
Automatic Text Summarization

João Saraiva

Dissertação para obtenção de Grau de Mestre em

Engenharia Informática

Supervisor: Prof. João Cordeiro

Junho, 2021

Automatic Text Summarization

ii

Automatic Text Summarization

Dedication

I dedicate this thesis and all the work it meant to my beloved family and girlfriend. They will

be forever in my heart.

iii

Automatic Text Summarization

iv

Automatic Text Summarization

Acknowledgment

As acknowledgment, i would like to start by stating the huge support that my closest family

members gave me, with special attention to my parents, my girlfriend, my sister and brother

in law and also my grandmother and aunt, during this years of college. It was crucial and

allowedme to reach this noble phase of my life. My first master’s year was pretty relaxed and

i have learned a lot in many subjects. In the second year, i began working on my master’s

thesis. Having had a couple of subject’s regarding artificial intelligence and natural language

processing made it easier for me in deciding what thesis to work on. The natural language

processing’s subject sparked an interested in me, with all the possibilities that it presents, so

i decided to follow the path of Automatic Text Summarization. So, i also would like to thank

my teacher, João Paulo Cordeiro, for helpingme throughout this tough phase, since he never

gave up on me or doubted about my skills. He was very patient and gave me a lot of support

and knowledge in many aspects.

Finally, i would like to mention the help that my colleagues and friends gave me during this

two years of my masters degree.

v

Automatic Text Summarization

vi

Automatic Text Summarization

Resumo

O texto é um dos utensílios mais importantes de transmissão de ideias entre os seres hu­

manos. Pode ser de vários tipos e o seu conteúdo pode sermais oumenos fácil de interpretar,

conforme a quantidade de informação relevante sobre o assunto principal.

De forma a facilitar o processamento pelo leitor existe ummecanismo propositadamente cri­

ado para reduzir a informação irrelevante num texto, chamado sumarização de texto. Através

da sumarização criam­se versões reduzidas do text original e mantém­se a informação do as­

sunto principal.

Devido à criação e evolução da Internet e outros meios de comunicação, surgiu um aumento

exponencial de documentos textuais, evento denominado de sobrecarga de informação, que

têm na sua maioria informação desnecessária sobre o assunto que retratam.

De forma a resolver este problema global, surgiu dentro da área científica de Processamento

de Linguagem Natural, a sumarização automática de texto, que permite criar sumários au­

tomáticos de qualquer tipo de texto e de qualquer lingua, através de algoritmos computa­

cionais.

Desde a sua criação, inúmeras técnicas de sumarização de texto foram idealizadas, podendo

ser classificadas em dois tipos diferentes: extractivas e abstractivas. Em técnicas extractivas,

são transcritos elementos do texto original, como palavras ou frases inteiras que sejam as

mais ilustrativas do assunto do texto e combinadas num documento. Em técnicas abstracti­

vas, os algoritmos geram elementos novos.

Nesta dissertação pesquisaram­se, implementaram­se e combinaram­se algumas das técni­

cas com melhores resultados de modo a criar um sistema completo para criar sumários.

Relativamente às técnicas implementadas, as primeiras três são técnicas extractivas enquanto

que a ultima é abstractiva. Desta forma, a primeira incide sobre o cálculo das frequências dos

elementos do texto, atribuindo­se valores às frases que sejam mais frequentes, que por sua

vez são escolhidas para o sumário através de uma taxa de compressão. Outra das técnicas

incide na representação dos elementos textuais sob a forma de nodos de um grafo, sendo

atribuidos valores de similaridade entre os mesmos e de seguida escolhidas as frases com

maiores valores através de uma taxa de compressão. Uma outra abordagem foi criada de

forma a combinar ummecanismo de análise das caracteristicas do texto commétodos basea­

dos em inteligência artificial. Nela cada frase possui um conjunto de caracteristicas que são

usadas para treinar um modelo de rede neuronal. O modelo avalia e decide quais as frases

que devem pertencer ao sumário e filtra as mesmas através deu uma taxa de compressão.

Um sumarizador abstractivo foi criado para para gerar palavras sobre o assunto do texto e

combinar num sumário. Cada um destes sumarizadores foi combinado num só sistema. Por

fim, cada uma das técnicas pode ser avaliada segundo várias métricas de avaliação, como

por exemplo a ROUGE. Segundo os resultados de avaliação das técnicas, com o conjunto de

dados DUC, os nossos sumarizadores obtiveram resultados relativamente parecidos com os

presentes na comunidade cientifica, com especial atenção para o codificador­descodificador

que em certos casos apresentou resultados promissores.

vii

Automatic Text Summarization

viii

Automatic Text Summarization

Abstract

Writing text was one of the first ever methods used by humans to represent their knowledge.

Text can be of different types and have different purposes.

Due to the evolution of information systems and the Internet, the amount of textual informa­

tion available has increased exponentially in a worldwide scale, and many documents tend

to have a percentage of unnecessary information. Due to this event, most readers have diffi­

culty in digesting all the extensive information contained in multiple documents, produced

on a daily basis.

A simple solution to the excessive irrelevant information in texts is to create summaries, in

which we keep the subject’s related parts and remove the unnecessary ones.

In Natural Language Processing, the goal of automatic text summarization is to create sys­

tems that process text and keep only the most important data. Since its creation several

approaches have been designed to create better text summaries, which can be divided in two

separate groups: extractive approaches and abstractive approaches.

In the first group, the summarizers decide what text elements should be in the summary. The

criteria by which they are selected is diverse. After they are selected, they are combined into

the summary. In the second group, the text elements are generated from scratch. Abstractive

summarizers aremuchmore complex so they still need a lot of research, in order to represent

good results.

During this thesis, we have investigated the state of the art approaches, implemented our

own versions and tested them in conventional datasets, like the DUC dataset.

Our first approach was a frequency­based approach, since it analyses the frequency in which

the text’s words/sentences appear in the text. Higher frequency words/sentences automati­

cally receive higher scores which are then filtered with a compression rate and combined in

a summary.

Moving on to our second approach, we have improved the original TextRank algorithm by

combining it with word embedding vectors. The goal was to represent the text’s sentences as

nodes from a graph and with the help of word embeddings, determine how similar are pairs

of sentences and rank them by their similarity scores. The highest ranking sentences were

filtered with a compression rate and picked for the summary.

In the third approach, we combined feature analysis with deep learning. By analysing certain

characteristics of the text sentences, one can assign scores that represent the importance of

a given sentence for the summary. With these computed values, we have created a dataset

for training a deep neural network that is capable of deciding if a certain sentence must be

or not in the summary.

An abstractive encoder­decoder summarizerwas createdwith the purpose of generatingwords

related to the document subject and combining them into a summary. Finally, every single

summarizer was combined into a full system.

Each one of our approaches was evaluated with several evaluation metrics, such as ROUGE.

We used the DUC dataset for this purpose and the results were fairly similar to the ones in

the scientific community. As for our encoder­decode, we got promising results.

ix

Automatic Text Summarization

Keywords

Natural Language Processing, Automatic Text Summarization, Extractive Summarization,

Abstractive Summarization, Deep Learning.

x

Automatic Text Summarization

Resumo alargado

Um texto é um utensílio muito importante e consiste numa das maneiras mais simples que

os seres humanos têm de partilhar e representar os seus conhecimentos. Pode ter diferentes

naturezas, desde ser um simples texto de uma notícia a ser um documento científico. Ex­

istem textos mais pequenos e simples de interpretar, como também outros maiores e mais

complexos.

Dependendo do caso, torna­se mais ou menos difícil um leitor interpretar um documento,

porém há mecanismos capazes de tornar este processo mais fácil. Um documento pode

desta forma, ser sumarizado ou resumido, ou seja, deve­se manter o seu assunto principal e

representá­lo de uma forma mais clara.

Desde a criação do primeiro computador e consequente globalização da Internet, tem havido

um aumento exponencial na criação de novos conteúdos e partilha dos mesmos, originando

um fenómenodenominado sobrecarga de informação. Aquantidadede informaçãodisponível

é absurdamente grande e em alguns casos desnecessária. Muitos documentos de texto na

Internet contêm informações consideradas irrelevantes para quem está a ler, deste modo,

torna­se demoroso e difícil de o leitor encontrar a informação representativa do tema. O

leitor necessita que este processo de interpretação seja o mais eficiente possível facilitando

assim a sua aprendizagem sobre o assunto.

Tal como foi referido emcima, existemmecanismosque filtramas informações desnecessárias

do texto, a fim de proporcionar uma experiência única ao leitor, visto que ele pode sim­

plesmente focar­se na informação apenas referente ao assunto. Dentro da área científica

de Processamento de Linguagem Natural, existe um ramo denominado de sumarização au­

tomática de texto, cujo objectivo é precisamente resolver problemas deste tipo de uma forma

automática, através de algoritmos computacionais. Este ramo começou a ser desenvolvido

na década de 60 e desde então inúmeras soluções foram propostas.

O objetivo principal desta dissertação é portanto, procurar e estudar as várias técnicas de

sumarização automática de texto e implementá­las com vista a criar sumários que possuam

apenas a essência dos documentos e que sejam gramaticalmente correctos, coerentes e inter­

essantes de interpretar.

As técnicas de sumarização automática podem­se classificar em dois grupos principais: ex­

tractivas e abstractivas. Nas técnicas extractivas, os pedaços de um texto mais importantes,

sejam eles frases ou palavras são diretamente removidos do mesmo e aglomerados de forma

sistemática e ordenada no sumário. Assim os elementos do texto são avaliados e os consider­

adosmais relacionados como assunto principal do texto devempermanecer no sumário. Nas

técnicas abstrativas, pelo contrário, são gerados novos elementos do texto, desde palavras,

frases e parágrafos. Este tipo de abordagens ainda é relativamente recente emuito complexa,

pelo que, ainda necessita de muita investigação e os seus resultados ainda não são muito rel­

evantes, quando comparados com os resultados de algumas abordagens extractivas.

Nesta dissertação foram exploradas abordagens extractivas e abstractivas, segundo o estado

da arte. Muitas delas apresentam resultados inovadores, pelo que, focamos a nossa atenção

nelas.

xi

Automatic Text Summarization

Na fase da implementação começámos por incorporar os avanços obtidos em algumas técni­

cas e adaptá­los, criando a nossa própria versão das técnicas com o objectivo de melhorar os

resultados das mesmas. Foi criada uma técnica que tem por base a avaliação da frequência

das palavras e frases do texto, atribuindo maiores valores às que são mais frequentes. Posto

isto, os elementos mais frequentes e consecutivamente commaiores resultados, são os escol­

hidos para o texto através de uma taxa de compressão. Noutra técnica, combinou­se um al­

goritmo muito conhecido para sumarização automática, o algoritmo TextRank, com vetores

de incorporação de palavras, ou seja,Word Embeddings, a fim de representar os elementos

do texto num grafo e avaliar como eles são relacionados, com a ajuda dos vetores de palavras.

Às frases consideradas mais importantes, são atribuidos maiores valores e tal como na téc­

nica anterior, estas são as frases escolhidas para criar o sumário, sendo filtradas igualmente

com uma taxa de compressão. Seguidamente foi criada uma nova técnica, completamente de

raiz, que combina a avaliação dos elementos do texto commétodos baseados em Inteligência

Artificial. A lógica subjacente a este algoritmo consiste em avaliar os elementos do texto, se­

gundo diversas maneiras, como por exemplo a frequência em que aparecem no texto, a sua

localização no texto, o nº de elementos raros que possuem (palavras titulo, siglas, palavras

numéricas ou temporais, etc), atribuir valores aos mesmos e utilizar o resultado desta avali­

ação como dados para um modelo de inteligência artificial, mais concretamente uma rede

neuronal. O papel do modelo, após treino com estes dados, é se uma frase percente ou não

ao sumário. As frases que forem classificadas como frases do sumário, são filtradas com uma

taxa de compressão e combinadas no sumário. Seguidamente foi criado um sumarizador ab­

stractivo que utiliza um modelo de deep learning para gerar palavras do texto, segundo as

suas distribuições probabilísticas, combinando­as nos sumários. Por fim, combinamos todos

os sumarizadores apresentados num só.

Cada um destes sumarizadores pode ser avaliado segundo diferentes métricas de avaliação,

sendo amais conhecida amétricaROUGE. Damesma forma, foram utilizados vários conjun­

tos de dados para treinar e testar os sumarizadores, com especial atenção para o conjunto de

dados DUC, que possui dados de conferências para sumarização automática de texto.

De acordo com os resultados, podemos ver que a maioria das nossas abordagens apresentou

resultados similares aos encontrados na literatura. Podemos ver que abordagens baseadas

em inteligência artificial apresentam resultados interessantes, com especial atenção para o

nosso sumarizador abstractivo. Este apesar de criar sumários sem pontuação e com pouca

coerência apresenta os melhores resultados com a métrica Recall­Oriented Understudy for

Gisting Evaluation (ROUGE) entre todos os algoritmos que experimentámos. Tanto esta

abordagem como a da rede neuronal precisamdemuitos dados de treino e este é umprocesso

custoso e demoroso.

xii

Automatic Text Summarization

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Document Structure . 3

2 State Of The Art 5

2.1 Human Summaries . 5

2.2 Automatic Text Summarization . 6

2.2.1 Historical Evolution . 6

2.2.2 Stages of Automatic Summarization . 7

2.2.3 Summary Classifications . 9

2.3 Automatic Summarization Approaches: Extractive and Abstractive 12

2.3.1 Classic Approaches . 15

2.3.2 Feature Based Approaches . 15

2.3.3 Machine Learning Approaches . 18

2.3.4 Neural Network Based Approaches . 19

2.3.5 Conditional Random Fields . 21

2.3.6 Latent Semantic Analysis . 21

2.3.7 Fuzzy Logic Based Approaches . 22

2.3.8 Graph Based Approaches . 23

2.3.9 Clustering Based approaches . 25

2.3.10 Discourse Approaches . 27

2.3.11 Bayesian Topic Models . 27

2.3.12 Hidden Markov Models . 27

2.3.13 Lexical Chain Approaches . 28

2.3.14 Structure Based Approaches . 28

2.3.15 Semantic Based Approaches . 31

2.3.16 Issues of Extractive and Abstractive Summarizers 33

2.4 Summary Evaluations . 34

2.4.1 Text­Quality Evaluation Measures . 35

2.4.2 Content Evaluation Measures . 36

2.4.3 Task Based Evaluation Measures . 38

3 Implementation 41

3.1 Sources Used . 41

3.2 Term­Frequency Summarizer . 42

3.3 TextRank With Word Embeddings . 42

3.4 Deep Neural Network Summarizer . 44

3.4.1 Datasets . 44

3.4.2 Pre­Processing . 45

xiii

Automatic Text Summarization

3.4.3 Feature Selection . 45

3.4.4 Model’s Architecture . 49

3.4.5 Model Training . 49

3.4.6 Summary Generation . 52

3.5 Encoder­Decoder . 53

3.5.1 Overview of the Architecture . 54

3.5.2 Dataset Loading/Pre­processing . 55

3.5.3 Vocabulary Creation . 55

3.5.4 Initial Model’s Architecture . 56

3.5.5 Training Phase . 57

3.5.6 Final Encoder­Decoder Architecture . 60

3.5.7 Summary Generation . 60

3.6 Neural network and encoder­decoder combined 61

3.7 Program Execution . 61

3.7.1 Example Execution . 62

4 Evaluation Measures and Results 65

4.1 Evaluation Measures . 65

4.2 Results . 66

4.2.1 Results for the Term­Frequency summarizer 67

4.2.2 Results with TextRank and Word Embeddings 68

4.2.3 Deep Neural Network Summarizer Results 69

4.2.4 Encoder­Decoder Summarizer’s Results 70

4.2.5 Results from combining the neural network and the encoder­decoder . 71

4.2.6 Results of all the summarizers . 72

5 Conclusions and Future Work 73

Bibliografia 77

A Attachments 91

A.1 Datasets Used . 91

xiv

Automatic Text Summarization

List of Figures

2.1 Text summarization phases by Spark Jones [1]. 9

2.2 Extractive summarization steps by [2]. 14

2.3 Neural Network phases by Khosrow Kaikhah [3]. 20

2.4 Singular Value Decomposition applied to a matrix ofm terms and n sentences

[4]. 22

2.5 Fuzzy logic system for text summarization [5]. 23

2.6 Example of weighted cosine similarity graph by [6]. 25

2.7 Text summarization of a corpus with a clustering approach [7]. 26

2.8 Six structure based approaches by [8]. 29

2.9 Abstractive semantic based approaches by [8]. 31

2.10 Evaluation measures by [9]. 35

3.1 Feature selection. 48

3.2 Training, testing accuracy and loss. 48

3.3 Neural network’s architecture. 50

3.4 Training, testing accuracy and loss while over­fitting. 51

3.5 Neural network without over­fitting. 52

3.6 Sequence2Sequence model. 54

3.7 Sequence distribution. 56

3.8 Initial Encoder­Decoder model configuration. 58

3.9 Initial encoder­decoder over­fitting. 58

3.10 Initial encoder­decoder without over­fitting . 59

xv

Automatic Text Summarization

xvi

Automatic Text Summarization

List of Tables

2.1 Summary classifications according to the different factors 12

3.1 Newsroom dataset . 44

4.1 Results for the Term­Frequency summarizer with 20% compression rate . . . 67

4.2 Results for the TextRank summarizer with 20% compression rate 68

4.3 Results for the Neural network summarizer with 20% compression rate 69

4.4 Results for the Encoder­Decoder summarizer 70

4.5 Results for the combination of the neural network and the encoder­decoder . 71

4.6 Results from all the summarizers . 72

xvii

Automatic Text Summarization

xviii

Automatic Text Summarization

Acronyms

NLP Natural Language Processing

NLTK Natural Language Toolkit

JSON JavaScript Object Notation

NLG Natural Language Generation

ATS Automatic Text Summarization

DUC Document Understanding Conference

ATG Automatic Title Generation

TAC Text Analysis Conference

POS Part Of Speech

FFNN Feed Forward Neural Network

CRF Conditional Random Fields

LSA Latent Semantic Analysis

SVD Singular Value Decomposition

HITS Hyperlink­Induced Topic Search

MMR Maximal Marginal Relevance

SVD Singular Value Decomposition

TF Term Frequency

DF Document Frequency

IDF Inverse Document Frequency

TFIDF Term Frequency Inverse Document Frequency

BERT Bidirectional Encoder Representations from Transformer

ROUGE Recall­Oriented Understudy for Gisting Evaluation

CDST Cross­Document Structure Theory

HTML Hypertext Markup Language

NER Named Entity Recognition

HMM Hidden Markov Models

CPU Central Processing Unit

GPU Graphic’s Processing Unit

xix

Automatic Text Summarization

RSG Rich Semantic Graph

TFISF Term Frequency * Inverse Sentence Frequency

AI Artificial Inteligence

API Application Programming Interface

GUI Graphical User Interface

IDE Integrated Development Environment

SCU Summarization Content Units

IR Information Retrieval

CSV Comma­Separated Values

LDA Latent Dirichlet Allocation

LSTM Long­Short Term Memory

BLEU Bilingual Evaluation Understudy

ML Machine Learning

RELU Rectified Linear Unit

xx

Automatic Text Summarization

Chapter 1

Introduction

Textual information has been around for centuries, it was first conceived as a set of signs,

that primordial humans used to transmit their ideas to each other. Since then, it has been

used for so much more: representing simple thoughts, elaborate art or scientific documents,

send messages or even create social media posts. We can abstractly define text as a fine and

delicate fabric of ideas that we weave together.

Nowadays, with the advancements in technology, analogical textual information is slowly

losing its importance in the way we express ourselves, because we have the possibility to

create documents, without having to move a single pencil.

Thanks to the Internet, we have at our disposal a huge amount of information, that can be

accessed from anywhere. The Internet has made possible the search and creation of new

data, in a more efficient way. We no longer have to go to the library to search for a specific

document.

Since we are exponentially increasing the amount of data online, we need more powerful

mechanisms to assure that a specific document is the one we are looking for and that we

have the means to understand it. Most documents are often too big and have pieces of text

that are irrelevant for our needs.

A way of fighting this problem is to manually create summaries. This however, is an imprac­

ticable solution, because it is often hard to just create a summary of a single text. If we take

into count that we need to create summaries of hundreds or thousands of documents, it is an

even more complicated task. It would take a lot of time to be done and we would also need

very experienced people.

Instead of using humans to create summaries, we can use automatic text summarizers that

can create a big number of summaries and represent their content in a different way than

humans. This is due to the fact that they do not depend on the level of knowledge of a human

summarizer, but they are guided by metrics to process the data.

This and other text modeling problems can be fixed with the help of Natural Language Pro­

cessing (NLP), which is a field that combines both Computer Science, Artificial Intelligence

and Linguistics. In this case, we are interested in Automatic Text Summarization (ATS), a

very important sub­field of NLP. It is responsible for understanding and creating powerful

techniques that, when combined, make possible the generation of a smaller version of a text

document. This smaller version is called a summary and even though there is not a clear

and precise definition accepted by the scientific community, a set of rules must be followed

in the summary generation process. The two most important rules are: the summary must

represent all the important aspects of the original text; the summarymust not be bigger than

half of the original document size [10].

To decide what should be the length of the summary, one can use compression or retention

rates, that assume the best proportion between the dimensions of the original text and the

1

Automatic Text Summarization

summary text. It can be calculated by defining a percentage of the desired text length, re­

garding the original text size or a certain number of sentences.

In terms of the evolution during the years, Luhn and Baxendale were one of the pioneers

in the expansion of automatic text summarization. In the 1950s, they studied possible ways

of creating text summaries with the help of machines. Baxendale proposed a method that

analysed some text features, such as: sentence position and the amount of title and important

words in the text [11]. Later in that decade, Luhn also had an important role in proposing a

different approach for creating automatic summaries.

In that year, even though the technology was not very evolved, a huge amount of information

was created in a daily basis, and machines from that time, had difficulties processing the

information. There was a need to transform the textual information, into a much simpler

representation for the machines.

The next years there was a lack of research in automatic text summarization, in which only

in the decade of 1960 was proposed a new approach: an improvement of Lunhs research, by

Edmunson. In this new approach, the machine must select words from the text that convey

more information about the theme of the document [12]. In the 1990s, after a few decades of

weak research, newer automatic approaches were developed, like: better approaches based

on feature analysis, approaches based on lexical and semantic analysis, approaches based on

artificial intelligence, approaches based on graph theory, etc.

Later, some conferences were created for Text Summarization, being the Document Under­

standing Conference (DUC) and Text Analysis Conference (TAC) the more important ones.

In these conferences, newer techniques or improvement to existing techniques are proposed

by researchers. The evaluation process uses a set of metrics that decides how good are the

summaries generated by those techniques. Examples of metrics for summary evaluations

are ROUGE.

Below, we will present two pieces of text: the first one is part of an original text document

and the second is an example of an automatic summary for the same text. The summary was

generated by extracting a certain number of sentences according to a compression rate.

Original text and its summary

Portugal was once at the edge of the known world. It made it the perfect launchpad

for many pioneering expeditions during the rampant age of discovery. Travel and ad­

venture simply runs in the Portuguese blood. Once one of the world’s biggest empires,

it’s now a more humble but fascinating slice of western Europe containing endless ev­

idence of its former conquests and distant colonies.

