
Engenharia

Multi-Factor and Continuous Verification of
Identity during Remote Assessments and

Individual Personalized Interactions
Versão final após defesa

Pedro Miguel Ferreira de Oliveira

Dissertação para obtenção de grau de mestre.

Engenharia Informática
(2º ciclo de estudos)

Orientador: Professor Pedro R. M. Inácio
Co-orientador: Professor Hugo Pedro Proença

Covilhã, Janeiro 2022

ii

Acknowledgements

Em primeiro lugar quero agradecer à minha família, namorada e amigos por todo o in-

condicional apoio que me deram durante o meu percurso académico. Sem eles tudo isto

seria ainda mais desafiante.

De seguida, um agradecimento ao Professor Doutor Pedro Inácio e ao Professor Doutor

Hugo Proença por toda a orientação, paciência e disponibilidade aquando da realização

desta dissertação.

Por fim, quero agradecer aos meus colegas de curso, pois desempenharam um papel fun-

damental nesta etapa da minha vida.

The work reflected in this dissertation was carried out in the Multimedia Signal Process-

ing Laboratory of the Institituto de Telecomunicações delegation at Covilhã and in the

University of Beira Interior, Covilhã, Portugal.

iii

iv

Resumo

A Autenticação é um dos aspetos mais importantes da sociedade atual. Quase todas as

ações concretizadas pelas pessoas que a compõem têmumaspeto tecnológico. Caso os sis-

temas não sejam implementados segura e corretamente, nomeadamente através do con-

trolo de acesso via autenticação, vários aspetos de (ciber)segurança e privacidade podem

ser violados por pessoas mal intencionadas. Este acesso pode dar-se de muitas formas,

sendo uma delas fazendo-se passar por um outro utilizador.

Esta dissertação visa a criação de um protótipo de sistema que consiga verificar a identi-

dade do utilizador autenticado no sistema. Esta verificação será concretizada através da

análise de biométricas comportamentais, neste caso, dinâmicas de rato e teclado, para

realizar a coleta de interações com o sistema e aprendizagem automática para prever,

através da informação coletada, se esta corresponde à pessoa autenticada. Caso o algo-

ritmo detete uma anomalia, o computador irá bloquear, de modo a que apenas pessoas

autorizadas consigam fazer uma reautenticação.

Palavras-chave

AprendizagemAutomática, BiométricaComportamental, Cibersegurança, VerificaçãoCon-

tínua

v

vi

Resumo alargado

Visto que grande parte desta dissertação foi escrita utilizando a língua inglesa, por forma

a explicá-la também em língua portuguesa, este capítulo irá resumir mais amplamente

todo o trabalho realizado.

Introdução

Esta dissertação tem como objetivo a construção de um protótipo para um sistema de

verificação contínua de utilizadores utilizando multi-fatores biométricos. A abordagem

escolhida foi fatores biométricos comportamentais, onde serão usados rato e teclado de

forma a recolher informação, visto que é necessária uma interação continuada com o sis-

tema.

Motivação e Enquadramento

Existe uma vasta quantidade de ramificações na área de engenharia informática e todas

desempenham um papel vital no dia a dia. Os computadores e outras tecnologias desem-

penham funções muito importantes na sociedade, desde o entretenimento, a guardar e

tratar dados sensíveis de grandes empresas. Visto que as tecnologias estão intrinseca-

mente ligadas à nossa sociedade, é necessário que estas funcionem devidamente e com

o máximo de segurança e privacidade possível. Com o aumento dos dispositivos perten-

centes à Internet das Coisas (abreviado IoT, do inglês Internet of Things), vão existir cada

vez mais dispositivos que se conectam entre si, criando uma grande abertura para novas

suscetibilidades, reforçando assim a necessidade de sistemas cada vez mais aptos a lidar

com tais falhas.

O melhor método para lidar com estes possíveis problemas tem o nome de cibersegu-

rança. A definição apresentada pelo NIST (National Institute of Standards and Tech-

nology) é “processo de proteger informação através de prevenção, deteção e resposta a

ataques” [Nat18]. A cada ano que passa, os governos e empresas gastam vastas quanti-

dade de dinheiro e recursos com o objetivo de melhorar a segurança das suas infraestru-

turas tecnológicas contra todo o tipo de ataques informáticos. Portugal, por exemplo, tem

uma série de leis que obrigam as empresas e entidades a manter uma infraestrutura in-

formática regulamentada [Assb] sob pena de multa e leis que punem quem for acusado

de cometer crimes informáticos [Assa] com multas e/ou pena de prisão. Foram criados

também o Centro de Ciberdefesa e o Centro Nacional de Cibersegurança. O primeiro tem

como principal objetivo vigiar e proteger o sistema informático da Defesa Nacional, o se-

gundo tem como função consciencializar e educar a população neste assunto.

Grande parte das interações que os utilizadores têm comaparelhos tecnológicos envolvem

algum tipo de autenticação, como desbloquear o telemóvel ou utilizar o cartão de crédito.

vii

Umdosmétodos de autenticação que se tornoumais prevalente é a autenticação biométrica,

a qual está presente em quase todos os smartphones e tablets de última geração, através

do uso de reconhecimento facial ou de impressão digital. Esta categoria de autenticação,

que faz parte do grupo something you are é geralmente mais seguro que métodos de

palavra-passe e até mesmo que autenticação de dois fatores. Isto deve-se ao facto de o

utilizador ser estritamente necessário para aceder ao dispositivo. No entanto, esta in-

formação nunca pode ser mudada, portanto, se for comprometida, não poderá ser usada

novamente.

Aquandoda escrita desta dissertação, omundo enfrenta umapandemia global que obrigou

a que trabalho e acessos remotos se tornassem uma realidade constante. Isto levantou

questões sérias sobre cibersegurança. Pois, sem a pessoa presente, nunca se tem a total

certeza de que quem está por de trás do computador é quem de facto deveria estar. A

melhor forma de garantir isto é utilizando verificação contínua.

Problemas e Objetivos

Como foi dito anteriormente, o objetivo principal desta dissertação é a criação de um

sistema de verificação contínua utilizando informação biométrica comportamental. Ao

criar um programa capaz disto, surgem algumas questões sobre privacidade, portanto o

sistema nunca poderá registar o que o utilizador está a escrever nem onde está a clicar, a

solução é registar tempos de ação. Uma série de objetivos foram traçados para a criação

deste projeto:

1. Analisar e delinear o estado da arte relativo à verificação contínua de forma a com-

preender o que já foi feito e como funciona;

2. Compreender quais amelhores características a retirar para ter osmelhoresdatasets

possíveis;

3. Encontrar e implementar o algoritmo de aprendizagem automática que melhor se

adeque ao problema;

4. Ajustar os hiperparâmetros do algoritmo de forma a obter os melhores resultados;

5. Testar e validar o sistema.

Método para Resolução dos Problemas

Primeiramente encontrar artigos que se encaixem no tema pretendido e realizar uma

leitura compreensiva dos mesmos. Seguidamente investigar algoritmos que já tenham

sidoutilizados anteriormente emsistemas semelhantes para conhecer possíveis candidatos.

Depois, criar um subsistema para coleta de informação dos utilizadores para montar os

datasets e implementar o subsistema de aprendizagem que criará os modelos utilizados

viii

posteriormente na avaliação. Por fim, ajustar os hiperparâmetros e implementar o sub-

sistema de verificação.

Contribuições Principais

Principais contribuições retiradas deste trabalho:

• Umestudodo estadoda arte relativo à verificação contínuadeutilizadores utilizando

informação biométrica;

• Oprotótipodeumsistemade verificação contínua comusode informaçãobiométrica

comportamental;

• Uma dissertação escrita em inglês para obtenção do grau de mestre em engenharia

informática.

Background e Trabalhos Relacionados

O capítulo 2 tem como objetivo enquadrar o leitor no tema, explicando diversas noções

quer de segurança informática, quer de aprendizagem automática, de forma a que este

compreenda o trabalho. Inicialmente é apresentado um sumário dos métodos de auten-

ticação que existem seguido de uma revisão de vários algoritmos de aprendizagem au-

tomática que pudessem ter interesse no contexto deste trabalho.

Posteriormente é apresentado o estudo de artigos científicos sobre a temática em questão,

onde são analisados sistemas que utilizam informação biométrica para realizar avaliações,

estudos comparativos de algoritmos e estudos sobre a influência das emoções na utiliza-

ção do computador.

Requisitos e Design do Sistema

Neste capítulo são apresentados os requisitos funcionais e não funcionais a que este pro-

jeto está sujeito, assim como o design e funcionalidade do mesmo. Os requisitos fun-

cionais descrevem o que o sistema deve fazer, de uma forma direta. Os requisitos não

funcionais explicam especificações do sistema de forma mais técnica.

Estes requisitos irão influenciar os métodos de implementação do sistema. É apresen-

tada a figura 3.1 onde está ilustrado como o sistema funciona e a figura 3.2 onde se podem

ver as características retiradas do uso do teclado.

Implementação do Sistema

Neste capítulo é feita uma descrição de todas as tecnologias usadas, assim como as bib-

liotecas python utilizadas para a construção do protótipo. De seguida está uma descrição

ix

detalhada da implementação de cada parte do sistema, começandono enrollment, onde os

utilizadores se registam no sistema e onde está também uma descrição dos hiperparâmet-

ros utilizados no algoritmo.

De seguida encontra-se a verificação onde émostrada a figura 4.1 que ilustra a lógica deste

subsistema. Finalmente, uma reflexão dos obstáculos encontrados e como foram supera-

dos.

Resultados e Discussão

Neste antepenúltimo capítulo serão discutidos osmateriais usados no sistema assim como

todos os resultados obtidos nos testes realizados durante a implementação e após o sis-

tema se encontrar operacional. A apresentação dos materiais permite que, caso haja uma

tentativa de utilização do sistema, este seja compreendido mais profundamente e que o

computador utilizado possa ser comparado ao que foi usado para a criação do sistema.

De seguida está presente uma exposição de todos os testes realizados ao sistema antes,

durante e após a implementação. Nestes testes é possível encontrar os passos que levaram

a criar os datasets daquela forma específica, como os hiperparâmetros foram ajustados,

as melhorias que o sistema obteve com estes testes e, por fim, uma série de testes com o

objetivo de comprovar a eficácia do sistema de verificação contínua quando está perante o

utilizador real e um falso. Finalmente, uma discussão sobre os resultados dos testes feitos

anteriormente.

Conclusão

No último capítulo encontram-se as conclusões globais do trabalho realizado e uma re-

flexão sobre o trabalho que poderia ainda ser melhorado ou realizado para que o sistema

fosse mais versátil, ou para que tivesse mais funcionalidades.

x

Abstract

Authentication is one of the most important aspects of the present society. Almost every-

thing people do has a technological aspect. If systems are not implemented correctly and

safely, namely by access control via authentication, several aspects of (cyber)security and

privacy can be exploited by ill-intentioned people. Unauthorised access can be made in

multiple ways, pretending to be another user is one of them.

