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Resumo

A reentrada na atmosfera terrestre é uma das fases mais difíceis da missão de qualquer nave

espacial. Durante a reentrada, seguir uma trajectória óptima em termos de taxa mínima de

aquecimento, pressão dinâmica e maáxima desaceleração é vital para o sucesso da missão.

Esta dissertação propõe o design de um controlador baseado emmétodos deH∞, com o ob­

jectivo de alcançar um controlo óptimo e robusto para umVeículo deReentrada na atmosfera

capaz de produzir sustentação.

Esta dissertação começa com um resumo da teoria e história por detrás do Programa Espa­

cial do Vaivém, incluindo o planeamento de trajectórias e descrições doModelo de Dinâmica

de Voo de Reentrada. A análise da trajectória de referência obtida seguir­se­á e será feita a

sua comparação com uma trajectória real do vaivém. A concepção e configuração do contro­

lador H∞ virá depois, começando com a linearização do sistema obtida no passo anterior e

terminando com o recálculo das variáveis de estado do veículo após a sua aplicação. A per­

turbação é então aplicada e os resultados do accionamento do controlador são exibidos. O

controladorH∞ para Veículo de Reentrada capaz de produzir Sustentação mostrou ser uma

aplicação útil apresentando resultados satisfatórios e significativos nesta fase crítica de voo.

Palavras­Chave

Controlo Ótimo e Robusto — Veículo de Reentrada —Método de ControloH∞
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Abstract

Reentering the Earth’s atmosphere is one of the most difficult phases of any spaceship’s mis­

sion. During reentry, following an optimal trajectory in terms of minimal heating rate, dy­

namic pressure, and maximum deceleration is vital to the mission’s success. This disserta­

tion proposes a novel design for a controller based on H∞ control methods, with the goal of

achieving optimal and robust control for a Reentry Lifting Vehicle.

This dissertation begins by summarizing the theory and history behind the Shuttle Space

Program, including the planning of its trajectories and descriptions of the Reentry Flight

Dynamics Model. The analysis of the obtained reference trajectory will follow and the com­

parison of it to a real shuttle trajectory will be made. The design and configuration of theH∞

controller comes after, beginning with the linearization of the obtained system in the previ­

ous step and ending with the recalculation of vehicle state variables after its application. The

disturbance is then applied and the results of the actuation of the controller are displayed.

TheH∞ controller for Reentry Lifting Vehicle proves itself to be a useful application present­

ing satisfying and significant results in this critical phase of flight.

Keywords

Optimal and Robust Control — Reentry Lifting Vehicle —H∞ Control Method
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Chapter 1

Introduction

Adventuring into space has been for a long time an accomplished dream of mankind. How­

ever, humanity will never stop exploring beyond the limits of our planet’s atmosphere. While

exiting the atmosphere is itself a challenge, being capable of safely landing and reentering the

atmosphere with a manned space aircraft is an even heavier challenge.

Throughout the years, numerous satellites have been launched into the atmosphere with no

plan of return, becoming sooner or later disposable material continuously in orbit. Guaran­

teeing the safe return of the no­longer­used satellites and spacecraft is a critical mission if

we want to leave our atmosphere as clean as possible. According to Portugal Space: ”every

year approximately 100 tons of uncontrolled debris reenter Earth’s atmosphere, a situation

that explains the urgency of developing technology and solutions that allow the controlled

and safe removal of the debris humanity left in space” [1].

Reentering the atmosphere is then the most critical part of the mission of a shuttle or any

similar spaceship. From an astronaut’s point of view, the atmosphere presents a dense fluid,

which at orbital velocities, is not that far from the surface of a lake [2]. In this dissertation, the

Reentry Lifting Vehicle (RLV) used for the development of the controller will be the model

of a shuttle.

The trajectory followed to begin the process of reentering the atmosphere must begin with a

small flight path angle ­ γ ­ between 1, 1° and 1, 5° and a precise speed [3]. If the γ is smaller
than 1, 1°, the vehicle may not entry the atmosphere and drive off again into the cold space.
On the other hand, if γ is bigger than 1, 5° the vehicle can have a fiery and tragic ending if
it doesn’t correct its trajectory. In the middle of these two situations, we find the correct

trajectory for the RLV.

The trajectory followed must allow the minimum temperature peaks considering the aero­

dynamic heating along the way to ensure the integrity of the shuttle and no loss of materials

during the reentry. Choosing the ideal systems that can withstand these temperatures is pre­

eminent to ensure the maneuverability of the vehicle. The tragedy of Columbia (STS­107) is

a fatal reminder of the dangerous thermal and aerodynamic environment that any vehicle

reentering the atmosphere endures [3].

Given the importance of following a reentry reference trajectory, a control system that en­

sures the RLV continuously follows it becomes essential.
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1.1 Planning the reentry trajectory

The design and calculation of the reentry trajectory can be summarized in 3 competing re­

quirements: deceleration limits, heating limits, and impact/landing accuracy [4].

The materials used in the vehicle directly impact the maximum deceleration it can endure.

Considering g as a deceleration unit and g being the gravitational acceleration at sea level

(9, 80665 m/s2), materials like steel can only endure a certain amount of g until they fold

like paper. Nevertheless, the materials used in these vehicles can withstand hundreds of

g’s if correctly sized and manufactured. However, the human species can only withstand a

maximum deceleration of 12 g’s [2].

The heating is also a noticeable problem. The friction between the air and the RLV traveling

at thousands of meters per second drastically increases the temperature of its materials. In

other words, the kinetic energy is being transformed into heat during the reentry phase of

the shuttle. We must study the normal temperature throughout the reentry as well as the

peak temperature of the shuttle, which can reach values of 1648°C [5].

The last requirement to consider is the accuracy of lading or impact. This component is de­

termined according to the type of mission. For example, the accuracy of a crashing satellite,

regardless of its importance, may not be as demanding as the accuracy of a missile warhead.

On the other hand, the velocity of the impact of a missile will be a less important factor than

in a case of a reentering shuttle, where the final velocity is certainly an important one.

Deciding how much influence will each requirement have on the trajectory chosen is part of

the designing process. For a given problem the requirements previously explained will have

a certain weight to the calculations of trajectory, following the mission’s nature.

Figure 1.1: Artist Impression of a shuttle during reentry, by NASA/Science photo library.
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1.2 The importance of a TemperatureProtective Shield (TPS)

In this subsection, we will continue to follow the knowledge shared by the National Aeronau­

tics and Space Administration ­ NASA ­ [6, 7] explaining why the TPS is an essential part of

the RLV.

As mentioned before, the surface temperature of the RLV may reach or even surpass values

of 1648°C. The RLV will need a protective shield dedicated to isolating the inner layers of

metal of the vehicle and the life inside if the case applies. The TPS must also guarantee the

well­being of the control and monitor systems throughout all the reentry mission phases,

ensuring the maneuverability of the RLV especially at critical stages of flight.

The materials used in the TPS must also endure forces due to deflection caused by tempera­

ture variations it suffers, given the fact that the RLV is not only subjected to substantial heat

during reentry but also to extremely negative temperatures of ­156°C when it travels through

cold space.

Additionally, the TPS must be capable of protecting the RLV even when abort situations oc­

cur, drastically increasing temperature to a peak level provoking high deflections and stress

inside the TPS inner layers. Examples of these abort missions could be found in [8]:

• Abort To Orbit (ATO), where the vehicle can temporarily achieve an orbit that is lower

than the nominal orbit. This mode allows for the crew to evaluate possible existing

problems and decide whether to return to Kennedy Space Center (KSC) or to raise the

orbit and continue the mission;

• Abort Once Around (AOA), designed to allow the shuttle to go around Earth one time

and make a normal entry and landing;

• Return To Launch Site (RTLS), where the shuttle returned to the KSC approximately

25 minutes after lift­off and after the dissipation of propellant;

• Transatlantic Landing Abort (TLA), when the return to the KSC reveals itself impossi­

ble and the shuttle will land on the other side of the Atlantic Ocean, being the trajectory

a ballistic one not requiring the use of an orbital maneuvering system maneuver.

3



To enhance the knowledge on the possible abort situations that can occur, the fig. (1.2) is

displayed:

Figure 1.2: Space Shuttle Ascent Abort Scenarios. [6]

The TPS is then composed of several materials as reinforced carbon­carbon, flexible reusable

surface insulation, and ceramic tiles which would be those who can endure the highest tem­

peratures of all. It was also important to guarantee a high emissivity throughout all coatings

to guarantee the maximum rejection of incoming convective heat through the radioactive

heat transfer, as explained in [6].

The application of these TPS around the space shuttle can be observed in the following image,

where we can see the tiles providing a smooth, aerodynamic surface while performing its role

of protection. Different categories of TPS are used across the body of the RLV given the fact

that the temperature heating peaks differ according to the zone of the vehicle being studied,

and the need to always get the lightest and cheapest viable option naturally exists. Another

impressive factor NASA has achieved with these TPS is the fact that they are reusable.

Figure 1.3: Orbiter’s Temperature Protective Shield. [6]
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1.3 Ballistic Reentry

There are two types of reentry trajectories, ballistic and lifting ones. The first case will be

analyzed in this subsection while the second one will be addressed in the next subsection.

This trajectory occurs when the vehicle is subject to no aerodynamic force besides the aero­

dynamic drag, which means the vehicle never produces lift force throughout all phases of

reentry (CL = 0 and L = 0).

In these trajectories, the most important element to control is the ballistic coefficient BC,

which following [2, 3, 9] is calculated by:

BC =
m

CDS
(1.1)

where m is the vehicle mass, CD is the drag coefficient, and S is the reference area of the

reentry vehicle. The ballistic coefficient is themost important factor in this kind of trajectory,

as the heating and deceleration are less intense with a lowBC value (low weight and/or high

drag and large frontal area) and for a bigger value of BC the opposite occurs.

The vehicles that do this type of reentry are blunt ones like capsules ormissiles with naturally

no generation of lift and given its speed of descent, the need for a powerful temperature

protective shield naturally surges.

Figure 1.4: Artist Impression of Mars Exploration Rover.
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Although this type of reentry exists and is still very important to study (for example the mis­

sile’s accuracy is of tremendous importance given the need to produce minimal civilian ca­

sualties), the objective of this dissertation is to develop an optimal and robust controller for

a RLV (where lift is produced) so this reentry trajectory will not be the one followed.

1.4 Lifting Reentry ­ A view over a typical shuttle reentry

For this section, we will consider a shuttle orbiting around Earth and how can we ensure its

reentry, each step of the way.

The reentry corridor is the width on which the possible reentry trajectories are found due to

the facts described in the following subsection.

1.4.1 Entry Corridor

One of the most recognized methods to plan the reentry trajectory of a RLV is the Entry

Corridor. To use this method, information of the mission is needed, as the Vehicle speed

Approach vi and the flight path angle γi at a certain distance ri.

For a RLV with a given ballistic coefficient, we can find two different constraints that limit

the corridor. The constraint onwhich the deceleration and heating rate is impossible to with­

stand, being that from the crew or the vehicle, and the constraint onwhich the vehicle will not

initiate the reentry phase due to the small gravitational force encountered when compared

to the momentum of the vehicle. The first constraint is the undershoot, and the second the

overshoot, as explained and summarized in [10].