Portugal was once at the edge of the known world. Once one of the world’s biggest

empires, it’s now a more humble but fascinating slice of western Europe containing

endless evidence of its former conquests and distant colonies.

2

Automatic Text Summarization

1.1 Motivation

Nowadays with the advancements in the area of NLP, more specifically in the field of

ATS, several approaches and resources have been used with the goal of creating efficient and

coherent text summaries. Most of those techniques fail or they are not good enough. There­

fore, the main motivation for this thesis is to explore the current state of the art approaches,

discover those that are potentially more beneficial and attempt to create an efficient summa­

rizer.

1.2 Objectives

The main goal of this thesis is to elaborate an automatic text summarizer that is able to

reduce the textual information of a document, originating a smaller text that keeps all the

essential information.

Since there are various possibilities to create an automatic text summarizer, we first need to

study the majority of them, focusing on the ones that present the best results.

After the study has been done, we must create an hybrid system, that combines characteris­

tics from the best approaches and creates a text summary.

The performance of our system must be evaluated with the use of summarization metrics,

such as ROUGE, and with data­sets such as DUC, TAC, among others.

1.3 Document Structure

The structure of this thesis is quite simple and is as follows:

i Introduction ­ In this first and current chapter, we give an overview on what consists

our project, motivation and the objectives;

ii State of the art ­ In this chapter, we identify and explain, in detail, the advancements

that the area of automatic text summarization had during the years;

iii Implementation ­ This third chapter consists in explaining how our automatic text

summarizer was made, in detail;

iv Evaluation measures and results ­ The results obtained with our summarizers are

present and explained in this chapter;

v Conclusionsand futureword ­ In the final chapterwe conclude the themes addressed

in this thesis and present some ideas and improvements that could be implemented in

the future;

3

Automatic Text Summarization

4

Automatic Text Summarization

Chapter 2

State Of The Art

Text summarization is an activity that keeps gaining more and more popularity nowadays,

due to the fact that new information is continuously being created in large quantities and fed

to the world. This information consists of simple concepts, social media posts or even whole

documents, such as: newspaper articles, book chapters, whole books (in physical or digital

formats, for instance E­books) or scientific papers. Considering the fact that the amount

of this textual information available worldwide is enormous, the whole process of reading,

interpreting and consequently writing a smaller version of a text document is, in general, a

very difficult and slow task to be performed.

Human beings perform and practice this kind of reasoning process, most of the times in a

subconscious way, because we need to simplify the ideas that go through our minds in order

to acquire new knowledge, but this requires the elaboration of high complexity thoughts.

It is at this point that text summarization enters, in an automatic fashion, as a result of fasten­

ing a computational mechanism that is capable of simulating the way a human summarizes

textual information. This computational mechanismmust receive a text set as input, analyse

it with help of mathematical calculations and heuristics, and then create a shortened version,

that contains all the essence and most important aspects of the original text (without any

human intervention).

Along this chapter, all the subjects regarding text summarization will be explained in detail.

We will start by explaining the concept of text summarization, followed by human summa­

rization and finally automatic text summarization. The main focus of the chapter will be on

automatic text summarization, in which we will present the computational approaches that

have been developed during the years and spotlight those that had the biggest impact in the

area of NLP. Later we present the metrics for evaluation of automatic text summarization

and finally the biggest problems with automatic text summarization are explained.

2.1 Human Summaries

Summarization, as it was briefly introduced above, consists of an activity that is very com­

mon nowadays because in the different areas in which humans work, from academic to pro­

fessional, there is a need to efficiently process big amounts of text data in order to understand

the subjects involved.

Different authors tried to propose a clear and unique definition of what a summary is, but

they have universally failed because they could not create a definition that was accepted by

everyone.

Sparck Jones, in 1999, defines a summary as: “a reductive transformation of source text to

summary text through content reduction by selection and/or generalisation on what is im­

5

Automatic Text Summarization

portant in the source“ [1]. A more concise definition of a summary was proposed by Eduard

Hovy: “a text that is produced fromone ormore texts, that contains a significant

portion of the information in the original text(s), and that is no longer than half

of the original text(s)“ [13].

A summary can be made from all kinds of pieces of text, such as: multimedia documents,

on­line documents, hyper­texts, among others [13]. It should be accurate and the writer

must strive to stay as close as possible to the maximum objectivity, even though 100% is not

achievable. A summary writer must be able to paraphrase, which means he must express the

author’s ideas in his own words. He also should not include his own interpretations in the

summary text [14].

Summarizing a text document allows the reader to understand the subject of the text more

easily, because it removes the parts that have no relevant information and keeps the essence

of the subject. Therefore, a summary conveys important information from the original text

and its size is usually no longer than half of the original text or even less than that [15] [16].

The Colorado State University’s website,Writing@CSU, defines three main types of human

made summaries, as follows [14]:

i Main Point Summary ­ presents the main facts of the original text with an identifi­

cation of the title, author and main topic. A simple citation of the text is normally used

in this kind of summary and it shall represent the main topic. A simple example would

be the creation of a college scientific paper with the aim of introducing a subject to the

reader;

ii Key Point Summary ­ this type of summaries is much a like the one presented above,

in which there is a small citation along with themain facts. In addition, it has the reasons

and evidences that the writer used to support the subject of the text. It is normally used

to explain the author’s idea;

iii Outline Summary ­ this kind of summary includes the main points and arguments as

they appear in the text.

2.2 Automatic Text Summarization

In this section we will explain in detail, what is in fact the field of automatic text summariza­

tion. We will begin by referring the main aspects regarding its history and then proceed to

how is the constitution of an automatic text summarizer, how it is evaluated and classified.

2.2.1 Historical Evolution

In the past few years, due to the increase of information that has been created and spread

across the internet and social media, there has been a surge of interest in systems that can

automatically summarize textual information. They must receive a document as input, anal­

yse it and return a smaller text as output, retaining its information. This is an automatic

procedure because the system must do it without the need of human interaction.

6

Automatic Text Summarization

These systems are created with the use of NLP, a field with roots in Computer Science, Artifi­

cial Intelligence andLinguistics. The expression “natural language“mean that it is a language

that is used by humans in a daily basis for communication.

NLP has a wide variety of tasks, such as machine translation, language identification, senti­

ment analysis, automatic speech recognition, PartOf Speech (POS) tagging, amongothers[17].

Text summarization is also part of this gigantic field andNLP scientists have been researching

on it, during the last half­century.

Before the Internet appeared, in the early sixties, there was a special effort by Lunh with a

research basically driven by statistics, [1]. In that time, the machines did not have much tex­

tual information and the information they had was difficult to process, unfortunately leading

to low quality of the summaries and hinder the research for some while. In 1969, Edmunson

continued the work done by Lunh, by proposing his own method: an heuristic method that

uses a combination of features as opposed to traditionally used feature weights generated

using a corpus. He combined the features proposed by Luhn, such as: position and word fre­

quency, with two other features: cue words and document structure [18]. In the mid eighties

and early nineties, research was continued by Endres­Niggemeyer, Hobbs and Sparck Jones

(1995), in particular after the famous “The Dagstuhl Seminar“ in 1993. It is also worth men­

tioning the work done by Mani and Maybury (1997) and the 1997 ACL Workshop (ACL­97),

specially dedicated to the subject of automatic text summarization [1].

Statistical and hybrid techniques in other areas also helped the implementation of text sum­

marizers, the NLP tools now available, e.g., for parsing, have made system building and task

experiment easier.

Due to the growth of publicly available text, resulted from the creation of the Web, the work

on summarization increased significantly, having it pushed to new methods of summariza­

tion with the introduction of new kinds of inputs, summarising purposes, and output styles.

Also, new challenges occurred: summarising multiple text documents that have very similar

subjects; using summaries to quickly filter text in search engines. So, having the need to

summarise a big amount of documents, increase the need to have even better summarising

systems, therefore encouraging the evaluation programs.

2.2.2 Stages of Automatic Summarization

Researchers like Karen Sparck Jones, Hovy and Lin, Mani and Maybury have done quite

an amount of research in the vast area of automatic text summarization and have identified

threemain stages in this field: topic interpretation, topic fusion (interpretation) and

summary generation [13] [19] [20] [21]. Figure 2.1 exemplifies the three stages that we

have just discussed.

i Topic interpretation ­ Topic interpretation is the first of the three stages and it is in this

stage that the interpretation of the topic happens. A topic of a text is a particular subject.

In topic interpretation, the summarizer uses different independent modules that assign

a value to each unit of input, for instance: words or sentences. After this, anothermodule

must combine the score for each one of those units. This module will obtain a number of

the most important units, which is equal to the summary length that the user wants [22].

7

Automatic Text Summarization

In order to increase the efficiency of this stage, [23] proposed the extraction of smaller

units, creating smaller summaries, but with more information. [24] proposed a different

method that increased coherence, by including the sentences that are adjacent to other

major sentences in the text. Each one of the independent modules have a certain degree

of performance associated to how the topic interpretation process occurs.

ii Topic transformation ­ Topic transformation, is the stage following topic interpreta­

tion. After the topic has been analysed and scores have been assigned to the input units,

this stage creates new terms, using a new formulation and new concepts that are not used

in the original text. The problem with this stage is that the summarizer needs to know

about the domain of the text a priori and only a few summarizers are capable of doing it.

In order to solve the fusion problem, Lin and Hovy (1997­1998) invented the topic signa­

tures [22]. A topic signature consists of a headword and a set of other words, with the

respective values that represent the associations between these words and the headword,

i.e. they identify a complex concept, that relates to other words[25].

Topic signatures identify important and complex concepts that are related to a headword.

This method relies on a big amount of texts (fromWall Street Journal) and the statistical

values of each word in the texts, to guide the summarizer to identify what are the words

that relate to each topic [25] [22] [13] [21].

iii Generation ­ Finally we reach the third and last stage of summarization: summary gen­

eration. After the summarizer finished creating the content of the summary by fetching

information, it is stored in the computer in an internal abstract representation, natural

language techniques are needed to reformulate this representation into a new coherent

and simple text. This stage is important for the quality of the final summary, without it

the output would consist of meaningless quotations of the input[25] [21].

If the content has been created by extraction, then the result tends to have some dysflu­

encies1 [13]. These are problems with the grammatical connections between sentences of

the summary, because it implies that, the sentences that are chosen to be part of the sum­

mary, may be printed in a wrong order of importance or in a wrong text order. Examples

of these problems are: repetition of words/clauses or named entities or simple inclusion

of unnecessary material, like parenthesis [13].

Knight and Marcu proposed a solution to these problems with an award­winning paper

about Text Compression [26]. This solution allows the conversion of sentences into a

smaller ones, through the compression of syntactic parse trees of those sentences.

Other also important approaches for summary generation have been proposed by: Jing

andMcKeown, using a hiddenMarkovmodel to identify themajor fragments of sentences

and then combine them grammatically into the summary [27]; and byWitbrock andMit­

tal: by simply extracting words from the document and the order them, using a bi­gram

model [28].

1Involuntary disruptions or discourse blocks

8

Automatic Text Summarization

Figure 2.1: Text summarization phases
by Spark Jones [1].

2.2.3 Summary Classifications

Summaries can be very different from each other, in a lot of aspects. In 1998, Sparck Jones

proposed a taxonomy2 to classify summarization systems according to different aspects, named

context factors. These context factors are divided in three classes: input factors, out­

put factors and purpose factors [1] [21]. Hovy, Linn, Mani and Maybury also proposed

their own taxonomies. Karen’s taxonomy is pretty complete in its own, but we will add some

more aspects to it that are considered important.

Context factors are factors (some of them are kind of abstract) that characterize a summa­

rization system. They are, as proposed by Karen Sparck, very hard to define [19]. They are

divided in three main classes:

i input factors give the possibility to characterize the input document, i.e. the source

text;

ii output factors characterize the summary text;

iii purpose factors express the use of the summary.

In the class of input factors, we have the following set of characteristics:

i Number of documents: the input received by the summarizer can consist of just one

document, being classified as single­document or can consist of multiple documents,

therefore classified as multi­document. In this last case, the summary has content

from several documents that might be related to each other;

2The process of naming and classifying things into groups within a larger system, according to their similari­
ties and differences.

9

Automatic Text Summarization

ii Specificity: the specificity means how specific to a certain domain is the input of the

summarizer. If the input is related to a single domain and the summarizer must use

techniques that are useful for that specific domain, then we are talking about a domain­

specific summary. In a different way, if the summary is made from characteristics from

a certain genre it is a genre­specific summary. Additionally, if the summary is created

for a general use, not being dependent on the domain and using a superficial analysis of

the input it is an independent summary.

iii Document language/s: a summary can be made of documents that are written in sev­

eral languages. If the input text is written in a single language and the output is also

written in a single language, we have amono­lingual summary. If the input document

or documents have been written in different languages, for instance: one document is

written in Portuguese and the other in English, the summary will be created in both of

this languages, being named multi­lingual summary. In the last case, if the summa­

rizer deals with input documents written in one language and the summary is created in

a different language, then it is a cross­lingual summary.

iv Genre and size: The genre of the input documents can be of several types, such as:

books, articles, newspaper text, opinions, stories, reports, biblical texts, encyclopedia

texts, etc. As for the size, it is the size of the document, for instance: a full book or just a

small paragraph [21];

v Media: Media is also considered an input factor, in the sense that it classifies the input

document in simple text, images, video, speech or even hypertext [29].

As for the output factors, they are as follows:

i Derivation: in terms of derivation a summary can be of three types: extractive, ab­

stractive or semi­extractive If the summary is made of sets of terms (words or sen­

tences) extracted from the text, then it is an extract. Methods known for extractive sum­

marization are for instance: graph­based [30], centroids [31], latent semantic analysis

[32] [33], machine learning [34], among others [35].

If the summary is made of newly generated text from some kind of analysis and transfor­

mation of the input, then it called an abstract.

Very similar to extractive approaches are the semi­extractive approaches, where they

try to create a summary from the extracted text, but with the main difference that they

do not just select sentences, but they also select words or phrases, and the merging of

phrases from different sentences [35];

ii Coherence: A summary can be analysed in terms of coherence, whichmeans that a sum­

mary can be correctly written by following an order and a structure, where the sentences

are related to each other, thus being classified as fluent. In the opposite case, if the sum­

mary is badly written, fragmented and not coherent, then it is classified as disfluent

[21];

10

Automatic Text Summarization

iii Partiality: In certain cases, the summarizer may add his own “bias“. This is the sum­

marizers opinion. In such cases, the summary is classified as evaluative, otherwise it is

classified as neutral;

iv Conventionality: The final output factor to consider is the conventionality, which is

the scenario for which the summary is made, that can be divided in two classifications:

fixed summary or floating summary. If it is meant for a single scenario then it must

be created for a pre­defined use and specific reader — fixed summary— otherwise it is

made for a wide variety of uses, readers, and purposes — floating summary.

Finally, we have the following purpose factors:

i Audience: A summary that is made of all the major themes of the text is a generic

summary, while a summary that just focuses on a small group of themes of the text sum­

mary, due to the need of the user to know more about those themes in particular is a

query­oriented;

ii Usage: When the summary is made to indicate the principal subject of the input text,

then it is an indicative summary. When the summary has relevant information about

what was the input text about, but does not explain the information in the input text,

then it is an informative summary. There are also critical summaries (reviews), that

add personal opinions to the informative gist. By doing this, they add value that is not

available from the source text [36];

iii Expansiveness: Expansiveness can be divided in two different types: background

and just­the­news. In a case of a background type of summary, the reader does not

know anything about the content of the input text; while in case of a just­the­news sum­

mary the reader already has some background knowledge about the theme, allowing him

to completely understand the content.

In Table 2.2.3, we have all the factors previously presented in a condensed format.

11

Automatic Text Summarization

Summary classifications

Input factors Number of documents Single­document

Multi­document

Specificity Domain­specific

Genre­specific

Independent

Document language Mono­lingual

Multi­lingual

Cross­lingual

Genre/Size Book size

Articles

Newspaper texts

Reports

Biblical texts

Media Text

Images

Video

Speech

Hypertext

Output factors Derivation Extractive

Abstractive

Semi­Extractive

Coherence Fluent

Disfluent

Partiality Evaluative

Neutral

Conventionality Fixed

Floating

Purpose factors Audience Generic

Query­oriented

Usage Indicative

Informative

Critical

Expansiveness Background

Just­the­news

Table 2.1: Summary classifications according to the different factors

2.3 Automatic Summarization Approaches: Extractive and

Abstractive

Text Summarization methods can be classified into extractive and abstractive.

Extractive summarization approaches focus on selecting vital material, such as sen­

tences, paragraphs or passages from the original document, based on a set of rules defined

by the user.

Along the years, several techniques for creating extractive summaries have been proposed:

from classic approaches tomachine learning approaches, among others like wewill see in the

following sections. In some of these approaches, the summarizers consider that the “most im­

12

Automatic Text Summarization

portant” content is most of the times the “most frequent” or the “most favorably positioned”

content. By doing this, they avoid efforts on understanding the context of words, their mean­

ing, their purpose and so on. Therefore, do not require linguistic knowledge to select the

most relevant aspects of the source text to create the summary [37] [38] [39].

In general, extractive summarizing systems consist of two main phases: pre­processing and

processing. The first phase consists in creating a structural representation of the text for a

better understanding by the computer.

Pre­processing the input text is usually formed by the following steps: [40] [41] [42] [43]

[44]:

i Removing punctuation characters;

ii Removing numbers and roman numerals;

iii Removing Hypertext Markup Language (HTML) tags;

iv Removing stop­words ­ stop­words are the functional words that do not contribute to

the meaning of a sentence. For example: “or”, “once”, “too”, like others;

v Removing white spaces;

vi Converting every word to lowercase;

vii Fix possible spelling errors;

viii Convert plural words to singular words;

ix Convertwords to their base/canonical form ­ using aStemming orLemmatization

algorithm, like it was mentioned in the Section 2.3.1;

x Apply POS tagging ­ POS explains how a word is used in a sentence. It takes each word

with its syntactical tag: noun, verb, etc;

xi ApplyShallowParsing ­ extracting phrases fromunstructured text and grouping them

into “chunks”. (It can be done after applying POS);

xii Named Entity Recognition (NER) ­ extracting important information from text that

does not have a simple structure. This allows the classification of words into their respec­

tive categories, for example the word “Bill” belongs to the person category, and so on.

NER allows a detailed knowledge about the text and how are the relations between the

different entities;

xiii Tokenization ­ after the above steps have been completed, the tokenization step splits

the resulting text into a list of tokens. This can be done by three ways: text into sentences,

sentences intowords and sentences using regular expressions tokenization, depending on

the purpose of the summarizer. A very popular library for tokenization, and many other

NLP tasks, is Natural Language Toolkit (NLTK) [45];

13

Automatic Text Summarization

Figure 2.2: Extractive summarization steps by [2].

xiv CreatingWord Embeddings ­ creating word embeddings is the process of converting

words into vectors of numerical values, according to a vocabulary. Each word is repre­

sented as a dense vector with real values in a predefined vector space, often having tens

or hundreds of dimensions, which is a contrast to the number of dimensions used to rep­

resent sparse words using a one­hot encoding3. The values from the word embedding

vectors are learned, mainly through neural network techniques and are based on how the

words are used. Words that are used in identical ways will have identical vector represen­

tations, naturally capturing their meaning [46] [47].

Using word embeddings represents a powerful tool that can be used for several tasks,

such as text classification, sentiment analysis, and text summarization [48] [49].

Word embeddings can be created with the help of libraries like Word2Vec [50], GloVe

[51], ELMo elmo, BERT [52], XLNet [53] or fastText [54].

Subsequently, in the processing phase the systemmust weight the sentences and choose the

more relevant ones to combine them into a summary.

Abstractive summarization, as opposed to extractive summarization, do not extract in­

formation from the text, instead, they structure the document information so that it can be

processed by advanced natural language generation techniques [16]. These techniques anal­

yse the internal characteristics of the text such as: semantics to generate information in a

new form [55]. Abstractive summarization creates a generalized summary,that has all the

important information about the input text, but it is relatively costly,because it requires pow­

erful machinery for the natural language processing and it is harder to use in other domains

[16]. Since most of the research done in text summarization focus on extractive approaches,

there are only a few abstractive approaches worth mentioning. Abstractive summarization

approaches are divided in twomain groups: structure based approaches and semantic based

approaches. In the first group, we have methods such as: tree base method, template based

method, ontology based method, lead and body phrase method, and rule based method;

3One­hot encoding represents words as sparse vectors of 0s and 1s, according to the vocabulary size.

14

Automatic Text Summarization

whilst in the second group we have the following methods: Multimodal Semantic model,

Information item based method, and semantic graph­based method.

Belowwe will present all the summarization approaches, starting with extractive approaches

and finishing with abstractive approaches.

2.3.1 Classic Approaches

Classic approaches have come a long way, since the beginning of the research on automatic

text summarization during the decades of 1950 and 1960, until the present days.

Lunh began the research on text summarization [56]. His research focused on fetching the

most significative words from the text to create a summary. The process began by applying a

simple pre­processing phase, where the unnecessary words and symbols were removed and

the remaining ones are reduced to their canonical form4.

This reduction is known as stemming, and was developed by names like Lovins, Dawson,

Paice/Husk and Porter (the most known algorithm) [57] [58] [59]. Later, it helped develop

lemmatization algorithms. The goal of both stemming and lemmatization is to reduce inflec­

tional forms and sometimes derivationally related forms of a word to a common base form.

A stemming algorithm obtains the stem of a word, i.e, it is morphological root, by clearing

the affixes that carry grammatical or lexical information about the word [59].

In the other hand, a lemmatization algorithm, uses a vocabulary and the analysis of words

to remove the endings of words and return the dictionary form of a word, which is known as

lemma [60] [61] [62] [63].

After applying a stemming or a lemmatization algorithm, thewords are ordered in a descend­

ing form , according to their frequencies in the text. After ordering the words, the relevance

of each sentence is obtained by counting the number of relevant words and the distance of

eachword and their occurrences. The summary is then createdwith the ordering of sentences

according to their relevance scores.

2.3.2 Feature Based Approaches

Classic automatic text summarization approaches were mainly driven by statistical calcula­

tions, such as: Term Frequency (TF), Document Frequency (DF), Inverse Document Fre­

quency (IDF) and a combination of both (TF*IDF). They did not evaluate the properties of

the sentences, which led to the creation of a new type of approaches, the feature­based ap­

proaches. These approaches analyse the features of both sentences and words individually,

in order to rank them according to their relevance [64].

Baxendale proposed one of the first feature­based approaches, that consisted in evaluating

the importance of sentences in the creation of the summary, according to their location in

the text. After analysing several texts and their paragraphs, the author concluded that the

first and last sentences of each paragraph are important for the summary [11].

Edmunson adapted the above method and added two new features: presence of indicative

words and title words. Indicative words are words that convey information about the topic of

4Basic form of a word used as a dictionary entry.

15

Automatic Text Summarization

the text, such as: “introduction“, “investigation“, “lecture“, while title words are words that

appear on titles or headings [18] [12].

Every feature­base summarizer is constituted by three phases: feature identification, sen­

tences score assignment and summary creation.