This dissertation aims at the creation of a system prototype that can verify if the logged-in

user is the actual person using the system. This is achieved utilising behavioural biomet-

rics, such has keyboard and mouse dynamics, to collect interactions with the system and

machine learning to predict if the collected information matches the person one says to

be. In case the algorithm detects an anomaly, the computer locks itself, so that only au-

thorised people with true access to the computer can re-log in.

Keywords

Behavioural Biometrics, Continuous Verification, Cybersecurity, Machine Learning

xi

xii

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Problem Statement and Objectives . 3

1.3 Proposed Approach . 3

1.4 Main Contributions . 4

1.5 Document Organisation . 4

2 Background and RelatedWorks 5

2.1 Introduction . 5

2.2 Background . 5

2.2.1 Authentication Factors . 5

2.2.2 Machine Learning Algorithms . 6

2.3 Related Work . 7

2.4 Conclusion . 10

3 Requirements and System Design 13

3.1 Introduction . 13

3.2 System Requirements . 13

3.2.1 Functional Requirements . 13

3.2.2 Non-Functional Requirements . 14

3.3 System Design and Functionality . 14

3.4 Conclusion . 15

4 System Implementation 19

4.1 Introduction . 19

4.2 Technologies and Libraries . 19

4.3 Implementation Details . 20

4.3.1 Enrolment . 21

4.3.2 Verification . 25

4.4 Implementation Challenges . 27

4.5 Conclusion . 28

5 Results and Discussion 29

5.1 Materials . 29

5.2 Tests and Results . 30

5.2.1 Datasets . 31

5.2.2 Hyperparameter Tuning . 35

5.2.3 Confusion Matrix Analysis . 37

5.2.4 Verification . 39

5.3 Discussion . 40

xiii

5.4 Conclusion . 41

6 Conclusion and Future Work 43

6.1 Main Conclusions . 43

6.2 Future Work . 43

Bibliography 45

A Annexes 49

xiv

List of Figures

3.1 Flowchart illustrating the enrollment and verification procedures. 16

3.2 Keyboard features visualization based on [SIKP20] and [AaW15]. 17

4.1 Explanation of verification decision making. 26

5.1 Accuracy in function of set of keys. 31

5.2 Standard deviation for set of keys accuracy. 31

5.3 Mlogloss in function of set of keys. 32

5.4 Standard deviation for set of keys mlogloss. 32

5.5 Accuracy in function of set of moves. 33

5.6 Standard deviation for set of moves accuracy. 33

5.7 Mlogloss in function of set of moves. 34

5.8 Standard deviation for set of moves mlogloss. 34

5.9 ROC and AUC for keyboard before hyperparameter tuning. Each class rep-

resents a user. 35

5.10 ROC and AUC for mouse before hyperparameter tuning. Each class repre-

sents a user. 35

5.11 ROC and AUC for keyboard after hyperparameter tuning. 36

5.12 ROC and AUC for mouse after hyperparameter tuning. 37

xv

xvi

List of Tables

2.1 Summary table of all works studied on the state of the art. 11

4.1 Initial XGBoost hyperparameters as presented in [SIKP20]. 24

4.2 Tuned hyperparameters for keyboard dataset. 24

4.3 Tuned hyperparameters for mouse dataset. 25

5.1 Snippet of the initial keyboard dataset, where each row corresponds to a

key and its relation with the next. 30

5.2 Snippet of the initial mouse dataset, where each row saves mouse velocity

for 100 pixels. 30

5.3 Values used on cross validation for both keyboard and mouse datasets. . . 36

5.4 Confusion matrix for keyboard dataset before hyperparameter tuning. . . . 37

5.5 Confusion matrix for mouse dataset before hyperparameter tuning. 38

5.6 Confusion matrix for keyboard dataset after hyperparameter tuning. . . . 38

5.7 Confusion matrix for mouse dataset after hyperparameter tuning. 38

5.8 Comparison of true positive rates and false positive rates onkeyboarddataset

before and after hyperparameter tuning. 39

5.9 Comparison of true positive rates and false positive rates on mouse dataset

before and after hyperparameter tuning. 39

xvii

xviii

Listings

4.1 User presence verification on the dataset. 21

4.2 Up-to-up and dwell time calculation. 21

4.3 Function that sends keyboard data to be formatted and verified. 25

4.4 Function for decision making after prediction results. 26

A.1 Prediciton process made by XGBoost algorithm. 49

xix

xx

Acronyms

2FA Two Factor Authentication

ACM Association for Computing Machinery

ATM Automated Teller Machine

AUC Area Under Curve

CCS Computing Classification System

COTS Commercial off-the-shelf

COVID-19 Coronavirus Disease

CPI Counts Per Inch

CSV Comma-Separated Values

DDR3 Double Data Rate 3

DLL Dynamic-Link Library

IDE Integrated Development Environment

IoT Internet of Things

IT Information Technology

KNN K-Nearest Neighbours

NIST National Institute of Standards and Technology

PCA Principal Component Analysis

PIN Personal Identification Number

RAM Random Access Memory

ROC Receiver Operating Characteristic

SSD Solid State Drive

SVC C-Support Vector Classification

USB Universal Serial Bus

xxi

xxii

Chapter 1

Introduction

The project behind this dissertation aims at the development of a prototype for a contin-

uous verification software using multi-factor authentication. Behavioural biometrics via

keyboard and mouse was the chosen approach to achieve the continuous verification due

to the necessary contact the user has to maintain with both peripherals in order to use the

computer. These have a cost benefit, as well as the fact that every ordinary computer has

both. The present chapter is organised as follows:

• 1.1 -Motivation and Scope - contains the presentation of the motivation and dis-

cusses the scope of this dissertation;

• 1.2 - Problem Statement and Objectives - includes an explanation of the gen-

eral problem and the objectives that must be reached;

• 1.3 - Proposed Approach - discusses the steps taken to reach the proposed goal;

• 1.4 - Main Contributions - lists the main contributions that are expected to be

taken from this work;

• 1.5 -Document Organisation - presents how this document is organised.

1.1 Motivation and Scope

There are a vast number of areas under computer science and engineering, and all of them

have a vital role in our daily life. Computers and other technologies play amain role in cur-

rent society, from entertainment to handling and storing corporate sensitive data. Since

they are so intrinsically connected with the society, they have to work properly and with

maximum security and privacy possible. Given the rise of the Internet of Things (IoT), a

large amount of devices are constantly connected, opening more doors for attacks, which

means more precise and fault-tolerant security algorithms/systems are needed.

To address this problem, cybersecurity is the go to. By the National Institute of Standards

and Technology (NIST) definition, cybersecurity is “the process of protecting information

by preventing, detecting, and responding to attacks” [Nat18]. With every passing year,

governments and companies are spending large amounts of money and resources to see

their Information Technology (IT) infrastructure protected against all types of attacks.

Portugal has a series of laws regarding not only the establishment of legal framework

for cyberspace security [Assb], which has to be applied to all companies and entities that

utilise information technologies under penalty of fine, but also on punishment for cyber-

crimes [Assa], which can be financial penalties or imprisonment. Other efforts to raise

1

awareness and educate the population for the importance of cybersecurity are the cre-

ation of Centro de Ciberdefesa and Centro Nacional de Cibersegurança. The Centro de

Ciberdefesa has the duty of surveillance and protection of the National Defence informa-

tion systems, while the Centro Nacional de Cibersegurança promotes cyberspace usage

in a free, reliable and secure way. This is achieved with many policies and campaigns, one

of them was the creation of the Quadro Nacional de Referência para a Cibersegurança

[Cen19], where an ensemble of the best cybersecurity practices was compiled, which is

expected to promote voluntary risk reduction by companies and individuals simply by

following the provided guidelines.

Most daily activities involving technologies have some sort of authentication step, like

unlocking a smartphone or using a credit card. Although the most common type of user

authentication is password-based, many new smartphones and laptops are capable of bio-

metric authentication, using fingerprints or facial recognition. Biometric authentication

is usually safer than password-based methods, and even when compared to two-step au-

thentication, because the user is not required to remember or carry anything and is a big

barrier against theft or loss since the user is needed to access the contents of said device.

Albeit if this information is stolen, the user can never change this characteristics in con-

trary to passwords.

Since these security methods are present in many recurrent activities, usability is a key

factor as well. If a user is to unlock a protected phone several times during the day, it is

expected that the process goes as smooth, easy and with the least intrusiveness as possi-

ble. Complicating this process may drive the users to remove or try to bypass the process,

creating security flaws.

Due to the Coronavirus Disease (COVID-19) pandemic, the world saw an even bigger shift

to remote assessments and connections. Online classes and remote work are more and

more popular as governments and companies enforce these measures in order to avoid

COVID-19 outbreaks. Privacy and security in corporations is a topic with an increasing

importance. If people are not present in theworkplace, verifying that the person authenti-

cated in a given computer is who they say they are is a challenging task. In this scenario, a

continuous verification system would help give certainties to system administrators from

that company. A system like this must also grant that the privacy of that user is never

broken. A wide variety of methods are possible to use, but not all of them are suitable for

all situations, and this dissertation will explore this topic.

Following the 2012 version of theAssociation forComputingMachinery (ACM)Computing

Classification System (CCS), the categories in which this dissertation might be related to

are as follows:

• Security and privacy;

• Authentication;

2

• Biometrics;

• Security services.

1.2 Problem Statement and Objectives

Based on the aforementioned motivation and scope, this dissertation objective is to study

and evaluate continuous authentication methods so that a system prototype can be de-

signed using what was found. Using keyboard and mouse dynamics can raise a lot of

questions, specially when the topic is privacy. The system being unable to detect which

keys are being pressed is of major importance, as well as not understanding where specif-

ically the mouse is and where it is clicking. In any way an authentication system must be

able to detect what kind of activities the user is doing, this being even more relevant in a

continuous authentication system.

Hence, the ensuing objectives can be defined:

1. Analyse and outline the state of the art regarding continuous verification / authen-

tication systems to get a better understanding on the technologies that can be used

to implement the system in the most secure and usable way;

2. Understand themost suitable features to extract in order to develop an effective data

collection subsystem;

3. Find and implement an appropriate machine learning algorithm for the presented

objectives;

4. Tunemachine learning algorithmhyperparameters in order to produce the best pos-

sible outcomes;

5. Test the proposed system to make sure everything works as expected.

1.3 Proposed Approach

Tomeet the aforementioned objectives, the execution plan shownbelowwas put into prac-

tice:

1. First and foremost, a reading of research papers describing the state of the art is

to be performed in order to understand existing solutions regarding the problem at

hands, as well as to know what challenges might be found;

2. Investigate previously used algorithms and comparisons betweendiverse algorithms

to get a better idea of which to use;

3. Create a subsystem capable of thoroughly collect the features defined as ideal for

this project;

3

4. Create a prototype of the system where continuous authentication, using the ap-

proach of this work, is needed and where the machine learning algorithm will build

a model to be used on the verification step;

5. Tune the hyperparameters to achieve the best performance possible;

6. Develop the continuous verification subsystem. Created models for both keyboard

and mouse will be used to continuously authenticate the respective users.