The Entry Corridor can be defined by the region between the two constraints that create it,

the undershoot and the overshoot.

Figure 1.5: The reentry corridor. [10]
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Flights from circular or elliptical orbits can recover when the trajectory is undershooted by

an application of thrust at a large distance before initializing the reentry process.

On the other hand, if the given vehicle is at hypersonic velocity at an overshoot or under­

shoot trajectory, the guidance control is highly critical. For an undershoot trajectory the fuel

needed to correct the trajectory could be less than required. An overshoot trajectory at this

speed would also be difficult to correct, the vehicle would continue into the cold of space or

in a highly elliptic ejection, resulting in a considerable amount of time until its return [4].

This method will allow adding more constraints to our problem to further achieve a better

precision regarding the entry trajectory of the RLV. To give a greater insight on the problem

at hand, the shuttle’s orbiting speed is about 28.000 km/h ­ it critically needs to lose a lot of

speed to land on a specific runway and at a certain rate, so it doesn’t melt when descending

through the atmosphere. Safely losing all this speed is the key to this mission.

The beginning of the reentry phase consists of the exit of the shuttle’s current orbit. To do

so, the shuttle activates its maneuvering thrust engines, losing some of its speed and slowly

leaving its orbit. This way the shuttle will slowly start falling towards the earth’s atmosphere.

Since the shuttle is still at an overwhelming speed, it is necessary to take advantage of the

drag force presented once it starts entering Earth’s atmosphere.

1.4.2 Use of angle of attack (AoA)

With the shuttle now off the orbit, it needs to rotate itself to a certain AoA depending on the

version of the shuttle being studied, maintaining this angle of attack throughout its descent

[6]. The reason behind this is the urgent need for deceleration of the shuttle, and by main­

taining a certain AoA the shuttle produces enough drag to start the deceleration while its

temperature is possible to endure with its TPS.

In other words, if the AoA is smaller than the calculated value, the amount of drag produced

would not be enough to decelerate the shuttle. While on the other hand with the angle of at­

tack bigger than the same value the thermal energy produced by the friction between Earth’s

atmosphere and the shuttle would raise the temperature to a point where the TPS would not

endure.

There is, however, a certain interval on which the angle of attack can variate, which is ­3° to
+3° from the needed AoA.
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Figure 1.6: Representation of the shuttle’s angle of attack during reentry. [6]

1.4.3 Use of Bank Angle

While descending with an AoA that produces considerable deceleration, aerodynamic lift (L)

is also produced. As the altitude of the shuttle drops, Earth’s atmosphere becomes denser

and the lift produced is sufficient to impede the shuttle’s reentry into the atmosphere [6].

The solution found to solve this problemwas the use of the bank angle, maintaining the angle

of attack. The bank angle is the angle made between the longitudinal axis of the shuttle and

the vertical axis. By varying this angle, the vertical vector of lift becomes smaller than in the

initial case allowing the shuttle to continue its decrease in altitude. On the other hand, the

alteration of the bank angle will make the shuttle turn in the direction he is changing but has

will be shown in fig. (1.7), it is constantly beingmonitored to change in the opposite direction

to ensure its landing on the desired runway.

The bank angle can also be used to control howmuch deceleration is still needed to enter the

final phase where the pilots take full command of the shuttle and prepare for landing. If we

use a steeper bank angle, more deceleration is produced, and vice­versa.

Figure 1.7: Representation of the shuttle’s bank angle. [6]
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Finally, the shuttle will have reached the velocity needed to start preparing its landing and its

angle of attack can now decrease. This phase is called TAEM– Target Area EnergyManage­

ment – which is not related in terms of control or maneuvers with the trajectory of reentry

being studied. This phasewill then not be included in this thesis since it is wheremanual con­

trol from the shuttle’s pilots takes place. The controller produced will only be responsible for

the trajectory of reentry until this phase has begun.

1.5 Common Assumptions Made

In this section the possible assumptions that can be made when we estimate the optimal

trajectory of reentry will be discussed. Each assumption made will have a significant impact

on the final result of the problem.

In the last ten years, many researchers have investigated new strategies to quickly gener­

ate a feasible and complete three­degree­of­freedom (3DOF) reentry reference trajectory for

hypersonic vehicles [11].

Given the high processing power needed to calculate the trajectory of reentry most of the

calculations are done on land and preloaded into the hypersonic vehicle before its take­off

[11].

One of the most important assumptions made is the use of the spherical model of the Earth

in the calculations of the reentry trajectory. It is a known factor that Earth has an elliptical

form which can be observed by the cross­section of all the meridians. However, the benefits

obtained by considering the Earth as a spherical body significantly justify the precision lost

in the procedure as was made in [12, 13, 14].

Regarding Earth’s rotation, there are two decisions that can be made: consider earth as a ro­

tating body or as a stationary body. Considering the Earth’s rotation as part of the equations,

despite adding slightly more precision to the final results the outstanding difference in algo­

rithm complexity makes the decision of considering the Earth as a stationary Body a viable

decision, as was used in [14, 15, 16]. It would also require the monitoring of the inclination

of trajectory to the equator at all times.

With these facts in mind, the method followed in this dissertation was the spherical non­

rotating Earth.
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Figure 1.8: Earth as a Spherical Model [17].

1.6 State of Art

As stated previously, establishing a reference reentry trajectory that ensures the integrity of

the RLV throughout its descend presents a difficult challenge. For many years researchers

have been looking for an optimal constrained reentry for hypersonic vehicles as stated in [11].

The development of a controller that ensures the RLV follows such a trajectory becomes a

crucial task. Throughout the years, researchers have been looking for ways to develop a con­

trol system capable of stabilizing the RLV, returning it to the reference trajectory regardless

of the disturbances suffered during its descend.

Marwan Bikdash et al. designed a fuzzy guidance for the shuttle orbiter during atmospheric

reentry [18]. In it, the authors designed the reference trajectory using a drag­acceleration

vs velocity profile. Making use of Sugeno approximations, the authors trained hybrid fuzzy­

crisp interference systemswith examples of past reentries. Moreover they utilized the surface­

tracking guidance to alter the reference trajectory if therewhere severe disturbances affecting

it. The algorithm was capable of stabilizing the RLV and alter the reference trajectory in the

shown cases.

A predictor­corrector reentry guidance was proposed by Xiaoping Guo et al. in [19] based on

Feedback Linearization to reduce the difference between reference trajectory and the RLV

current state after an applied disturbance. The authors used the Quasi Equilibrium Glide

Condition as another constraint and controlled the vehicle with the same control variables

as in this dissertation ­ α and σ.

Another Predictive Controller was designed by Tao Ye et al in [20]. In this paper, the au­
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thors first designed the reference trajectory using nominal trajectory guidance method. The

predictive control was developed using Gaussian pseudospectral method and the vehicle is

subjected to disturbances to verify the controller’s efficiency. The controller was capable of

guiding the vehicle even when subject to external disturbances. However, the disturbances

imposed were not of the same magnitude as the disturbances presented in this dissertation.

M.H. Breitnermade use ofRufus Philip Isaacsnonlinear first­order partial differential equa­

tions to set up interior and boundary conditions, being the restrictions to the RLV similar to

this dissertation [21]. Then, using neural networks and a multiple shooting method, the au­

thor produced a robust optimal guider for the RLV throughout its descent. The algorithm

presented satisfying results and proved real­life applicability in its theory and numerical

methods.

1.7 Objective

The objective of this dissertation is to create an optimal H∞ control which ensures the ma­

neuverability of a reentry lifting vehicle and its control throughout its reentry. The controller

must guarantee that the vehicle reentering the atmosphere follows the trajectory desired,

even when subjected to noise and disturbances during its flight.

Furthermore, it is desirable for the controller to be robust which implicates the capability of

stabilizing the vehicle regardless of the number of disturbances applied and their magnitude.

The objective will be considered full­filled if the difference between a non­controlled and

controller trajectory can be clearly observed and of course, if it shows the positive implication

of having the controller applied to the presented dynamic system.

The final objective of this dissertation will reside in the insights on the efficiency of the H∞

controller and the reasons behind it: not only the effectiveness of the controller must be

studied, but also if it answers quickly to disturbances, and on which systems could it do an

even more outstanding job.

1.8 Structure

The contents of this dissertation will begin with the Reentry Flight Dynamics Model (Chap­

ter 2) where the dynamics and restrictions that make part of Reentry Trajectories will be

explained. Following, the dissertation will move to the trajectory analysis (Chapter 3) where

a trajectory that was already developed will be analyzed in order to check its validity and to

verify if it can be useful or not in thisH∞.

Following the trajectory verification and validation, the project for the controller takes place

(Chapter 4), being in this chapter where the controller and its methodology are fully ex­
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plained. Finally, the controller will be subjected to disturbances and noise, allowing the rep­

resentation of the results of its application (Chapter 5). The conclusions of the work done in

the dissertation as well as possible next projects to be made on this matter will be suggested

in Chapter 6.
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Chapter 2

Reentry Flight Dynamics Model

To be capable of designing and projecting the controller for the RLV the need to use an esti­

mation of trajectory surged. In this chapter, the equations that will allow the calculation of

each variable that describes the movement of the RLV during its descent will be reviewed.

Additionally, the state vector on which the variables that describe the position and velocity

of the RLV, as well as the control vector of its movement, will be presented. Through them,

the full calculation of the reentry trajectory is achievable given the possibility to accompany

the RLV in each step of its descent.

Finally, given that the reentry trajectory calculation is a highly non­linear problem that counts

and obeys the constraints already explained, the equations used to calculate each one ­ Heat­

ing Rate, Dynamic Pressure and Maximum Deceleration ­ will be described.

2.1 Coordinate Frame

The coordinate system used for this dissertation will be a Planet­Fixed frame. Firstly, it is

designed a Geocentric­Equatorial Coordinate Frame where its origin resides in the center of

motion (COM) of the planet Earth. Its axisX will be directed to the GreenwichMeridian and

the axis Y will be directed such that it lies in the equatorial plane and makes a 3­axis system

with the axis X and Z with a 90° angle between each one [4, 10, 22]. The coordinate system
can be seen in fig. (2.1):

Figure 2.1: Coordinate Frame. [22]
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where r represents the distance between theCOMof the planet and theCOMof the reentering

vehicle. The longitude will then be represented by θ and the latitude by ϕ.

The symbol σ represents the angle between the vehicle longitudinal symmetry plane and the

vertical plane, otherwise known as the bank angle and γ represents the velocity flight angle.

The letter V represents the velocity vector of the vehicle at a given moment in time and ψ is

the heading angle measured from North.

Throughout this work, h will sometimes be used instead of r, while the only difference be­

tween these two variables is the Earth’s radius:

r = h+R (2.1)

with R representing the Earth’s Medium Radius (6.371.009 m).