In the first phase, the summarizer analyses both word­level and sentence­level features. The

first are relative to the words while the latter are related to the sentence [39]. Below we have

the word­level features: [65] [66] [64] [2] [67] [68] [34]:

i Content Words ­ content words (keywords) are nouns, verbs, adjectives and adverbs.

Sentences that have a bigger quantity of these words, are most likely to be included in the

final summary;

ii Title Words ­ sentences that have words that are mentioned in the title, have greater

probability of going to the final summary, because they indicate the theme of document;

iii Cue words ­ cue words illustrate the structure of the document flow and are words like:

“because”, “develop” or “summary”. Sentences that have these words, will most likely be

in the summary;

iv Positive words ­ positive words are words that frequently occur in a summary. The

more frequent they are, the more important they are;

v Negative words ­ in the contrary, negative words are words that never occur in a sum­

mary and should not be used to create a summary;

vi Biasedwords ­ biased words are words that are predefined in a domain. They also help

describe the theme of the document;

vii Word co­occurrence ­ words that co­occur in the different sentences in the sameman­

ner position are considered important;

viii Upper case words ­ words in uppercase are, in most cases ,important words. Take for

example the word “UNICEF”;

ix TF*IDF ­ Term Frequency Inverse Document Frequency (TFIDF) evaluates the impor­

tance of a term in a document. It combines the calculation of two formulas: TF and IDF.

TF shows how frequent is a certain term in the document. This value is higher if the term

appears more in the document, but it does not mean that the term is of great importance.

TF gives equal importance to every single word in the document, even though there are

terms more important then others. IDF actually tells how important a term is, because

it allows us to decrease the weights of frequent terms increase the weights of true rare

terms;

x InfoTermo ­ as opposed to the TFIDFmetric, the InfoTermometric can informus about

importance of a term in a certain part of the text. It was proposed by our teacher, João

Paulo Cordeiro.

Likewise we have the sentence­level features [66] [64] [2] [69]:

16

Automatic Text Summarization

i Sentence location ­ correctly written documents are structured hierarchically, so sen­

tences that appear in the beginning or end of the documents are more important;

ii Sentence similarity ­ if there is a vocabulary overlap in two sentences, they are con­

sidered similar therefore important. Similarly, one can calculate the sentence similarity

with lexical analysis;

iii Sentence length ­ the length of sentences is a key feature, because sentences with

shorter length does not usually constitute essential information neither very long sen­

tences. What is usually done is normalizing the length of the sentences to utilize the

most important parts of the sentences in the summary;

iv Numerical value in sentence ­ sentences that have numbers or roman numerals con­

vey more importance;

v Paragraph location ­ likewise sentence location feature, paragraphs that appear in the

beginning or end are more important;

vi Number of nouns and verbs in sentence ­ sentences that have more nouns and

verbs are important;

vii TF*ISF ­ an alternative to the TFIDF feature is Term Frequency * Inverse Sentence Fre­

quency (TFISF). it is very used in information retrieval tasks. In this feature, we do not

focus on how frequent is the term in the document, instead we focus on how frequent is

the term in a sentence. Therefore, this measure removes the impact of higher frequency

terms which are not useful for the summary;

viii Average­TS*ISF ­ after calculating the value for TFISF, we can then calculate the value

of the Average­TS­ISF attribute for a certain sentence, which is the the average value of

the TF­ISF values for all the terms in the sentence;

ix Word similarity among paragraphs ­ words from a certain paragraph that occur

more frequently in sentences from other paragraphs, are considered important;

x Word similarity among sentences ­ a sentence whose words occur more in other

sentences then the sentence itself, should be considered important;

xi Named entities ­ sentences that have named entities are more important;

xii Temporal values in sentence ­ sentences that have event containing date or time

expressions should be added to the summary;

xiii Latent Semantic Analysis (LSA) scores ­ a complex sentence type feature consists

in decomposing a word­sentence matrix with Singular Value Decomposition (SVD) and

getting two important things: the hidden topics of the document and the projects of each

sentence on each topic. With these projections, we can then assign scores to sentences

and select the top scoring sentences for the summary [70].

17

Automatic Text Summarization

In the second phase, the summarizer assigns a value to each sentence. A higher value is

assigned to those words and sentences that better represent the topics of the text.

In the last phase, the summarizer creates the final summary by selecting thenmost important

sentences.

Feature based approaches can be combined with other summarization approaches, whether

they are of extractive or abstractive nature, to create a more efficient summarizer. One ex­

ample is combining them with logistic regression5.

By doing so, after the system extracts the features, it can calculate their weights, thus dis­

covering which features are the most important for the summarization task. The features

of manually written summaries are used as input to the model and the corresponding de­

pendent variables are used as output in the training phase. Then the model figures out the

relations between inputs and outputs to create an efficient model, that will receive new data

in the testing phase.

2.3.3 Machine Learning Approaches

The research of machine learning approaches in NLP began in the 1990’s, with the appear­

ance of publications that used statistical techniques to create extracts from documents. At

that time, most systems used algorithms that relied on the Naive­Bayes method [16]. Even­

tually many other systems tried to implement their own machine learning models to create

extractive summaries out of text.

Machine learning based approaches can be divided in three classes: supervised learning,

un­supervised learning and semi­supervised learning [71] [72].

i Supervised learning approaches: are general machine learning methods that anal­

yse the training data (input data points and respective output) in order to classify data and

compute predictions on unknown data [55]. In the case of text summarization, they label

words, sentences or passages from a document in the training phase, with the use of a set

of documents and respective human­made summaries, to find features or parameters to

summarize the document [73]. Each sentence is classified as relevant or non­relevant for

the summary. After this training step, they apply the same process on unlabeled text of a

new and unknown document. The sentences of this new document are ranked according

to their relevance for the summarization task [74] [75].

Supervised approaches often perform better, but they have two big problems: the first

one is to assume that human­made summaries are sufficient to be used in automatic sum­

marization as “gold standards”; and the second problem is the portability of a supervised

learning text summarizer, because deploying it in a new domain will require a new col­

lection of data, that in turn needs to be manually annotated to be used in the training

process. These two problems are very time consuming and costly [71] [73]. Examples

of supervised learning approaches are: Neural Network Based approaches, Conditional

Random Fields and machine learning approaches based on Bayes Rule [39].

5Logistic regression is a predictive statistical approach for modelling the relationship between a dependent
variable and a set of independent variables.

18

Automatic Text Summarization

ii Unsupervised approaches, on the contrary, find ways to classify the text without re­

gard to external information, which means they can be applied to any text data without

requiring any manual effort [72] [73] [55]. This means they don’t have to deal with the

two problems stated above.

Unsupervised learning can be divided in two kinds ofmethods: clustering and topicmod­

eling.

In clustering based approaches, the documents are segmented into partitions, where

each partition corresponds to a cluster. The problem is that sometimes it is hard to assign

a document to a certain cluster.

As for topicmodeling, each document is a probability combination of topics, with each

topic being a probability distribution over words, where the representative words have

the highest probability. Topic models are quite similar to clustering in general, because a

topic can be analogous to a cluster and the condition of a document belonging to a cluster

is a probabilistic value [55].

General unsupervised learning approaches are: graph based approaches, concept based

approaches, fuzzy logic based approaches, LSA approaches and clustering based ap­

proaches [39].

As for examples of their usage in text summarization, there are a couple of scientific pa­

pers published, such as [76] [77] [78].

iii Semi­supervised approaches are a combination of several characteristics from both

supervised and unsupervised learning approaches. They were created to reduce the time

and costs of labeling data for supervised learning. An example of success was created by

[71], that reduced the labeling time by 50%.

Approaches based on graphs represent the texts as graphs, where each text unit is a node of

a graph. A graph is like a network linking sentences and graph­based ranking methods are

used to generate a summary

Finally, there are also the approaches based on latent semantic analysis that identify the

semantic relationships between sentences.

2.3.4 Neural Network Based Approaches

Neural networks are a type of supervised learning approaches that try tomimic the behaviour

of the human brain. They are constituted of artificial neurons that are connected with each

other in layers, much like the human brain, with the purpose of processing data. The input

layer, which is the initial layer, consists of the neurons that receive the input data, then they

are connected to the hidden layer(s) that perform the desired calculations, and in its turn

they are connected to the output layer that is used to return the output of the calculations, i.e,

a prediction [79]. A neural networkmodel is created and then trained with an initial data set.

After this, if the success rate of the predictions made by the model is acceptable, the model

can be used to predict new data. The data can be several things, like images, sound, text, etc.

19

Automatic Text Summarization

Figure 2.3: Neural Network phases by Khosrow Kaikhah [3].

With regard to natural language processing, their applicability is huge, because they help

classify the textual data and come up with outputs that can be used for tasks like sentiment

analysis, text summarization or part­of­speech tagging.

In the case of text summarization, a neural network can be used to determine which sen­

tences are used to create a summary, by being constituted of three phases: training, feature

fusion and sentence selection respectively. In the first phase, the neural network is fed with

a corpus of documents and it decides whether the sentences are added in the summary or

not. The network trains itself and learns certain patterns about the sentences, according to

the text features defined by the specialist, such as: paragraph location in document, sentence

location, sentence Length, etc.

After the training phase comes the feature fusion phase, where the features are analysed and

it is decided which features are deleted and which are kept (some neurons and respective

synapses/edges are deleted). This process reduces the size of the artificial neural network

model, turning it into a much more memory and power­efficient model [80].

Finally, in the third phase the neural network selects which sentences are used to create the

summary, according to their ranks [2] [3].

i Netsumwas created by [81]. It consists of a neural network that labels the training data

and then does the extraction of features from the sentences in the document, using the

RankNet algorithm to assign scores to the sentences.

The RankNet algorithm was developed using neural nets by Chris Burges and his col­

leagues at Microsoft Research. It is an algorithm used to rank a set of inputs, in our case,

the set of sentences in the text document. RankNet optimizes the cost function using

Stochastic Gradient Descent.

ii Khosrow Kaikhahs approaches is a Feed Forward Neural Network (FFNN) with

three layers (one input, one hidden and one output [82]) that analyses the characteristics

from the original text, splitting them in summary and non­summary sentence character­

istics [3].

In Figure 2.4, we have the representation of the neural network according with all the

phases combined.

20

Automatic Text Summarization

2.3.5 Conditional Random Fields

Conditional Random Fields (CRF) is a probabilistic and machine learning approach (super­

vised learning) used in sequential prediction problems, in areas like natural language pro­

cessing, computer vision and bio­informatics, for tasks like named entity recognition, POS,

gene prediction, noise reduction and object detection problems, text segmentation, to name

a few [83] [84] [85].

A system using CRF was proposed in Hong Kong University of Science and Technology, by

[70] that extracts the features from the text in order to determine the important sentences

of a certain document. Using this method allows the identification of the right features thus

providing a better representation of the sentences and terms into the respective segments in

the model. The problemwith this approach is that it needs a specific corpus to be used in the

training process. If it does not have a domain corpus, it can not be used generically to any

document, which takes a lot of time to be done.

2.3.6 Latent Semantic Analysis

LSA is an unsupervised learning approach that deals with the similarity among sentences

and among words, by extracting the hidden semantic structures of these text units [4] [86]

[39].

[87] define LSA as a statistical and algebraic technique that extracts and represents the con­

text of words as groups. If a certain word appears in a group of word contexts, implies that

the word has similarities with the rest of the group words. While according [88], LSA is an

important technique that it is capable of finding out the semantic relations between words,

in a corpus. After a statistical analysis, one can identify how close two words are, in terms of

synonymy and polysemy.

LSA being an unsupervised approach does not need any training sets of documents and re­

spective human­made summaries. The main goal of this approach is to discover the words

that are used together andwhat commonwords are used in different sentences. Having a big­

ger number of common words in different sentences, means that these sentences are related

semantically.

This technique is very useful for various kinds of NLP tasks. In 2002, Yihong Gong and Xin

Liu proposed that it could be used for automatic text summarization [89], according to two

steps:

i Matrix creation ­ the text is represented as a term­sentencematrix, where each column

represents a weighted term­frequency vector for each sentence in the respective docu­

ment. For a document d, m and n stands for the terms and sentences of that document

respectively. Since every word does not normally appear in each sentence, the matrix is

sparse6.

ii SVD application ­ by applying the SVD to the matrix, the relations between sentences

and words are found. This is a powerful technique used with vector spaces and in this

case, it improves accuracy by reducing unnecessary terms in the text [4] [90] [89].
6A matrix in which most of the elements are zero.

21

Automatic Text Summarization

Figure 2.4: Singular Value Decomposition applied to a matrix ofm terms and n sentences [4].

The technique proposed by Gong and Liu was very important, for both single and multi­

document text summarization, because it did not require the use of WordNet to identify the

most important topics in a document[89] [55]. WordNet is an online lexical database that

stores English words, such as: nouns, verbs, adjectives and adverbs, organized into groups

of cognitive synonyms, much like a thesaurus. These synonyms are connected to each other

by semantic and lexical relations [91] [92]. It is used in many NLP tasks.

2.3.7 Fuzzy Logic Based Approaches

Fuzzy logic consists in a mathematical term that is very useful in dealing with uncertain and

imprecise scenarios, mostly in engineering and computer sciences. Fuzzy logic, as opposed

to binary logic, can have partial truth values, i.e. the range of truth values can go from 0 to 1,

while in binary logic the truth values can only be 0 or 1. This is useful with scenarios where

the truth values are between completely true and completely false.

The main characteristics of fuzzy logic are: the ease of use (because of it’s concepts and it’s

basis on natural language), the tolerance to imprecise data, as mentioned above and it can

model non linear functions, which makes it a flexible tool for any imprecise scenario [93].

The architecture of a fuzzy logic system is essentially constituted of: a fuzzifier, a rule base,

an inference engine and a defuzzifier.

Fuzzy logic is very useful for text summarization because it solves the problems of uncertainty

when choosing the right features and sentences in documents.

Most of the approaches for text summarization that are based on fuzzy logic, can be divided

in the following phases: pre­processing of the document, feature extraction, fuzzification,

defuzzification and generation of the summary [93]

After all the features, such as: title word, termweight, sentence length, sentence position, etc

[93], are extracted, the fuzzy logic system begins its work. In this moment, the definition of

the fuzzy rules andmembership function occurs. Amembership function is a simple function

that represents the degree of truth in fuzzy logic, i.e. says if the elements in the fuzzy sets are

discrete or continuous [94]. Several membership functions can be used, such as: Triangular

membership functions [95] [5] or Gaussian membership functions [69].

The value for each sentence is derived using a fuzzy logic method, that combines the fuzzy

rules with the membership function. All the fuzzy rules have a format such as IF­THEN.

What the membership does is fuzzifiying the sentences scores into one of three values: LOW,

MEDIUM, HIGH that concludes if the sentence is not important, average or important (de­

22

Automatic Text Summarization

Figure 2.5: Fuzzy logic system for text summarization [5].

pending of the value that it has).

The final part consists of choosing the sentences, according to the output values obtained

before. The higher the output value of a sentence is, themore important it is for the summary

[5] [69] [93].

2.3.8 Graph Based Approaches

Graph based approaches are one of the many unsupervised learning approaches used in au­

tomatic text summarization and one of the most searched methods.

Like the name suggests, they use graphs to represent a document in a set of nodes and the

connections between them. Each node of the graph represents a piece of text and the edges

represent the relations between those pieces. These edges have a weight, that represents how

close are the pairs of nodes, in terms of similarity or lexical and semantical relations [96]

[30]. These connection weights are used by the ranking algorithms to decide the importance

of a certain node. By ranking each nodes according to their importance, one can decide if a

certain node will be used to create the summary.

The first ever graph­based approach was proposed by [97]. In his approach, the text was

represented by a group of connections between paragraphs. Much like many other graph

approaches, the nodes consisted of pieces of text, in this case: whole paragraphs, and the

affiliations between them were stored in the edges. The output summary was created by the

identification of the most important paragraphs. To figure out which paragraphs were the

most important, the summarizer counted the number of edges of each node. Themore edges

a certain node had, the more important it was.

[97]’s workwas one of a kind and it led to an increase in the research of text summarization. It

inspired engineers like [98] to go forward in the research of text summarization with graphs.

They were able to create a very well known summarizer, named LexRank that consists of a

stochastic graph­based method that calculates the importance of textual units for NLP tasks.

23

Automatic Text Summarization

It’s main focus was on the text summarization task, regarding sentence salience. Salience is

defined as: “the presence of particular important words” or “similarity to a centroid pseudo­

sentence” [99]. LexRank calculates the importance of sentences based on eigenvectors, i.e.

characteristic vectors, in a graph of sentenceswith the use of amatrix based on intra­sentence

cosine similarity. Cosine similarity is used to evaluate how similar are two non­zero vectors

(sentences), by measuring the cosine of the angle between them [100].

Another graph­based approach for multi­document text summarization was proposed by

[101] in the 90’s. The importance of the nodes in a text graph is calculated with the use

of a search algorithm based on the concept of “activation propagation”. This algorithm is

used after representing the graph with relations such as: adjacency, co­reference, synonyms

between nodes.

A few years later, the research on graph­based ranking algorithms increased, originating al­

gorithms such asHyperlink­Induced Topic Search (HITS), PageRank and Positional Power

Function. Some of these algorithms were then applied to NLP tasks, which is the case of the

PageRank algorithm as we will see below.

i HITS ­ is a graph­based ranking algorithm created by Jon Kleinberg, to evaluate web

pages and the connections between them. Each page has a pair of values: the first is the

authority value, which is the value of the content of the page in terms of incoming links;

the second is the hub value, that is the value of the connection between that page and the

rest (outgoing links) [102]. After searching for a web page, the algorithm calculates both

authority and hub values for that page. This is done for only a certain page, and not all

of the ones that related to each other, in order to improve efficiency [30].

ii PageRank ­ is a graph­based ranking algorithm that was created in 1998 by Brin and

Page with the purpose of analysing the connections between web pages [102]. Each con­

nection between pages have a numerical weight that represents the relative importance

within a set of connections. When one page links to another one, it is casting a vote for

that other page. The higher the number of votes that belong to a page, the more impor­

tant that page is [103]. If a page has a lot of pages with high ranks connected to it, then

it will also have a high rank. In the opposite way, if there are no links to a web page then

the rank for that page will be the lowest possible [104]. It is considered one of the most

popular ranking algorithms and it is even used by the Google Internet search engine[30].

A common problem is the existence of spam pages, that are created with the purpose

of manipulating search engine indexes. When these pages use the PageRank algorithm,

along side Google, they use spam to increase their ranking [105].

iii PositionalPowerFunction ­much like the algorithmspresented above, the positional

power function is a ranking algorithm that is used to assign scores to nodes in digraphs.

It combines the numbers of successors and the scores of sucessors of a certain node [106]

[102].

The PageRank algorithm listed above, inspired the researchers in the field of automatic

text summarization to use graph­based algorithms ­ originating new algorithms, such as:

TextRank and LexRank.

24

Automatic Text Summarization

Figure 2.6: Example of weighted cosine similarity graph by [6].

In the TextRank algorithm, each node does not represent a web page, instead it represents

a sentence of a document. The same way, instead of calculating the probability of transition

between pages, the algorithm calculates the similarity between sentences. Much like the

PageRank algorithm, the scores of the similarities are stored in a square matrix.

Before applying the TextRank algorithm to natural language texts, one must first build a

graph to represent the text and creating the relations between sentences. Each node can

represent a single word or words, collocations or even entire sentences. Depending on what

each node represents, the type of relations that exist between nodes may vary. Examples of

relations can be: lexical, semantic, contextual, etc [102] [103].

In general, the steps of applying the TextRank algorithm to natural language texts are [103]

[30]:

i Creating the nodes of the graph, that best represent the desired text;

ii Identify the relations that connect the nodes and then create the edges of those relations;

iii Iterate the algorithm until convergence is reached;

iv Sort vertices based on their final score. The scores are used for taking decisions for the

task.

The TextRank algorithm is very useful for extraction tasks, such as keyword or sentence ex­

traction. This is important for our subject of automatic text summarization, because through

this algorithm we can fetch the most important keyword or sentences from a document and

then create a summary.

2.3.9 Clustering Based approaches

Clustering is an unsupervised learning technique that attempts to create groups of entities

that have similar properties. In text summarization, it can be used to create groups, i.e,. clus­

ters, of sentences that relate to each other [107] [55]. In order to discover how the sentences

relate to each other, one must analyse the similarity between them. A very common way to

do this is using the cosine similarity measure7 [108]. Sentences that are very similar to each

7Cosine similarity is a measure of similarity between two non­zero vectors that measures the cosine of the
angle between them.

25

Automatic Text Summarization

Figure 2.7: Text summarization of a corpus with a clustering approach [7].

other are saved in one cluster.

Clustering can be used for both single and multi­document summarization.

In one hand, if the input consists of only one document, the clustering mechanism will eval­

uate the similarity between sentences and create the respective clusters.

In the other hand, if the input consists of more than one document, then the mechanism will

evaluate each one of the documents and discover if they have common topics. If this happens,

they are put together in the same cluster. Finally, the summarizer chooses the sentences that

are related, from the clusters and combines them into a single summary.

In Figure 2.7 we have a visual representation of this process.

The first ever implementation of a clustering algorithm for text summarization was proposed

by Radev [109]. MEAD consists in a multi­document summarizer that uses a centroid­based

summarization technique. The process is divided in three phases: feature extraction, sen­

tence scorer and sentence reranker. In feature extraction, the features of each sentence are

calculated. The sentences are then used in the second phase, where the sentence scorer as­

signs a value to each sentence, according to the linear combination of their features. In the

subsequent phase, the sentences are ordered by their scores and they are added to the sum­

mary, where the first added sentence is the one with the highest score. The next steps con­

sists on the re­ranker calculating the similarity of the sentence that will be added with all the

sentences that already are in the summary. If the similarity is above a given threshold, the

sentence is not added to the summary and the re­ranker moves on to the next sentence. This

process lasts until the summarizer reaches a desired compression rate.

Following the work done by Radev and his partners, Jaime Carbonell and Jade Goldstein

combined their efforts and developed the Maximal Marginal Relevance (MMR) algorithm.

This algorithmmaximizes themarginal relevance of sentences and documents. This concept

is a metric that evaluates how a document is relevant for a certain topic and how it is similar

to documents that were analysed before. It consists in an importantmetric because it reduces

the redundancy between sentences of documents. In general, the higher the MMR value of

a document, the more relevant it is to a topic and the less it is similar to another document

[110] [107].

26

Automatic Text Summarization

2.3.10 Discourse Approaches

Discourse approaches attempt to analyse semantics, by finding the discursive relations in the

text discourse, i.e. the relations between text units, with the purpose of creating a summary.

The first ever discourse based summarizer was proposed by Radev, giving it the name: Cross­

Document Structure Theory (CDST). This system evaluates the semantic relations between

words, phrases or sentences, in the same or different documents, if they are indeed connected

in a semantic way. The main problem is that these relations should be explicitly determined

by humans [111] [112] [113].

2.3.11 Bayesian Topic Models

Bayesian topicmodels represent a probabilistic approach that can be very useful in determin­

ing the text topics. They succeed where other approaches fail, in terms of topic identification.