1.4 Main Contributions

After this project is complete, the main contributions expected to derive from it are the

following:

• An in-depth study of the state of the art regarding continuous verification of users

using biometrics;

• A prototype of a continuous verification system using biometrics.

1.5 Document Organisation

This dissertation is divided in six chapters. The remaining chapters can be described as

follows:

1. Chapter 2 -Background and RelatedWorks - provides a review on authentica-

tion factors, machine learning and an overview on related works;

2. Chapter 3 - Workflow and Requirements - dedicated to the system require-

ments and to how the development flowed;

3. Chapter 4 - System Implementation - describes the technologies used in this

dissertation and the implementation details and challenges;

4. Chapter 5 -Results and Discussion - presents the specifications of the computer

used in this work, the tests and results and the discussion on those;

5. Chapter 6 - Conclusion - presents the conclusion for this dissertation, as well as

the future work.

4

Chapter 2

Background and RelatedWorks

2.1 Introduction

This chapter describes the current state of continuous authentication methods, security

and machine learning algorithms. Having a good understanding of these topics, led to a

more fluid and comprehensive development of the proposed system, as well as a swifter

solving of problems and errors encountered during this development. In order to reach

the goal, this chapter is split as follows:

• 2.2 - Background - explains definitions and notions vital to the dissertation con-

text;

• 2.3 - Related Works - analysis of past and present works on user authentication

and continuous user authentication;

• 2.4 - Conclusion - summary of the information taken from this chapter.

2.2 Background

There is a wide variety of technologies, definitions and methods on the context of user

authentication. Therefore, to better understand the underlying implications of this dis-

sertation, all of these must be given some level of explanation.

2.2.1 Authentication Factors

First and foremost, knowing what authentication factors exist is an important starting

point. There are three authentication factors:

• Something you know: Being the most widely known and used, this factor is some-

thing the user knows, as the name suggests [Ros20]. A password or a Personal Iden-

tification Number (PIN) are the most well known examples;

• Something you have: An item the user possesses, such as tokens or a smart card

[Ros20];

• Something you are: Biometricmethods. Fingerprints, retina scan, iris scan, etc. can

be used. These are called physiological biometrics, because they are physiological

traits the user has [Ros20]. Behavioural biometrics identify the user using intrinsic

patterns, like typing rhythm or mouse usage.

5

Although the something you know factor is themost used, it is also the easiest to surpass.

PINs usually are very short, with only four digits, and are tipically made of only numbers.

Passwords tend to be more versatile, accepting numbers, letters and symbols while also

being longer. An inherent problem to password usage is thememory of the user. Remem-

bering what to write in so many different applications and websites may lead to using the

same password in every single one of them or using weak combinations.

To always carry an asset to successfully authenticate oneself is sometimes impractical.

Something you have factor is haunted by this problem, because sometimes authentica-

tion may be needed in a place where that asset is not present. Furthermore, losing it is an

even bigger problem, given it can fall in bad hands.

The something you are factor is the most secure of the three, but if not used correctly,

its practical uses drop to zero. Biometrics suffer from two distinct types of error: false

rejection and false acceptance. The false rejection error lowers the usability of a system,

while false acceptance errors lower its security. Reduced usability comes from the need

for repeated authentication due to the system taking action after falsely rejecting a legiti-

mate user. Although this is not a security issue, it makes the system feel cheap and clunky.

False acceptance of an individual gives system access to an illicit user, compromising its

effective security. Weak algorithms or faulty biometric scanners can be the cause.

There are two different ways to use these factors. Single-factor authentication is much

less difficult to use than multi-factor, but with less security, as it is shown further:

• Single-factor authentication makes use of only one mean of authentication. For ex-

ample, to access many social media websites, the only barrier is a password (some-

thing you know). In one way, the user access is facilitated, but in exchange, the

security layer is thinner than it should;

• Multi-factor authentication uses a combination of two ormore factors. For themost

part only two are used, being then called TwoFactorAuthentication (2FA). Themost

widely used example is the credit/debit card usage. For a user to withdraw money

from anAutomated TellerMachine (ATM) ormake a payment, first the cardmust be

presented (something you have) and after that, the corresponding PIN combination

(something you know) [oST].

2.2.2 Machine Learning Algorithms

This work will resort to machine learning algorithms as ameans to achieve themain obje-

tive of performing continuous verification. As the system collects data, these algorithms

are repeatedly applied to ensure the collected data belongs to the right person. Choos-

ing the most suitable algorithm to fulfil the proposed objectives is utterly important and

rather difficult. There are three mainmachine learning algorithm categories [SR18], each

one of them with a distinct assortment of specific algorithms, for specific purposes:

6

Supervised Learning: Given an amount of data consisting of input-output pairs, the

algorithm will learn a function that maps inputs to respective outputs, based on it. Then

the algorithm should be able to predict the class of a given input, if the training ends up

successful [Bro21] [Edu]. The most common algorithms of supervised learning are:

• Classification: Determination of to what class a new observation belongs based on

pattern recognition; classification algorithms are often called “classifiers”. The al-

gorithm used to develop this project, XGBoost, is included in this classification.

• Regression: Estimates the relationship between a dependent variable and one or

more independent ones, therefore can be used for prediction and forecasting nu-

meric labels.

Unsupervised Learning: As the name says, this class of techniques do not need hu-

man supervision. Unlabelled datasets are fed to these algorithms that will find and extract

features that enable grouping of dataset elements [Bro21] [Edu]. Examples of techniques

that can be included in unsupervised learning are Cluster analysis and Principal Compo-

nent Analysis (PCA):

• Cluster Analysis: Also called clustering, is the task of separating the dataset into

clusters (groups) where, in each cluster, each instance is more similar to its peer

than to other instances on other clusters;

• Principal Component Analysis (PCA): In a graphical manner, is the task is to find

the projected data direction, in the original space, with minimal projection error. It

is typically used as a pre-processing technique to reduce dimensionality while pre-

serving data relations, to which machine learning algorithms can then be applied.

Reinforcement Learning: Comparing reinforcement learning with a real life exam-

ple is perhaps the best way to explain it. When a child is learning about his surrounding

world, often the parents/caretakers reward the child when they do something of value,

and punish them otherwise. Afterwards the child will remember, and learn, what should

or should not do. With these algorithms the premise is the same, given an environment

the best actions are to be taken in order to maximise a cumulative reward, unveiling the

optimal path [Bro21] [Edu].

2.3 RelatedWork

A state of the art review regarding continuous user authentication is presented is this sec-

tion. A summary of each article is presented, followed by a reflection on what stands out

and can be used for this dissertation. In table 2.1 a summary of the studied works can be

seen.

The list discussed below is a subset of the works found by searching terms such as ”Con-

tinuous” AND ”Verification” OR ”Biometrics” OR ”Keystrokes” OR ”Mouse” in search en-

gines such as IEEE Xplore.

7

Continuous Verification Using Multimodal Biometrics:

Sim et al. [SZJK07] - Construction of a system to continually verify the presence of a

logged-in user through the use of passive biometrics, fingerprint scan and facial recogni-

tion. The system was put together using a holistic approach and a Bayesian framework.

This allowed the system to predict if the user was still there or not, even in the absence

of observations. The observations were reduced to a score based system, were the scor-

ing after the observation dictated if an action should be taken or not. A hidden Markov

Model is behind the integrator used in order to evaluate both the results from fingerprint

and face recognition, along with a decaying factor for when there are no observations.

User Identity Verification via Mouse Dynamics:

Feher et al. [FEM+12] - Describes a behavioural biometrics method using the mouse.

Despite working with keyboard as well, the focus of the work shifted primarily to mouse

due to themain objective of the work is to be used on the web browser, place wheremouse

usage outweighs the keyboard. System flow starts on feature acquisition, capturing user

interactionswith themouse, following feature extraction, where a signature is constructed

with the acquired features. Then a classifier builds a model based upon the extracted fea-

tures and saves this to the signature database, so it can be used for verification. Results

were overall positive, but mouse type fluctuations make this approach less viable.

Keystroke/Mouse Usage Based Emotion Detection and User Identification:

Shikder et al. [SRAA17] - Emotions are an intrinsic trait of living beings, therefore it

is really difficult to emulate and detect them artificially. In order to detected emotions, a

lot of resources are needed, so this paper aims at presenting a simpler and cheaper way

of doing so. Using an assortment of carefully chosen videos, emotional states are induced

on the user, and keyboard and mouse interactions are collected after, via a custom-made

survey. Nine videos were presented, to try inducing nine different emotions, varying from

happiness to fear. This study tested 35 participants. Tests showed that for many of the

used classifiers a set of emotions were dominant over the rest, having around 60% accu-

racy, which was considered relatively low.

Emotions and User Interactions with Keyboard and Mouse:

A. Pentel [Pen17] - Different emotional states are a crucial topic to be aware of when

trying to create more adaptive systems. When people communicate with each other, not

only they listen to what the others have to say, but they also pay attention to their body

language, facial expressions, etc. However when dealing with a computer, the machine

is unable to do so without special equipment. In this work, a method of reading the user

emotional state is presented via the usage of mouse and keyboard dynamics. One of the

objectives set with this work was to give a simple way to use software like this, not needing

dedicated and complicated software, so JavaScript was the chosen language. Emotions to

be emulated were: amusement, happiness, sadness and fear. To induce these emotions,

8

a series of videos and tasks were presented to the users, where they were reduced to a

two-dimensional scale: positive-negative and active-passive. Data was then collected and

models constructed, utilising various algorithms. Mouse usage got the best results out of

the two.

Continuous User Authentication Using Temporal Information:

Koichiro and Jain [NJ10] - Creation of a continuous verification system that does not

require active user participation. For this, the systemmust be simple, but not too simple,

otherwise it would be less effective, so it has multimodal biometrics. A new approach was

developed were the colour of the clothes the user is wearing is added to facial recognition.

Clothing colour information is added with every different log in to the system, fusing it

to the facial recognition every time (this information is permanent). In order to get this

system to work in a wide variety of scenarios, three main objectives were defined: As long

as the user stays visible, no active re-authentication is needed (Usability); If the user is to

walk away from the visible area, then re-authentication is a must (Security); Items used

for capturing image must be Commercial off-the-shelf (COTS) items. After system test-

ing, results showed a high tolerance for posture changes, no need for special backgrounds

working even with random background changes, making it very viable and accurate.

