.xlabel('Time [s]') 

plt.ylabel('φ [º]') 

 

plt.figure(7) #Lam 

plt.plot(T_plot,Sol_Lam,'k-',lw=2,label=r'$λ$') 

plt.legend(loc='best') 

plt.xlabel('Time [s]') 

plt.ylabel('λ [º]') 

 

plt.figure(8) #h 

plt.plot(T_plot,Sol_h,'k-',lw=2,label=r'$h$') 

plt.legend(loc='best') 

plt.xlabel('Time [s]') 

plt.ylabel('h [m]') 

plt.show() 

print("\nEnd of program execution. Please run again to choose another example.") 
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