The main goal is to identify words that relate to a particular topic and the topics that are

present in a particular document, with the analysis of a set (corpus) of documents. The core

of these approaches is the usage of Bayesian inference to calculate how probable is a given

sentence included in the extract. Newer extracts can then be created with the ranking of

sentences according to the value of this probability and picking a certain number of the top

scoring sentences [114] [2]. Bayesian topic models extractive summarizers have been pro­

posed by [115] [116].

2.3.12 Hidden Markov Models

HiddenMarkovModels HiddenMarkovModels (HMM) are based onMarkov Chains. These

chains are probabilistic models that can predict data about sequences of random states (vari­

ables), taking into account that these states can take values from a set and there are transition

probabilities between states [117].

Markov Chains are quite powerful in predicting a sequence of observable events, but they

lack in potential when we are interested in predicting hidden events, i.e., events that are not

observed directly. This is whereHMMbecome important: they can be used for both observed

and hidden events [118].

HMM have been successfully used for NLP tasks such as POS tagging and NER. In POS

tagging, given a set of words as a sequence, the HMMmodel can predict the respective POS

tags for the words.

In NER, the HMMmodels figures out the dependencies between words by giving each word

the respective name entity type. In terms of architecture, the model admits states that are

organized into regions, one region for each name entity type. Then, for each region we use a

statistical bi­gram languagemodel to calculate the probability of thewordswithin that region,

i.e. the named entity type. [119] [55]

The first work for using HMM for text summarization was proposed by [120]. They com­

puted three sentence features: position of a sentence in the document, number of terms in

a sentence and how likely are the terms of a sentence. With these features, the model com­

putes the value of the probability of each text sentence being a summary sentence. Given a

27

Automatic Text Summarization

certain sentence as a sequence for the model, the probability that the next sentence is indeed

a summary sentence, depends from the present sentence. This is done for all the sentences

in the text and, step by step, the sentences are chosen for the summary creation.

[121] suggested another approach: an extractive summarizer that combines clustering tech­

niques with Hidden Markov Models. They used a modified version of the well known K­

means [122] clustering method with HMM, to analyse the text in terms of cohesion and as­

sign tags to the sentences. The system can then pick salient sentences for summary creation

or simply detect topics in the text.

2.3.13 Lexical Chain Approaches

Lexical Chains are extractive summarization techniques that analyse the lexical cohesion be­

tween words of a certain corpus.

Lexical cohesion was defined by Halliday and Hasan, in 1976, as a process of combining

different parts of the text through the semantical relations the terms have with each other.

This process does not only occur betweenpairs ofwords, but also between sequences ofwords

that have some sort of relation (i.e. lexical chains) [123] [124].

Halliday and Hasan divided lexical cohesion into two types: reiteration category and collo­

cation category. The first one can be done by analysing the repetitive words or synonyms

and hyponyms. The second one is achieved by analysing the words that co­occur in the same

lexical context [125].

Lexical chains can be used for several NLP tasks, such as information retrieval, topic tracking,

text summarization, etc.

The first ever computational implementation of lexical chains was presented by Morri and

Hirst, in 1991. They used the Peter Mark Roget Thesaurus (Roget Thesaurus [126]) and the

WordNet database to determine the relations between words. The importance of the Word­

Net database is that it containswords such as: nouns, verbs, adjectives and adverbs in english,

organized in sets of synonyms. These sets are then related with synonymy and hyponymy

[127].

A few years after the work done by Morris and Hirst, some other approaches have been pre­

sented, by the names of Hirst and St­Onge, in 1997, and by Barzilay and Elhadad, also in

1997. They both used WordNet as a knowledge database to figure out the semantic relations

between words. The difference was that the first approach computed a chain that could in­

clude a word if that word was first found, while the latter approach computed all the possible

chains for a certain word and then defined the best interpretation [128].

The great advantage of using lexical chains for text summarization is that they do not need the

full understanding of the text, but only some available knowledge sources [125], for instance

WordNet, like was mentioned above.

2.3.14 Structure Based Approaches

Structure based approaches consist on mechanisms that focus on the vital data from text

documents and encode them, using structures based on: tree, template, lead and body, rule,

28

Automatic Text Summarization

Figure 2.8: Six structure based approaches by [8].

graph and ontology [8].

The Diagram 2.8 consists of an overview of this structure.

1. Tree based approaches ­ These approaches represent the text data using a depen­

dency tree. The tree is used together with a language generator or associate degree to

create the summary.

An abstractive summarization approach was proposed by Regina Barzilay and McK­

eown [129]. The most common phrases are identified with the help of a bottom­up

multi­sequence alignment. The input consists of various documents whose theme is

identified with a process of theme selection. After the theme has been identified, the

sentences are ordered with a clustering algorithm and then fused, generating the sum­

mary;

2. Template based approaches ­ Template based approaches use a template to rep­

resent the entire text document. According to extraction rules or linguistic patterns

some text units are mapped to the model and in the future are used as indicators of the

summary content.

Sanda M. Harabagiu and F.Lacatusu[130] proposed an abstractive summarizer using

this approach, called GISTEXTER. It creates summaries with the use of information

retrieval, that focuses on the identification of topic­related information in the text doc­

uments. Each topic is represented as a set of concepts that are implemented as a

model and are stored in a database. The summarizer then chooses sentences from the

database to create the summary. This summarizer is used for both extractive and ab­

stractive summarization tasks;

3. Lead and Body based approaches ­ lead and body based approaches consist on

inserting and changing syntactically similar sentences with the sentences from the lead

or body. Lead sentences are sentences that begin an important part of the text, such as:

a chapter, an article or a paragraph, while body sentences are sentences that belong to

the middle of the text. Thus, the goal of this approach is to insert and rewrite the lead

29

Automatic Text Summarization

sentences, by analysing the syntactical resemblance between these sentences and the

body sentences.

An abstractive system for summarizing broadcast news was proposed by Tanaka et al.

[131]. The system analysed the lead and body sentences and identified sentences that

resemble these sentences. Then it inserted and switched phrases to generate the sum­

mary;

4. Rule based approaches ­ rule based approaches use terms of classes and lists of as­

pects to choose the documents that the system summarizes. To evaluate if a document

is chosen, the document must answer one aspect of a certain group of extraction rules.

In the end, Only the best candidates are chosen, i.e. the ones that answer the most

number of rules. In the end, the system uses generation patterns for generating the

summary sentences.

Pierre­Etienne and G.Lapalme proposed a system that uses information extraction to

identify semantically related words, such as nouns and verbs. After this related words

are found, they are extracted and used to generate the summary [132].

Another approach was proposed by Huong Thanh Le and T.M.Le[133], that consists in

an abstractive summarizer that uses discourse rules, syntactical constraints and a word

graph. The generation of a sentence is divided in two parts: the first is the finishing of

the start of a sentence and the second is the finishing of the tip of a sentence. The

sentences are then combined by observing and adhering to few syntactical cases;

5. Graph based approaches ­ abstractive graph­based approaches use a graph struc­

ture, to represent the text. Each of the graphs node represents a word unit, that in turn

represents the structure of sentences [8].

An opinosis­graph based approach was proposed by Kavita Ganesan et al. [134]. The

graph does not require any knowledge of the domain, therefore it is highly flexible and

is able to balance the order that words appear in the text and its inherent redundancies.

By doing this, it is able summarize highly redundant content and be used with many

languages. The difference between an opinosis­graph and the graphs used in extractive

summarization approaches, such as LexRank and TextRank is that the graphs used in

these approaches are often undirected and each node represent a single sentence and

the edges represent the the similarity between sentences, while in a opinosis graph each

node represents a word unit and the edges are directed, representing the structure of

sentences. The graph is initially created to represent the structure of the text and then

each one of the paths and sub­paths are analysed to generate candidate abstractive

summaries [134].

Similarly, a graph­based approach to summarize extremely redundant sentences have

been proposed by Kavita Ganesan et al. [135]. It uses the opinosis graph to search for

sub­graphs that encode valid sentences and that posses high redundancy scores. The

system assigns scores to sentences and paths to choose valid paths, according to the

score. The paths are then ranked in a descending order of the scores and the duplicated

paths are eliminated. Finally, the paths are used to create the summary sentences.

30

Automatic Text Summarization

Figure 2.9: Abstractive semantic based approaches by [8].

DingdingWang and T.Li proposed the creation of multi­document summarization sys­

tems that could use existing methods such as centroid­based method, graph­based

method, among others in order to anaylse the outcomes and results of different base­

line combination methods such as average score, to create a summarizer that could

improve the performance of the summarization [136]

6. Ontology based approaches ­ Ontology based approaches evaluate the knowledge

structure of a certain domain, that includes documents whose knowledge relates to a

specific topic. Researchers have utilized the background knowledge (i.e., ontology) to

improve their summarization results. Using ontology and combining it with domain–

related information, a summarizer can determine the hidden semantic information of

texts. This means that, textual information can be related with each other, using the

shared and common understanding of a domain [137] [138].

Ontology can be useful for domain specific documents where key concepts pertaining

to the domain can be identified. This means that these approaches needs to have a

pre­defined ontology, made by experts, in order to understand the documents domain.

An Ontology Multi­document Summarizer was proposed by [139]. It is a summarizer

that links the sentences fromdocumentswith a domain­specific ontology. Then queries

the data from the ontology and extracts the summary from the sentences [137].

Similarly, an Ontology Abstractive Summarizer was proposed by [138]. This system

uses theworld’s largest ontologywith an inference engine to create abstractive semantic

summaries. It is an unsupervised and domain independent, which means it does not

need to receive additional input to understand the text and it is only limited by ontology

in itself.

2.3.15 Semantic Based Approaches

Semantic based approaches use linguistics, namely semantic, to analyse the noun and verb

phrases in text and create abstractive summaries [8] [140].

In Figure 2.9 we indicate the four semantic­based approaches for abstractive summarization,

by [8].

i Multimodal semantic approaches ­ these approaches use a semantic model to rep­

31

Automatic Text Summarization

resent the text content that is used for multimodel documents, i.e. documents that have

both text and images. Themost important text concepts are rated according to somemea­

sure. The chosen concepts are used to create the summary, by helping in the selection of

the sentences that represent these concepts.

Albert Gatt and E. Reiter [141] proposed an Natural Language Generation (NLG) system

that is capable of summarizing great amount of numeric and symbolic data, by controlling

how the phrases are built and combined into the summary.

ii Information­item based approaches ­ in this type of approaches, the abstractive

summaries are not created with the sentences in the documents, but with an abstract

representation of the documents. This abstract representation consists in a small, but

very important part that contains the smallest and informative element in the text.

Pierre­Etienne Genest and G. Lapalme [142] proposed a system using this methodology,

where the summarization process begins with an information item (INIT), that repre­

sents the smallest coherent element in a text. In the selection phase, the sentences that

lead to a list of INIT, will be selected to be part of the summary. Instead of just using

sentence selection, one can could use frequency based models to INIT selection. After

selection, the summary generation phase begins. In this phase the generated sentences

are ranked and a number of those that posses excessive size of the summary are the first

ones selected.

iii Semantic TextRepresentationModel ­ in this technique, the semantics of thewords

are more important than the structure of the text.

Khan Atif and Y.J. Kumar [143] proposed a multi­document abstractive summarizer us­

ing this technique. The content is chosen by assigning ranks to themost significant predi­

cate argument structures. Since the system assumes that the text is anaphora correct and

does not have ambiguous parts, it can not process more detailed semantics to create the

summary, that is generated with a specific tool.

Khan Atif et al. [144] also proposed an additional method, where the documents are

divided into sentences, which in turn have their respective document and position num­

bers. By doing this, they were able to, like the previous system, extract predicate argu­

ment structures. They used a semantic graph to assign semantic similarity scores to the

sentences. Finally, they used a graph based ranking algorithm to determine predicate

structure, semantic similarity and document set relationship to create the summary.

iv Semantic Graph Based Method ­ in this method, the text is processed and repre­

sented as a linguistic graph, Rich Semantic Graph (RSG), that reduces the quantity of

linguistic information and creates the final summary.

Lloret.E et al. [145] created a system that is able to construct concept­level summaries.

Each input text receives lexical analysis8 and is transformed into its respective syntactic

representation. A generation tool, specific of the desired language, is used to create the

8Conversion of a sequence of characters into a sequence of tokens.

32

Automatic Text Summarization

summary having the lexical units as input. Much like the system proposed by [143], this

system does not have a semantic representation of the text and it assumes that all the

sentences are anaphorally correct.

2.3.16 Issues of Extractive and Abstractive Summarizers

Even though automatic text summarization has had a huge research along the years, empow­

ering humans with the ability to pass through the barrier of immense raw textual informa­

tion, the tools that generate the summaries are still not fully efficient, because they possess

problems in creating a coherent summary that represents the major content of the original

text.

According to Sparck Jones, a summary is created from an input text, originating an output

text [19], [1]. This output text much have a certain degree of textuality, which sometimes

fails to be achieved in automatic text summarization , [146].

Textuality defines how communicative is a text, i.e. how is the connection between the author

of the text and the reader/s. This connection is represented as trade of meaning from the

author to the reader. It’s easy to see that if a text is not communicative, it will not provide

the reader with its essential information [146].

Textuality is divided in seven standards, such as: cohesion, coherence, intentionality, accept­

ability, informativity, situationality, and intertextuality. If any of these standards fails to be

achieved, the text is not considered communicative, thus not an actual text (non­text) [146]

[147] [148].

In the case of extractive summarizers, they might lose some of the essential information

about the text, because they simply extract pieces of text.

As for the abstractive summarizers, they do not choose sentences from the text, instead they

create their own interpretations, by compressing or re­generating new sentences. This is

done through eight types of operations [9]:

i Reduction of sentences;

ii Combination of sentences;

iii Syntactic transformation;

iv Lexical paraphrasing;

v Generalization and specification;

vi Reordering.

Below are the main issues that extractive summarizers face [36] [149] [37]:

i Redundancy ­ The redundancy in the text is originated when the summarizer needs

to process certain similar and salient pieces of text, that in the case of probabilistic ap­

proaches, possess the same score, which in the future will be added to the output. This

also occurs with summarization of multiple documents that have the same topics;

33

Automatic Text Summarization

ii Incoherence ­ The incoherence issue comes from some parts (or even the totality) of the

text having incorrect anaphoric references. These references are used to define the theme

of the text, and are related to words, such as pronouns, that reference subjects/entities

of the text. If these pronouns are misrepresented, they do not reference the respective

entity and the summary becomes messy. Incoherence can also come from sentences that

are overlapped, leading to an incorrect text interpretation;

iii Long sentences ­ Extractive summarizers extract sentences from the text that are regu­

larly too long. These sentencesmight include unnecessary information that will be added

to the output summary, demanding computational space that might be needed for more

relevant information.

Similarly, below are the abstractive summarization issues:

i Over complex summaries ­ According to [146], general users of automatic summariz­

ers prefer extractive summaries because they aremuchmore simple, since they constitute

fragments of the original text. Hence, the users are much more capable of analysing the

text and retaining its essential information [36];

ii Incoherence ­ Much like extractive summaries, abstractive summaries also possess in­

coherence. This problem is due to the fact that the sentences that are re­generated do not

relate to each other.

In sum, both extractive and abstractive summarizers have their own problems. In the case of

extractive summarizers, they can be applied to text with different lengths, from small to large

documents and create simple summaries, that are more easily readable and understood. If

the input consists of large quantities of text and some of them are slightly ungrammatical, the

summarizer has no problem in extracting the sentences [9]. As for abstractive summarizers,

they create summaries that are, sometimes much more coherent than extractive summaries

and they add material that enriches the source text [36], despite being more costly in terms

of computational resources. The ideal solution to these problems is to create a automatic

summarizer that implements extractive and abstractive summarization approaches [7].

2.4 Summary Evaluations

Even though the state of the art in automatic text summarization had a lot of research, cre­

ating an ideal summary, for one or more documents, is still a very hard task to be done. Ac­

cording to the literature, the agreement between human summarizers is quite low, both for

evaluating and generating summaries.

To evaluate a summary, one must evaluate its form and content. By form we mean how

coherent it is, i.e. grammatically correct and if it is readable by a human, while by content

we mean how well will it capture the source text [16] [150].

Besides these problems, another important one exists: the far­reaching evaluation metrics.

A number of metrics exist and there is a disagreement in terms of which one is the best.

34

Automatic Text Summarization

Figure 2.10: Evaluation measures by [9].

There is not a standard human or automatic evaluation metric to compare different systems

and create an evaluation baseline.

Beyond that, manually evaluating summaries is a very expensive process: according to Lin

[151], the evaluation of a big set of documents in the DUC, would require over 3000 hours

of human efforts. So, the creation of an evaluation metric that could be universal to all and

that allowed the evaluation of all types of summaries, would reduce the process of manual

evaluation9[16].

Summary evaluationmeasures are divided in twomain groups: intrinsic and extrinsic. In­

trinsic measures evaluate the internal structure of the summary, i.e. they judge the quality of

the summarization process, while extrinsic measures evaluate how the quality of the summa­

rization approach affects other tasks [127]. Intrinsic evaluationmethods are usually themain

approach of evaluation summaries, which is done by comparison with an ideal summary [9].

Intrinsic measures are divided in text­quality evaluation and content evaluation.

In Figure 2.10 we have an overview of all the existing evaluation measures.

We will begin by explaining the text­quality evaluation measures.

2.4.1 Text­Quality Evaluation Measures

The text quality of a summary can be decided in agreement with four aspects: grammatically,

non­redundancy, reference clarity and finally, coherence and structure, however it can not

be done automatically, it can only be done by annotators at DUC. They assign a score, from

A (very good) to E (very bad) to each one of those aspects [9]

i Grammaticality ­ the summary must not contain non­textual items (i.e. markers),

punctuation or incorrect words.

ii Non­redundancy ­ the text must not contain redundant information.

iii Reference clarity ­ every word that has a reference to something, such a noun or pro­

noun, must be clear in what it refers to.
9DUC represent events for disseminating scientific and technical papers written by people that participate in

the DUC workshops.

35

Automatic Text Summarization

iv Coherence and structure ­ the content of the summary must be coherent and have a

good structure.

2.4.2 Content Evaluation Measures

Content evaluation measures evaluate the content of the summary text. They are divided in

two sub­groups: co­selection and content­based.

Co­selection measures only work with sentences that are exactly the same, ignoring the fact

that, two sentences might contain the same information, even though their structure is dif­

ferent. Co­selection encompass three very known evaluation metrics: precision, recall and

f­score [9] [40] [2].

i Precision ­ consists of the number of sentences that occur both in the summary and in

the reference summaries), divided by the number of sentences in the candidate summary

(generated by the summarizer).

Precision =
|Ref ∩ Cand|
|Cand|

(2.1)

where Ref and Cand represent the reference and candidate summaries, respectively.

ii Recall ­ consists in the number of sentences that occur both in the summarizer output

and reference summaries, divided by the number of sentences in the reference summary.

Recall =
|Ref ∩ Cand|
|Ref |

(2.2)

iii F­score ­ is the geometrical mean of precision and recall, that blends the precision and

recall measures. One can use several variants of the F­score, where the simpler version

(F1) is the most used:

F − score =
2 · Precision ·Recall

Precision+Recall
(2.3)

iv Relative utility ­ Relative Utility solves the main problem associated with using pre­

cision or recall measures to evaluate the quality of a summary ­ two equally good sum­

maries can have different evaluation values, because the human judges might disagree

about which sentences from the document are the most important.

Through the use of the Relative Utility measure, the final summary can represent all the

sentences of the source text, with confidence values for their inclusion in the summary.

RU =

∑n
j=1 δj

∑N
i=1 uij∑n

j=1 εj
∑N

i=1 uij
(2.4)

36

Automatic Text Summarization

where uij is a utility score of sentence j from annotator i, εj is 1 for the top e sentences

according to the sum of utility scores from all judges, otherwise its value is 0, and δj is

equal to 1 for the top e sentences extracted by the system, otherwise its value is 0. Amore

detailed explanation about this measure is available in [152] [9].

Content­based measures analyse the text content, as opposed to Co­selection measures. In

the case of two sentences with the same meaning, but different structure, we have a match

because the content is the same.

i Cosine similarity ­ cosine similarity is awell known formula for calculating how similar

two vectors are, in a vector space. One common use it to evaluate the similarity between

vectors of sentences [100] [108] In this case, it is used for evaluating the content of sum­

maries.

cos(X,Y) =

∑
i xi · yi√∑

i (xi)
2 ·

√∑
i (yi)

2
(2.5)

where X is a text summary and Y is the reference summary [153] [154]

ii Unit Overlap ­ unit overlap, much like the previous measure, calculates the similarity

between two words: X and Y [155].

overlap(X,Y) =
∥X ∩ Y ∥

∥X∥+ ∥Y ∥ − ∥X ∩ Y ∥
(2.6)

iii Longest Common Sub­sequence ­ this measure calculates the length of the longest

sub­sequence of words, between two word sequences X and Y [156] [157]

LCS(X,Y) =
length(X) + length(Y)− editdi(X,Y)

2
(2.7)

editdi(X,Y) stands for the edit distance, which consists in the number of edits needed to

transform X into Y. These three first content based measures were proposed by Saggion

et al. [154] [9] [155]

iv ROUGE measure ­ ROUGE consists in a group of measures, based on the similarity

between n­grams10. This family of measure was first introduced in 2004 by Lin and was

has became a standard for evaluating automatic text summaries [16] [151] .

Given a set of reference summaries created by a groupof annotatorsRSS, theROUGE−n
score of a candidate summary is calculated according to the following equation:

10An n­gram is a sub­sequence of n words from a certain text.

37

Automatic Text Summarization

ROUGE − n =
(
∑

cεRSS
∑

gramnεcCountmatch(gramn))∑
cεRSS

∑
gramnεcCount(gramn)

(2.8)

The Countmatch is the number of n­grams that occur both in a candidate summary and

a reference summary, while Count(gramn) is the number of n­grams in the reference

summary [9].

There are other ROUGE scores, such as ROUGE­L, which evaluates the longest common

sub­sequence (see the previous section) – and ROUGE­SU4, which is a bi­grammeasure

that enables at most 4 uni­grams inside bi­gram components to be skipped.

v Pyramid evaluationmethod ­ this method uses Summarization Content Units (SCU)

that are important for comparing the information from summaries. They are created

from the annotation of a corpus of summaries that do have a size not bigger than a cer­

tain clause. This annotation identifies sentences that are similar and identifies sub­parts

that are related. If one of these units appears in more manual summaries, more weight

it will have. Each unit is evaluated and according to their weights, the pyramid is cre­

ated. At the higher positions of the pyramid we have the units that appear in the biggest

number of summaries, while at the lower positions we have the units that appear in fewer

summaries. The SCUs in peer summary are then compared against an existing pyramid

to evaluate how much information agrees between the peer summary and manual sum­

mary [9] [158].

2.4.3 Task Based Evaluation Measures

As opposed to the previous evaluation measures, task­based evaluation methods do not fo­

cus on the summary sentences, instead they measure the utility of a summary for a certain

task. The three most important task­based evaluation measures are the following ones: Doc­

ument Categorization, Information Retrieval, and Question Answering. Task­based evalua­

tion methods do not analyze sentences in the summary. They try to measure the prospect of

using summaries for a certain task. Since there are are a big number of task­based evalua­

tion measures in the literature, we will focus on the three most important ones: document

categorization, information retrieval and question answering [9].