Analysis of Algorithms for User Authentication using Keystroke Dynamics:

Singh et al. [SIKP20] - System based on keyboard dynamics on password input where

several different algorithms was tested. Uses three features based on time parameters:

dwelling time (interval between pressing a key and releasing it) and flight time (inter-

val between consecutive keypress or release of two immediate keys). A previously cre-

ated dataset was used for this study. For each of the tested algorithms, hyperparameter

tuning was performed. From K-Nearest Neighbours (KNN), C-Support Vector Classifi-

cation (SVC), Random Forest and XGBoost, the latter got the best precision result, with

93.6%, followed by Random Forest with 87.16%. Confusion matrix and Receiver Oper-

ating Characteristic (ROC) metrics for XGBoost were analysed after, where conclusions

showed an ROC value of one in almost every user and outstanding confusion matrix val-

ues.

Keystroke Dynamics for Continuous Authentication:

Ananya and Singh [AS18] - Creation of a continuous authentication system that does

not require user authentication. In order to achieve the aforementioned objective, on ini-

tial login, the template is created as a 26 by 26 matrix (e.g. aa,..., zy, zz) for mean flight

times for each pair of keys the user inputs. Operation of this system is divided in four

parts: 1 - user logs in; 2 - immediately after login, the system enters template creation

mode where it will stay until a certain number of cells is filled on the matrix; 3 - system

asks for user re-login in order to verify user authenticity; 4 - verification and template

updating mode, where the system will continue from then on. In verification mode, the

user has a score. While inputs are coming, each input is subtracted with the correspond-

9

ing matrix value and if the absolute value of that calculation is lower or equal to a certain

threshold, their score is decremented by a certain factor. If the aforementioned subtrac-

tion gives a higher value than the threshold, user scoring is punished with an increment.

when user score reaches a certain value, the systemmode goes back to 3 and the usermust

re-log in. Results were promising, specially for a system that requires no pre-registration.

A Comparison of Keystroke Dynamics Techniques for User Authentication:

Anusas-amornkul and Wangsuk [AaW15] - Method that adds keyboard dynamics

to password input and tests an array of algorithms/techniques and compares all results.

Features extracted are key hold (dwell time), interkey (interval time), up-to-up and down-

to-down times. The techniques used are the following: a simple statistic method based on

confidence interval, k-means clustering and trajectory dissimilarity (previous work from

the author). For data collection, each user typed their username in three sets, and each

username was typed ten times, for a total of thirty records per user. The first set is used

to create a master profile for each user, while the remaining two were used to measure

performance. As the main metric used to evaluate the algorithms, accuracy is the chosen

method. This system was developed in C#. After hyperparameter optimisation, results

showed that trajectory dissimilarity got the best result with 96.00% accuracy, followed by

statistics using confidence interval with 94.42% and then k-means clustering at 87.75%.

Continuous Authentication and Non-repudiation for the Security of Critical Systems:

E. Schiavone et al. [SCB16] - The present paper focuses on continuous authentication

and non-repudiation. Authors believe that proving a user interacted with the system is

useful sometimes, specially if some kind of problem or controversy happens and people

try to avoid responsibilities. In cases like this, non-repudiation enables prosecution or

accountability by the companies or responsible staff. To test the system, a wide variety

of participants will engage in four tasks on the same workstation, running the authenti-

cation program in the background. False acceptance rate and false rejection rates were

calculated and then efficiency by tracking time since initial user authentication until the

session is terminated, as well as time until the system rejects an impostor. An array of

different configurations will be tested and evaluated as well. Conclusions taken from this

work are ambiguous, since the authors do not give a concrete answer.

2.4 Conclusion

This chapter provides an overview of works related with continuous authentication, be-

havioural and physiological biometrics. This overview was performed with the objective

of gathering a variety of information regarding the topic. After this analysis, a clearer

image of how these systems work and how they are used was present, as well as other un-

derlying concepts, like non-repudiation, temporal information and emotions. Emotions

are specially important, since studies showed high data variance on same user with differ-

10

ent emotional states. With the analysis of [SIKP20] and [AaW15], the chosen algorithm

to build the system was XGBoost, despite not having information on its performance for

mouse dynamics, the results seemed promising and the overall performance is excellent.

Table 2.1 presents a all works studied in this chapter. On the following chapter, the re-

quirements, system design and functionality will be explained.

Title Year Topic
Continuous Verification

Using Multimodal Biometrics
2007

Passive biometrics usage to verify the
presence of a logged-in user.

User Identity Verification
via Mouse Dynamics

2012
Usage of mouse dynamics to verify a user

interacting with a web browser.
Keystroke/Mouse Usage Based Emotion

Detection and User Identification
2017

Emotion detection using behavioural biometrics
based on keyboard and mouse usage.

Emotions and User Interactions
with Keyboard and Mouse

2017
Detection of positive vs negative emotions on users
through the use of keyboard and mouse dynamics.

Continuous User Authentication
Using Temporal Information

2010
Continuous user verification using facial
recognition and clothe recognition.

Analysis of Algorithms for User Authentication
using Keystroke Dynamics

2020
Comparison between several algorithms on
keystroke dynamics for user authentication.

Keystroke Dynamics for
Continuous Authentication

2018
A continuous authentication system that doesn’t

require initial user authentication (log in).
A Comparison of Keystroke Dynamics
Techniques for User Authentication

2015
Analysis of algorithms when applied

to keystroke dynamics.

Continuous Authentication and Non-repudiation
for the Security of Critical Systems

2016
Creation of a system for continuous user
authentication and non-repudiation of
performed interactions with the system.

Table 2.1: Summary table of all works studied on the state of the art.

11

12

Chapter 3

Requirements and System Design

3.1 Introduction

This chapter explains the method used to develop the system. Here the reader can under-

stand how this system came to be, how to use it and what to expect from it. This chapter

is organised as follows:

• Section 3.2 -SystemRequirements - a summary of functional andnon-functional

requirements;

• Section 3.3 - System Design and Functionality - explanation of the system or-

ganisation, design and functionalities;

• Section 3.4 - Conclusion - conclusions taken from what was accomplished during

this chapter.

3.2 System Requirements

Next are the requirements, both functional andnon-functional, aswell as the development

method used during the conception of this system.

3.2.1 Functional Requirements

The project needs to be functional in the long run, so it needs a way to save user informa-

tion in order to avoid the need to enrol users every time they use the system. There is no

restriction for application environments where this system is going to operate, so it will

work on the whole computer, despite the application. If the system fails to verify that the

actual user is the logged-in user, the computer will lock, and a new system login must be

made. The system must strive to offer usability, so a low number (< 10%) of false rejec-

tions must be ensured as well as security, with a low number (< 10%) of false acceptances.

User inputs are saved on a Comma-Separated Values (CSV) output file, which will contain

the username of said user and timings for the key presses. CSV files are typically used in

this area of knowledge, representing simple means to store this kind of values and use as

input tomachine learning algorithms. Preserving user privacy is of utmost importance, so

any information about what keys the user presses is ignored. This was possible by trans-

forming each key into a code, rather than the actual key name. These codes are saved in

volatile memory, on a set data structure, and are only used to do the calculations needed

13

to produce the data the systemwants to collect. Given this, themodel presented by [AS18]

could not be used in this system.

3.2.2 Non-Functional Requirements

Besides the need of immediate results while on the verification step, no limitations were

set for the system creation. Python was the programming language chosen to develop this

project since it is very versatile and uses relatively low resources. Python has access to

very good machine learning libraries and is easy to use.

Project development took into consideration potential future changes, and its implemen-

tation favouredparameterization to ease alterations, like parameters, file paths, functions,

etc. Since all development and data collection was conducted using only one computer,

the same mouse and keyboard were always used as well. After inputting the username,

the user can utilise the computer normally, since the programwill collect information and

process it in the background. Keyboard andmouse are regular hardware that can be found

with all computers. In order to use the system, only a standard Universal Serial Bus (USB)

keyboard and mouse are necessary.

3.3 System Design and Functionality

This project consists of two steps: enrolment and continuous verification. For the verifi-

cation to take place, the user must go through the enrolment process in the first time they

interact with the system, since their username will not be present. For the time being, the

entirety of the system works locally.

As figure 3.1 shows, when a user utilises the system for the first time, a username is

collected and a verification of its presence in the system is conducted. If the user is not

present, then a process of typing in the keyboard andusing themouse starts. After the data

is collected, it is saved in a CSV file. This output file consists only of times, in seconds, and

the correspondent username, for the keyboard, and mouse velocities with corresponding

username, for mouse usage. The program does not collect nor save any more information

besides that. Figure 3.2 illustrates what features are collected from the keyboard. In case

the user is present in the system, a verification step takes place, where the user can type

freely on the keyboard as well as using the mouse while the system collects the previously

mentioned information, sends it to the XGBoost algorithm to evaluate and produce a re-

sult saying if the user matches the information, or not.

For the enrolment procedure, the system will create a file, or add to the already existing

file, 3000 keyboard inputs and 2000 mouse inputs from the user. These will be trans-

formed into groups of 9 keys and 20 movements which then are added to the main files.

With growing datasets, all these values can be changed.

14

For the verification procedure, the system collects initial information the sameway it does

for the enrolment. After collecting information for 30 seconds, it is formatted to match

the model and sent to be evaluated by the XGBoost algorithm. The accuracy result pro-

duced dictates whether the console locks or not. Established accuracy values are 75% for

keyboard and 50% for mouse, these values will be explained in chapter 5.2

Data was collected with the same conditions in mind: same computer, keyboard and

mouse with unchanged settings.

3.4 Conclusion

Given that the continuous authentication subsystem is to presumably work with granted

access to mouse and keyboard events, its design should be built with focus on security,

privacy and usability, instead of other constraints. Security and privacy are the most im-

portant, since the main objective of this system is to verify if a given user is the actual

person utilising the computer. This assumes the computer where the system was imple-

mented has sensitive information that should only be accessed or altered by certain peo-

ple. Usability guarantees that the person utilising the system has a smooth experience,

without having to continually insert passwords or have their thought process and work

interrupted. After completing the above chapter, many questions were answered and a

better development experience was achieved.

15

Figure 3.1: Flowchart illustrating the enrollment and verification procedures.

16

Figure 3.2: Keyboard features visualization based on [SIKP20] and [AaW15].

17

18

Chapter 4

System Implementation

4.1 Introduction

The present chapter will dwell on the overall system implementation. There is a review of

technologies and libraries used, details about the implementation as well as encountered

challenges. Some code samples will be shown too. This chapter is divided as follows:

• Section 4.2 - Technologies and Libraries - all technologies and libraries used to

create the presented system;

• Section 4.3 - Implementation Details - explanation of the system implementa-

tion, how it was thought and done;

• Section 4.4 - ImplementationChallenges - discussion on the challenges encoun-

tered while implementing the system;

• Section 4.5 - Conclusion - conclusions about all the information exhibited on the

present chapter.