2.2 Reentry Dynamics

The 3DOF equations of a hypersonic vehicle reentering the atmosphere consider earth as a

spherical and non­rotating body, and are shown as in [23]:

ḣ = v sin(γ) (2.2)

ϕ̇ =
v cos(γ) cos(ψ)

r
(2.3)

θ̇ =
v cos(γ) sin(ψ)

r cos(ϕ)
(2.4)

v̇ =
−D
m

− g sin(γ) (2.5)

γ̇ =
L cos(σ)

v m
− g

v
cos(γ) +

v

r
cos(γ) (2.6)

ψ̇ =
L sin(σ)

m v cos(γ)
+
v

r
cos(γ) sin(ψ) tan(ϕ) (2.7)

where v stands for the velocity relative to Earth as a scalar. The other variables were already

explained in the previous sub­section. Earths gravity acceleration is represented by the letter
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g and it’s calculated according to the RLV’s altitude h:

g = g0

(
R

R+ h

)2

(2.8)

where g0 is the gravity Acceleration at sea level (g0 = 9, 80665 m/s), R represents Earth’s

medium radius as stated previously and R + h represents the sum between Earth’s medium

radius and the RLV’s altitude, which can be presented as r (eq. (2.1)).

Since the vehicle is an RLV, it will be subjected to both aerodynamic forces of lift L and drag

D which can be calculated as follows:

L =
1

2
ρ v2 S CL (α,Ma, σ, δe) (2.9)

D =
1

2
ρ v2 S CD (α,Ma, σ, δe) (2.10)

where S is the reference area of the RLV and m the reference of its mass. CL and CD being

the lift and drag coefficient, respectively, and will be calculated according to the AOA ­ α ­,

bank angle σ, elevator angle δe andMach numberMa= v
sound velocity . The atmospheric density

ρ is calculated by:

ρ = ρ0 exp

(
− h

hs

)
(2.11)

where ρ0 is the atmospheric density at sea level, h is the current altitude of the vehicle when

compared to the sea level and hs is the scalar height coefficient [12].

The lift and drag coefficient can be calculated as in [24]:

CL = CL0 + CLα α+
c̄

2V

(
CLα̇ α̇+ CLqp qp

)
+ CLδe δe (2.12)

CD = CD0 + CDα α+
c̄

2V

(
CDα̇ α̇+ CDqp qp

)
+ CDδe δe (2.13)

where qp represents the pitch rate and α the AOA.CL andCD are calculated by several parts:

• CL0 and CD0 are related to the RLV body;

• CLα and CDα are related to the current AOA;
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• CLδe and CDδe are related to the elevator’s deflection.

To calculate the pitch rate, we first need to clarify the reasoning behind it. Considering the

letter λ as the pitch angle, the following assumption can be made:

λ = α+ γ (2.14)

that is, the pitch angle is the sum of the AOA ­ α ­ and the flight path angle ­ γ ­ which can be

visualized in fig. (2.2).

Figure 2.2: Representation of an Aircraft’s Pitch Angle, adapted from [25].

With the value of the pitch angle λ, it is now possible to obtain the value of the pitch rate q

by use of the following equation found in [24]:

λ̇ = q cos(σ)− h sin(σ) (2.15)

Isolating qp and deriving the eq. (2.14) it is now possible to calculate the pitch rate as:

qp =
h sin(σ) + α̇+ γ̇

cos(σ)
(2.16)

With the reentry dynamics fully explained it is now possible analyze its state vector to allow

the control of RLV and monitor the aircraft along the reentry trajectory.
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2.3 State Vector

To estimate the trajectory, the state vector of the RLVmust describe its condition throughout

all reentry phases. Based on the flight dynamics equations, the state vector of the vehicle can

be described as:

x =



ḣ

ϕ̇

θ̇

v̇

γ̇

ψ̇


(2.17)

where [ḣ, ϕ̇, θ̇] represents the position variation vector in spherical coordinates and [v̇, γ̇, ψ̇]

represents the velocity variation vector also in spherical coordinates:

• ḣ – altitude variation of the RLV;

• ϕ̇ – latitude variation of the RLV;

• θ̇ – longitude variation of the RLV;

• v̇ – velocity variation of the RLV;

• γ̇ – flight variation path angle of the RLV;

• ψ̇ – heading variation angle of the RLV.

With these variables in the state vector the projection of the controller and the constantmon­

itoring of its flight throughout all phases of flight becomes possible.

2.4 Control Vector

The rotation of the vehicle or the variation of its AoA is controlled by the action of its aerody­

namic surfaces, such as flaps, rudder, and elevator. Assuming β = 0 and β̇ = 0 ­ which means

the RLV drifting angle and its variation is zero ­ the control vector is represented as:

u =

[
α̇

σ̇

]
(2.18)

With the state and control vector represented the system can now be described, being the

constraints that will limit the flight profile of the RLV represented in the next subsection.
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2.5 Applied Constraints

The constraints used to limit our problem were inspired by the work presented in [2, 3, 12,

26].

2.5.1 Heating Rate

Q̇s is the heating rate of the vehicle at a certain point, whichmust be limited by themaximum

heating rate the vehicle can endure and is calculated by:

Q̇s ∼= kQ v
3

√
ρ

rnose
≤ Q̇smax (2.19)

where kQ is the heating rate normalization constant, rnose is the vehicle’s nose radius and

Q̇smax is the maximum heating rate the vehicle can withstand. The value kQ = 1, 75E −
04
√
kg/m was used as in [3].

2.5.2 Dynamic Pressure

Dynamic pressure presents itself with the letter q and it is limited to control the hinge mo­

ment of an actuator in a determined range. The dynamic pressuremust be less than a certain

maximum value, and it is calculated by:

q =
1

2
ρ v2 ≤ qmax (2.20)

2.5.3 Maximum Deceleration

As mentioned before, there will be a limit to how much deceleration will the vehicle be sub­

jected to. In section (1.1) was stated that the maximum deceleration a human can withstand

is 12 g′s. However, it will be limited to 3 g′s not only for structural reasons but for the comfort

and well­being of the RLV’s crew.

The deceleration is calculated as:

a =
v2 ω sin(γ)

2e
≤ amax (2.21)

where ω represents the atmospheric scaled height, a parameter used to describe the density

profile of the atmosphere. The letter e represents the base of the natural logarithm [2].
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2.5.4 Controllability of the RLV

To ensure the controllability of the RLV we must ensure that the AoA, bank angle, elevator

and rudder angle stay within certain limits:

αmin ≤ α ≤ αmax, |α̇| ≤ α̇max (2.22)

σmin ≤ σ ≤ σmax, |σ̇| ≤ σ̇max (2.23)

being α̇max, σ̇max ≤ 5°/s, αmin = 0°, αmax = 60°, σmin = −89° and σmax = 90°.

With the above­mentioned restrictions, we form our entry corridor (represented in fig. (1.5))

on which we will find the optimal trajectory for the RLV and then project the controller for

it.

2.6 Output Vector

The output vector will be composed with the Geodetic Coordinates Variation ­ ϕ̇, θ̇ and ḣ ­

making it possible to transform them into Geodesic coordinates if there is a desire to do so.

The output vector will then be as follows:

y =

ϕ̇θ̇
ḣ

 (2.24)
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Chapter 3

Reentry Trajectory Analysis

This chapter will consist on the analysis of the trajectory on which the controller will be de­

signed. To ensure the validity of the controller that will be developed, this trajectory must

resemble one of a real shuttle ­ such as the Orbiter, for example ­ and follow the dynamics

and restrictions explained throughout the previous chapters.

As the objective of this dissertation is not to develop a trajectory but to develop an optimal

and robust controller that could be implemented on the RLV’s software, the possibility to use

an adequate trajectory already developed surged. Such trajectory was found and created by

Henrique Ferrolho and its creation will be deeply explained in this chapter.

The code provided a trajectory of reentry that was inspired in the problem suggested in chap­

ter 6 of “Practical Methods for Optimal Control and Estimation Using Nonlinear Program­

ming” by John T. Betts [27].

3.1 Trajectory Estimation as an Optimal Control Problem

Designing the best possible reentry trajectory for a shuttle is a highly nonlinear estimation

problem. The nonlinear behavior of this problemmakes the use of a simple shootingmethod

impossible.

John T. Betts presents a possible way to solve this problem, using the same reentry flight

dynamics presented in chapter 2 of this dissertation (section 2.2). That is, all the equations

that fully describe the RLV’s state throughout its reentry are the same as in the problem

presented. The restrictions used to solve the nonlinear problem revealed to be the same as

in the previous chapter.

3.1.1 Objective Function

To reach the solution of the problem the need to set an objective function existed. There

are three possibilities to consider in choosing the objective function behind the trajectory

design algorithm. As shown in [27], the objective function can be the minimization of the

heating rate of the RLV during reentry, the maximization of the cross­range of the vehicle

during reentry or the maximization of the down­range of the vehicle during reentry. For the

presented dissertation, the objective function will be the maximization of the cross­range of
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the RLV.

J = ϕ(tf ) (3.1)

in which J represents the objective function. Maximizing the cross­range of the vehicle is

the same as maximizing the final latitude of the RLV, hence the transformation to ϕ in the

previous formula.

Themaximization of the down­rangewouldproduce themaximization of the longitude, which

would also be a well­designed and possible desired trajectory, but the optimizer used for this

project couldn’t converge on a suitable solution for that objective function.

Initial and final conditions for the vehicle were also displayed. The initial conditions repre­

sent the beginning of the RLV’s descent through Earth’s Atmosphere as the final conditions

represent the start of the TAEM, the phase on which the RLV’s crew takes over the control

and maneuverability of the vehicle. Both conditions were set in English Units, which will

later be converted to SI units after the implemented code.

3.1.2 Initial conditions, RLV’s characteristics and Final conditions

The initial conditions to the problem were first described in [27]. However, to further en­

hance the understanding of the problem, two problems were created differing only in the

initial condition γi, both following the information found in [5]:

trajectory 1 trajectory 2

hi = 400.000 ft hi = 400.000 ft

ϕi = 0 deg ϕi = 0 deg

θi = 0 deg θi = 0 deg

vi = 25.600 ft/s vi = 25.600 ft/s

γi = −1, 1 deg γi = −5 deg

ψi = 90 deg ψi = 90 deg

Table 3.1: Initial Conditions in Imperial Units

trajectory 1 trajectory 2

hi = 121.920 m hi = 121.920 m

ϕi = 0 rad ϕi = 0 rad

θi = 0 rad θi = 0 rad

vi = 7.802, 88 m/s vi = 7.802, 88 m/s

γi = −0, 0192 rad γi = −0, 0873 rad

ψi = 1, 5708 rad ψi = 1, 5708 rad

Table 3.2: Initial Conditions in SI units

with the following RLV characteristics and subjected to the following earth acceleration:

m = 203.000 lb

S = 2.690 ft2

g0 = 32, 174 ft/s2

Table 3.3: RLV’s Characteristics in Imperial Units

m = 92.079, 251 kg

S = 249, 91 m2

g0 = 9, 8066 m/s2

Table 3.4: RLV’s Characteristics in SI units

As mentioned before the reentry trajectory will end with the start of the TAEM phase which

will start when the vehicle reaches the following numbers:
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hf = 80.000 ft

vf = 500 ft/s

γf = −5 deg

Table 3.5: Final Conditions in Imperial Units

hf = 24.384 m

vf = 152, 4 m/s

γf = −0, 0873 rad

Table 3.6: Final Conditions in SI units

In this subsection, some alterations to the original setup weremade because of the data given

in [27] was not matching the information found in [5]. For example, the altitude of descent

and the initial flight path angle (only of trajectory 1) ­ 400, 000 ft instead of the 260, 000 ft,

γi = ­1.1° instead of γi = ­1° ­ had to be changed. There were also some differences in the
restriction values found in the code explained in the next section, which were corrected.