1. Document categorization ­ document categorization evaluates how effective the

summary is in capturing the information in a text document in order to categorize it.

To perform this task, we need a corpus of documents with their respective topics.

Document categorization can be done manually or by a machine and the results of cat­

egorizing summaries are compared with the results of categorizing documents. If we

choose an automatic categorization, we might see some inherent errors in the classi­

fier. To deal with these errors, we must discover if the error is from the classifier or if

it is from the summarizer and this is done by comparing the systems performance with

upper and lower bounds, i.e., full documents or random sentence extracts respectively;

38

Automatic Text Summarization

2. Information Retrieval (IR) ­ this task differs from the above one, because it uses

an IR system, indexed the summaries, and evaluating how efficient the summary is

in representing the main aspects of a document. The principle here is that we have

good summaries whenever the retrieved results are equivalent or close to the one ob­

tained from the source documents. Additionally, the difference between the efficiency

of the summaries and the full documents represents a measure of the quality of the

summaries;

3. Question answering ­ text summarization can be evaluated with regards to question

answering. In most cases, the generated summaries are used as options to multiple

choice problems. Human analysers have several possible choices fromwhich theymust

choose one. Depending on the quality of the summaries, i.e. options, the easier it is for

the human analysers to answer the questions.

39

Automatic Text Summarization

40

Automatic Text Summarization

Chapter 3

Implementation

In this chapter, we will list every decision we have taken in the implementation phase. We

will start by talking about the programming language, frameworks and libraries used and

then proceed to present the summarization approaches we adapted/created.

The obtained results from these experiments will be provided in Chapter 4.

3.1 Sources Used

When speaking about what tools were used, one can refer the programming language and the

libraries/frameworks and algorithms used. Python was the chosen programming language

for the code we wrote. It is an interpreted, high­level and general­purpose programming lan­

guage, with important functionalities and frameworks, that made the creation of our system

much easier. It is being widely used for all kinds of NLP.

The NLTK, Pandas, Tensorflow/Keras, GloVe, Numpy and spaCy were the main ex­

ternal libraries used.

NLTK is an open­source toolkit that provides libraries for classifying, tokenizing, stemming,

tagging, parsing, and semantic reasoning text and also wrappers for industrial­strength NLP

libraries. We used it especially for pre­processing the input texts, by removing stop­words,

tokenizing and lemmatizing the text and for other calculations, in our deep neural network

summarizer, presented in Section 3.4.

Pandas is an open­source library for data analysis [159]. We used it for reading and storing

data, used in the deep neural network summarizer.

Tensorflow is an end­to­end open source platform for machine learning. It has a compre­

hensive, flexible ecosystem of tools, libraries and community resources that lets researchers

push the state­of­the­art in Machine Learning (ML) and developers easily build and de­

ploy ML powered applications. Keras is a deep learning Application Programming Inter­

face (API) built on top of Tensorflow, version 2.0. We used these tools to define every

aspect of our neural network model, from the architecture: layers, neurons in each layer, ac­

tivation and loss functions, to the training and inference phases as well evaluating the model

performance[160] [161];

GloVe creates word vector representations from text. We used it to create word embeddings

of our texts, in which each English word is assigned a 300 dimension vector with respective

values. The word vectors come in a simple text file, so we loaded the file, separated the words

from the vectors and created a python dictionary, where each key is a single word and the

dictionary value has the embedding values. Theword vectors dictionarywas used to calculate

similarity between sentences or words, in the TextRank summarizer (Section 3.4.1) or the

deep neural network summarizer (Section 3.4).

41

Automatic Text Summarization

SpaCy was used to create English language object representations from the text. With this

object we have access to the vocabulary, syntax, entities and word­vectors and also a variety

of methods for tokenization, POS tagging and dependency evaluation, named entities, word­

embedding vectors, etc.

3.2 Term­Frequency Summarizer

A couple of months ago, when we began searching for solutions for this thesis, we thought it

would be interesting to implement a simple term­frequency summarizer, to serve as a base­

line for the other solutions we could find and implement in the future. The main idea was to

use this summarizer and compare its results, to other more advanced and complex solutions,

in order to see if they present better results. Term­frequency approaches are now consid­

ered classic approaches, since they have been proposed a few years ago, as we have seen in

the Section 2.3.1. Our approach, however, is a bit more complex, but it has the same core

logic.

This algorithm receives an input text and a compression rate. The compression ratemeasures

how much shorter the summary is as of the original text. An alternative to a compression

rate could be to use a retention rate, that measures how much information is retained in the

summary [162]. The text is pre­processed, like in the other approaches and we evaluate the

frequency of the words. Eachword is assigned the respective frequency in which it appears in

the text. The most frequent words are assigned higher scores. The sentence with these high

frequency words are picked, according to the compression rate. In the end, the summary is

created by combining the chosen sentences.

3.3 TextRankWithWord Embeddings

In this algorithm, we began by creating the word embeddings for the whole text. Each word

embedding is a key pair, in which each key is the word and the value is a vector of 300 values.

In our approach, much like a typical TextRank algorithm, the text is represented as nodes

from a graph, where each node is a single sentence and each edge is the relationship between

two sentences. We began by creating a matrix that combines pairs of sentences. From each

sentence pair, we get their word embeddings and calculate their cosine similarity. Having

completed the similarity matrix, we convert it to a graph and rank the sentences according to

their similarity scores: the highest scoring sentences come first, along with their respective

values.

Finally, we filter and combine the ranked sentences, according to the compression rate (dec­

imal percentile value) provided, into a full summary.

Below we have the pseudo­code of our algorithm and a brief explanation of the variables and

methods:

1. sumEmbeddings ­ vector that stores the sum of the given sentence’s words embed­

dings values;

42

Automatic Text Summarization

2. M ­ matrix of N by N sentences;

3. cosSim ­ the cosine similarity between two vectors, where each one stores the sum of

the respective sentence’s words embeddings values;

4. G ­ graph created from the matrix M;

5. S ­ computed ranked nodes (sentences) from the graph;

6. comp ­ float value that represents the desired compression of the text;

7. RS ­ variable that stores the ranked sentences, according the compression rate;

8. summary ­ the variable that stores the summary text. initialized as an empty string

and afterwards appends the ranked sentences.

Algorithm 1 TextRank algorithm.

1: for sent in Sents do
2: if sent != NULL then
3: words← len(sent)
4: sumEmbeddings←

∑words
n=1 wordEmb

5: else
6: sumEmbeddings← sumEmbeddings.append(sentEmb)
7: end if
8: end for
9: M←matrix(N,N)
10: for si in Sents do
11: for sj in Sents do
12: if si != sj then
13: siSumEmbeddings← sumEmbeddings(si)
14: sjSumEmbeddings← sumEmbeddings(sj)
15: A(si, sj)← cosSim(siSumEmbeddings, sjSumEmbeddings)
16: end if
17: end for
18: end for
19: G← graph(M)
20: S← scores(G)
21: RS← sortSents()
22: RS← RS[0 : |RS| * comp]
23: summary← ’ ’
24: for rankedSent in RS do
25: summary← summary + rankedSent
26: end for
27: for sent in summary do
28: summary← summary + ’ ’.join(sent)
29: end for

return summary

43

Automatic Text Summarization

3.4 Deep Neural Network Summarizer

Due to the fact that Artificial Inteligence (AI) is very popular nowadays and we have a par­

ticular interest in the field, we thought it could be a good idea to implement an AI algorithm,

capable of finding a solution for the summarization task. We began by researching possible

existing implementations of AI algorithms for this specific task and we found some with po­

tential results, namely Encoder­Decoder based approaches and text classification algorithms

[163] [164] [34]. We decided to implement our own version of a feature­based summarizer

and combine it with machine learning. The main idea consists in calculating a set of text

features and use the results as input for our machine learning algorithm, while the output is

used to decide whether a sentence must be in the summary or not.

3.4.1 Datasets

Like every machine learning model, ours needs data to train with, the more data is fed to

the model, the more accurate it might be. So, we decided to look for big datasets for text

summarization.

We found two large datasets, the wikihowAll [165] dataset and the Newsroom dataset

[166]. The first represents a set of tutorials from Wikipedia, while the latter represents a

set of news collected from several news websites across the Internet. They have a common

aspect: for each document, a full text, summary and title are provided. This is an important

aspect, since after we create our summaries, we want to evaluate how good they are and this

can be done, because we have access to the reference summaries in the dataset.

In the case of the Newsroom dataset, it is represented in a JavaScript Object Notation

(JSON) format, so we decided to convert it to a Comma­Separated Values (CSV) file, to keep

every dataset in the same format. Table 3.1 displays a row of theNewsroom dataset.

Table 3.1: Newsroom dataset
Title Text Summary

Pro Sports Xchange notes

BANGALORE, India, June 4. The world’s biggest computer services company could not have chosen a more appropriate setting to lay out its strategy for staying on top.

A building housing I.B.M.’s software laboratory and application service teams on the company’s corporate campus in Bangalore, India.

SAN DIEGO PADRES team notebook.

The whole datasets were loaded. Each row represents a single document, which has the full

document text, the title and the summary. Some datasets do not include information about

the title. Some ideas to fix this Automatic Title Generation (ATG) problem were proposed by

the scientific community. Most of them use mechanisms such as keyword extraction, topic

calculations, dependency trees, term­frequency and word embeddings to generate the title,

making sure it represents themajority of the text’s content, as one can read in this paper [167].

Our idea was to use our previously proposed summarizer, based on TextRank, to generate

the title. As explained in the the algorithm’s respective section, i.e. Section , one may have

problems in generating the title, if the text is too big to handle.

44

Automatic Text Summarization

3.4.2 Pre­Processing

The document text, title, and summary are pre­processed in order to end up with a less noisy

set of features. In the case of our deep learning neural network, we did it as follows:

i Convert the text to lowercase ­ the first step was to convert all the text into lowercase.

By having the text in this format, we assure that all the words are equally represented;

ii Convert contractions to their normal forms ­ some words in a document are not

formally written as they should. Most of the times, they are abbreviated, e.g. “ain’t”.

Even thoughwe humans understand it, a computer in the contrary needs a way tomake it

easier to understand. So, we converted these words into their full representations, using

a contractions dictionary. Each key of the dictionary is an abbreviated word and each

value is the right representation of the word;

iii Split the text and remove unwanted words ­ so far we only converted the text to

lower case and fetched the full representations of thewords, therefore at this point we still

have a few unwanted words in the text. To fix this issue, we tokenized the text (converted

the document text into a list of word tokens) and we assessed if they represent stop words

(words that do not convey important information) or special characters, such as: HTML

tags, exclamation, interrogation marks, except dots because if we removed the dots we

could not tokenize the document text into sentence tokens later on;

iv Lemmatize words ­ with the list of cleaned word tokens, we then applied lemmatiza­

tion and converted each token to its most simplest form. This consists in an important

step, because sometimes there are words that are very similar, but have opposite mean­

ings;

v Calculate sentence tokens ­ after having the list of lemmas, we then detokenized it

into simple text so that we could calculate the sentence tokens. With this list, the feature

selection was much simpler.

3.4.3 Feature Selection

After loading each dataset, we proceeded in computing the features for each document. Each

document’s sentence is assigned a list of features with only numerical values.

We selected the following features for our system:

1. Sentence position ­ Depending on where a certain sentence is placed impacts the

score it has. If it is present in the beginning or end of the text it will have a higher score.

In our implementation, after the pre­processing phase we get a document as a list of

sentences. For a given sentence, the index in the list, determines its position in the

document;

2. Number of title words in sentence ­ The number of title words in a sentence im­

pacts its score: the more it has, the more important it is. This feature is simply calcu­

lated by counting the common words, between the sentence and the title;

45

Automatic Text Summarization

3. Sentence similarity to title ­ A sentence that ismore similar to the title, both syntac­

tically and semantically, has a greater relevance to the summary. Given a text sentence

and the title we then calculate the cosine similarity of the sentences word embeddings,

with the help of a previously built method from the Spacy library;

4. Numerical data in the sentence ­ Since numbers convey important information,

we decided not to remove them in the pre­processing phase. In the calculation of this

feature, we count the quantity of numbers in a sentence and divide it by number of

word tokens (i.e. number of words) the sentence has. The word token calculation is

done with the help of NLTK;

5. Temporal expressions in the sentence ­ Much like the previous feature, consider­

ing the temporal expressions in a sentence, means we have to divide the sentence into

word tokens to check if they represent a temporal expression (date or date time);

6. Relative sentence length ­ This feature is calculated by first discovering the longest

sentence in the document. Afterwards, we divide the length of our sentence by the

length of the longest sentence;

7. Content words in the sentence ­ Content words are nouns, verbs, adjectives, and

adverbs. They are themost importantwords in a sentence representing the real content

presented in a text document. To calculate the number of content words in a given sen­

tence, we used POS tagging from theNLTK that labels eachwordwith its corresponding

syntactical tag;

8. Number of upper words ­ Upper words are also an important part of a text, they

usually represent acronyms, locations, or entities. We simply check if they are upper

case, if so compute the percentage of such words in the sentence;

9. Sentence polarity ­ Sentence polarity was calculated through sentiment analysis of

the text, i.e. we evaluated how positive or how negative is a given sentence. The higher

the value, the more positive it is and vice­versa. Here we used the external library

TextBlob that has all the necessary methods for evaluating text polarity;

10. Sentence topics similarity ­ This feature is a new one we are proposing. It rep­

resents how similar is a sentence to the topics of the document. A topic represents a

theme/subject, and the more similar a sentence is to a topic, the more important it is

in that topic and in the text. Sentences that have no sort of similarity to topics, are

sentences that do not convey important information. With the processed text, we cre­

ated a Latent Dirichlet Allocation (LDA) model, to get the topics and topic words of

the text. The topics are sorted according to their relevance from the LDAmodel. From

the sorted topics, we pick the top 3 topics and their respective top 10 words and store

them in a dictionary, whose keys are the topics and values are the topic words. With

the dictionary, we calculate the word embedding vectors for both sentence and topic

words. Afterwards we just have to calculate the cosine similarity between the vectors.

46

Automatic Text Summarization

The word vectors were computed with the sameGloVe pre­trained word embeddings,

used in the other functionalities;

11. Sentence similarity to most frequent sentence ­ This feature, as the previous

one, is a new feature we are proposing. We thought it could be relevant to incorporate

a feature that analyses the text with regards to the frequency of which the words and

sentences appear. The main idea consists in compressing the original document’s text

in 30%, and retrieving the most scored sentence of the text. Then we evaluate if a given

document sentence is indeed the most scored sentence, by calculating the similarity of

the sentence to the most scoring sentence. The similarity value is in fact the feature’s

score. Even though the similarity is made between two pre­processed sentences, where

irrelevant words, i.e. stop words, are automatically removed, the feature may induce

errors, since most frequent words are in most cases, irrelevant;

12. Sentence final score ­ This feature is the sum of the values of all the features for a

given sentence. It represents how relevant is the sentence, given the values from all the

features. The higher the final value, the more probable it is added to the summary;

13. Labels ­Declares if a sentencemust be or not in the summary. If the similarity between

the sentence and at least one other sentence from the summary is higher than 0.9 (this

value, may change accordingly), means that the sentence is, in practice, represented in

the summary. If so, the label has the value 1, otherwise has the value 0. This feature

aids the model’s learning capability, since it tells the model, in a supervised manner,

that a sentence is indeed in the summary or not.

Since the previous feature lists had values with different scales, we had to normalize them

in order to smooth the learning process of our neural network. In the case of the label’s list,

they were already represented as a set of zeros and ones. In each dataset, we calculated the

documents features and saved the data in a complete CSV file, that was used to train the

model.

Before training, we executed a simple step that analyses the importance of each feature in

our classification problem. In this way, we can filter the less important features and train the

model only with the most important. This way, our model will perform better.

In Figure 3.1 we can see how the different features contribute to the sentence classification.

The three most important features are represented by the numbers 11, 2 and 5, which are

the Sentence final score, Sentence title similarity and Sentence length, while the

less important features are represented by the numbers 3,4,7 and 8, which are Numerical

data, Temporal data, Upperwords andSentencepolarity. The fact that the hierarchy

of most important features is represented like this, means that features that evaluate certain

rare aspects of the sentences/words have less importance for the sentence selection (in this

case it is practically none).

In Figure 3.2 is an example of the content of the CSV file.

47

Automatic Text Summarization

Figure 3.1: Feature selection.

Figure 3.2: Training, testing accuracy and loss.

48

Automatic Text Summarization

3.4.4 Model’s Architecture

Creating a neural network is not an easy task, since it requires a lot of tweaking in the ar­

chitecture. It is hard to find the ideal architecture for the problem at hand, because every

problem is different from the other and one does not have a standard that can be applied to

all the variety of problems.

Initially, the model’s architecture was very simple: it only consisted of one input, one hid­

den and one output layer. The hidden layer had only 20 neurons, with a Rectified Linear

Unit (RELU) activation function to prevent the vanishing gradient problem. The output layer

had only had one neuron, since it is a typical binary classification problem, where we only

have two label classes (0 and 1). The chosen loss function was the Binary Crossentropy

function, since it is known to be the best for these types of problems according to the liter­

ature. As for the optimizer, the preferred one was Adam, because it requires less memory

and so it prevents memory overload when training.

When we successfully had more data to train the model, we improved the model’s configura­

tion, by adding three more hidden layers with RELU activation function. In overall the num­

ber of neurons in each dense layer increased: from the first to the fourth layer the number

of neurons were 40, 30, 25 and 20. All the layers had regularization mechanisms to improve

the model’s learning and reduce errors, as it is shown in Figure 3.3. These mechanisms will

be explained in the next section.

3.4.5 Model Training

Training the model was much easier than creating and parameterizing it. From the CSV

features file, we loaded the features columns into a matrix and the labels column into a list.

They were then used for creating the training and testing sets. The sentence headline

similarity was not used in the training of the model, instead it was only used to create the

sentence final score feature, as it would lead the model to bad judgements. In terms of

percentages, 70% of the data was used for training, while the remaining 30% was used for

validation.

The training was done on the features file, which had a size of 2.5 GB, during 45 epochs and a

batch size of 28. During training, two possible Keras callbacks could be used:ModelCheck­

point and EarlyStopping. While the first automatically saves our model each epoch the

validation accuracy increases, it may not be a good practice because the validation loss may

also increase in some cases, so we preferred the latter because it monitors the validation loss

in a given interval of epochs. If this loss increases, it means that our model is not improving,

therefore it stops the training process. This process saves us time since we do not need to

wait till the end to save the model and also prevents losses in the model’s performance.

From epoch to epoch we analysed the model’s performance in the validation set. After a cer­

tain number of epochs, the model decreased in performance and began overfitting, because

the validation accuracy reached a peak from which it did not improve and the validation loss

started increasing.

In Figure 3.4 we have two plots that display the evolution of the model over time, in the

49

Automatic Text Summarization

Figure 3.3: Neural network’s architecture.

50

Automatic Text Summarization

Figure 3.4: Training, testing accuracy and loss while over­fitting.

training and validation sets. From the Figure we see that around epoch 17.5 the model began

having problems, since the validation accuracy decreased a lot and the validation loss also

increased.

When overfitting the model lost its capability of predicting new data, meaning that if the

model was used in the summary generation, it would not be able to pick the correct sentences

for the summary because the predictions would not be correctly calculated.

According to the literature, several mechanisms can be used to prevent this problem, which

are the following:

1. Dropout layer ­ themost commonmechanism to prevent overfitting in deep learning

models is to add a dropout layer. A dropout layer can be added directly when creating

a specific input or hidden layer or instead append the dropout layer to the respective

hidden layer. In either cases, one must define a percentage that represents the number

of neurons that will be ignored when training. They are “dropped­out” randomly. This

means that their contribution to the activation of downstream neurons is temporally

removed on the forward pass and any weight updates are not applied to the neuron on

the backward pass. The higher the dropout rate, the more neurons are ignored, hence

the less probable is the model to overfit. In our model, we kept tweaking the dropout

rates of each hidden layer, until we decided that the best rates were 70% in the input

layer and 50% in each hidden layer;

2. Keras regularizer ­ another interesting mechanism for preventing overfitting is to

add a weight regularizer to the dense layers. Regularizers apply penalties on layer pa­

rameters or layer activity during optimization. These penalties are summed into the

loss function that the network optimizes. They can be of three different types: kernel,

bias an activity, and they apply penalties on their respective aspects of the model. In

our model, we only applied one regularizer, which was a kernel L2 regularizer. The

regularizer values were 30% for the input layer and 25% and 20% for the remaining

layers;

3. Batch normalization layer ­ a batch normalization layer can be added to each input

51

Automatic Text Summarization

Figure 3.5: Neural network without over­fitting.

and hidden layers and it is used to normalize their inputs. It applies a transformation

that maintains the mean output close to 0 and the output standard deviation close to

1. This layer works similarly to every other normalization and standardization mecha­

nism.

Besides these three types of regularizationmechanisms, one can also add LeakyRELU layers

to prevent the vanishing gradient problem1. Having a vanishing gradient problem in the

model, means that the model prematurely converges to a poor solution.

As we can see in Figure 3.5, with this new improved architecture and more training data we

were able to fix our overfitting problem.

In terms of performance, the model reached a peak of 85% in validation accuracy and 8%

validation loss. These values could be further improved with more training epochs and data.

3.4.6 Summary Generation

Generating a summary with our features summarizer depends on the model’s capability of

inferring new data. The more data the model uses for training, the better the predictions it

makes and therefore more accurate and coherent the summary will be. With the document

text, title and one reference summary the algorithm calculates the text features. Each feature

is normalized and filtered, so that only the most important features are chosen to compute

the predictions. As we have seen in Figure 3.1, only some features are important for the

summary creation, so we decided to pick the 5 most important features.

In our first version of the algorithm, we filtered the computed model prediction that had a

higher final score than 0.5. By doing this we would end up with only the predictions that

would represent possible sentences for the summary. This approach was not yet entirely cor­

rect, since some predictions would have values close to 1, i.e. representing possible summary

sentences, while their respective labels were close to 0. Having such discrepancy would in­

duce the algorithm in wrong judgements, because the model would choose some sentences

1the vanishing gradient represents the impossibility of propagating useful gradient information from the
model’s output layer back to the input layers of the model

52

Automatic Text Summarization

that were not correct. In order to fix this problem, we decided to calculate the absolute value

of the difference between each label and computed prediction. If this difference was lower

than 0.2, itmeant that in general themodel would only pick the right sentences. Even though

this was a good approach, if themodel is not sufficiently trained in some cases it is not be able

to compute the right predictions, so the previous discrepancy still exists thus no sentences

are picked and added to the summary.

An alternative to this approach was instead to only pick the sentences whose predictions

are above a given value, obtained with a compression rate. The computed predictions were

sorted, from the least scoring to the highest scoring and filtered with a compression rate of

20%. So only the highest 20% scoring predictions are chosen to pick their respective sen­

tences and combine them into the summary.