4.2 Technologies and Libraries

As previously mentioned, the chosen language for this project was Python. This deci-

sion lies on the fact that Python is simple to understand, has a wide variety of libraries

focused on machine learning and tools to assist on it, and also due to familiarity with

it gained through classes where Python was the main tool for machine learning. Py-

Charm Integrated Development Environment (IDE) was used for a better experience us-

ing Python, since it provides error report and debugging tools. The libraries utilised in

the system are:

• csv - library used to handle CSV files. it was mostly used to read and write to files,
for example, to save user enrolment data, format the files to have the appropriate

number of key presses and mouse movements, read that data to build a model, etc.;

• ctypes - library that enables the use of C compatible data types and calling sev-

eral Dynamic-Link Library (DLL). Here it is used to lock the computer utilising

ctypes.windll.user32.LockWorkStation() and to show a systembox telling users

that the necessary enrolment data has been collected;

• datetime - library that provides date and time manipulation classes. It enables the
creation of key timings and the calculations for mouse velocity, making it easier to

19

collect information. This class was important in the context of this work because its

functioning determines how consistent the timings of the events are;

• itertools - this library offers a variety of iterators for a wide array of uses. Was

used to aid in the creation of the enrolment files, so the collected data has the same

amounts of information for each class;

• math - module that implements a diverse range of mathematical functions present
in C. Used to calculate mouse velocities;

• NumPy - library for scientific computing that provides utilities for multidimensional
array manipulation. Usage in the system is to create the bestPredictions array
to save the best predictions for each class after learning step and to calculate true

positive, false positive, true negative and false negative values from the matrix.

• os - module that provides a way to use system dependent functionalities, like getting

the operating system name. For this system, it is used to verify the existence of the

initial file path in the computer;

• pandas - package primarily used for data science and data analysis. Throughout all
machine learning implementation, pandas is used to create and edit the necessary

dataframes for XGBoost to use on learning and prediction jobs;

• scikit-learn - library that supplies an extended set ofmachine learning tools, from
algorithms to metrics. The main usage in this system was to create metrics using,

for example, metrics.classification_report. Another use for this library comes
in the form of creating the train and test sets using metrics.train_test_split;

• time - module that, similarly to datetime, provides means to use time related func-
tions. In this case, time.sleep()was used to wait for the verification step to collect
data before sending it to be evaluated;

• XGBoost - library that offers optimised distributed gradient boosting. This library
was built to be highly flexible, efficient and portable. XGBoost was the chosen al-

gorithm for this work after reading [SIKP20] and comparing it also to [AaW15] and

the results showed it was a good choice, specially for keyboard dynamics. This al-

gorithm creates a model, which is a mathematical structure that takes an observa-

tion and produces a result. The model is a decision tree, whose training is done by

boosting. Boosting operates while taking in consideration the errors produced by

previous trees [xgb].

4.3 Implementation Details

Before starting to implement the system, the best way of proceeding was devised: First

and foremost, a general system flow, like the one present in figure 3.1; Then a data collec-

tion and enrolment subsystem are needed to build the dataset; After the dataset creation,

20

use it in the machine learning algorithm to create a model; When satisfactory results are

achieved, implement the verification subsystem.

4.3.1 Enrolment

Enrolment is the first step to start using the system. If a provided user does not exist in

the system, enrolment ensures the user is created and that data is collected to create a

new collective model for the system to recognise the users. When a user is added to the

dataset, a new class is created. All the initial verification and creation of the user is made

using the signup() function. A snippet of it can be seen in listing 4.1.

1 i f os . path . e x i s t s (keyboardPath) :

2 with open (keyboardPath , ’ a+ ’) as checkFi le :

3 checkFi le . seek (0)

4 csvReader = csv . reader (checkFi le)

5 while True :

6 tempUser = ’ ’ . j o in (tempUser . s p l i t ()) . lower ()

7 f o r row in csvReader :

8 i f tempUser in row [0] :

9 pr in t (”User a lready ex i s t s , ”

10 ” p lease type 1 i f you pretend to add in fo or 2 ”

11 ” i f t h i s i s not your username : ”)

Listing 4.1: User presence verification on the dataset.

To collect keyboard inputs, the pynput library was used. Natively it does not maintain a
list with the continuously pressed keys, so in order to register continuously pressed keys as

only one press, the set() datatype is used. Sets are unordered, unchangeable and do not
allow duplicates. When a key is pressed, its code is added to the set and continues there

until that same key is released. Then a dictionary is created with that key code and the

time it was pressed, and another for when the key is released. By using this mechanism,

all features can be extracted. In listing 4.2, after the key is released, up-to-up time and

dwell time are calculated. For all the other keyboard features, the procedure is equivalent.

1 i f unifiedKeyCode in continuousPressSet :

2 keysReleaseTime [unifiedKeyCode] = releaseTime

3 # Ca lcu la te up−to−up time . Only occurs a f t e r the second key re l ea s e .

4 # Time between previous key re l ea s e and current key re l ea s e .

5 i f r e l easeF i r s tT ime :

6 up2UpTime = releaseTime − re leaseF i r s tT ime

7 up2UpTimeArray . append (up2UpTime . tota l_seconds ())

8 re leasePreviousTime = re leaseF i r s tT ime

9

10 # Ca lcu la te dwell time . This i s the time a s ing l e key was pressed .

11 i f unifiedKeyCode in keysPressTime :

21

12 tota lPressTime = keysReleaseTime [unifiedKeyCode] − keysPressTime [

unifiedKeyCode]

13 dwellTimeArray . append (tota lPressTime . tota l_seconds ())

Listing 4.2: Up-to-up and dwell time calculation.

For mouse data collection, initial position is saved and every time it leaves a 100 pixel ra-

dius, x and y velocity is calculated, as well as overall pixel to pixel velocity. Initial position

is refreshed to the final position and the procedure repeats itself.

When 3000 key features or 2000 mouse features are collected, a window appears on

screen to let users know theyhave the respective component necessary information. When

all information is collected, the user presses the ESC key and all the gathered information
is written to a corresponding CSV file. If the necessary information is not collected upon

the Esc. key being pressed, a prompt asking for confirmation that the user intends to leave
appears. If the user wants to leave, all gathered data is deleted. Otherwise, data collection

continues. After a successful data gathering, the created file is formatted to have sets of

nine keys per row. Finally, this file is appended to the compilation.csv file, where all
users are present. Mouse procedure is exactly the same, but moves are grouped in 20 in-

stead of nine. Reasoning and testing for this conclusion is presented in chapter 5.

Before the final step, hyperparameter tuning on the XGBoost algorithm, using cross vali-

dation, took place. Hyperparameter tuning is a process that helps with algorithm perfor-

mance by finding the most suitable hyperparameters to produce the best results possible.

This procedure was done using cross validation (also called k-fold due to the k value dic-

tating how the data is divided), which takes data samples from the whole dataset and tests

them with each set of values given in the gridsearch dictionary. In the end, the hyperpa-

rameter set that produced the best outcome is outputted. The keyboard dynamics algo-

rithm was the first to be tuned. The chosen approach to fine tune the hyperparameters

was to create sets of two hyperparameters at a time and try to fine-tune them separately.

Initial hyperparameters were set based on [SIKP20] and can be seen in table 4.1. These

hyperparameters are:

• n_estimators - number of gradient boosted trees. This value is not used on the final
hyperparameters, since it was not being used by the algorithm;

• max_depth - maximumdepth of a tree. Higher values contribute to increase its com-

plexity, so lower values avoid overfitting. Higher values also make for an aggressive

memory consumption;

• eta - learning rate for the algorithm. Lower values avoid overfitting since the step
sizes are smaller;

• colsample_bytree - ratio of columns used when build each of the trees. Smaller
values avoid overfitting;

22

• subsample - ratio of training instances. In table 4.1 this value is 0.7, which means
that the algorithm will utilise 70% of the training data before growing a new tree.

Lower ratios avoid overfitting;

• min_child_weight - minimum hessian sum of instance weights. If the hessian sum

is lower than min_child_weight, further construction in that node is abandoned.
Higher values avoid overfitting;

• reg_alpha - L1 regularisation term for weights. This regularisation tries to estimate

data median value. A higher value avoids overfitting;

• reg_lambda - L2 regularisation term for weights. This regularisation tries to esti-

mate data mean value. Higher values avoid overfitting;

• gamma - minimum loss reduction for a node to split into two more nodes. Larger

values avoid overfitting.

Adding to the above hyperparameters, there are three more that are static for both key-

board and mouse:

• 'objective': 'multi:softprob' - this hyperparameter sets the algorithm objec-

tive to return a vector containing, for data point of each class, the predicted proba-

bility;

• 'num_class': 6 - because of the use of multi:softprob as the objective, the num-
ber of classes to predict has to be specified. For this system, that number is six, cor-

responding to the number of people that helped testing the prototype: fernando,
joana, laura, mariana, pedro e tiago.

• 'eval_metric': 'mlogloss' - logistic loss formulticlass problems. It is calculated
with the following formula:

Llog(y, p) = −(y log(p) + (1− y) log(1− p)

where y ∈ {0, 1} and the probability estimate p = Pr(y = 1). The lower the

mlogloss value, the better, since it is based on the likelihood function, which dic-
tates how likely the model is to correctly fit into the given data.

The created sets of hyperparameters to tune were chosen based on the relation between

their functions and were the following:

1. max_depth and min_child_weight - the presented hyperparameters are connected
to each other, since max_depth dictates the maximum depth a tree can reach and

min_child_weight dictates if a node should be abandoned or not;

2. eta and min_split_loss - eta has a very important role, since it defines the learn-
ing rate of the algorithm. This parameter is put together with min_child_weight
because the latter is also connected with the previous two when constructing new

trees;

23

3. colsample_bytree and subsample - both hyperparameters manage how the dataset
information is divided during algorithm usage;

4. reg_alpha and reg_lambda - are both regularisation hyperparameters to tune the
weights of the model.

Values tested on tuning are discussed in chapter 5.2.

hyperparameter values
n_estimators 450
max_depth 8

eta 0.2
colsample_bytree 0.8

subsample 0.7
min_child_weight 3

reg_alpha 0
reg_lambda 1.5
gamma 0.2

Table 4.1: Initial XGBoost hyperparameters as presented in [SIKP20].

Data splitting was seeded in order to produce more viable results. A random number was

selected between zero and 100, the number 42 was picked. Other two important static

hyperparameters are the number of training iterations, which was set to 1001, and the

early stopping rounds, which was set to 15. This means the algorithm will make a maxi-

mum of 1000 iterations, but if mlogloss does not go lower for 15 consecutive iterations,
it stops earlier. Hyperparameter tuning was computationally costly and time consuming,

but as later can be seen, on chapter 5, there was a significant performance boost, both in

accuracy and mlogloss. Final keyboard hyperparameters are shown in table 4.2.

hyperparameter values
eta 0.1

max_depth 4
colsample_bytree 0.8

subsample 0.7
min_child_weight 1

reg_alpha 0
reg_lambda 0.25
gamma 0.1

Table 4.2: Tuned hyperparameters for keyboard dataset.

Below, final mouse hyperparameters can be seen, in table 4.3.