3.2 Algorithm of the Reference Reentry Trajectory

As mentioned before, since the objective of this dissertation is not to develop a reentry tra­

jectory but an optimal and robust controller to be implemented in the RLV, the possibility of

using an already existing code rose.

As a solution to this matter, a code that was part of an open MIT license was found. In this

code, Henrique Ferrolho solved the exact problem of chapter 6 from [27] with the help of

JuMP, a specific domain that belongs to Julia’s programming language. Julia presents itself

as a language designed specifically for high performance. While the computing power needed

is great, the achieved precision justifies the problem. Given the high difficulty of solving the

reentry problem,Henrique Ferrolho decided to code in this language.

The JuMP domain is a modeling language that supports packages for mathematical opti­

mization in Julia. It facilitates the formulation and solving of linear programming, integer

programming, semidefinite programming, convex optimization, related classes of optimiza­

tion problems, and constrained nonlinear optimization – which is the case of the problem

presented [28].

The optimizer used to find the solution to the reentry trajectory problem was the interior­

point optimizer. This optimizer is widely used in many different problems being capable of

solving linear andnonlinear problems, according to the user’s needs. Themethoduses the re­

strictions as guidelines and transforms them so that a linear program that can operate them.

After doing so, Newton’s method is applied to continuously obtain better solutions, until the

optimal solution is found within the barriers formed by the restrictions of the problem [29].

Briefly explaining the code, the optimizer starts at the initial conditions described in subsec­

tion 3.1.2 and varies each parameter from the vehicle’s state vector in a time step of 4 seconds,

with the objective of maximizing the final cross range of the RLV’s until the final conditions
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are reached. For each time step, an array for that specific time is being created such as:

x(tk) =



ḣ(tk)

ϕ̇(tk)

θ̇(tk)

v̇(tk)

γ̇(tk)

ψ̇(tk)


(3.2)

Using as control variables the following array:

u(tk) =

[
α̇(tk)

σ̇(tk)

]
(3.3)

where k represents the current cycle of the code. Compiling the arrays in a matrix will then

allow the full study of the reentry trajectory of the vehicle and the projection of the code for

the optimal controller.

In each step of the code the variables calculated were integrated resulting in the values of

altitude, latitude, longitude, velocity, flight path angle, heading angle, angle of attack, and

bank angle of the RLV:

x̄(tk) =



h(tk)

ϕ(tk)

θ(tk)

v(tk)

γ(tk)

ψ(tk)


(3.4)

ū(tk) =

[
α(tk)

σ(tk)

]
(3.5)

The code produced byHenrique Ferrolho can be found in [30] and is totally open for public

use, being it as it is presented, or to change it in any way the user pleases. As stated before,

the used code had some alterations when compared to the original one, since some of the

constant values used in the original were not a match to a real shuttle as was explained in

subsection 3.1.2.
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3.3 Trajectory and Obtained Results

From this chapter on, the code used to design the controller will bemade in Python. To do so,

thematrix of variables that describes the trajectory was extracted from both cases (presented

in table (3.1.2)). The matrix of variables that described the control variables of the vehicle

was also extracted. Following, graphs were plotted to better see the trajectory mentioned.

The matrices extracted contained the final data, that is, the integrated data. This was a per­

sonal choice, justified by the following reasoning: if the data produced by Julia represented

a trustworthy trajectory, I wanted to start with the raw data that is provided and recalculate

every derivative or variation of all the variables inside the same program ­ Python. This way

each error or imprecision was easily traceable and hopefully able to correct.

The generic matrix extracted for each case were as follows:

M =



hi ... hf

ϕi ... ϕf

θi ... θf

vi ... vf

γi ... γf

ψi ... ψf


(3.6)

in which the ”i” subscript represents the initial and the ”f” the final state of the system.

For the case with γi = ­1, 1°, the matrix extracted will be named matrix Tj . For the other case
in study, with γi = ­5°, the matrix extracted will be named matrix Zj . The ”j” subscript sym­
bolizes the origin behind these matrices ­ Julia code. Each of the matrices has a dimension

of 6 x 600, that is, 6 rows and 600 columns and can be described as:

Tj =M(γi = −1°) Zj =M(γi = −5°) (3.7)

To finalize the description of themovement of the RLV’s throughout its descend, further data

must be retrieved from Julia code: the control matrix which describes the development of

the angle of attack ­ α ­ and of the bank angle ­ σ:

N =

[
αi ... αf

σi ... σf

]
(3.8)
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As previously, for the case with γi = ­1, 1°, the matrix extracted will be named matrix NTj .

For the other case with γi = ­5° the matrix extracted will be named matrixNZj . The matrices

can then be described as:

NTj = N(γi = −1°) NZj = N(γi = −5°) (3.9)

Finally, the time step ts used to calculate each value of all variables extracted was 4 seconds

till it reached 2396 seconds, forming the vector:

ts =
[
0 4 ... 2392 2396

]
(3.10)

In the next subsection all the graphics obtained will be displayed, allowing the comparison

of entering the atmosphere with a standard entry angle (γi = ­1, 1°) and with a deeper steep
reentry (γi = ­5°). Additionally, the restrictions displayed in eq. (2.19), (2.20) and in (2.21)
will be described to see if any restriction surpasses its maximum allowed value.

3.3.1 First case, with γi = ­1, 1°

The results obtained by plotting the matrix Tj with the time step ts were the following:

(a) (b)

Figure 3.1: (a) RLV’s altitude evolution for γi = ­1, 1°; (b) RLV’s latitude evolution for γi = ­1, 1°
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(a) (b)

Figure 3.2: (a) RLV’s longitude evolution for γi = ­1, 1°; (b) RLV’s velocity evolution for γi = ­1, 1°

(a) (b)

Figure 3.3: (a) RLV’s flight path angle evolution for γi = ­1, 1°; (b) RLV’s heading angle evolution for γi = ­1, 1°

Secondly, the values obtained by plotting the Matrix NTj with the time step ts:

(a) (b)

Figure 3.4: (a) RLV’s angle of attack evolution with for γi = ­1, 1°; (b) RLV’s bank angle evolution for γi = ­1, 1°
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The values of the restrictions were then calculated as explained in 2.5:

(a) (b)

Figure 3.5: (a) RLV’s Heating Rate for γi = ­1, 1°; (b) RLV’s dynamic pressure for γi = ­1, 1°

Figure 3.6: RLV’s deceleration for γi = ­1, 1°

The 3D space shuttle trajectory obtained for this case using the values of ϕ, θ and h:

Figure 3.7: Space Shuttle Trajectory for γi = ­1, 1°
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3.3.2 Second case, with γi = ­5°

The results obtained by plotting the matrix Zj with the time step ts were the following:

(a) (b)

Figure 3.8: (a) RLV’s altitude evolution for γi = ­5°; (b) RLV’s latitude evolution for γi = ­5°

(a) (b)

Figure 3.9: (a) RLV’s longitude evolution for γi = ­5°; (b) RLV’s velocity evolution for γi = ­5°

(a) (b)

Figure 3.10: (a) RLV’s flight path angle evolution for γi = ­5°; (b) RLV’s heading angle evolution for γi = ­5°
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Secondly, the values obtained by plotting the Matrix NZj with the time step ts:

(a) (b)

Figure 3.11: (a) RLV’s angle of attack evolution for γi = ­5°; (b) RLV’s bank angle evolution for γi = ­5°

The values obtained for the constraints explained in 2.5 were as follows:

(a) (b)

Figure 3.12: (a) RLV’s Heating Rate for γi = ­5°; (b) RLV’s dynamic pressure for γi = ­5°

Figure 3.13: RLV’s deceleration for γi = ­5°
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The 3D space shuttle trajectory obtained for this case using the values of ϕ, θ and h:

Figure 3.14: Space Shuttle Trajectory for γi = ­5°

3.4 Discussion of Results

By observing the two cases shown ­ subsection 3.3.1 and subsection 3.3.2 ­ we can see that a

reentry trajectory with a steeper flight path angle, produces severe changes in the constraints

studied and therefore, in the reentry trajectory itself.

Firstly, through mere analysis of the difference between the graphics (3.5(a)) and (3.12(a)),

we can see that the heating rate massively impacts the vehicle on the second case reaching

values of 2.210.000 W/m2, while the values of the first case reach only up to 930.000 W/m2.

Being subjected to a less powerful heating flux presents a pleasing factor for all the tiles and

materials on its TPS, especially for its maintenance and integrity.

There is also a significant difference between the two cases on the deceleration of the RLV.

In the second case, the deceleration of the RLV reaches values of ­13 g’s which is more than

a human can withstand. A steeper reentry needs to decelerate much faster than one with a

smaller flight path angle of reentrymaking it impossible for theRLV to be occupied by human

life ­ which is, in the case of a shuttle, an impossible trajectory.

It is also possible to observe differences in the dynamic pressure felt by the RLV in both cases.

However, it is not such a significant difference when compared to the other two restrictions

where we can clearly see the consequences of a steeper reentry trajectory.

On all the graphics displayed, it can be verified that not only the maximum values of the

restrictions were in the second case violated, but the variations of each restriction and vari­

able were remarkable, being surely felt inside the RLV and potentially setting its structure,
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integrity and mission at risk.

In this dissertation the trajectory followed will be the first example. Entering with a flight

path angle γi = ­1, 1° is indeed closer to a standard shuttle reentry trajectory, as it represents
a trajectory on which the deceleration of the RLV is bearable, its heating rate does not exceed

the maximum heating rate of a shuttle and its dynamic pressure is more balanced.
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Chapter 4

Design of the Optimal Controller

In this chapter, the development of the robust controller for the reentry motion of the RLV

will be described. Each thought taken to do so will also be explained in this chapter.

To start the development of the algorithm behind the controller, it is firstly needed to obtain

functions that best describe the data obtained and graphically displayed in figs.(3.1), (3.2),

(3.3) and (3.4). That is, to estimate functions that describe the altitude, latitude, longitude,

velocity, flight path angle, heading angle, angle of attack, and bank angle of the RLV through­

out time.

Secondly, given that the reentry problem is a highly non­linear one, the need to proceed to

its linearization appears, to allow the afterward calculations andH∞methodology. The need

to proceed to this linearization will be briefly described in this chapter.

With the system fully linearized, the state feedback controllerH∞ concept shall be introduced

and it will be revealed why it was thought to be the correct type of optimal controller to use

in this case.

Finally, the architectural procedure behind the algorithm of the controller itself will be sum­

marized. Alterations made on the standard method were made and will be described.
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4.1 Functions Extracted

After obtaining the graphs presented in figs. (3.1), (3.2), (3.3) and (3.4) functions that esti­

mate the development of these variables needed to be acquired.

Python offered a solution: a tool named Curve Fit, by the library Scypy, in which it automat­

ically calculates the best approximate functions existing between the independent variables ­

h, ϕ, θ, v, γ, ψ, α and σ ­ and their dependent one ­ t ­ using non­linear least­squares method.