In the following text box, we present an example of a text document and the sentences, in

bold, that this algorithm chose for the summary with 20% compression rate:

Original document and chosen sentences

US INSURERS expect to pay out an estimated Dollars 7.3bn (Pounds

3.7bn) in Florida as a result of Hurricane Andrew ­ by far the costliest dis­

aster the industry has ever faced. The figure is the first official tally of the damage

resulting from the hurricane, which ripped through southern Florida last week. In the

battered region it is estimated that 275,000 people still have no electricity and at least

150,000 are either homeless or are living amid ruins. PresidentGeorge Bush yesterday

made his second visit to the region since the hurricane hit. He pledged the govern­

ment would see through the clean­up ’until the job is done’. Although there

had already been somepreliminary guesses at the level of insurance claims, yesterday’s

figure comes from the Property Claims Services division of the American Insurance

Services Group, the property­casualty insurers’ trade association. It follows an exten­

sive survey of the area by the big insurance companies. Mr Gary Kerney, director of

catastrophe services at the PCS, said the industry was expecting about 685,000 claims

in Florida alone. However, the final cost of Hurricane Andrew will be higher still. Yes­

terday’s estimate does not include any projection for claims in Louisiana, which was

also affected by the storm, although less severely than Florida. The Oakland fire dis­

aster, in California last year, cost Dollars 1.2bn. By contrast, insurance claims

resulting from the Los Angeles riots earlier this year ­ the most expensive

civil disturbance in the US ­ totalled just Dollars 775m.

3.5 Encoder­Decoder

During the research and implementation of our neural network summarizer, we found some

other deep learning algorithms with great results. The most relevant one was a Seq2Seq

algorithm that generates abstractive summaries2. A Seq2Seq is a deep­learning algorithm

2The source code is free of use and you can find it in the following website [168]

53

Automatic Text Summarization

Figure 3.6: Sequence2Sequence model.

that solves problems where the main source of data is sequential. The source data can be

text sequences, byte sequences or any kinds of sequences.

From the literature, we could envision a promising application of thismethod to our problem.

It only needed some improvements in some aspects and to be better trained.

3.5.1 Overview of the Architecture

Usually, a Seq2Seq model is comprised of two parts: an encoder and a decoder Section 3.6.

Each of them are neural networks, that usually combine one ormore Long­Short TermMem­

ory (LSTM) layers with embedding layers. In the training phase, the encoder receives the raw

text data and at each time­step (the process of going from one layer to another), one word is

fed ­ this allows the encoder to understand how the words are related. The encoder needs to

have an initial state, which is a randomly generated vector of zeros. Each LSTM layer returns

its own output states, that are used by the next layer. Intuitively, the final encoder’s LSTM

layer returns the state that is used as the initial state for the decoder.

On the other hand, the decoder uses the initial state to process the target sequence, i.e. a

sequence of tokens that represent a piece of text of the generated summary. In our case, the

target sequence is in general a sentence or a paragraph. Start and end tokens are added to

the start and end of the sequence, to let the decoder knowwhat are the limits of the sequence.

In the testing phase, the encoder receives the input sequence and returns a similar decoder

state. The decoder analyses the whole target sequence and at each time­step returns the

probability of each next target word. The word with the highest probability is selected for

the summary. This word is then used again, as the input for the decoder, which repeats the

process until the end token is found. The chosenwords are combined into a single text, which

is the generated summary.

As we can see in Figure 3.6, from a text sequence, each word Xi moves through each LSTM

layer of the encoder. The encoder’s last layer returns the states that are used as input for the

decoder. The decoder combines the sequence with the start and end tokens. Each sequence’s

words, Yi are sent to the LSTM layers and in the end return the final sequence.

54

Automatic Text Summarization

3.5.2 Dataset Loading/Pre­processing

Initially the chosen dataset was an Amazon reviews dataset, that spans a period of more than

10 years [169], having a total of 568454 data rows. Each row contains a single review and

combines the original reviewwith a summary created from that review. Even though it seems

to be a big dataset, in fact it is not, because the average length of the reviews is around 40

characters. Having such a little amount of words in each review, makes the learning process

simpler, but also less accurate. In order to fix this issue and improve the learning of our

model, we decided to create a different dataset, from the original Newsroom dataset [166].

From the Newsroom dataset, the whole texts and summaries columns were used. With them,

we created pairs of sentences, where the first sentencewas a sentence fromanews article, and

the otherwas itsmost similar sentence from the article’s summary. To compute the similarity

values, we calculated the cosine similarity between the sum of the word embedding vectors

from both sentences. By doing this, we were able to supply the model with a much more

relevant dataset, since it helps in understanding how the sentence’s words are related to the

summary’s words and what words and sentences need to be sampled and combined into the

summary. The dataset has a total of 237139 rows.

Unlike every other approach we presented, we did not need to pre­process the texts and ref­

erence summaries. This is because we want our algorithm to learn every aspect of the text.

Even the stop­words which are in general chopped, are kept here to be used by this algorithm

so it knows how themost important words are connected, such as nouns, adverbs, adjectives,

among others.

With the tokens sequence, a distribution is calculated in order to analyze the reviews and

summaries length. The texts max length influence the amount of neurons needed in the

encoder’s input layer, as we will explain in Section 3.5.4. The initial value for the max texts

length was 30 and for the max summaries lengths was 8, since the author was training with

Amazon reviews dataset. In our case, the majority of sentences have a length of near 200

characters, while the summary sentences have around 40 characters. Therefore we decided

that the best option was to use amax text length of 100 characters. As for the summariesmax

length, we use it to delimit the summaries that the model creates, as we will see in Section

3.5.7.

As illustrated in the Figure 3.7, the X axis represents the text lengths, while the Y axis repre­

sents the frequency of the correspondent length. For this specific example, we are presenting

the whole dataset. As we can see, the majority texts lengths is around 200 characters while

the majority summaries lengths is 40.

For the algorithm to understand where each text sequence begins and ends, we added two

special tokens, sostok and eostok, that are used as the start and end of sequence tokens.

3.5.3 Vocabulary Creation

Building a vocabulary of the text means creating a set of unique words that appear in it. Our

dataset was splitted into the training and testing sets, that we used to compute the full vocab­

ulary size. Having created the vocabulary, we then fit the training and test sequences to the

55

Automatic Text Summarization

Figure 3.7: Sequence distribution.

words of the vocabulary and convert them to integer sequences. This step aids the model’s

learning capability, because it teaches the model how the words are related to each other.

Since the sequences are of variable lengths, we had to pad them with sequences of zeros.

Instead of using tokenizers to convert the text sequences into integers, we could have used

word embeddings. We chose not to do so because as we will see in the next section, the

model already uses an embedding layer to compute the word embedding vectors from the

input texts.

The sequences that only contained the two start and end tokens were completely removed,

as they correspond to empty sentences.

3.5.4 Initial Model’s Architecture

The author’s implementation of this sequence­to­sequence model composed two parts: an

initial model specifically for training and a final model created with the weights from the

initial model and used for testing).

We shall begin by describing the initialmodel’s architecture, by dividing it in two: the encoder

and decoder’s and presenting our changes to the architecture.

In the initial encoder’s architecture, we had the following layers:

1. Input layer ­ Has a shape equal to the maximum text length;

2. Embedding layer ­ Has a shape equal to the text vocabulary size. It is used to convert

the positive integers into dense vectors of 300 dimensions, i.e. word embeddings of

300 dimensional vectors;

3. LSTM layers ­ Three dense LSTM layers, all with a shape of 300. They were responsi­

ble for the learning process of the model and they had dropout layers attached as their

main regularization mechanism.

As opposed to the encoder’s configuration, the decoder was comprised of only three layers:

56

Automatic Text Summarization

1. Input layer ­ Receives the encoder’s LSTM states, i.e. the encoded sequence;

2. Embedding layer ­Has a shape equal to the summary’s vocabulary size, but convert’s

the integer sequences into dense vectors of only 100 dimension size;

3. LSTM layer ­ It is the decoder’s final layer and it is the one that decodes the received

sequence into the text summary.

Like we have mentioned above, the initial model was created to fit the Amazon reviews

dataset. Themax texts and summaries lengths were 30 and 8 respectively, whichwas enough

to deal with that specific dataset, but that is a bad practice because the model will likely not

perform well with bigger texts. We needed to fix this, since our goal was to create a summa­

rizer that is adaptable to different kinds of documents with varying lengths. Different max

text lengths and consecutively numbers of neurons can be used, butmost of themdo not yield

optimal results. After a couple of tests with values spanning from 10 to 500, we thought that

the best possible value would be 100, since it does not make our model extremely heavy and

slow to train and at the same time it would probably represent good results when predicting

new texts. One note worth mentioning is that using higher values than 500 made our model

extremely heavy and running out of memory, although our computational system having a

good level of resources.

After configuring the encoder and decoder layers two additional layers were added: an At­

tention Layer and a Time Distributed layer.

In general, in a Seq2Seqmodel, the encoder receives the input text and converts it into a fixed

length vector, which is then sent to the decoder to proceed in predicting a sequence. This

works well for small texts, but in the case of longer texts, the model can not memorize and

encode them all at once. The Attention Layer aids the model in focusing on specific parts

of the text and improves the performance. The attention mechanism can be of two types:

global or local. In a global attentionmechanism, all the text positionsmatterwhich consumes

a lot of resources and time, while in a local attention mechanism, the model intelligently

reduces the search space further and further by focusing only the most relevant parts. The

TimeDistributed layer uses the vocabulary size and divides the text sequences into slices that

represent how many time­steps the encoder­decoder has ­ a time­step consists in moving

from one LSTM layer to another.

In Figure 3.8 we have a diagramwhere we can see, in detail, the initial encoder configuration,

in terms of layers and shapes.

3.5.5 Training Phase

As mentioned above, the initial encoder­decoder model was the one used in the training

phase. In our initial implementation, the model was trained on the Amazon reviews [169]

dataset for 50 epochs with a batch size of 128. Training on a dataset with such a big batch

size has the advantage of taking less time and memory to train, but has the disadvantage of

less accurate results. After switching to our custom dataset, we had to adapt the training pro­

cess of the model. We tried training the initial model with our dataset and see how it would

57

Automatic Text Summarization

Figure 3.8: Initial Encoder­Decoder model configuration.

Figure 3.9: Initial encoder­decoder over­fitting.

perform: we used only 10000 rows, for 50 epochs with a batch size of 4. The model’s overall

performance was not good, since it began over­fitting: the validation accuracy fluctuated and

then remained the same for several epochs, while the training accuracy kept on rising. This

issue can be seen in Figure 3.9.

Fixing it was a difficult task, since there is no direct procedure that can be applied to all sorts

of problems. We tried different hyper­parameters3, such as the number of hidden LSTM

3A hyper­parameter is a parameter whose value is used to control the learning process

58

Automatic Text Summarization

Figure 3.10: Initial encoder­decoder without over­fitting

layers and regularization mechanisms. We used the same amount of samples, epochs and

batch size used in the first training phase to test the different possible architectures.

Our first approach consisted in creating a very small model comprised of only one hidden

layer and no regularization mechanisms, so it makes the model less complex and easier to

train, but with the cost of accuracy. This first architecture was good but not the ideal, since

after a couple of epochs the model kept over­fitting.

This first architecture was improved by adding two regularization mechanisms. Each hid­

den LSTM layer was combined has 20% dropout and kernel L1 and L2 regularization mecha­

nismswere addedwith a value of 0.0014. Themodel was retrained with the same parameters

and the model did perform better with the addition of only over­fitting further in the train­

ing phase. We then decided to increase the regularization mechanisms, by using a higher

percentage in the dropout layers, 40% in this case, and the L1 and L2 regularization mech­

anisms increased to 0.1. However this two mechanisms were not enough to stop the model

from over­fitting, so we made one last change and increased the dropout to 80% and 60% in

the input and hidden LSTM layers respectively, while the L1 and L2 regularizers increased to

0.2. According to the literature, using a higher dropout rate in the input layer and a slightly

lower dropout rate in each hidden layer is the best approach to prevent over­fitting, as­well

combining it with the L1 and L2 kernel regularizers.

Finally, since themodelwas no longer over­fitting, we opted for adding another hiddenLSTM

layer, hoping to improve the model’s accuracy. As we can see in Figure 3.10, the model did

perform better and fit well to the data after the epochs.

From this point we kept this last architecture and continued training the model with more

data. Themodel’s performance increaseswith the amount of data it receives for training. The

batch size stayed equal to 4, since using a smaller value with the same number of instances

saved memory that we needed for other tasks. Another aspect that made our model reach

better performances was using the EarlyStopping callback to automatically stop the training

4L1 and L2 kernel regularizers apply a penalty on the layer’s kernel

59

Automatic Text Summarization

of the model whenever the validation loss increases, fromK number of epochs. In the Keras

API, we are supplied with several callbacks that can be used in the training phase. Another

possible callback is the ModelCheckpoint callback, that allow us to automatically save the

model in every epoch that the validation accuracy rises. Even though the purposes of these

two callbacks is the same, in the literature we see that using the first callback represents

better results.

In terms of results, with this new enhanced architecture, the model reached a validation

accuracy of 92% and a validation loss of 14% after training with half of the dataset size.

3.5.6 Final Encoder­Decoder Architecture

The final encoder­decoder model was used in the inference phase and was created from the

initial model, containing two separate parts, the encoder and decoder, named here as fina­

lEncoder and finalDecoder.

The final Encoder is created by combining the initial encoder inputs with the encoder’s out­

puts. In the final Encoder, the text sequences are encoded aswewill see further on, in Section

3.5.7.

As for the final Decoder, we have a muchmore complex model. It has three input layers with

a shape of 100, which are then connected to the initial decoder’s embedding layer ­ the layer

responsible for creating the word embedding vectors as shown in Section 3.5.4. Similarly to

the initial model, used for training, in this model we also append the Attention layer to aid

the model in the inference phase. The output layer, is a Softmax dense layer that generates

a probability distribution over the target vocabulary. This probability distribution is very

important in the summary generation phase, as we will explain in the next section.

3.5.7 Summary Generation

The summary generation phase begins after we have trained our encoder­decoder with a suf­

ficient number of instances from our dataset. We have combined our encoder­decoder with

a simple algorithm to generate the summary words. Themodel is mainly used to understand

how the sentences from the text relate and how it can use this knowledge to compute new

sentences.

Given the raw document text, the algorithmbegins by using our final Encoder to compute the

text predictions and return them as integer vectors. A target sequence is initialized with the

sostok token index from the text tokenizer referred in Section 3.5.3, and it is used to store

the indexes of the words generated by the algorithm. Until a stop condition is met we add

tokens to our summary sequence. Each token is obtained from computing the predictions

of the current target sequence with our final Decoder. The tokens are assigned to vectors of

integers that represent the probabilistic distribution of the words in the text. The criteria by

which the tokens are chosen is their probability in the text, generated by the final Decoder.

Themodel uses the highest scoring tokens according to the probability distribution to aid the

algorithm in generating similar words for the summary.

Each time a new token is sampled, the algorithm analyses it and asserts that it is not the

60

Automatic Text Summarization

eostok token or the previously added token. This is done to prevent the model from con­

tinuously picking the previously added tokens, since they possessed the highest probability

distribution values.

In some cases, the resulting summary is a combination of words and stop­words without any

punctuation, which may be difficult to understand by the readers.

3.6 Neural network and encoder­decoder combined

In this section, we present an alternative approach that consists in combining our neural

network with our encoder­decoder. Since the algorithms deal with specific and independent

types of automatic text summarization, we can combine them and take advantage of both

methodologies. By combining them, we end up with a more complete system that attempts

to solve many problems associated with text summarization.

The way the summaries are created with this approach is simple. We begin by executing the

neural network algorithm, in which we analyze the features of the text, create the data to feed

the neural network and pick the best sentences. They are then compressed in 20% for an ini­

tial summary. This compressed text is used as input for the encoder­decoder, that generates

the words for the summary according to their probability distributions and agglomerates

them into the final summary.

In the next section we explain how each algorithm can be executed.

3.7 Program Execution

During the practical phase of this thesis, all the code was implemented without the need for a

Graphical User Interface (GUI), so it can be executed with a simple command line or through

an Integrated Development Environment (IDE). Before executing the program, all the nec­

essary libraries must be installed correctly as well as the Python programming language. In

the beginning of the program’s execution, the user is prompted with some guides which give

a simple introduction to the program and explains the two possible paths that the user may

take: the first being to train the deep learningmodels with new data and the second to simply

create the summaries.

In one hand, if the user picks the first path, it has the possibility of training either the neural

network and/or the encoder­decoder, with data fromCSV files. These filesmust have at least

the document text. In the case of our neural network summarizer, the document title and one

reference summary is needed to efficiently train the model. If no title or reference summary

is provided, the algorithm will generate one for the user but it will most certainly decrease

the model’s performance. As for the encoder­decoder, it only needs the document text.

After loading the files, the user is asked which model he wants to train. If he desires to train

the neural network then the document’s features are calculated and immediately sent to the

model. When the training ends, the models are saved in the program’s model’s folder. In

both algorithms, the user may define the number of epochs of the training process.

In the other hand, if the user takes the second path, it is asked to paste the paths of the

61

Automatic Text Summarization

document text, title and one reference summary. If no reference summary is provided, the

neural network summarizer will not be able to calculate the features related to the reference

summary and will perform worse. Additionally, all the generated summaries, from each al­

gorithm, are not be evaluated and the results are not be printed in the screen.

Next, the user is asked which of the summarizers he wants to execute. The user must choose

at least one algorithm to execute. If the chooses all of them, he has the possibility of com­

bining them all in the end. If the user decides to execute the neural network summarizer,

then after computing the text features the user is prompted with a compression rate and

then proceed in calculating both features and predictions. With the computed predictions

the model picks the sentence summaries and displays it in the screen. Following is the Term­

Frequency summarizer. For this summarizer to work, the user must fill in the compression

rate for the desired number of sentences he wants. Next is the TextRank summarizer. Sim­

ilarly to the previous algorithms, the user is prompted with the percentage of sentences he

wants the summary to have. In the case of the encoder­decoder, it simply calculates the sum­

mary and displays it in the screen. If he chooses to combine the summarizers, the program

re­executes all of them. It begins by re­computing the neural network’s summary and send it

to the term­frequency summarizer, that in turn returns its summary to the text­rank summa­

rizer and finally it sends the created summary to the encoder­decoder to create its abstractive

summary.

After each algorithm’s execution, the evaluation results are provided in the screen if the user

has inserted a reference summary.

3.7.1 Example Execution

Below we present one of DUC 2001’s edition document of 400 characters, including a part

of the document text, the title and one of three reference summaries provided.

Immediately below, we also present each summary created from this document with our

summarizers. In the summaries that require a compression rate, we used the value of 20%,

since it is the standard value according to the literature.

Document title

Hurricane insurers expect record claims.

62

Automatic Text Summarization

Piece of the document text

US INSURERS expect to pay out an estimated Dollars 7.3bn (Pounds 3.7bn) in Florida

as a result of Hurricane Andrew ­ by far the costliest disaster the industry has ever

faced. The figure is the first official tally of the damage resulting from the hurricane,

which ripped through southern Florida last week. In the battered region it is estimated

that 275,000 people still have no electricity and at least 150,000 are either homeless or

are living amid ruins. President George Bush yesterdaymade his second visit to the re­

gion since the hurricane hit. He pledged the government would see through the clean­

up ’until the job is done’. Although there had already been some preliminary guesses

at the level of insurance claims, yesterday’s figure comes from the Property Claims

Services division of the American Insurance Services Group, the property­casualty in­

surers’ trade association. It follows an extensive survey of the area by the big insurance

companies. Mr Gary Kerney, director of catastrophe services at the PCS, said the in­

dustry was expecting about 685,000 claims in Florida alone. It is reckoned the bulk of

the damage ­ over Dollars 6bn in insured claims ­ is in Dade County, a rural region to

the south of Miami. However, the final cost of Hurricane Andrew will be higher still.

Yesterday’s estimate does not include any projection for claims in Louisiana, which

was also affected by the storm, although less severely than Florida. An estimate of the

insured losses in this second state will be released later this week.

Reference summary

Florida’s losses fromHurricaneAndrew forwhichUS insurers expect to pay 7.3Bmake

it the most costly insured catastrophe in the US, even before the Andrew claims from

Louisiana are tallied. In southern Florida at least 150,000 residents are homeless or

living amid ruins, and nearly twice that number still have no electricity. President

Bush made his second trip to the devastated area and pledged the government would

stay with the clean­up until completed. Andrew has exceeded the insurance costs of

Hurricane Hugo, the Oakland fire and tornado and hail damages. The insurance in­

dustry should have adequate reserves to cover the losses. Wall Street has remained

calm.

Each generated summary is presented below:

Neural network summary with 20% compression rate

US INSURERS expect to pay out an estimated Dollars 7.3bn (Pounds 3.7bn) in Florida

as a result of Hurricane Andrew ­ by far the costliest disaster the industry has ever

faced. He pledged the government would see through the clean­up ’until the job is

done’. By contrast, insurance claims resulting from the Los Angeles riots earlier this

year ­ the most expensive civil disturbance in the US ­ totalled just Dollars 775m.

63

Automatic Text Summarization

Term­Frequency summary with 20% compression rate

This easily exceeds the record Dollars 7.6bn of catastrophe losses seen in 1989, when

the industry paid out on both Hurricane Hugo and the Loma Prieta earthquake in

California. By contrast, insurance claims resulting from the Los Angeles riots earlier

this year ­ the most expensive civil disturbance in the US ­ totalled just Dollars 775m.

US INSURERS expect to pay out an estimated Dollars 7.3bn (Pounds 3.7bn) in Florida

as a result of Hurricane Andrew ­ by far the costliest disaster the industry has ever

faced. Mr Gary Kerney, director of catastrophe services at the PCS, said the industry

was expecting about 685,000 claims in Florida alone.

Text­Rank summary with 20% compression rate

US INSURERS expect to pay out an estimated Dollars 7.3bn (Pounds 3.7bn) in Florida

as a result of Hurricane Andrew ­ by far the costliest disaster the industry has ever

faced. This easily exceeds the record Dollars 7.6bn of catastrophe losses seen in 1989,

when the industry paid out onbothHurricaneHugo and theLomaPrieta earthquake in

California. But on the Florida losses alone, HurricaneAndrewbecomes themost costly

insured catastrophe in theUS. Yesterday’s estimate does not include any projection for

claims in Louisiana, which was also affected by the storm, although less severely than

Florida.

Encoder­Decoder summary

coast it the such faced hail severely second 685 region later paid visit louisiana result­

ing residents their disaster record both becomes rises although totalled resulting bulk

with association completed ruins mr ’until pledged tornadoes cover extensive ever job

leaves also number week recently was projection recently than official over than ’until

most 9bn does firming both losses thought added association 3b loma insurers series

battered florida’s pcs california been 6bn a week tornadoes pcs paid 775m civil govern­

ment remained since official result visit facing expect street than costliest government

expected riots los had rural living series later hit insurers riots people follows made

kerney adequate us ’until either damages figure paid remained hurricane or bush fig­

ure number through.

Combined summary from the neural network and encoder­decoder summarizers

job us see clean which at losses the up up claims his done’ make expect no faced to­

talled industry would fire claims catastrophe result cover no an no nearly it it up costs

costliest by disturbance trip 150 riots disaster adequate even expect expect area it area

costs or bush have through 7 a this with 7 catastrophe 3.

64

Automatic Text Summarization

Chapter 4

Evaluation Measures and Results

The task of automatically generating summaries does not only comprise creating text sum­

maries, but also evaluating how good they are. It is a demanding process, which requires a lot

of conditions to be met, such as readability, domain knowledge, compression rate, quantity

and quality of the information, and the existence of a human jury to evaluate the summary’s

overall quality. So far, there is still not an exact definition of what is the ideal summary for a

given text.