24

hyperparameter values
eta 0.06

max_depth 4
colsample_bytree 0.525

subsample 0.7
min_child_weight 3

reg_alpha 0.75
reg_lambda 0.25
gamma 0.25

Table 4.3: Tuned hyperparameters for mouse dataset.

After all hyperparameters are tuned, the algorithms can create the keyboard and mouse

models to be used to verify the users. After its creation, the model is saved to be used for

future verification, in the path keyboardModelPathwith the name keyboardModel.model.
This ensures amore usable system, since it does not need to create a newmodel with every

log in, using the already created model. In order to separate the hyperparameters from

the algorithm, a dictionary was created called tunedParamsKeyboardwhere the algorithm
will read that information. For mouse model creation, the steps are the same: the algo-

rithm creates a model file called mouseModel.model in the path mouseModelPath and the
hyperparameter dictionary is called tunedMouseParams.

4.3.2 Verification

After enrolment takes place, the user is fully registered into the system and ready to start

the verification step which from the user side is quite simple, since they only need to use

the computer as normal, but from the back-end side many operations are taking place.

While users type and use the mouse, information produced is stored in memory the same

way it is stored during enrolment. After 30 seconds of data gathering, two outcomes can

happen: first, if not enoughdatawas gathered, the computer locks, since aminimunquan-

tity of data is expected to be collected; the second outcome is the collected data is sent to

be formatted and verified. Here another two outcomes can happen: either keyboard accu-

racy is 75% and above or mouse accuracy is 50% and above, which lets the user continue

their connection; or both keyboard and mouse do not reach the accuracy threshold and

the system locks the computer. Previous explanation is illustrated in figure 4.1.

At every 30 seconds, the gathered keyboard information is sent to a function called

sendKeyboardInfo() which is depicted in listing 4.3.

1 # Function to send keyboard formatted continuous information to be v e r i f i e d .

2 def sendKeyboardInfo () :

3 g loba l dwellTimeArray , f l ightTimeArray , up2UpTimeArray , f ina lKeyboardLis t

4

5 # F i r s t l y format the raw in fo sent from v e r i f i c a t i o n . py . This a l t e r s

f ina lKeyboardLis t . I f not empty , the formatted information i s sent to

get v e r i f i e d .

25

Figure 4.1: Explanation of verification decision making.

6 formatKeyboardInfo ()

7 i f f ina lKeyboardLis t :

8 algori thms . predictKeyboardXGBoost (f ina lKeyboardLis t)

9 f ina lKeyboardLis t = []

10 return algori thms . keyboardAccuracy

11 e l s e :

12 return 0

Listing 4.3: Function that sends keyboard data to be formatted and verified.

Function formatKeyboardInfo() takes the raw input data, evaluates if it is enough to be

verified and transforms it from a (6 ∗ n) array into a (46 ∗ n) array. If data is not enough,
returns an empty finalKeyboardList.

When the formatted data is fed to predictKeyboardXGBoost(), the algorithm will take

the data, make a prediction, and return an accuracy value, which will decide what hap-

pens to the system. The prediction process is shown in listing A.1 and decision making is

presented in listing 4.4.

26

1 # Function to eva luate both keyboard and mouse .

2 def pred i c t () :

3 g loba l f inalMouseList , f ina lKeyboardLis t

4 keyboardAccuracy = sendKeyboardInfo ()

5 mouseAccuracy = sendMouseInfo ()

6

7 # Lock computer i f both metr ics are below the threshold . This va lues can be

changed by an admin .

8 i f keyboardAccuracy >= 0.75 or mouseAccuracy >= 0.50:

9 pr in t (”−−−−−−−−−−−−−VERIFICATION PASSED−−−−−−−−−−−−−”)

10 e l s e :

11 pr in t (”−−−−−−−−−−−−−−−−BLOCK CONSOLE−−−−−−−−−−−−−−−−”)

12 ctypes . windl l . user32 . LockWorkStation ()

Listing 4.4: Function for decision making after prediction results.

As of enrolment procedure, mouse logic is exactly the same as keyboard with some differ-

ent parameters. Verification happens on the background, so this system can be utilised

on a wide variety of environments, like writing emails, messaging or browsing online.

4.4 Implementation Challenges

Implementation challenges encountered while developing the system will be discussed in

this section. The first one was the lack of suitable keyboard datasets for the presented

problem. Most of them were based on repeated password input, like [SIKP20], or simply

not provided. Given this, creation of a suitable dataset was a need. For this to take place,

a more close contact with people was sometimes necessary, but was made difficult by the

COVID-19 pandemic, so the final datasets are composed of data of only six users, as shown

in chapter 5.1. Adjacent to the creation of the datasets is the managing of all consequent

files, how to use them correctly and in the correct order.

To use the pynput library properly, a way to save continuously pressed keys had to be
created. This issue was solved using the set() data type, as explained beforehand. A very
important aspect adjacent to the previous challenge is how fast the algorithm can process

all this information on the verification step, since this step was to be performed regularly

(e.g. at each 30 seconds in the implemented prototype). While using XGBoost, with its

renowned speed, this issue was immediately solved, since during testing no problems of

this nature were detected.

The biggest challenge was to utilise XGBoost properly. It can perform a variety of tasks

and every task has a large quantity of parameters and hyperparameters as well as different

ways to use. In order to facilitate its usage, a lot of effort was put into learning how and

when to utilise it.

27

4.5 Conclusion

While implementation took place, challenges arouse and were dealt with. This made it

necessary to adapt the work plan to suit and solve the problems found along the way. Al-

though the system prototype was finished, many more features could be added to make

the system better. This will be discussed in chapter 6.2. Final implementation is satisfac-

tory, with all planned features implemented and working well together.

28

Chapter 5

Results and Discussion

This next chapter is used to present the necessary material to implement and utilise the

system, all tests conducted with corresponding results, a discussion of the results and a

final conclusion. Chapter organisation is as follows:

• Section 5.1 -Materials - presentation of all means used to accomplish the system,

including hardware, datasets, software, etc.;

• Section 5.2 -Test andResults - presentation of all tests made to tune and evaluate

the system during and after completion;

• Section 5.3 -Discussion - in-depth discussion of the results produced;

• Section 5.4 - Conclusion - verdict on all accomplishments made while building

present chapter.

5.1 Materials

Since themain objective for this dissertation is the construction of a system prototype and

testing of machine learning algorithms, using the same computer and external hardware

throughout all stages of development is essential to prevent data irregularity issues. By

doing this, data homogeneity is guaranteed to every user. The computer used is a lap-

top. Its specifications are Intel® Core™ i7-5700HQ@ 2.70GHz, 16 GB Double Data Rate

3 (DDR3) Random Access Memory (RAM) @ 1600 MHz, Solid State Drive (SSD) 120 GB

withWindows 10 Pro 64 bit. No external keyboard was used. Mouse had 1250 Counts Per

Inch (CPI), and Windows sensitivity set to 10 with no mouse acceleration. The computer

was connected to the charger at all times, since it was found during the initial experiments

that it might influence data granularity, both in enrolment and verification steps, which

may then lead to incorrect results. Though this should not be a general problem, onemust

not forget that the environment where the authentication system may run in the future

might not guarantee this particular aspect at all times. This will need to be further studied

in the future.

Software/tools used to develop the system were: PyCharm IDE to create all of the python

code, Microsoft Excel to manage all the CSV files in an initial state, Git [git] to save all

work progress, Human Benchmark [ben] to assist in mouse data collection and TypeLit

[lit] to aid with keyboard data collection. Human Benchmark [ben] is a website that pro-

vides a series of tests the users can complete by using almost only the mouse. TypeLit [lit]

is a website to train typing, by letting users rewrite books in different languages, such as

29

“Alice in Wonderland” or “Os Maias”.

When the enrolment procedure ends, the biometric data is saved into two CSV files, as

can be seen in table 5.1 and table 5.2. Afterwards, two more CSV files are created with the

keyboard having rows with nine key presses and themouse having 20movements. This is

achieved by repeating the nine or 20 consecutive rows from the same file. First row from

the new CSV file would be rows one to nine from the original, the second row would be

rows two to 10, and so on. Same process is applied to the mouse file. This method creates

a notion of pattern, since it is impossible to verify a user with one key press or one mouse

movement.

label dwellTime U2UTime flightTime intervalTime latencyTime
pedro 0.21499 0.001988 0.105836 0.21499 0.087128
pedro 0.111142 0.156264 0.196282 0.216978 0.235004
pedro 0.071124 0.220698 0.149864 0.267406 0.221689
pedro 0.141958 0.144151 0.142949 0.291822 0.233086
pedro 0.14316 0.158583 0.232095 0.286109 0.31394
pedro 0.069648 0.191259 0.225005 0.301743 0.33143

Table 5.1: Snippet of the initial keyboard dataset, where each row corresponds to a key and its relation with
the next.

label xVelocity yVelocity mouseVelocity
pedro 2758.244 1485.209 3132.691605
pedro 4888.346 2777.469 5622.300157
pedro 6599.56 2133.191 6935.754965
pedro 406.509 56.91126 410.4734793
pedro 155.6227 244.9617 290.2148811
pedro 3.124993 78.12482 78.18729177

Table 5.2: Snippet of the initial mouse dataset, where each row saves mouse velocity for 100 pixels.

After this process is complete, new formatted files are created and saved to the corre-

sponding compilation file, which are used to train the XGBoost models. In the end, input

files are:

• two initial files with direct input from the user;

• two formatted files, one with nine key presses, one with 20 mouse movements;

• two files with data regarding all users in the system;

• two XGBoost models, one for mouse, one for keyboard.

5.2 Tests and Results

Present section shows all tests and results obtained while developing this system.

30

5.2.1 Datasets

To progress in the system development, after compiling the initial datasets, a series of

compilation files were also created. For keyboard data, files for one to 10 key presses were

created and tested. Tests conducted this way had no seed on the splitting process. Each

file was run 10 times and statistics were calculated to build the charts discussed herein.

Figure 5.1 shows a chart for each set accuracy, figure 5.2 the corresponding standard
deviation, figure 5.3 a chart for mlogloss values with standard deviation values being
presented in figure 5.4.

Figure 5.1: Accuracy in function of set of keys.

Figure 5.2: Standard deviation for set of keys accuracy.

31

Figure 5.3: Mlogloss in function of set of keys.

Figure 5.4: Standard deviation for set of keys mlogloss.

Upon analysing the information above, it was concluded that a set of nine keys exhib-

ited a good compromise in terms of accuracy, since accuracy was starting to climb slower

and standard deviation value was almost insignificant, but specially because mlogloss
value was really good and almost the same as the 10 key set. This is due to the algorithm

being able to evaluate a wider case. With each additional key in the set, the algorithm had

an increasingly better notion of continuity. In conclusion, using a single key press to do

the verification is almost impossible, while a set of 10 key presses is much more capable.

There was still room to try bigger sets since the trend shows that using more keys leads

to better accuracy, but unfortunately, due to the increasing amount of time each iteration

was taking, it was not feasible.