To give a more perceptible example, the estimate functions retrieved for each of these vari­

ables were the following:

(a) (b)

Figure 4.1: (a) RLV’s Altitude Estimated Function; (b) RLV’s Latitude Estimated Function

(a) (b)

Figure 4.2: (a) RLV’s Longitude Estimated Function; (b) RLV’s Velocity Estimated Function
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(a) (b)

Figure 4.3: (a) RLV’s Flight Path Angle Estimated Function; (b) RLV’s Heading Angle Estimated Function

(a) (b)

Figure 4.4: (a) RLV’s Angle of Attack Estimated Function; (b) RLV’s Bank Angle Estimated Function

As stated previously, the final variations of the flight path angle and angle of attack come

from within the Julia code on which its optimizer produced that abnormal variation. The

procedure made to partly compensate this was to estimate both functions until the variation

began, which meant to estimate the functions until t ≈ 2200seconds.

It is important to state that Curve Fit itself wasn’t able to reproduce good estimate functions

using Fourier, High Gaussian, Exponential or Power Modules for the development of the

variables presented, making it harder to reproduce well­estimated data. The main functions

Curve Fit used with finesse to estimate the data desired were Polynomial functions orGaus­

sian but with 2­3maximum terms.

With all these factors in mind, it is reasonable to affirm that the estimated data represents

satisfying results of function estimation for all variables, making it possible to obtain the

following functions:
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ḣ = 96939.949 e−
t−74.941
308.902 + 46501.781 e−

t−468.650
204.130 + 30702.078 e−

t+8.821
38.193 (4.1)

ϕ̇ = −3.038E − 07 t3 + 3.5360E − 04 t2 − 4.531E − 02 t+ 1.363E + 00 (4.2)

θ̇ = −2.291E − 07 t3 − 7.055E − 05 t2 + 2.890E − 01 t− 5.414E − 01 (4.3)

v̇ = 1.955E − 05 t3 − 3.438E − 02 t2 + 1.775E + 00 t+ 7.721E + 03 (4.4)

γ̇ = −2.542E − 07 t3 + 1.784E − 04 t2 − 3.136E − 02 t+ 7.021E − 01 (4.5)

ψ̇ = 1.578E − 07 t3 − 3.328E − 04 t2 + 3.070E − 03 t+ 8.944E + 01 (4.6)

α̇ = −7.735E − 08 t3 + 5.704E − 05 t2 − 1.009E − 02 t+ 1.760E + 01 (4.7)

σ̇ = −8.991E − 07 t3 + 1.015E − 03 t2 − 2.077E − 01 t+−5.271E + 01 (4.8)

With these equations fully calculated is now possible to estimate the state and control of the

vehicle in each time step.

4.2 Linearization of the system

Despite the fact that this system is a highly­nonlinear one, it is possible to approximate it to

a rather linear behavior within a certain operating range of an equilibrium point, as stated in

[31]. The calculation of equilibrium points is made by fixing a given u = u∗ and calculating

the respective equilibrium state x = x∗ ­ which becomes the equilibrium point.

Solving the highly­nonlinear system as it was would be unfeasible, whereas solving the ap­

proximate system of linear differential equations is achievable. The application and configu­

ration of theH∞ controller is nowwithin reach, where it wouldn’t bewithout the linearization

of the initial system.

On the other hand, using this method may produce some inaccuracies on the neighborhood

of the equilibrium points, given that the result from the nonlinear system is only exactly the

same as in the linear system at those specific points. Nevertheless, the advantages of using

the linearization procedure deeply compensate for the consequential disadvantages [32].

After linearization, the system can be described as:

Σ =

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = Ex(t)
(4.9)

where A is the state matrix, B the control matrix and E the output matrix.

Consideringx(t) as previous described in eq. (3.2), the state of the systemcan also be referred
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as:

f1(x, u) = ḣ (4.10)

f2(x, u) = ϕ̇ (4.11)

f3(x, u) = θ̇ (4.12)

f4(x, u) = v̇ (4.13)

f5(x, u) = γ̇ (4.14)

f6(x, u) = ψ̇ (4.15)

where each function fn is related to the state x and the control vector u at a given moment in

time. The matrix f can then be defined as:

f(x, u) =



f1(h, ϕ, θ, v, γ, ψ, α, σ)

f2(h, ϕ, θ, v, γ, ψ, α, σ)

f3(h, ϕ, θ, v, γ, ψ, α, σ)

f4(h, ϕ, θ, v, γ, ψ, α, σ)

f5(h, ϕ, θ, v, γ, ψ, α, σ)

f6(h, ϕ, θ, v, γ, ψ, α, σ)


(4.16)

The linearization starts by obtaining the matrices A and B described in eq. (4.9). To do so,

each function fnmust be derived for each variable as is shown in section 2 of [31]. Thematrix

A is then described as:

A =



∂(f1)
∂(h) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ... ∂(f1)
∂(ψ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f2)
∂(h) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ... ∂(f2)
∂(ψ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f3)
∂(h) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ... ∂(f3)
∂(ψ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f4)
∂(h) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ... ∂(f4)
∂(ψ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f5)
∂(h) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ... ∂(f5)
∂(ψ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f6)
∂(h) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ... ∂(f6)
∂(ψ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)


(4.17)

where each element of the matrix is calculated according to the equilibrium state x∗ corre­

sponding to the equilibrium point u∗, that is, by using the functions extracted in subsection
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4.1 in each time step. The matrix B will then be defined as:

B =



∂(f1)
∂(α) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ∂(f1)
∂(σ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f2)
∂(α) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ∂(f2)
∂(σ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f3)
∂(α) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ∂(f3)
∂(σ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f4)
∂(α) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ∂(f4)
∂(σ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f5)
∂(α) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ∂(f5)
∂(σ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)

∂(f6)
∂(α) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗) ∂(f6)
∂(σ) (h

∗, ϕ∗, θ∗, v∗, γ∗, ψ∗, α∗, σ∗)


(4.18)

whereas in the previous case of matrixA, the elements of thematrix are calculated according

to the equilibrium state x∗ corresponding to the equilibrium point u∗.

Finally, with the linearization of the system completed, it is now possible to obtain the values

of each variable at any moment in time. This allows for the implementation of the controller

algorithm given the fact that it allows for the study of its actuation and performance.
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4.3 H∞ Optimal Control with State­Feedback

A State­Feedback system is a controllable system on which the eigenvalues of the matrix A

are used to calculate the feedback gain matrix K which is then used to calculate the new

control that is set into the system’s plant [33]. Essentially, it’s a system that can react to a

certain disturbance through the calculation ofK and then use it to calculate the new control

vector u, giving ”feedback” to the system.

The H∞ methods are considered in control theory a fine solution to create controllers in

which stabilization of the system is achieved with great performance. It has had a great im­

pact on the development of control systems throughout the decades of 1980 and 1990 [34]

This method is then used for cases when the objective is to achieve a robust and optimal

controller, as it happens in this dissertation. As stated in [34]: ”H∞ techniques have the ad­

vantage over classical control techniques in which the techniques are readily applicable to

problems involving multi­variable systems with cross­coupling between channels; disad­

vantages of H∞ techniques include the high level of mathematical understanding needed

to apply them successfully and the need for a reasonably good model of the system to be

controlled.”

The functioning of theH∞ controller can be theoretically visualized in [35]:

Figure 4.5: H∞ Method Block Diagram. [35]

where P represents the plant of the system proposed, the z the alteration of the plant pro­

voked by the external disturbance w, K represents the controller designed, u the effective

control presented to the plant to begin the stabilization of the RLV and y which represents

the final output of the system.
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To calculate the plant P , the reasoning showed in [36] was followed: given the disturbance

attenuation µ > 0 the system Σ is considered stabilizable with the constant µ if there exists

a controller capable of internally stabilizing it in the closed­loop system.

Furthermore, being the positive definite matrices Q, R, ζ and E ­ State Weighting Matrix,

Control Weighting Matrix, Disturbance Matrix and Output Matrix, respectively ­ described

as:

Q = Qintensity ∗



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.19)

R = 0.8 ∗

[
1 0

0 1

]
(4.20)

ζ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.21)

E =

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

 (4.22)

and using the Algebraic Ricatti Equation ­ ARE:

PA+A′P − 1

ε
PBR−1B′P +

1

µ
Pζζ ′P +

1

µ
E′E + εQ = 0 (4.23)

with µ > 0, the positive­definite solution P can be found as long as there exists a solution to

this ARE in which ε > 0. In this case:

µ = 100 ε = 0.5 (4.24)
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If such conditions are satisfied, it is now possible to affirm that the system Σ is stabilizable

with the disturbance attenuation µ [36]. Then, the controller matrixK described in fig. (4.5)

can be calculated as:

K =
−R−1B′P

2ε
(4.25)

TheQintensity represents the fact that thematrixQwas, in this dissertation, variable through­

out time. This fact will be addressed and justified later, but generally, Q has a fixed value in

control algorithms.

In a more succinct way, in this dissertation the plant P represents the full dynamic system

Σ. The H∞ controller will be capable of finding the matrix K that can minimize the impact

of the disturbance w on the output y under the constraint that the feedback gain matrix K

can stabilize the plant P [37].

4.3.1 H∞ ARE simplification

As it has been proven, the resolution complexity of the ARE shown before is quite consider­

able. Consequently, there were some alterations applied to the method explained previously

in order to facilitate the use of the Python software and already existing functions within its

programs. To do so the procedure was the following, step­by­step:

1. Creation of a transfer matrix F , with µ > 0 such that all its eigenvalues were positive:

F =
1

ε
BR−1B′ − 1

µ
ζζ ′ (4.26)

2. Create a matrix Q̄, a variation of the matrix Q:

Q̄ =
1

µ
E′E + εQ (4.27)

3. Calculate the square root matrix of F represented by G:

G = sqrtm(F ) (4.28)

4. Finally, the use of a normal LQR function can be used such that:

[Kno use, P, V ] = lqr(A,G, Q̄, I6) (4.29)

As seen in eq. (4.25), the controller is calculated with the usage of the matrices R, B, P and

the scalar value ε. The Kno use calculated with the usage of the before­mentioned simplifi­
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cation is not correct, due to the fact that it is calculated assuming the LQR method and the

inputs shown (A,G, Q̄, Id) which is:

K = I−1
d G′ P (4.30)

whichwould never give the same results as in eq. (4.25). However, through the simplification

procedure shown, the matrix P is well calculated so it can be used along with the matrix R

and B to calculate the real controller matrixK, which is what was implemented.

The next and final step of the calculation of the controller is to use the matrix K obtained

previously and calculate the control that will be injected in the plant of the system in order

to correct the path of the RLV. The control vector u is calculated as:

u(t) = −K x(t) (4.31)

4.4 Recalculation of 3DOF equations

An alteration to the regular H∞ has been proposed and applied: the matrix B, in each time

step, nulls the possible alterations made to the RLV’s altitude, latitude and longitude ­ ḣ, ϕ̇

and θ̇, respectively ­ given the fact that none of the equations used to calculate each of these

variables depends on α or of σ. In a more illustrative way, what is being affirmed is that:

∂(ḣ)

∂(α)
,
∂(ḣ)

∂(σ)
,
∂(ϕ̇)

∂(α)
,
∂(ϕ̇)

∂(σ)
,
∂(θ̇)

∂(α)
,
∂(θ̇)

∂(σ)
= 0 (4.32)

Consequently, the solution found was to calculate the differences set up to all the remaining

variables and re­calculate all system variables using the equations described back in section

2.2.