As we previously saw in Section 2.4, several evaluation measures are available nowadays,

some are considered more important than others. Evaluating an automatic summarization

system means analysing the summary created by the system with regards to one or more

reference summaries. In order to accomplish this task, one must have access to the refer­

ence summaries. Much like the summarization datasets presented before (Newsroom, Wik­

ihowAll and Billsum) there are others with the same purpose, that also provide the original

documents and respective reference summaries. Some of these datasets are from confer­

ences, such as DUC [170], others are from individual academic projects, such as TeMário

[171] (for Portuguese).

Since DUC is specifically used for creating and evaluating automatic text summaries in con­

ferences, we decided to use it for testing our system. The main language present in the DUC

texts is English, which is not a problem for our summarizers.

In this dataset, we have documents from editions that span from 2001 to 2007. We used

the entire 2001’s edition, due to the fact that it is structured in the most simple way: in each

folder, we have one original document text and three reference summaries, made by three

different individuals. From this year edition, we tested our algorithmswith all the documents

of 400 characters. In the next section, we will explain how we evaluated the summarizers.

4.1 Evaluation Measures

As we have seen in Section 2.4, there are plenty of strategies and measures to be used, but

some are consideredmore important than others in the scientific community. Groups ofmea­

sures such as text­quality or task­basedmeasures, are better used by human evaluators, since

they analyse specific details in the text, for example the gramaticality, redundancy, reference

clarity, coherence and structure of the text.

We decided to evaluate the summarizers with different measures and compare the results.

ROUGE and Bidirectional Encoder Representations from Transformer (BERT)

scores had the most important roles, as they are widely used in the field and represent the

most accurate results. Additionally BERT has been showing great results in evaluating ab­

stractive summaries [52], which is an important aspect for evaluating the summaries of our

65

Automatic Text Summarization

Encoder­Decoder. Besides these two measures, we also used some standard similarity mea­

sures such as Jaccard and Cosine similarities [172].

WithROUGEone can evaluate a text summary in three different levels: ROUGE­1, ROUGE­2

andROUGE­L. InROUGE­1we evaluate the overlap of uni­grams between our summary and

the reference summary, while ROUGE­2 evaluates the overlap of bi­grams between the sys­

tem and reference summaries. As for ROUGE­L, it evaluates the longest matching sequence

of words. It does not require consecutive matches, instead it requires in­sequence matches

that reflect sentence level word order. As opposed to ROUGE­1 and ROUGE­2, ROUGE­L

does not require a predefined n­gram length.

With the BERT score we evaluate a generated summary with regards to a reference summary

in three related measurements: precision, recall and f­score. In the BERT score, we use pre­

trained BERT contextual embeddings to compute the similarity of two summaries as a sum

of the cosine similarities between their tokens embeddings. It solves some problems faced

by other N­gram­based metrics (ROUGE or Bilingual Evaluation Understudy (BLEU)) such

as the penalization of semantically similar phrases differing only on the surface from the

reference sentences. Also, n­gram models fail to capture distant dependencies and penalize

semantically­critical ordering change.

The Jaccard similarity, however, is classified as token­based measure, so the goal is to find

the similar tokens in both candidate and reference summaries. The more common tokens,

the more similar the summaries would be.

Besides these measures, two other string similarity measures were initially idealized:

1. BLEU ­ evaluates automatic generated translations by comparing the matching n­

grams from both original and computed translations. Having a score of 0, means that

the candidate and references have zero matching n­grams, while having a score of 1,

means that all the n­gramsmatch. It conveys four important advantages: fast, inexpen­

sive, easy to understand and language independent. In order to have a score of 1means

that both generated and reference summaries would have to be entirely equal[173];

2. Levenstein similarity ­ counts the minimum number of transformations necessary

to convert one string into the other, namely insertions, deletions and substitutions of

words. The lower the value, the closer are two strings (summaries in our case).

Using these measures for our problem is impractical, because when we create summaries by

hand orwith the help of computer algorithms there is a wide variety of words that can be used

to create the summary. Multiple different summaries can be created for the same document,

which means that when using these measures to analyse the summaries with the reference

summaries, the results would be very low, even in the cases where we have very semantically

similar summaries.

4.2 Results

In order to evaluate the results of our summarizers, we could have used the News­

room dataset, since we have access to the entire news articles and one reference sum­

66

Automatic Text Summarization

mary per document, as well the information available in the official repository http://
lil.nlp.cornell.edu/newsroom/evaluate/index.html, that could be used to compare our
results with the results obtained by other summarizers in this dataset.

Even though this dataset had these advantages, we decided to test the summarizers with the

DUC summarization dataset. The reason was the fact that DUC is an official dataset which

has data from text summarization conferences and that it supplies the users with the entire

documents and three different reference summaries per document, instead of just one, as

seen in Section 3.7.1. In our work, we tested the summarizers with a portion of DUC’s 2001

edition, more specifically the 400 words documents, totaling ... documents.

With regards to the summarizers, except the Encoder­Decoder, the chosen compression rate

used was 20%. There is not a standard value for the compression rate, any value can be used

as long as it is not zero or equal to the original text length. Depending on the value chosen,

the summary differs in terms of size and also the amount of information retained.

4.2.1 Results for the Term­Frequency summarizer

In this first summarizer, as presented in Section 3.2, one needs to define a compression rate

that is used to filter the text sentences.

In Table 4.1 presented below, we have the evaluation results from this summarizer, with all

the documents and respective reference summaries. We decided to calculate the average

values of each measure.

Table 4.1: Results for the Term­Frequency summarizer with 20% compression rate

ROUGE results

Measures ROUGE­1 ROUGE­2 ROUGE­L

Precision 0.30 0.05 0.21

Recall 0.23 0.04 0.17

F­score 0.24 0.04 0.17

BERT results

Precision Recall F­score

0.83 0.83 0.83

Similarity results

Jaccard Cosine

0.68 0.96

From Table 4.1, we can see that we needed to improve our summarizer since the results were

not outstanding when comparing them to other extractivemethods proposed in the scientific

community [174] [175] [176].

Term­frequency approaches only analyse how frequent is each text element and do not anal­

yse how they are related. More frequent elements are assigned higher scores while less

frequent elements are assigned lower scores. This means that important elements such as

acronyms, numbers and temporal expressions, etc are ignored and not added to the sum­

mary, while less important but more frequent elements are added to the summary.

67

http://lil.nlp.cornell.edu/newsroom/evaluate/index.html
http://lil.nlp.cornell.edu/newsroom/evaluate/index.html

Automatic Text Summarization

The summarizer could have got better results if it had a mechanism of evaluating how the

words are related.

In the next section we will present the results obtained with the TextRank algorithm.

4.2.2 Results with TextRank and Word Embeddings

A typical Text­Rank algorithm is in general amore complex algorithm than a term frequency­

based algorithm. By representing the text’s elements as nodes from a graph, one can under­

stand how they relate. Representing a potential solution for text summarization, it still has

its limitations and can be improved. So, our goal was to adapt the original algorithm with

word embeddings and see if the results improved. The results with the chosen compression

rate were as follows:

Table 4.2: Results for the TextRank summarizer with 20% compression rate

ROUGE results

Measures ROUGE­1 ROUGE­2 ROUGE­L

Precision 0.30 0.04 0.21

Recall 0.23 0.03 0.16

F­score 0.24 0.04 0.17

BERT results

Precision Recall F­score

0.83 0.82 0.83

Similarity results

Jaccard Cosine

0.66 0.96

FromTable 4.2 the results of our summarizer were similar to the ones from the previous sum­

marizer, but they could have been better. The fact that we used pre­trained word embedding

vectors could have reduced the model performance. Instead we could have trained our own

word embedding vectors but that would take a lot of time to be done.

In terms of comparison to other extractive approaches, we see that our summarizer needed

improvements. Most extractive approaches had their ROUGE results higher than ours, being

0.43 the minimum for ROUGE­1 and 0.16 for ROUGE­2 [174]. As for the original TextRank

algorithm, it only provided results for DUC 2002 dataset, therefore there is no possible com­

parison between the two summarizers [103].

Even though we have solved some of the issues from the previous Term­Frequency summa­

rizer, the summaries could have been better. In this approach, we only evaluated the relation­

ships between the text elements and not the degree of importance they have for the subject.

The following section will present the results obtained with our neural network features sum­

marizer that attempts to obtain better results.

Next section will present and explain the results from Deep Neural Network summarizer.

68

Automatic Text Summarization

4.2.3 Deep Neural Network Summarizer Results

In our neural network summarizer, we attempt to improve the results obtained with the pre­

vious algorithms. By analysing the text’s most important features, the algorithm is capable

of choosing which sentences and words have more weight than others.

In each DUC document, title and respective reference summaries, the features scores were

calculated and sent to the model. In an initial phase, we evaluated how the model would

perform with each test document. In average, the validation accuracy and validation loss

were 89% and 10% respectively for the 10 documents. These values were fairly good, since

we only trained our model with 2 gigabyte of data.

Having finished evaluating themodel’s performancewith the test data, themodel began com­

puting the predictions and picking the correct sentences for the summary.

Table 4.3 presents the results obtained with our neural network algorithm.

Table 4.3: Results for the Neural network summarizer with 20% compression rate

ROUGE results

Measures ROUGE­1 ROUGE­2 ROUGE­L

Precision 0.28 0.05 0.21

Recall 0.16 0.03 0.13

F­score 0.20 0.04 0.15

BERT results

Precision Recall F­score

0.71 0.82 0.71

Similarity results

Jaccard Cosine

0.56 0.82

As we can see from the results, the algorithm did not choose the most correct sentences from

the documents for creating the summaries, so the results, specially ROUGE, were inferior to

many approaches from the scientific community [174]. One plausible explanation is the lack

of training of the model. Deep learning models need data to be trained with, the more data

they receive, the more efficient they are. Perhaps our model was not trained enough, making

it pick the wrong sentences for the summaries.

One interesting aspect to mention is that in our first approach as referred in Section 3.4.6,

when we filtered the predictions above 0.5, some results obtained with ROUGE were in fact

higher than some of ones presented with this second approach. The problem with picking

only the sentences whose predictions are above 0.5 was the fact that in some cases, since the

model was not trained enough, it failed to pick at least one sentence from the documents and

generate summaries.

Another reason for the lower performance of our algorithmmay be the existence of errors in

the training data. Having errors, makes it more complicated for the model to train and learn

the features, hence resulting in a lower performance. Also when computing the sentences

features, like the previous TextRank algorithm, we had to use pre­trained trained word em­

69

Automatic Text Summarization

beddings, since the other more powerful ones had problems with some vectors. By using

these less trained vectors, most of the similarity related features were miscalculated.

Additionally, in some documents that we used for training, had Arabic characters or other

elements that had to be completely removed. Even though the number of these cases is re­

duced, it still may impact the model’s performance. Some of them may be important and by

removing them we are removing essential information from the important sentences for the

summary and induce the model with errors.

In overall, some potential improvements could be made in the pre­processing and the fea­

tures calculations. Features such as sentence polarity may mislead the model in choosing

wrong sentences. When a sentence has a very high or low sentence polarity value means that

the sentence has extreme sentiments, very positive or very negative, but that may not mean

that a given sentence is in fact important.

In the next section, wewill present the results obtainedwith our Encoder­Decoder algorithm.

4.2.4 Encoder­Decoder Summarizer’s Results

Ultimately we have the encoder­decoder’s results. It was by far our hardest algorithm to un­

derstand, adapt and use for creating summaries. In the initial implementation, the algorithm

was only capable of creating short review summaries with three words at most. With some

improvements, we were capable of adapting it to more complex scenarios, where the docu­

ments had lengths between 100 to 400 or more words, however, most summaries created

still had structural and coherence problems, since they were merely combinations of words

without any punctuation.

Below are the results obtained with this algorithm:

Table 4.4: Results for the Encoder­Decoder summarizer

ROUGE results

Measures ROUGE­1 ROUGE­2 ROUGE­L

Precision 0.59 0.007 0.49

Recall 0.31 0.005 0.24

F­score 0.36 0.006 0.30

BERT results

Precision Recall F­score

0.77 0.79 0.78

Similarity results

Jaccard Cosine

0.59 0.95

From Table 4.5, we see that our Encoder­Decoder got fairly good results with ROUGE, spe­

cially ROUGE­1 and ROUGE­L, but lower results in ROUGE­2. In ROUGE­1, we evaluate se­

quences of uni­grams, while inROUGE­Lwe evaluate the longestmatching sequences. These

results may mean that in terms of uni­grams, the summarizer is able to create the right in­

dividual words for the summaries but when analysed as bi­grams, we see that in most of the

70

Automatic Text Summarization

cases the words are not related. The BERT score is very useful in this case, since it can aid the

evaluation process by using the word embeddings and understand how the words are related.

So, given the previous BERT results we see that we got interesting results in the BERT score

metrics, which implies that both generated and reference summaries have similar meanings.

In order to compare our results with the ones from the scientific community, we could only

analyse the results obtained by extractive approaches, because for this DUC 2001 dataset

there was only one abstractive approach created and according to the literature, the evalu­

ation was not done with ROUGE [177]. So, according to the state of the art extractive ap­

proaches, we see that we similar results in ROUGE­1, since theirs were between 0.43 and

0.48. In terms of ROUGE­2, they presented much higher values because by calculating ex­

tractive summaries, the elements are directly extracted from the original documents, hence

the bi­grams are more easily related [174] [175].

4.2.5 Results from combining the neural network and the encoder­decoder

As previously explained in Section 3.6, we attempted to improve our results, mainly in

ROUGE and BERT, by providing a solution that incorporates our most complex extractive

summarizer with our abstractive summarizer. As illustrated in the next table, we can see the

results obtained by combining the summarizers into a single one:

Table 4.5: Results for the combination of the neural network and the encoder­decoder

ROUGE results

Measures ROUGE­1 ROUGE­2 ROUGE­L

Precision 0.60 0.009 0.53

Recall 0.30 0.005 0.23

F­score 0.36 0.006 0.29

BERT results

Precision Recall F­score

0.78 0.79 0.78

Similarity results

Jaccard Cosine

0.57 0.95

In a quantitative evaluation, we can see that the results were pretty similar to the ones ob­

tained with our Encoder­Decoder. In general, there was only a slight increase in ROUGE­1.

This may be related to the fact that the last summarizer to be executed was our Encoder­

Decoder. In terms of a qualitative evaluation, since the output summaries come from the

Encoder­Decoder, they also have a lack in punctuation, coherence and cohesion.

As for the comparison with other state of the art approaches, there is no difference to what

was presented in the previous section [174] [175] [176].

71

Automatic Text Summarization

4.2.6 Results of all the summarizers

In this final section, we present a simple table with all the main metric results from our sum­

marizers.

From analysing all the values, we see that our Encoder­Decoder and our combined summa­

rizer were our best approaches, having reached our best results with ROUGE.

Table 4.6: Results from all the summarizers

MeasureSummarizer Term­Frequency TextRank Neural Network Encoder­Decoder Neural network with Encoder­Decoder

ROUGE­1 (F­score) 0.24 0.24 0.20 0.36 0.36

ROUGE­2 (F­score) 0.04 0.04 0.04 0.006 0.006

ROUGE­L (F­score) 0.17 0.17 0.15 0.30 0.29

BERT (F­score) 0.83 0.83 0.71 0.78 0.78

Jaccard Similarity 0.68 0.66 0.56 0.59 0.57

Cosine Similarity 0.96 0.96 0.82 0.95 0.95

72

Automatic Text Summarization

Chapter 5

Conclusions and Future Work

In this final chapter, we will present the main conclusions regarding the work done in this

thesis, as well as presenting some ideas to improve the results obtained.

The core objective was to find new and interesting ideas to solve the problem of excessive

and unnecessary data in text documents, independent of the type of the documents. Having

unnecessary data in the text hinders our learning curve and there is a need to filter the text

data and keep only the essential parts so the documents are easier to process.

Text summarization has been in development for years, having some pauses in the middle,

whichmade the research slowdown. In the beginning, therewas not sufficient computational

power to achieve good results. Today, we reached a state in which we have bigger process­

ing power, but newer and more complex approaches, like those inspired by machine/deep

learning, require way more memory and faster Central Processing Unit (CPU)s/Graphic’s

Processing Unit (GPU)s to process data. Having to continuously feed the algorithms with

more data, makes them highly costly and limited in terms of the text domain level. This is

why some authors return to older and less expensive approaches, with the goal of improving

them, but with the cost of creating lower textual quality summaries.

We researched and implemented some of the most powerful techniques, with the goal of

combining them into a fully capable summarizing system. Our first technique computes rel­

evancy based on term­frequency. The text was compressed according to a given rate, that

allowed us to filter the most frequent sentences and combine them into a summary.

In a different approach, a graph was created to evaluate how words relate to each other and

word embedding vectors were used. Similarly to the first approach, we also filtered the text

sentences with a compression rate, meaning that only themost scored sentences were picked

for the summary.

Besides these two approaches, we created amore complex summarizer that combined feature

analysis with deep learning. In this system, we analysed the document’s text in order to

understand how it is structured: what are the most important elements, what sentiments

the sentences convey, what topics are present and determine which sentences need to be

added to the summary. Having analysed the text according to the different features, we then

created and trained a deep learning model to predict which document’s sentences had to be

combined into a full summary.

Next, we proceeded into a new strategy, which was attempting to create an abstractive sum­

marizer. We used and adapted the code from an open­source repository that creates a

sequence­to­sequence algorithm for generating small reviews summaries. Our job was to

improve it and use it with real world scenarios, where the documents are much bigger. This

last summarizer was by far our hardest summarizer to implement. We did improve the way

it creates summaries and adapt it to any kind of document we want, however the resulting

summaries had a lack of structure and punctuation.

73

Automatic Text Summarization

In the end, we combined all the summarizers into one, to see if the results improved.

The evaluation of each summarizer was an automatic procedure, in which we analysed the

generated summaries and compared them with the reference summaries, with the help of

state of the art measures, such as ROUGE. The measures however, only evaluated the struc­

ture and content of the summaries, soweperformed an additional evaluation of how coherent

and grammatically correct the summaries were.

The results provided were obtained by computing the average values of each summarizer,

which means that there were some cases whose results were very interesting while others

were less interesting. In the case of our extractive summarizers, when analysing the same

document the resulting summary is always the same independently of any circumstance,

however in the cases of our Encoder­Decoder and the combined summarizer, the summary

is different each time we execute the algorithms. This small detail made a big impact in the

results we presented, because depending on the summaries generated, the results are better

or worse.

When comparing our summarizers with others from the scientific community, we saw that

ours were in general less efficient. Our extractive summarizers were capable of creating fully

coherent and grammatically correct summaries, but they were a little different from the ref­

erence summaries, both in a quantitative and qualitative way. This issue may be related to

two different scenarios: one being the lack of efficiency of the summarizers and the other

being the inaccuracy of the evaluation measures. Our Encoder­Decoder and the combined

summarizer could also possessed better results. When comparing them with the abstractive

approaches present in the scientific community, we saw that these approaches only presented

results with more DUC dataset versions than ours. There was only one that was tested with

the same dataset as ours, but it did not present any ROUGE results, so there was not way

of evaluating our abstractive summarizers but to compare their results with the ones from

extractive approaches.

Even though most of our approaches calculated the summaries in a matter of seconds, the

results could have been better. Our best approaches, the Encoder­Decoder and the combined

summarizer, got results relatively close to some extractive approaches used with the same

DUC 2001 dataset.

Both neural network summarizer and the Encoder­Decoder could be further improved by

changing the architecture, adding more regularization mechanisms, training with more and

better data and plot the training process in order to detect possible existing issues.

The Encoder­Decoders implementation was changed a couple of times, until we finally fig­

ured out the behavior of the algorithm. The architecture and the summary generation mech­

anism were very hard to understand. When the problem was surpassed, we were able to

begin training the model with our new dataset and generate some interesting summaries.

In some cases they were pretty similar to most reference summaries and despite having no

punctuation, they easy to understand.

In terms of general internal improvements to be done, we think that in the case of the neural

network algorithm, if no title is provided at some point, we can create our ownmore powerful

title generator and aid the model when it needs to compute the title’s related features. Some

74

Automatic Text Summarization

features can also havemoreweight than others, since aswehave seen before someof themare

useless in certain cases. The algorithms that useword embeddings, such as the TextRank and

neural network summaries, may need more powerful word embedding vectors or we need to

train our own..

In terms of external improvements, we think that the field of automatic text summarization

still needs a lot of research anddevelopment to demonstrate outstanding results, even though

some extractive approaches already present good results from a quality point of view.

The scientific community can also research and provide better ways of generatingmore train­

ing data for deep learning summarizers. In most cases, like ours for instance, there is a need

to generate the training data for the summarizers, which is in fact a time consuming task.

I have learned a lot throughout the hard work developed in this thesis. It was difficult most

of the times. The state of the art in text summarization is very extensive and there are many

complex aspects and theory to learn about. The field itself is under research and development

and it still needs to be improved to a certain degree. In terms of the state of the art research,

we think we covered the majority of the state of the art with regards to text summarization.

I think I could have done a better job in finding new efficient ways of solving the problem of

text summarization. Time was an important factor and inmost cases there was none to work

in this thesis. Due to the fact that I keptmost of time on the computer during the work days, I

got very tired and the little free time I had, was used to recover both physically and mentally.

If I had managed my free time a bit better, both in the work days and also the weekends, I

could have finished much sooner and with better results.

75

Automatic Text Summarization

76

Automatic Text Summarization

Bibliography

[1] K. S. Jones, “Automatic summarising: The state of the art,” Information Processing

& Management, vol. 43, no. 6, pp. 1449–1481, 2007.

[2] O. Tas and F. Kiyani, “A survey automatic text summarization,” PressAcademia Pro­

cedia, vol. 5, no. 1, pp. 205–213, 2007.

[3] K. Kaikhah, “Automatic text summarization with neural networks,” in 2004 2nd In­

ternational IEEE Conference on’Intelligent Systems’. Proceedings (IEEE Cat. No.

04EX791), vol. 1. IEEE, 2004, pp. 40–44.

[4] J. Steinberger and K. Jezek, “Using latent semantic analysis in text summarization

and summary evaluation,” Proc. ISIM, vol. 4, pp. 93–100, 2004.

[5] P. D. Patil and N. Kulkarni, “Text summarization using fuzzy logic,” International

Journal of Innovative Research in Advanced Engineering (IJIRAE), vol. 1, no. 3,

2014.

[6] G. Erkan and D. R. Radev, “Lexrank: Graph­based lexical centrality as salience in

text summarization,” Journal of artificial intelligence research, vol. 22, pp. 457–479,

2004.

[7] G. Carenini, J. C. K. Cheung, and A. Pauls, “Multi­document summarization of evalu­

ative text,” Computational Intelligence, vol. 29, no. 4, pp. 545–576, 2013.

[8] N.Moratanch and S. Chitrakala, “A survey on abstractive text summarization,” in 2016

International Conference on Circuit, power and computing technologies (ICCPCT).

IEEE, 2016, pp. 1–7.