For mouse usage, the same guidelines were followed. In figure 5.5 mouse accuracy can be

found and in figure 5.6 its standard deviation. For mlogloss and matching standard

32

deviation there are figures 5.7 and 5.8, respectively.

Figure 5.5: Accuracy in function of set of moves.

Figure 5.6: Standard deviation for set of moves accuracy.

33

Figure 5.7: Mlogloss in function of set of moves.

Figure 5.8: Standard deviation for set of moves mlogloss.

Conclusions on mouse datasets were harder to take, since the dataset was smaller, not

only in number of features but, also in data quantity. This is due to the data collection for

the mouse being harder to do than it was initially predicted because users did not use the

mouse as extensively as the keyboard. It shows that the bigger the move set, higher was

the accuracy and lower the mlogloss, both with residual standard deviations. Without

hyperparameter tuning, figure 5.9 and figure 5.10 showROCandAreaUnder Curve (AUC)

for keyboard and mouse, respectively, with mouse having worse results than keyboard.

ROC represents the correlation between sensitivity (true positive rate) and specificity (1

- false positive rate), the closer to one, the better. This classifier is binary, so in order to

successfully apply it to the problem at hands, a one-vs-all approach was taken, where each

class is compared with the rest. AUC represents how well the algorithm can distinguish

between classes.

34

Figure 5.9: ROC and AUC for keyboard before hyperparameter tuning. Each class represents a user.

Figure 5.10: ROC and AUC for mouse before hyperparameter tuning. Each class represents a user.

5.2.2 Hyperparameter Tuning

This development step was already mentioned in chapter 4.3, where initial hyperparam-

eters were shown in table 4.1, final values for keyboard on table 4.2 and for mouse on

table 4.3. Even though values were mentioned, how those conclusions were reached was

not, so this section will show the process behind them. Utilising XGBoost cross valida-

tion, it was possible to test several values on specific hyperparameters and get the best

mlogloss result for each. Here the splitting process is seeded. The same value sets were

35

applied to both datasets, as seen in table 5.3.

Hyperparameters Values Used
max_depth [1, 2, 3, 4, 5, 6, 7, 8,9, 10]

min_child_weight [1, 2, 3, 4, 5, 6, 7, 8,9, 10]
min_split_loss [0.1, 0.25, 0.5, 0.75, 1]

eta [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
colsample_bytree [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

subsample [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
reg_alpha [0, 0.25, 0.5, 0.75, 1]
reg_lambda [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2]

Table 5.3: Values used on cross validation for both keyboard and mouse datasets.

Given that the mouse dataset is less representative than the keyboard one, another test

on the hyperparameter eta was made. The new test set was [0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.1]. Final hyperparameter values are available, as mentioned be-

forehand, in table 4.2 and table 4.3.

Before the tuning process, mlogloss values were 0.100 for keyboard and 0.693 formouse.
After the process, keyboard mlogloss was 0.085 and for the mouse was 0.685. Improve-
ments can be seen when analysing ROC and AUC for keyboard and mouse, on figure 5.11

and figure 5.12, respectively.

Figure 5.11: ROC and AUC for keyboard after hyperparameter tuning.

36

Figure 5.12: ROC and AUC for mouse after hyperparameter tuning.

5.2.3 Confusion Matrix Analysis

With hyperparameter tuning complete, analysing confusion matrices was the next step.

This test acts as a validation test in order to prove the system gotmore viable and efficient.

On table 5.4, confusion matrix for keyboard dataset is shown, where class four presents

the highest confusion, and class zero the lowest. Table 5.5 shows confusion matrix for

mouse before parameter tuning.

0 1 2 3 4 5
0 326 0 3 0 0 0
1 0 313 15 0 1 0
2 1 6 320 2 0 0
3 0 0 2 323 5 0
4 0 0 0 20 310 0
5 1 9 2 0 1 316

Table 5.4: Confusion matrix for keyboard dataset before hyperparameter tuning.

37

0 1 2 3 4 5
0 154 7 0 15 2 25
1 13 64 3 2 25 25
2 1 0 184 6 6 7
3 17 0 6 155 4 7
4 9 3 2 6 138 13
5 31 16 11 11 15 117

Table 5.5: Confusion matrix for mouse dataset before hyperparameter tuning.

After tuning process, confusion matrix for keyboard is present in table 5.6 and for mouse

in table 5.7.

0 1 2 3 4 5
0 326 0 3 0 0 0
1 0 313 15 0 1 0
2 0 3 323 3 0 0
3 0 0 1 322 7 0
4 0 0 0 21 307 2
5 1 7 0 0 0 321

Table 5.6: Confusion matrix for keyboard dataset after hyperparameter tuning.

0 1 2 3 4 5
0 152 5 0 17 1 28
1 9 71 1 1 19 31
2 3 0 183 4 5 9
3 19 1 7 152 3 7
4 7 3 2 7 134 18
5 29 12 13 9 19 119

Table 5.7: Confusion matrix for mouse dataset after hyperparameter tuning.

For a better comparison of these matrices, a group of tables comparing true positive rate

and false positive rate for both keyboard andmouse was created. On table 5.8 mean value

for true positive rate is higher after hyperparameter tuning, while false positive rate is

lower. This means that all efforts to make the system better got positive results with the

keyboard dataset.

38

True Positive Rate False Positive Rate
Class Before After Before After
0 0.9909 0.9909 0.0012 0.0006
1 0.9514 0.9514 0.0091 0.0061
2 0.9726 0.9818 0.0134 0.0115
3 0.9788 0.9758 0.0134 0.0146
4 0.9394 0.9303 0.0043 0.0049
5 0.9605 0.9757 0 0.0012

Mean 0.9656 0.9677 0.0069 0.0065

Table 5.8: Comparison of true positive rates and false positive rates on keyboard dataset before and after
hyperparameter tuning.

Table 5.9 presents true positive rates and false positive rates for themouse dataset. There,

the mean value for the true positives increased slightly, which is good. On the other hand,

the false positive mean value was better before the hyperparameters were tuned.

True Positive Rate False Positive Rate
Class Before After Before After
0 0.7586 0.7488 0.0792 0.0747
1 0.4848 0.5379 0.0269 0.0217
2 0.9020 0.8971 0.0246 0.0257
3 0.8201 0.8042 0.0439 0.0417
4 0.8070 0.7836 0.0560 0.0506
5 0.5821 0.5920 0.0857 0.1034

Mean 0.7258 0.7273 0.0527 0.0530

Table 5.9: Comparison of true positive rates and false positive rates on mouse dataset before and after
hyperparameter tuning.

5.2.4 Verification

The testing verification step consisted of the following:

• For 10 minutes straight, a user interacts with the system as they would normally do.

There are two verifications per minute (at each 30 seconds);

• If during these 10minutesmore than one system block happens, the current session

stops and a new test doing the TypeLit and/or Human Benchmark will take place,

in order to verify if the activities made during enrolment procedure influence the

models for the worse;

• Another test will be conducted where a user will be logged in, and a different user

will try to pretend to be the initial one while using the system normally;

• In case the intruder is detected at least two consecutive times, the test is considered a

success, otherwise, a test utilising TypeLit and/or Human Benchmark will be made.

39

All tests presented next were conducted by user pedro. First modality to be tested is key-
board and then mouse.

After logging in as himself, user pedro started to use the computer as normal, writing
an email, parts of the dissertation or engaging in online conversation. Throughout the

10 minutes the computer was used, and every verification check was passed with success.

In total there were 156 false negatives and a significant 2848 true positives, which repre-

sents 94.81% accuracy. For the impersonation test, the user of the system was logged in

as mariana and after 2 verifications, the system had already rejected the user behind the

keyboard twice, with 258 true negatives and eight false positives, which means 96.99%

accuracy on the rejections.

When testing the mouse, after two verifications the system blocked twice with 70 true

positives and 267 false negatives, translating to 20.77% accuracy. As seen before in chap-

ter 5.2, results produced duringmouse training were not the best, and logically they influ-

ence verification results a lot. So the next test will be a repetition of the exercises utilised to

gather data on Human Benchmark. After 10 minutes of system usage on Human Bench-

mark, all verifications were accepted with 2291 true positives and 440 false negatives,

having 83.89% accuracy. Now on the impersonation test, with two verifications the sys-

tem already passed the test, the console got blocked twice. The system detected three false

positives and 366 true negatives, giving 99.19% rejection accuracy.

5.3 Discussion

After analysing all results produced during the making of the system, it was concluded

that changes made were very positive, despite some of them only enhancing very little.

The biggest disparity registered was during key set and move set size testing, with key-

board accuracy going upmore than 20% andmouse more than 30%. Values for mlogloss
had significant drops too, with keyboard going from roughly 0.7 to 0.1 and mouse values

from 1.5 to 0.7, since mlogloss is the most important metric for probability problems,
these results are the most significant ones.

When talking about AUC-ROC, much better results can be seen on keyboard ROC val-

ues on figure 5.11, where classes 1 and 4 have the more significant changes, despite AUC

being the same. For mouse, early curve steepness is better after tuning, as figure 5.12

shows when compared with 5.10, even though AUC values are mostly the same, but class

3 had a loss of 0.01 in that metric.

Verification testing showed that keyboard model is much more versatile and useful than

the mouse model since it can continuously verify the user while performing completely

normal tasks with almost 95% accuracy, while the latter can only do so when evaluating

information gathered from usage in Human Benchmark. When looking at the confusion

40

matrix on table 5.4, it is possible to see that class four is confused only with class three,

like class one is confused with class two, a repeating pattern even after hyperparameter

tuning, shown in table 5.6. This event may happen due to the writing patterns of the

evaluated user converging into another one in specific occasions, or even due to mood or

posture changes. Despite its flaws, the system can detect both an actual user and an im-

personating one with ease.

With this discussion, it is possible to see that mouse dataset has much different results

than keyboard dataset. This may be due to a big chunk of early development being aimed

at having a functional keyboard verifier and only then focusing on mouse features. An-

other aspect is that the mouse dataset is lacking in terms of feature diversity (3 versus

5) and with significantly fewer amounts of data (10996 versus 19753). One last aspect

that may be of relevance is that, as studied in [SIKP20], XGBoost was tested on keyboard

datasets, with great success, but no information on mouse datasets was found.

5.4 Conclusion

This chapter compiled all testsmade during system development, which helped with eval-

uating the work made and what changes should take place to optimize the system. In

the end, keyboard results were very satisfactory, both in user verification and imperson-

ation detection, while doing completely normal activities. Meanwhile, mouse results had

much different results. For normal computer usage, mouse verification did not work well,

since it could never identify correctly who was using themouse. The second test produced

much better results, identifying the user correctly while performing similar actions made

during enrolment, as well as detecting impersonation for the same activities. In short,

despite mouse verification not working as intended, all objectives set previously were ac-

complished.