More accurately describing, what was made was the following:

1. Calculation of ẋ(t)which produces the values of ḧ(t), ϕ̈(t), θ̈(t), v̈(t), γ̈(t), ψ̈(t) using the

linearized system of eq. (4.9);
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2. Using trapezoidal and Euler integration method [38], calculate the new values of h, ϕ,

θ, v, γ and ψ:

h(t) =
ḧ(t) + ḧ(t− s)

2
ts2 + ḣ(t− ts) ts+ h∗(t) (4.33)

ϕ(t) =
ϕ̈(t) + ϕ̈(t− s)

2
ts2 + ϕ̇(t− ts) ts+ ϕ∗(t) (4.34)

θ(t) =
θ̈(t) + θ̈(t− s)

2
ts2 + θ̇(t− ts) ts+ θ∗(t) (4.35)

v(t) =
v̈(t) + v̈(t− s)

2
ts2 + v̇(t− ts) ts+ v∗(t) (4.36)

γ(t) =
γ̈(t) + γ̈(t− s)

2
ts2 + γ̇(t− ts) ts+ γ∗(t) (4.37)

ψ(t) =
ψ̈(t) + ψ̈(t− s)

2
ts2 + ψ̇(t− ts) ts+ ψ∗(t) (4.38)

3. Using the Euler method on the control variables α and σ:

α(t) = α̇(t− ts) ts+ α∗(t) (4.39)

σ(t) = σ̇(t− ts) ts+ σ∗(t) (4.40)

4. Using the equations described in section 2.2, the 3DOF equations for the RLV, the cal­

culations for the real ḣ(t), ϕ̇(t), θ̇(t), v̇(t), γ̇(t) and ψ̇(t) are made:

The subscript ”*” represents the reference trajectory being it the estimate data obtained in

section 4.1.

With the cycle on which each variable is calculated through time fully explained, the con­

troller test to verify how well it actuates to disturbances can begin. In the next chapter such

discussion will be presented.
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Chapter 5

H∞ Optimal Controller Results

In this chapter, the controller results on how it corrected the RLV’s trajectory will be showed

and conclusions will be taken regarding how robust and optimal it is.

The first part of this section will address the true system equations of the RLV, that is, the

system on with the disturbance will be acted on. This disturbance represents what can hap­

pen in a real descend, in which trajectory deviations due, for example, to temperature and

density variations throughout the atmosphere can occur.

In the second part of this section the graphics which represent the action of the controller will

be displayed, already with the action of the disturbance w and with the controller’s action to

achieve stabilization. Each variable of the output vector will have its graph in order to fully

analyze the controller’s influence.

5.1 The RLV descent system, with disturbance w

As described in the previous chapter, the system of the RLV can be described through the eq.

(4.9) if there is no disturbance being absorbed by the system.

Considering w as the disturbance signal, the standard system with disturbance would be:

Σ(t) =

ẋ(t) = A(t)x(t) +B(t)u(t) + ζ(t)w(t)

y(t) = E(t)x(t)
(5.1)

being w a matrix with the same dimensions as the matrix M and only composed by zeros,

except for the columns representing the injection of disturbance into the system:

w =



0 ... wh(tl) ... wh(tn) ... 0

0 ... wϕ(tl) ... wϕ(tn) ... 0

0 ... wθ(tl) ... wθ(tn) ... 0

0 ... wv(tl) ... wv(tn) ... 0

0 ... wγ(tl) ... wγ(tn) ... 0

0 ... wψ(tl) ... wψ(tn) ... 0


(5.2)

being ”l” and ”n” representations of the time where the disturbance is being injected.
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There is however an alteration made in this standard system. Given the fact that the state

vector variation ẋ(t) is used through trapezoidal and Euler integration method to calculate

the h(t), ϕ(t), θ(t), v(t), γ(t) and ψ(t) as it is explained in the itemization of section 4.4, the

disturbance matrix w(t)must be injected later in the algorithm.

Following the thoughts taken in the before­mentioned itemization the disturbance will be

injected in the following way:

ḣ(t) = wh(t) + v(t) sin(γ(t)) (5.3)

ϕ̇(t) = wϕ(t) +
v(t) cos(γ(t)) cos(ψ(t))

r(t)
(5.4)

θ̇(t) = wθ(t) +
v(t) cos(γ(t)) sin(ψ(t))

r(t) cos(ϕ(t))
(5.5)

v̇(t) = wv(t)−
D(t)

m
− g(t) sin(γ(t)) (5.6)

γ̇(t) = wγ(t) +
L(t) cos(σ(t))

v(t) m
− g(t)

v(t)
cos(γ(t)) +

v(t)

r(t)
cos(γ(t)) (5.7)

ψ̇(t) = wψ(t) +
L(t) sin(σ(t))

m v(t) cos(γ(t))
+
v(t)

r(t)
cos(γ(t)) sin(ψ(t)) tan(ϕ(t)) (5.8)

being wh(t) the disturbance subjected directly to the RLV’s altitude ­ h. The same reasoning

can be followed with the remaining disturbances.

With the disturbance system fully described, the integrity tests on the controller can begin,

being the next subsections dedicated to such matter. Additionally, a flowchart was created

to fully explain all the methodology used throughout the dissertation, being available in the

Appendix A.
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5.2 Graphics Obtained

5.2.1 RLV’s Descent with no disturbance

Figure 5.1: RLV’s latitude development with no disturbance

Figure 5.2: RLV’s longitude development with no disturbance

Figure 5.3: RLV’s altitude development with no disturbance
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5.2.2 RLV’s descent with 1 disturbance

Figure 5.4: RLV’s latitude development with one disturbance

Figure 5.5: RLV’s longitude development with one disturbance

Figure 5.6: RLV’s altitude development with one disturbance
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Closing up for a better view of the controller actuation:

Figure 5.7: Close up to RLV’s latitude first disturbance

Figure 5.8: Close up to RLV’s longitude first disturbance

Figure 5.9: Close up to RLV’s altitude first disturbance
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5.2.3 RLV’s descent with 2 disturbances

Figure 5.10: RLV’s altitude development with two disturbances

Figure 5.11: RLV’s altitude development with two disturbances

Figure 5.12: RLV’s altitude development with two disturbances
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Closing up for a better view of the controller actuation:

Figure 5.13: Close up to RLV’s latitude second disturbance

Figure 5.14: Close up to RLV’s longitude second disturbance

Figure 5.15: Close up to RLV’s altitude second disturbance
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5.2.4 RLV’s descent with 3 disturbances

Figure 5.16: RLV’s latitude development with three disturbances

Figure 5.17: RLV’s longitude development with three disturbances

Figure 5.18: RLV’s altitude development with three disturbances
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Closing up for a better view of the controller actuation:

Figure 5.19: Close up to RLV’s latitude third disturbance

Figure 5.20: Close up to RLV’s longitude third disturbance

Figure 5.21: Close up to RLV’s altitude third disturbance
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5.3 Discussion of results

Firstly, it is important to remind the reader that the variables presented are the variations

of the position vector, that is: [ϕ̇, θ̇, ḣ] and not the normal variables [ϕ, θ, h]. By correcting

a variation of the position vector, we are not only correcting the position of the vehicle but

assuring that the restrictions imposed such as the heating rate, dynamic pressure and maxi­

mum deceleration are respected.

Converging the values of these variables to the desired values of the trajectory is then the

same as ensuring the well­being of the RLV and its crew while guaranteeing the accomplish­

ment of the mission. For example: if the vehicle suffers a disturbance that critically changes

its current latitude variation, the vehicle can end up landing in a completely different space

than the originally desired one if the system on which the RLV’s flight is based does not

quickly stabilize it.

Initially, the test to verify if the dynamic linearized system could follow the desired trajectory

wasmade in subsection 5.2.1 and it was successful. The only graph that slightly showed some

differences was the altitude one in fig. (5.3) at the end of the graph. That difference was in

my opinion due to lack of calculation precision as naturally happens in cases where the data

presented has more than 600 data points, as it happens in this project.

Given that with no disturbance present the system was capable of following and leading the

shuttle into the reference trajectory, the time to test its reaction to injected disturbances

began. The ”Uncontrolled Data” plot in the following graphics represents the situation in

which the controller is offline (B(t) = 0 at all times) and the ”Controlled Data” represents

the situation in which the controller is operable.

All the disturbances displayed in the graphics were artificially injected into the system as has

been explained previously in this dissertation. That is the cause of their spiky appearance

rather than a more natural disturbance.

In the subsections 5.2.2, 5.2.3 and 5.2.4 it is possible to conclude several facts, which all need

to be addressed:

• As it was desirable theH∞ produces a significant change in all three variables ­ ϕ̇, θ̇, ḣ ­

but it can also be observed that it has a deeper impact on the variable ḣwhen compared

to the other two variables ϕ̇ and θ̇;

• The state matrix of the dynamic system presented ­ A(t) ­ already stabilizes the vehicle

by itself, as it is verified in all the graphics shown. Regardless, the controller impacts

all the graphics in a positive waymaking it a desirable addition to the stabilizingmatrix

A(t) at all times.
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• The third and final disturbance injected in the systemΣ(t)presented an actuation of the

controller different than the remaining ones. Instead of clearly stabilizing the vehicle

as in the previous cases, the altitude and longitude corrections were not ideal. That can

be associated with the spikes in the final points of fig. (3.3(a)) which then produced a

bad estimate in (4.3(a)).

• The controller had a different behavior on each part of the RLV decent. As stated in

section 4.3, theQintensity value varied in each of the disturbances to produce the results

shown above. For the first disturbance, the value of this variablewas 250, for the second

300 and for the final one 100.

• Finally, the controller showed effectiveness, either for a negative disturbance or a pos­

itive one, which granted even more credit to its application.
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Chapter 6

Conclusions and Future Work

As stated at the end of the previous chapter, the controller was successful in stabilizing the

RLV’s position variation throughout its descent. However, since the state matrix is already a

stabilizable one, the difference the controlmakesmaynot be as significant as in other systems

that do not count on such conditions.

Furthermore, the controller was able to withstand several disturbances almost with no in­

terval between the stabilization and the new disturbance and was capable of stabilizing each

one through the vehicle’s descent. This reveals the controller created in this dissertation is

indeed a robust one, capable of correcting any disturbance provided to the system.

That being said, one of the possible interesting projects can be the application of this con­

troller in a dynamic system more demanding than this one. If that application is done in a

system that does not have such a stabilization provided solely by the matrix A, the actua­

tion of the controller will have much more impact, being that situation an interesting one to

observe.

In this system, the state weightmatrix (Q)magnitude had to vary in time. There is not a clear

explanation or reason on that matter, and such analysis could be made. It would count on

the analysis of the equations entering the system at every iteration and the acknowledgment

of which variables were responsible for this behavior.

Additionally, the calculation of the trajectory could be perfected. Although the trajectory

used as a base to this code was a possible one, as stated by Henrique Ferrolho himself the

trajectory he created could be more precise. Applying this controller to a trajectory made

step by step could be a step forward in achieving a system with more precision and fidelity

to real results, rather than using an already developed one.

The estimated functions and tools provided by Curve Fit were not as good as they could

be. Using another function or another method different from the non­linear least­squares

method could bring a more trustworthy approximation and linearization to the project, im­

proving its precision.

Despite all these facts, theH∞ controller was indeed successful in minimizing the difference

between the present state of the vehicle and its reference state, even in a highly non­linear

problem such as the one presented. It is proved that this control method is a good and trust­

worthy option to be responsible for the stabilization of Reentry Lifting Vehicles.
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Introduction
Adventuring into space has been for a long time an accom-
plished dream of mankind. While exiting the atmosphere is
itself a challenge, being capable of safely landing and reenter-
ing the atmosphere with a manned space aircraft is an even
heavier challenge. Throughout the years, numerous satellites
have been launched into the atmosphere with no plan of return,
becoming sooner or later disposable material continuously in
orbit. Guaranteeing the safe return of the no-longer-used satel-
lites and spacecraft is a critical mission if we want to leave
our atmosphere as clean as possible. According to Portugal
Space: ”every year approximately 100 tons of uncontrolled
debris reenter Earth’s atmosphere, a situation that explains the
urgency of developing technology and solutions that allow the
controlled and safe removal of this debris that humanity left
in space” [1].

Reentering the atmosphere is then the most critical part
of the mission of a shuttle or any similar spaceship. From
an astronaut’s point of view, the atmosphere presents a dense
fluid, which at orbital velocities, is not that far from the sur-
face of a lake [2]. The trajectory followed must allow the
minimum temperature peaks considering the aerodynamic
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heating along the way to ensure the integrity of the shuttle
and no loss of materials during the reentry. The tragedy of
Columbia (STS-107) is a fatal reminder of the dangerous ther-
mal and aerodynamic environment that any vehicle reentering
the atmosphere endures [3].

The design and calculation of the reentry trajectory can
be summarized in 3 competing requirements: deceleration
limits, heating limits, and impact/landing accuracy [4]. The
materials used in the vehicle directly impact the maximum
deceleration it can endure. Considering g as a deceleration
unit and g being the gravitational acceleration at sea level
(9,80665 m/s2), the material’s used for the RLV structure
must be capable of enduring the maximum g’s the vehicle will
be subjected to. Since in this paper the RLV is carrying human
life, the maximum value of deceleration will be 12 g’s - value
for the maximum deceleration humans can with-take [2]. The
heating is also a noticeable problem. The friction between the
air and the RLV traveling at thousands of meters per second
drastically increases the temperature of its materials. The
normal temperature throughout the reentry as well as the peak
temperature of the shuttle must be studied, given the fact that
it can reach values of 1648°C [5]. The accuracy of landing or
impact is the last component considered, being it determined
according to the type of mission. This component is critical
in the case of this paper considering the RLV should land on
a controlled and prepared runway.

A typical shuttle trajectory is limited by two situations: the
undershoot and the overshoot boundary. The limit on which
the deceleration and heating rate is impossible to withstand,
being that from the crew or the vehicle represents the under-
shoot boundary. On the other hand, the limit on which the
vehicle will not initiate the reentry phase due to the small grav-
itational force encountered when compared to the momentum
of the vehicle, represents the overshoot trajectory [6]. These
two situations form the reentry corridor, where the trajectory
of this paper must belong in order to safely land the shuttle.
After entering Earth’s atmosphere the shuttle must decelerate
and start descending through the atmosphere. To do so, the
angle of attack (AoA) and the bank angle of the RLV must
be controlled throughout its descend - the use of the AoA
allows the deceleration of the RLV through the generation of
aerodynamic drag, while the bank angle allows the descend
of the RLV by decreasing the aerodynamic lift produced in
the generation of aerodynamic drag [7].

Throughout the years, researchers have been looking for
ways to develop a control system capable of stabilizing the
RLV, returning it to the reference trajectory regardless of the
disturbances suffered during its descend. Marwan Bikdash et
al. designed a fuzzy guidance for the shuttle orbiter during at-
mospheric reentry [8]. Making use of Sugeno approximations,
the authors trained hybrid fuzzy-crisp interference systems
with examples of past reentries. A predictor-corrector reentry
guidance was proposed by Xiaoping Guo et al. in [9] based
on Feedback Linearization to reduce the difference between
reference trajectory and the RLV current state after an applied

disturbance. The authors used the Quasi Equilibrium Glide
Condition as another constraint and controlled the vehicle
with the same control variables as in this paper - α and σ .
M. H. Breitner made use of Rufus Philip Isaacs nonlinear
first-order partial differential equations to set up interior and
boundary conditions, being the restrictions to the RLV similar
to this paper [10]. The algorithm presented satisfying results
and proved real-life applicability in its theory and numerical
methods.

The objective of this paper is to create an optimal H∞

control which ensures the maneuverability of a reentry lifting
vehicle and its control throughout its reentry. The controller
must guarantee that the vehicle reentering the atmosphere
follows the trajectory desired, even when subjected to noise
and disturbances during its flight. Furthermore, it is desirable
for the controller to be robust which implicates the capability
of stabilizing the vehicle regardless of the number of distur-
bances applied and their magnitude.

1. Reentry Flight Dynamics Model
In this section the possible assumptions that can be made
when we estimate the optimal trajectory of reentry will be
explained. Furthermore, the Reentry dynamics equations will
be presented as well as the equations used to calculate the
maximum value for the constraints of the presented problem.

1.1 Assumptions Made
One of the most important assumptions made is the use of the
spherical model of the Earth in the calculations of the reentry
trajectory. It is a known factor that Earth has an elliptical
form which can be observed by the cross-section of all the
meridians. However, the benefits obtained by considering the
Earth as a spherical body significantly justify the precision
lost in the procedure as was made in [11, 12, 13].

Regarding Earth’s rotation, there are two decisions that
can be made: consider earth as a rotating body or as a sta-
tionary body. Considering the Earth’s rotation as part of the
equations, despite adding slightly more precision to the final
results the outstanding difference in algorithm complexity
makes the decision of considering the Earth as a stationary
Body a viable decision, as was used in [13, 14, 15]. With
these facts in mind, the method followed in this dissertation
was the spherical non-rotating Earth.

Figure 1. Earth as a Spherical Model [16].
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1.2 Coordinate Frame
The coordinate system used for this dissertation will be a
Planet-Fixed frame. Firstly, it is designed a Geocentric Equa-
torial Coordinate Frame where its origin resides in the center
of motion (COM) of the planet Earth. Its axis X will be
directed to the Greenwich Meridian and the axis Y will be
directed such that it lies in the equatorial plane and makes a
3-axis system with the axis X and Z with a 90° angle between
each one [4, 6, 17]. The coordinate system can be seen in fig.
(2):

Figure 2. Coordinate Frame. [17]

where r represents the distance between the COM of the
planet and the COM of the reentering vehicle. The longitude
will then be represented by θ and the latitude by φ .

The symbol σ represents the angle between the vehicle
longitudinal symmetry plane and the vertical plane, otherwise
known as the bank angle and γ represents the velocity flight
angle.

The letter V represents the velocity vector of the vehicle at
a given moment in time and ψ is the heading angle measured
from North.

Throughout this work, h will sometimes be used instead
of r, while the only difference between these two variables is
the Earth’s radius - r = h+R -, being R the Earth’s medium
radius.

1.3 Reentry Dynamics
The 3DOF equations of a hypersonic vehicle reentering the
atmosphere consider earth as a spherical and non-rotating
body, and are shown as in [18]:

ḣ = v sin(γ) (1)

φ̇ =
v cos(γ) cos(ψ)

r
(2)

θ̇ =
v cos(γ) sin(ψ)

r cos(φ)
(3)

v̇ =
−D
m

−g sin(γ) (4)

γ̇ =
L cos(σ)

v m
− g

v
cos(γ)+

v
r

cos(γ) (5)

ψ̇ =
L sin(σ)

m v cos(γ)
+

v
r

cos(γ) sin(ψ) tan(φ) (6)

where v stands for the velocity relative to Earth as a scalar.
The other variables were already explained in the previous
sub-section. Earth’s gravity acceleration is represented by the
letter g and it’s calculated according to the RLV’s altitude h:

g = g0

(
R

R+h

)2

(7)

where g0 is the gravity Acceleration at sea level.
Since the vehicle is an RLV, it will be subjected to both

aerodynamic forces of lift L and drag D which can be calcu-
lated as follows:

L =
1
2

ρ v2 S CL (α,Ma,σ ,δe) (8)

D =
1
2

ρ v2 S CD (α,Ma,σ ,δe) (9)

where S is the reference area of the RLV and m the reference
of its mass. CL and CD being the lift and drag coefficient,
respectively, and will be calculated according to the AOA
- α -, bank angle σ , elevator angle δe and Mach number
Ma= v

sound velocity . The atmospheric density ρ is calculated by:

ρ = ρ0 exp
(
− h

hs

)
(10)

where ρ0 is the atmospheric density at sea level, h is the
current altitude of the vehicle when compared to the sea level
and hs is the scalar height coefficient [11].

The lift and drag coefficient can be calculated as in [19]:

CL =CL0 +CLα α +
c̄

2V

(
CLα̇ α̇ +CLq p qp

)
+CLδ e δe

(11)

CD =CD0 +CDα α +
c̄

2V

(
CDα̇ α̇ +CDq p qp

)
+CDδ e δe

(12)
where qp represents the pitch rate and α the AOA. CL and

CD are calculated by several parts:

• CL0 and CD0 are related to the RLV body;

• CLα and CDα are related to the current AOA;

• CLδ e and CDδ e are related to the elevator’s deflection.

To calculate the pitch rate, we first need to clarify the
reasoning behind it. Considering the letter λ as the pitch
angle, the following assumption can be made:

λ = α + γ (13)
that is, the pitch angle is the sum of the AOA - α - and the
flight path angle - γ - which can be visualized in fig. (3).

With the value of the pitch angle λ , it is now possible
to get the value of the pitch rate q by use of the following
equation found in [19]:

λ̇ = q cos(σ)−h sin(σ) (14)
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Figure 3. Representation of an Aircraft’s Pitch Angle,
adapted from [20].

Isolating qp and deriving the eq. (13) it is now possible to
calculate the pitch rate as:

qp =
h sin(σ)+ α̇ + γ̇

cos(σ)
(15)

1.4 State Vector
To estimate the trajectory, the state vector of the RLV must
describe its condition throughout all reentry phases. Based on
the flight dynamics equations, the state vector of the vehicle
can be described as:

x =


ḣ
φ̇

θ̇

v̇
γ̇

ψ̇

 (16)

where [ṙ, φ̇ , θ̇ ] represent the vector of position variation
in spherical coordinates and [v̇, γ̇, ψ̇] represent the vector of
velocity variation, also in spherical coordinates:

• ḣ – altitude variation of the RLV

• φ̇ – latitude variation of the RLV

• θ̇ – longitude variation of the RLV

• v̇ – velocity variation of the RLV

• γ̇ – flight path angle variation of the RLV

• ψ̇ – heading angle variation of the RLV

With these variables in the state vector, the projection
of the controller and the constant monitoring of its flight
throughout all phases of flight becomes possible.