41

42

Chapter 6

Conclusion and Future Work

In the final chapter, overall conclusions are laid out along with what was not (possible to

be) accomplished. It also discusses what the future holds in terms of work to be done in

order to improve the system and provide an even more positive experience.

6.1 Main Conclusions

In a world where everything is more and more connected due to IoT, new technologies

must be developed to cover for inevitable flaws that may occur. Nowadays remote work

and remote assessments are a realitymore common than ever, so in order tomake sure all

accesses and interactions with these systems are secure and performed by the legitimate

and authorised people, many strategies were implemented, with some of them failing or

not being ideal.

The project behind this dissertation aimed at the creation of a system prototype to help

in such circumstances. To do so, behavioural biometrics were applied to the XGBoost

machine learning algorithm to predict if the person behind the keyboard and mouse was

the right user. To do so, keyboard andmouse dynamicswere utilised to feed the algorithm.

The final system prototype has its flaws, but in the end, the initial purpose of this dis-

sertation was achieved. User verification by the system is rather accurate when using the

keyboard, and with some improvements, mouse verification may become viable as well.

Since users are humans, emotions insert another possible layer to the correct identifica-

tion of who is behind the computer. Although this was not tested during development, it

can be inferred from [Pen17] and [SRAA17].

6.2 Future Work

By simply analysing mouse results, it is possible to deduce that at least in that topic, there

is muchmore that can be done. Mouse dataset should bemore robust by havingmore fea-

tures, such as click timings for left, right and middle buttons, scroll distance and speed,

etc. More data should be collected as well, with specialised methods to not induce the

system in a bias, as it was shown in chapter 5.2.

For this system to be applied to remote assessments and interactions, a method to send

information, in a secure way, to an admin or responsible can be implemented, were ab-

solutely no information of what said user is doing is sent, but a way to inform them that

43

somethingmight bewrong. Before this tool goes live,more intense tests and tuning should

be made to ensure everything works smoothly. Since the system is practically invisible on

the computer, not much is needed to make it ideal in that sense.

44

Bibliography

[AaW15] Tanapat Anusas-amornkul and Kasem Wangsuk. A comparison of keystroke

dynamics techniques for user authentication. In Proceedings of 2015 Inter-

national Computer Science and Engineering Conference (ICSEC), pages 1–5,

2015. xv, 10, 11, 17, 20

[AS18] Ananya and Saurabh Singh. Keystroke dynamics for continuous authentica-

tion. In Proceedings of 2018 8th International Conference on Cloud Comput-

ing, Data Science Engineering (Confluence), pages 205–208, 2018. 9, 14

[Assa] Assembleia da República. Act no. 109/2009. Republic Diary No. 179/2009,

Series I of 2009-09-15. Available from: https://dre.pt/pesquisa/-/
search/489693/details/maximized (last accessed on 22/07/2021). vii, 1

[Assb] Assembleia da República. Act no. 46/2018. Republic Diary No. 155/2018,

Series I of 2018-08-13. Available from: https://data.dre.pt/web/
guest/pesquisa/-/search/116029384/details/maximized (last accessed

on 22/07/2021). vii, 1

[ben] Human benchmark. Available from: https://humanbenchmark.com/ (last ac-
cessed on 25/03/2021). 29

[Bro21] Sara Brown. Machine learning, explained, Apr 2021. Avail-

able from: https://mitsloan.mit.edu/ideas-made-to-matter/
machine-learning-explained (last accessed on 05/09/2021). 7

[Cen19] Centro Nacional de Cibersegurança. Quadro nacional de referência para

a cibersegurança, 2019. Available from: https://www.cncs.gov.pt/docs/
cncs-qnrcs-2019.pdf (last accessed on 22/07/2021). 2

[Edu] IBM Cloud Education. What is machine learning? Available from:

https://www.ibm.com/cloud/learn/machine-learning (last accessed on

05/09/2021). 7

[FEM+12] Clint Feher, Yuval Elovici, RobertMoskovitch, Lior Rokach, and Alon Schclar.

User identity verification viamouse dynamics. Information Sciences, 201:19–

36, October 2012. Available from: https://doi.org/10.1016/j.ins.2012.
02.066. 8

[git] Git. Available from: https://git-scm.com (last accessed on 10/10/2021). 29

[lit] Typelit.io. Available from: https://www.typelit.io (last accessed on

25/03/2021). 29

[Nat18] National Institute of Standards and Technology. Framework for improving

critical infrastructure cybersecurity, version 1.1. 2018. Available from: https:

45

https://dre.pt/pesquisa/-/search/489693/details/maximized
https://dre.pt/pesquisa/-/search/489693/details/maximized
https://data.dre.pt/web/guest/pesquisa/-/search/116029384/details/maximized
https://data.dre.pt/web/guest/pesquisa/-/search/116029384/details/maximized
https://humanbenchmark.com/
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://www.cncs.gov.pt/docs/cncs-qnrcs-2019.pdf
https://www.cncs.gov.pt/docs/cncs-qnrcs-2019.pdf
https://www.ibm.com/cloud/learn/machine-learning
https://doi.org/10.1016/j.ins.2012.02.066
https://doi.org/10.1016/j.ins.2012.02.066
https://git-scm.com
https://www.typelit.io
https://doi.org/10.6028/NIST.CSWP.04162018
https://doi.org/10.6028/NIST.CSWP.04162018

//doi.org/10.6028/NIST.CSWP.04162018 (last accessed on 05/09/2021).

vii, 1

[NJ10] Koichiro Niinuma and Anil K. Jain. Continuous user authentication using

temporal information. In B. V. K. Vijaya Kumar, Salil Prabhakar, and Arun A.

Ross, editors, Biometric Technology for Human Identification VII, volume

7667, pages 201 – 211. International Society for Optics and Photonics, SPIE,

2010. Available from: https://doi.org/10.1117/12.847886. 9

[oST] National Institute of Standards and Technology. Back to

basics: Multi-factor authentication (mfa). Available from:

https://www.nist.gov/itl/applied-cybersecurity/tig/
back-basics-multi-factor-authentication (last accessed on

05/09/2021). 6

[Pen17] A. Pentel. Emotions and user interactions with keyboard and mouse. In Pro-

ceeding of 2017 8th International Conference on Information, Intelligence,

Systems Applications (IISA), pages 1–6, 2017. 8, 43

[Ros20] Ronald Ross. Security and privacy controls for information systems and orga-

nizations, 2020-09-23 2020. 5

[SCB16] Enrico Schiavone, Andrea Ceccarelli, and Andrea Bondavalli. Continuous

authentication and non-repudiation for the security of critical systems. In

Proceedings of 2016 IEEE 35th Symposium on Reliable Distributed Systems

(SRDS), pages 207–208, 2016. 10

[SIKP20] Shivshakti Singh, Aditi Inamdar, Aishwarya Kore, and Aprupa Pawar. Anal-

ysis of algorithms for user authentication using keystroke dynamics. In Pro-

ceedings of 2020 International Conference on Communication and Signal

Processing (ICCSP), pages 0337–0341, 2020. xv, xvii, 9, 11, 17, 20, 22, 24, 27,

41

[SR18] Gangadhar Shobha and Shanta Rangaswamy. Chapter 8 - machine learn-

ing. In Venkat N. Gudivada and C.R. Rao, editors, Computational Analy-

sis and Understanding of Natural Languages: Principles, Methods and Ap-

plications, volume 38 of Handbook of Statistics, pages 197–228. Elsevier,

2018. Available from: https://www.sciencedirect.com/science/article/
pii/S0169716118300191. 6

[SRAA17] R. Shikder, S. Rahaman, F. Afroze, and A. B. M. A. Al Islam. Keystroke/-

mouse usage based emotion detection and user identification. In Proceed-

ings of 2017 International Conference on Networking, Systems and Security

(NSysS), pages 96–104, 2017. 8, 43

[SZJK07] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar. Continuous verification

using multimodal biometrics. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(4):687–700, 2007. 8

46

https://doi.org/10.6028/NIST.CSWP.04162018
https://doi.org/10.1117/12.847886
https://www.nist.gov/itl/applied-cybersecurity/tig/back-basics-multi-factor-authentication
https://www.nist.gov/itl/applied-cybersecurity/tig/back-basics-multi-factor-authentication
https://www.sciencedirect.com/science/article/pii/S0169716118300191
https://www.sciencedirect.com/science/article/pii/S0169716118300191

[xgb] Introduction to boosted trees. Available from: https://xgboost.
readthedocs.io/en/stable/tutorials/model.html (last accessed on

7/1/2022). 20

47

https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://xgboost.readthedocs.io/en/stable/tutorials/model.html

48

Appendix A

Annexes

This annex presents the code snippetmentioned in chapter 4 and shows how the keyboard

predictions are processed using XGBoost algorithm.

1 def predictKeyboardXGBoost (f e a t u r eL i s t) :

2 g loba l endProgram , keyboardAccuracy

3 # Label t o t a l .

4 header = [’ l a b e l ’]

5 setOfKeys = 9

6 # Number of f ea tu re s times user input .

7 f o r x in range (5 * setOfKeys) :

8 y = x

9 header . append (f ’ f { y } ’)

10

11 # Creat ion of the DataFrame with the information de l i ve red from

v e r i f i c a t i o n . py

12 df = pd . DataFrame (f ea tu reL i s t , columns=header)

13

14 df2 = pd . read_csv (keyboardSetPath)

15 df . l a b e l = pd . Ca tegor i ca l (df . l a b e l)

16 df [’ code ’] = userIndex

17 y = df [” code ”]

18 X = df . drop ([’ l a b e l ’ , ’ code ’] , ax i s =1)

19 t r a in ing = xgb . DMatrix (X, l ab e l=y)

20

21 # Boost algorithm with the parameters and load model .

22 bst = xgb . Booster (tunedParamsKeyboard)

23 bst . load_model (keyboardModelPath)

24

25 pred i c t i ons = bst . p red i c t (t r a in ing)

26 bes tPred i c t i ons = np . asarray ([np . argmax (l i n e) fo r l i n e in pred i c t i ons])

27

28 keyboardAccuracy = accuracy_score (y , bes tPred i c t i ons)

Listing A.1: Prediciton process made by XGBoost algorithm.

49

	Introduction
	Motivation and Scope
	Problem Statement and Objectives
	Proposed Approach
	Main Contributions
	Document Organisation

	Background and Related Works
	Introduction
	Background
	Authentication Factors
	Machine Learning Algorithms

	Related Work
	Conclusion

	Requirements and System Design
	Introduction
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	System Design and Functionality
	Conclusion

	System Implementation
	Introduction
	Technologies and Libraries
	Implementation Details
	Enrolment
	Verification

	Implementation Challenges
	Conclusion

	Results and Discussion
	Materials
	Tests and Results
	Datasets
	Hyperparameter Tuning
	Confusion Matrix Analysis
	Verification

	Discussion
	Conclusion

	Conclusion and Future Work
	Main Conclusions
	Future Work

	Bibliography
	Annexes