1.5 Applied Constraints
The constraints used to limit the presented problem were
inspired by the work developed in [2, 3, 11, 21].

1.5.1 Heating Rate
Q̇s is the heating rate of the vehicle at a certain point, which
must be limited by the maximum heating rate the vehicle can
endure and is calculated by:

Q̇s ∼= kQ v3
√

ρ

rnose
≤ Q̇smax (17)

where kQ is the heating rate normalization constant, rnose
is the vehicle’s nose radius and Q̇smax is the maximum heat-
ing rate the vehicle can withstand. The value kQ = 1,75E −
04

√
kg/m was used as in [3].

1.5.2 Dynamic Pressure
Dynamic pressure presents itself with the letter q and it is
limited to control the hinge moment of an actuator in a de-
termined range. The dynamic pressure must be less than a
certain maximum value, and it is calculated by:

q =
1
2

ρ v2 ≤ qmax (18)

1.5.3 Maximum Deceleration
There will be a limit to how much deceleration will the vehicle
be subjected to. The maximum deceleration a human can
withstand is 12 g′s. However, it will be limited to 3 g′s not
only for structural reasons but for the comfort and well-being
of the RLV’s crew.

The deceleration is calculated as:

a =
v2 ω sin(γ)

2e
≤ amax (19)

where ω represents the atmospheric scaled height, a pa-
rameter used to describe the density profile of the atmosphere.
The letter e represents the base of the natural logarithm [2].

1.5.4 Controllability of the RLV
To ensure the controllability of the RLV we must ensure that
the AoA, bank angle, elevator and rudder angle stay within
certain limits:

αmin ≤ α ≤ αmax, |α̇| ≤ α̇max (20)

σmin ≤ σ ≤ σmax, |σ̇ | ≤ σ̇max (21)

δemin ≤ δe ≤ δemax, |δ̇e| ≤ δ̇emax (22)

being α̇max, σ̇max ≤ 5°/s, αmin = 0°, αmax = 60°, σmin =
−89° and σmax = 90°.

With the above-mentioned restrictions, we form our entry
corridor on which we will find the optimal trajectory for the
RLV and then project the controller for it.

1.6 Output Vector
The output vector will be composed with the Geodetic Coordi-
nates Variation - φ̇ , θ̇ and ḣ - making it possible to transform
them into Geodesic coordinates if there is a desire to do so.

The output vector will then be as follows:

y =

φ̇

θ̇

ḣ

 (23)

2. Reentry Trajectory Analysis
This chapter will consist on the analysis of the trajectory on
which the controller will be designed. To ensure the validity
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of the controller that will be developed, this trajectory must
resemble one of a real shuttle and follow the dynamics and
restrictions explained throughout the previous sections.

As the objective of this paper is not to develop a trajectory
but to develop an optimal and robust controller that could
be implemented on the RLV’s software, the possibility to
use an adequate trajectory already developed surged. Such
trajectory was found and created by Henrique Ferrolho and it
was initially inspired in the problem suggested in chapter 6 of
“Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming” by John T. Betts [22].

2.1 Trajectory Estimation as an Optimal Control Prob-
lem

Designing the best possible reentry trajectory for a shuttle is a
highly nonlinear estimation problem. The nonlinear behavior
of this problem makes the use of a simple shooting method
impossible. John T. Betts presents a possible way to solve this
problem, using the same reentry flight dynamics presented in
(section 1.3).

2.1.1 Objective Function
To reach the solution of the problem the need to set an objec-
tive function existed. For the presented paper, the objective
function will be the maximization of the cross-range of the
RLV.

J = φ(t f ) (24)

in which J represents the objective function. Maximizing
the cross-range of the vehicle is the same as maximizing the
final latitude of the RLV, hence the transformation to φ in the
previous formula.

2.1.2 Initial conditions, RLV’s characteristics and Final
conditions

The initial conditions to the problem were first described in
[22]:

Variables Values
hi 400.000 f t
φi 0 deg
θi 0 deg
vi 25.600 f t/s
γi −1,1 deg
ψi 90 deg
hi 121.920 m
φi 0 rad
θi 0 rad
vi 7.802,88 m/s
γi −0,0192 rad
ψi 1,5708 rad

Table 1. Initial Conditions in Imperial and SI units

with the following RLV characteristics and subjected to
the following earth acceleration:

m = 203.000 lb
S = 2.690 f t2

g0 = 32,174 f t/s2

m = 92.079,251 kg
S = 249,91 m2

g0 = 9,8066 m/s2

Table 2. RLV’s Characteristics in SI units

As mentioned before the reentry trajectory will end with
the start of the TAEM phase which will start when the vehicle
reaches the following numbers:

h f = 80.000 f t
v f = 500 f t/s
γ f =−5 deg

h f = 24.384 m
v f = 152,4 m/s

γ f =−0,0873 rad

Table 3. Final Conditions in imperial and SI units

2.2 Algorithm of the Reference Reentry Trajectory
An open MIT licensed code capable of calculating an estimate
trajectory was found. In this code, Henrique Ferrolho solved
the exact problem of chapter 6 from [22] with the help of
JuMP, a specific domain that belongs to Julia’s programming
language.

The optimizer used to find the solution to the reentry trajec-
tory problem was the interior-point optimizer. This optimizer
is widely used in many different problems being capable of
solving linear and nonlinear problems, according to the user’s
needs.

Briefly explaining the code, the optimizer starts at the
initial conditions described in 2.1.2 and varies each parameter
from the vehicle’s state vector in a time step of 4 seconds,
with the objective of maximizing the final cross range of the
RLV’s until the final conditions are reached. For each time
step, an array for that specific time is being created such as:

x(tk) =


ḣ(tk)
φ̇(tk)
θ̇(tk)
v̇(tk)
γ̇(tk)
ψ̇(tk)

 (25)

Using as control variables the following array:

u(tk) =
[

α̇(tk)
σ̇(tk)

]
(26)

where k represents the current cycle of the code. Compil-
ing the arrays in a matrix will then allow the full study of the
reentry trajectory of the vehicle and the projection of the code
for the optimal controller.

In each step of the code the variables calculated were inte-
grated resulting in the values of altitude, latitude, longitude,
velocity, flight path angle, heading angle, angle of attack, and
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bank angle of the RLV:

x̄(tk) =


h(tk)
φ(tk)
θ(tk)
v(tk)
γ(tk)
ψ(tk)

 (27)

ū(tk) =
[

α(tk)
σ(tk)

]
(28)

The code produced by Henrique Ferrolho can be found
in [23] and is totally open for public use, being it as it is pre-
sented, or to change it in any way the user pleases. As stated
before, the used code had some alterations when compared to
the original one, since some of the constant values used in the
original were not a match to a real shuttle as was explained in
2.1.2.

2.3 Linearization of the system and H∞ Setup
Despite the fact that this system is a highly-nonlinear one, it
is possible to approximate it to a rather linear behavior within
a certain operating range of an equilibrium point, as stated in
[24]. The calculation of equilibrium points is made by fixing
a given u = u∗ and calculating the respective equilibrium state
x = x∗ - which becomes the equilibrium point.

Σ =

{
ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) = Ex(t)

(29)

where A is the state matrix, B the control matrix and E the
output matrix. With the system fully linearized it is possible
to start the setup of the H∞ method controller.

The H∞ methods are considered in control theory a fine
solution to create controllers in which stabilization of the
system is achieved with great performance. It has had a great
impact on the development of control systems throughout the
decades of 1980 and 1990 [25]. This method is then used for
cases when the objective is to achieve a robust and optimal
controller, as it happens in this paper.

The functioning of the H∞ controller can be theoretically
visualized in [26]:

Figure 4. H∞ Method Block Diagram. [26]

where P represents the plant of the system proposed, the z

the alteration of the plant provoked by the external disturbance
w, K represents the controller designed, u the effective control
presented to the plant to begin the stabilization of the RLV
and y which represents the final output of the system.

To calculate the plant P, the reasoning showed in [27]
was followed: given the disturbance attenuation µ > 0 the
system Σ is considered stabilizable with the constant µ if
there exists a controller capable of internally stabilizing it in
the closed-loop system.

Furthermore, being the positive definite matrices Q, R,
ζ and E - State Weighting Matrix, Control Weighting Ma-
trix, Disturbance Matrix and Output Matrix, respectively -
described as:

Q = Qintensity ∗


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (30)

R = 0.8∗
[

1 0
0 1

]
(31)

ζ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (32)

E =

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

 (33)

and using the Algebraic Ricatti Equation - ARE:

PA+A′P− 1
ε

PBR−1B′P+
1
µ

Pζ ζ
′P+

1
µ

E ′E+εQ= 0 (34)

with µ > 0, the positive-definite solution P can be found
as long as there exists a solution to this ARE in which ε > 0.
In this case:

µ = 100 ε = 0.5 (35)

If such conditions are satisfied, it is now possible to affirm
that the system Σ is stabilizable with the disturbance attenu-
ation µ [27]. Then, the controller matrix K described in fig.
(4) can be calculated as:

K =
−R−1B′P

2ε
(36)

The Qintensity represents the fact that the matrix Q was,
in this work, variable throughout time. This fact will be
addressed and justified later, but generally, Q has a fixed value
in control algorithms.
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3. H∞ Optimal Controller Results
With the system fully explained and the H∞ set up, the time
to test it’s efficiency came. Considering w as the disturbance
signal, the standard system with disturbance would be:

Σ(t) =

{
ẋ(t) = A(t)x(t)+B(t)u(t)+ζ (t)w(t)
y(t) = E(t)x(t)

(37)

being w a matrix with the same dimensions as the ma-
trix M and only composed by zeros, except for the columns
representing the injection of disturbance into the system:

w =


0 ... wh(tl) ... wh(tn) ... 0
0 ... wφ (tl) ... wφ (tn) ... 0
0 ... wθ (tl) ... wθ (tn) ... 0
0 ... wv(tl) ... wv(tn) ... 0
0 ... wγ(tl) ... wγ(tn) ... 0
0 ... wψ(tl) ... wψ(tn) ... 0

 (38)

being ”l” and ”n” representations of the time where the
disturbance is being injected.

3.1 Graphics Obtained

Figure 5. RLV’s latitude variation development with three
disturbances

Figure 6. RLV’s longitude variation development with three
disturbances

Figure 7. RLV’s altitude development with three disturbances

Figure 8. Close up to RLV’s latitude development first
disturbance

Figure 9. Close up to RLV’s longitude development first
disturbance

Figure 10. Close up to RLV’s altitude development first
disturbance
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Figure 11. Close up to RLV’s latitude development second
disturbance

Figure 12. Close up to RLV’s longitude development second
disturbance

Figure 13. Close up to RLV’s altitude development second
disturbance

Figure 14. Close up to RLV’s latitude development third
disturbance

Figure 15. Close up to RLV’s longitude development third
disturbance

Figure 16. Close up to RLV’s altitude development third
disturbance

4. Conclusion
The H∞ controller was successful in stabilizing the RLV’s
position variation throughout its descent. Furthermore, the
controller was able to withstand several disturbances almost
with no interval between the stabilization and the new dis-
turbance and was capable of stabilizing each one through
the vehicle’s descent. This reveals the controller created in
this paper is indeed a robust one, capable of correcting any
disturbance provided to the system.
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