[9] J. Steinberger and K. Ježek, “Evaluation measures for text summarization,” Comput­

ing and Informatics, vol. 28, no. 2, pp. 251–275, 2012.

[10] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the special issue on summa­

rization,” Computational linguistics, vol. 28, no. 4, pp. 399–408, 2002.

[11] P. B. Baxendale, “Machine­made index for technical literature—an experiment,” IBM

Journal of research and development, vol. 2, no. 4, pp. 354–361, 1958.

[12] H. P. Edmundson, “New methods in automatic extracting,” Journal of the ACM

(JACM), vol. 16, no. 2, pp. 264–285, 1969.

[13] E. Hovy, “Text summarization ­ chapter 32,” pp. 583 – 593, 1998.

[14] M. Jill Salahub, Steven Reid, “Types of summaries,” 2019. [Online]. Available:

https://writing.colostate.edu/guides/teaching/summaryresponse/summary.cfm

[15] W. Fan, L. Wallace, S. Rich, and Z. Zhang, “Tapping the power of text mining,” Com­

munications of the ACM, vol. 49, no. 9, pp. 76–82, 2006.

77

https://writing.colostate.edu/guides/teaching/summaryresponse/summary.cfm

Automatic Text Summarization

[16] D. Das and A. Martins, “A survey on automatic text summarization,” 12 2007.

[17] S. Ruder, “Types of summaries.” [Online]. Available: http://nlpprogress.com/

[18] A. Vashisht, “Edmundson heuristic method for text summarization.” [On­

line]. Available: https://iq.opengenus.org/edmundson­heuristic­method­for­text­

summarization/

[19] K. S. Jones et al., “Automatic summarizing: factors and directions,” in Advances in

automatic text summarization. MIT press Cambridge, Mass, USA, 1999, no. 1, pp.

1–12.

[20] M. Maybury, Advances in automatic text summarization. MIT press, 1999.

[21] H. Eduard and C.­Y. Lin, “Automated text summarization and the summarist system,”

in Proceedings of a workshop on held at Baltimore, 1998.

[22] C.­Y. Lin and E. Hovy, “The automated acquisition of topic signatures for text summa­

rization,” inProceedings of the 18th conference on Computational linguistics­Volume

1. Association for Computational Linguistics, 2000, pp. 495–501.

[23] T. Fukushima, T. Ehara, and K. Shirai, “Partitioning long sentences for text summa­

rization,” Journal of Natural Language Processing, vol. 6, pp. 131–147, 01 1999.

[24] T. Strzalkowski, J. Wang, and B. Wise, “A robust practical text summarization,” in

Proceedings of the AAAI Symposium on Intelligent Text Summarization, 1998, pp.

26–33.

[25] C.­Y. Lin, “Automated text summarization in summarist,” 05 2001.

[26] K. Knight and D. Marcu, “Statistics­based summarization­step one: Sentence com­

pression,” AAAI/IAAI, vol. 2000, pp. 703–710, 2000.

[27] H. Jing and K. R. McKeown, “The decomposition of human­written summary sen­

tences,” in Proceedings of the 22nd annual international ACM SIGIR conference on

Research and development in information retrieval, 1999, pp. 129–136.

[28] M. J. Witbrock and V. O. Mittal, “Ultra­summarization (poster abstract) a statistical

approach to generating highly condensed non­extractive summaries,” in Proceedings

of the 22nd annual international ACM SIGIR conference on Research and develop­

ment in information retrieval, 1999, pp. 315–316.

[29] E. Lloret and M. Sanz, “Text summarisation in progress: A literature review,” Artif.

Intell. Rev., vol. 37, pp. 1–41, 04 2012.

[30] K. S. Thakkar, R. V. Dharaskar, and M. Chandak, “Graph­based algorithms for text

summarization,” in 2010 3rd International Conference on Emerging Trends in Engi­

neering and Technology. IEEE, 2010, pp. 516–519.

78

http://nlpprogress.com/
https://iq.opengenus.org/edmundson-heuristic-method-for-text-summarization/
https://iq.opengenus.org/edmundson-heuristic-method-for-text-summarization/

Automatic Text Summarization

[31] D. Radev, A. Winkel, and M. Topper, “Multi document centroid­based text summa­

rization,” in ACL 2002. Citeseer, 2002.

[32] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In­

dexing by latent semantic analysis,” Journal of the American society for information

science, vol. 41, no. 6, pp. 391–407, 1990.

[33] M. G. Ozsoy, F. N. Alpaslan, and I. Cicekli, “Text summarization using latent semantic

analysis,” Journal of Information Science, vol. 37, no. 4, pp. 405–417, 2011.

[34] J. L. Neto, A. A. Freitas, and C. A. Kaestner, “Automatic text summarization us­

ing a machine learning approach,” in Brazilian symposium on artificial intelligence.

Springer, 2002, pp. 205–215.

[35] P.­E. Genest and G. Lapalme, “Absum: a knowledge­based abstractive summarizer,”

Génération de résumés par abstraction, vol. 25, p. 26, 2013.

[36] U. Hahn and I. Mani, “The challenges of automatic summarization,” Computer,

vol. 33, no. 11, pp. 29–36, 2000.

[37] V.Gupta andG. S. Lehal, “A survey of text summarization extractive techniques,” Jour­

nal of emerging technologies in web intelligence, vol. 2, no. 3, pp. 258–268, 2010.

[38] L. Antiqueira, O. N. Oliveira Jr, L. da Fontoura Costa, and M. d. G. V. Nunes, “A com­

plex network approach to text summarization,” Information Sciences, vol. 179, no. 5,

pp. 584–599, 2009.

[39] N. Moratanch and S. Chitrakala, “A survey on extractive text summarization,” in 2017

international conference on computer, communication and signal processing (IC­

CCSP). IEEE, 2017, pp. 1–6.

[40] J. P. Verma and A. Patel, “Evaluation of unsupervised learning based extractive text

summarization technique for large scale review and feedback data,” Indian Journal

of Science and Technology, vol. 10, no. 17, pp. 1–6, 2017.

[41] J. Peralta, “Text preprocessing in python | set – 1.” [Online]. Available: https:

//www.geeksforgeeks.org/text­preprocessing­in­python­set­1/

[42] ——, “Text preprocessing in python | set 2.” [Online]. Available: https:

//www.geeksforgeeks.org/text­preprocessing­in­python­set­2/?ref=rp

[43] V. T. Chou, L. Kent, J. A. Góngora, S. Ballerini, and C. D. Hoover, “Towards automatic

extractive text summarization of a­133 single audit reports with machine learning,”

arXiv preprint arXiv:1911.06197, 2019.

[44] D. Monsters, “Text preprocessing in python: Steps, tools, and examples.”

[Online]. Available: https://medium.com/@datamonsters/text­preprocessing­in­

python­steps­tools­and­examples­bf025f872908

79

https://www.geeksforgeeks.org/text-preprocessing-in-python-set-1/
https://www.geeksforgeeks.org/text-preprocessing-in-python-set-1/
https://www.geeksforgeeks.org/text-preprocessing-in-python-set-2/?ref=rp
https://www.geeksforgeeks.org/text-preprocessing-in-python-set-2/?ref=rp
https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908
https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908

Automatic Text Summarization

[45] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint cs/0205028,

2002.

[46] J. Brownlee, “What are word embeddings for text?” [Online]. Available: https:

//machinelearningmastery.com/what­are­word­embeddings/

[47] ——, “What are word embeddings for text?” October 11, 2017. [Online]. Available:

https://machinelearningmastery.com/what­are­word­embeddings/

[48] G. Rossiello, P. Basile, and G. Semeraro, “Centroid­based text summarization through

compositionality of word embeddings,” in Proceedings of the MultiLing 2017 Work­

shop on Summarization and Summary Evaluation Across Source Types and Genres,

2017, pp. 12–21.

[49] V. Phung and L. De Vine, “A study on the use of word embeddings and pagerank

for vietnamese text summarization,” in Proceedings of the 20th Australasian

Document Computing Symposium, ser. ADCS ’15. New York, NY, USA: Association

for Computing Machinery, 2015. [Online]. Available: https://doi.org/10.1145/

2838931.2838935

[50] X. Rong, “word2vec parameter learning explained,” arXiv preprint arXiv:1411.2738,

2014.

[51] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word repre­

sentation,” in Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), 2014, pp. 1532–1543.

[52] J. Devlin, M.­W. Chang, K. Lee, and K. Toutanova, “Bert: Pre­training of deep bidirec­

tional transformers for language understanding,” arXiv preprint arXiv:1810.04805,

2018.

[53] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, andQ. V. Le, “Xlnet: Gener­

alized autoregressive pretraining for language understanding,” in Advances in neural

information processing systems, 2019, pp. 5754–5764.

[54] A. J. T. M. Piotr Bojanowski, Edouard Grave, “fasttext,” August 18, 2016. [Online].

Available: https://research.fb.com/blog/2016/08/fasttext/

[55] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science & Business Media,

2012.

[56] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal of research

and development, vol. 2, no. 2, pp. 159–165, 1958.

[57] M. F. Porter et al., “An algorithm for suffix stripping.” Program, vol. 14, no. 3, pp.

130–137, 1980.

[58] Snowball, “The lovins stemming algorithm.” [Online]. Available: http:

//snowball.tartarus.org/algorithms/lovins/stemmer.html

80

https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/what-are-word-embeddings/
https://machinelearningmastery.com/what-are-word-embeddings/
https://doi.org/10.1145/2838931.2838935
https://doi.org/10.1145/2838931.2838935
https://research.fb.com/blog/2016/08/fasttext/
http://snowball.tartarus.org/algorithms/lovins/stemmer.html
http://snowball.tartarus.org/algorithms/lovins/stemmer.html

Automatic Text Summarization

[59] C. Moral, A. de Antonio, R. Imbert, and J. Ramírez, “A survey of stemming algorithms

in information retrieval.” Information Research: An International Electronic Jour­

nal, vol. 19, no. 1, p. n1, 2014.

[60] S. University, “Stemming and lemmatization.” [Online]. Available: https://

nlp.stanford.edu/IR­book/html/htmledition/stemming­and­lemmatization­1.html

[61] L. Galambos, “Lemmatizer for document information retrieval systems in java,” in In­

ternational Conference on Current Trends in Theory and Practice of Computer Sci­

ence. Springer, 2001, pp. 243–252.

[62] H. van Halteren and M. Rem, “Dealing with orthographic variation in a tagger­

lemmatizer for fourteenth century dutch charters,” Language resources and evalu­

ation, vol. 47, no. 4, pp. 1233–1259, 2013.

[63] H. Paulussen andW.Martin, “Dilemma­2: a lemmatizer­tagger formedical abstracts,”

in Proceedings of the third conference on Applied natural language processing. As­

sociation for Computational Linguistics, 1992, pp. 141–146.

[64] R. S. Prasad, N. M. Uplavikar, S. S. Wakhare, V. Jain, T. Avinash et al., “Feature based

text summarization,” International journal of advances in computing and informa­

tion researches, vol. 1, 2012.

[65] J. L. Neto, A. D. Santos, C. A. Kaestner, N. Alexandre, D. Santos et al., “Document

clustering and text summarization,” 2000.

[66] C. N. Silla, G. L. Pappa, A. A. Freitas, and C. A. Kaestner, “Automatic text summariza­

tion with genetic algorithm­based attribute selection,” in Ibero­American Conference

on Artificial Intelligence. Springer, 2004, pp. 305–314.

[67] A. Aristoteles, W. Widarti, and E. D. Wibowo, “Text feature weighting for summariza­

tion of documents bahasa indonesia by using binary logistic regression algorithm,”

International Journal of Computer Science and Telecommunications, vol. 5, no. 7,

pp. 29–33, 2014.

[68] Y. J. Kumar, F. J. Kang, O. S. Goh, and A. Khan, “Text summarization based on clas­

sification using anfis,” in Asian Conference on Intelligent Information and Database

Systems. Springer, 2017, pp. 405–417.

[69] L. Suanmali, M. S. Binwahlan, and N. Salim, “Sentence features fusion for text sum­

marization using fuzzy logic,” in 2009 Ninth International Conference on Hybrid In­

telligent Systems, vol. 1. IEEE, 2009, pp. 142–146.

[70] D. Shen, J.­T. Sun, H. Li, Q. Yang, and Z. Chen, “Document summarization using

conditional random fields.” in IJCAI, vol. 7, 2007, pp. 2862–2867.

[71] K.­F. Wong, M.Wu, andW. Li, “Extractive summarization using supervised and semi­

supervised learning,” in Proceedings of the 22nd international conference on compu­

tational linguistics (Coling 2008), 2008, pp. 985–992.

81

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Automatic Text Summarization

[72] D. Tsarev,M. Petrovskiy, and I.Mashechkin, “Supervised andunsupervised text classi­

fication via generic summarization,” International Journal of Computer Information

Systems and Industrial Management Applications. MIR Labs, vol. 5, pp. 509–515,

2013.

[73] T. Nomoto and Y.Matsumoto, “A new approach to unsupervised text summarization,”

in Proceedings of the 24th annual international ACM SIGIR conference on Research

and development in information retrieval, 2001, pp. 26–34.

[74] M.­R. Amini and P. Gallinari, “The use of unlabeled data to improve supervised learn­

ing for text summarization,” in Proceedings of the 25th annual international ACM

SIGIR conference on Research and development in information retrieval, 2002, pp.

105–112.

[75] ——, “Automatic text summarization using unsupervised and semi­supervised learn­

ing,” in European Conference on Principles of Data Mining and Knowledge Discov­

ery. Springer, 2001, pp. 16–28.

[76] P.­y. Zhang andC.­h. Li, “Automatic text summarization based on sentences clustering

and extraction,” in 2009 2nd IEEE international conference on computer science and

information technology. IEEE, 2009, pp. 167–170.

[77] F. Kyoomarsi, H. Khosravi, E. Eslami, P. K. Dehkordy, and A. Tajoddin, “Optimizing

text summarization based on fuzzy logic,” in Seventh IEEE/ACIS International Con­

ference on Computer and Information Science (icis 2008). IEEE, 2008, pp. 347–

352.

[78] J. L. Neto, A. D. Santos, C. A. Kaestner, N. Alexandre, D. Santos et al., “Document

clustering and text summarization,” 2000.

[79] T. Yiu, “Understanding neural networks,” Jun 2. [Online]. Available: https:

//towardsdatascience.com/understanding­neural­networks­19020b758230

[80] R. Singh, “Pruning deep neural networks.” [Online]. Available: https:

//towardsdatascience.com/pruning­deep­neural­network­56cae1ec5505

[81] K. Svore, L. Vanderwende, and C. Burges, “Enhancing single­document summariza­

tion by combining ranknet and third­party sources,” in Proceedings of the 2007 joint

conference on empiricalmethods in natural language processing and computational

natural language learning (EMNLP­CoNLL), 2007, pp. 448–457.

[82] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi­layer feed­forward

neural networks,” Chemometrics and intelligent laboratory systems, vol. 39, no. 1,

pp. 43–62, 1997.

[83] C. Sutton, A. McCallum et al., “An introduction to conditional random fields,” Foun­

dations and Trends® in Machine Learning, vol. 4, no. 4, pp. 267–373, 2012.

82

https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/pruning-deep-neural-network-56cae1ec5505
https://towardsdatascience.com/pruning-deep-neural-network-56cae1ec5505

Automatic Text Summarization

[84] A. Prasad, “Conditional random fields explained.” [Online]. Available: https:

//towardsdatascience.com/conditional­random­fields­explained­e5b8256da776

[85] D.A. S.SanthanaMegala, Dr. A.Kavitha, “Text summarization systemusing fuzzy logic

and conditional random field algorithm,” 2015.

[86] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In­

dexing by latent semantic analysis,” Journal of the American society for information

science, vol. 41, no. 6, pp. 391–407, 1990.

[87] K. Ježek and J. Steinberger, “Automatic text summarization (the state of the art 2007

and new challenges),” in Proceedings of Znalosti, 2008, pp. 1–12.

[88] K. R. Patil et al., “Automatic text summarization using pathfinder network scaling,”

2007.

[89] Y. Gong and X. Liu, “Generic text summarization using relevance measure and latent

semantic analysis,” in Proceedings of the 24th annual international ACM SIGIR con­

ference on Research and development in information retrieval, 2001, pp. 19–25.

[90] L. Sellberg and A. Jönsson, “Using random indexing to improve singular value decom­

position for latent semantic analysis.” in LREC. Citeseer, 2008, pp. 2335–2338.

[91] K. Bellare, A. D. Sarma, A. D. Sarma, N. Loiwal, V. Mehta, G. Ramakrishnan, and

P. Bhattacharyya, “Generic text summarization using wordnet.” in LREC, 2004.

[92] P. University, “About wordnet.” [Online]. Available: https://wordnet.princeton.edu/

[93] Shodhganga, “Text summarization using fuzzy logic.” pp. 84 – 87.

[94] T. Point, “Fuzzy logic ­ membership function.” [Online]. Available: https://

www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_membership_function.htm

[95] L. Suanmali, N. Salim, andM. S. Binwahlan, “Fuzzy logic basedmethod for improving

text summarization,” arXiv preprint arXiv:0906.4690, 2009.

[96] R. Ferreira, F. Freitas, L. de Souza Cabral, R. D. Lins, R. Lima, G. França, S. J. Simskez,

and L. Favaro, “A four dimension graph model for automatic text summarization,” in

2013 IEEE/WIC/ACM International Joint Conferences onWeb Intelligence (WI) and

Intelligent Agent Technologies (IAT), vol. 1. IEEE, 2013, pp. 389–396.

[97] G. Salton, A. Singhal, M. Mitra, and C. Buckley, “Automatic text structuring and sum­

marization,” Information processing & management, vol. 33, no. 2, pp. 193–207,

1997.

[98] G. Erkan and D. Radev, “Lexpagerank: Prestige in multi­document text summariza­

tion,” in Proceedings of the 2004 Conference on Empirical Methods in Natural Lan­

guage Processing, 2004, pp. 365–371.

83

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776
https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776
https://wordnet.princeton.edu/
https://www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_membership_function.htm
https://www.tutorialspoint.com/fuzzy_logic/fuzzy_logic_membership_function.htm

Automatic Text Summarization

[99] G. Erkan and D. R. Radev, “Lexrank: Graph­based lexical centrality as salience in

text summarization,” Journal of artificial intelligence research, vol. 22, pp. 457–479,

2004.

[100] J. Zhang, Y. Sun, H. Wang, and Y. He, “Calculating statistical similarity between sen­

tences,” Journal of Convergence Information Technology, vol. 6, no. 2, 2011.

[101] I. Mani, E. Bloedorn, and B. Gates, “Using cohesion and coherence models for text

summarization,” in Intelligent Text Summarization Symposium, 1998, pp. 69–76.

[102] R.Mihalcea, “Graph­based ranking algorithms for sentence extraction, applied to text

summarization,” in Proceedings of the ACL Interactive Poster and Demonstration

Sessions, 2004, pp. 170–173.

[103] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in Proceedings of the

2004 conference on empirical methods in natural language processing, 2004, pp.

404–411.

[104] M. Litvak andM. Last, “Graph­based keyword extraction for single­document summa­

rization,” in Proceedings of the workshop on Multi­source Multilingual Information

Extraction and Summarization. Association for Computational Linguistics, 2008,

pp. 17–24.

[105] A. Dode and S. Hasani, “Pagerank algorithm.”

[106] P. J.­J. Herings, G. Van Der Laan, and D. Talman, “The positional power of nodes in

digraphs,” Social Choice and Welfare, vol. 24, no. 3, pp. 439–454, 2005.

[107] K. Ganapathiraju, J. Carbonell, and Y. Yang, “Relevance of cluster size in mmr based

summarizer: A report 11­742: Self­paced lab in information retrieval,” 2002.

[108] A. Vashisht, “Using cosine­similarity to build a python text summarization tool.”

[Online]. Available: https://medium.com/@krause60/using­cosine­similarity­to­

build­a­python­text­summarization­tool­d3c8228549bf

[109] D. Radev, A. Winkel, and M. Topper, “Multi document centroid­based text summa­

rization,” in ACL 2002. Citeseer, 2002.

[110] J. Carbonell and J. Goldstein, “The use of mmr, diversity­based reranking for reorder­

ing documents and producing summaries,” in Proceedings of the 21st annual interna­

tional ACMSIGIR conference onResearch and development in information retrieval,

1998, pp. 335–336.

[111] D. Marcu, “From discourse structures to text summaries,” in Intelligent Scalable Text

Summarization, 1997.

[112] D. Radev, “A common theory of information fusion from multiple text sources step

one: cross­document structure,” in 1st SIGdial workshop on Discourse and dialogue,

2000, pp. 74–83.

84

https://medium.com/@krause60/ using-cosine-similarity-to-build -a-python-text-summarization-tool -d3c8228549bf
https://medium.com/@krause60/ using-cosine-similarity-to-build -a-python-text-summarization-tool -d3c8228549bf

Automatic Text Summarization

[113] Sciforce, “Towards automatic text summarization: Extractive methods.” [Online].

Available: https://medium.com/sciforce/towards­automatic­text­summarization­

extractive­methods­e8439cd54715

[114] ——, “Towards automatic text summarization ­ extractive methods.” [Online].

Available: https://medium.com/sciforce/towards­automatic­text­summarization­

extractive­methods­e8439cd54715

[115] T. Nomoto, “Bayesian learning in text summarization,” inProceedings ofHumanLan­

guage TechnologyConference andConference onEmpiricalMethods inNatural Lan­

guage Processing, 2005, pp. 249–256.

[116] D. Wang, S. Zhu, T. Li, and Y. Gong, “Multi­document summarization using sentence­

based topic models,” in Proceedings of the ACL­IJCNLP 2009 conference short pa­

pers. Association for Computational Linguistics, 2009, pp. 297–300.

[117] T. Amit, “Introduction to hidden markov models.” [Online]. Available: https:

//towardsdatascience.com/introduction­to­hidden­markov­models­cd2c93e6b781

[118] D. Jurafsky and J. H. Martin, “Speech and language processing (draft),” Chapter A:

Hidden Markov Models (Draft of September 11, 2018). Retrieved March, vol. 19, p.

2019, 2018.

[119] Y. Sun, H. Deng, and J. Han, “Probabilistic models for text mining,” in Mining text

data. Springer, 2012, pp. 259–295.

[120] J. M. Conroy and D. P. O’leary, “Text summarization via hidden markov models,” in

Proceedings of the 24th annual international ACM SIGIR conference on Research

and development in information retrieval, 2001, pp. 406–407.

[121] P. Fung, G. Ngai, and C.­S. Cheung, “Combining optimal clustering and hidden

markov models for extractive summarization,” in Proceedings of the ACL 2003 work­

shop on Multilingual summarization and question answering­Volume 12. Associa­

tion for Computational Linguistics, 2003, pp. 21–28.

[122] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k­means clustering algorithm,” Pat­

tern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[123] J. Morris and G. Hirst, “Lexical cohesion computed by thesaural relations as an in­

dicator of the structure of text,” Computational linguistics, vol. 17, no. 1, pp. 21–48,

1991.

[124] M. A. K. Halliday and R. Hasan, Cohesion in english. Routledge, 2014.

[125] R. Barzilay and M. Elhadad, “Using lexical chains for text summarization,” Advances

in automatic text summarization, pp. 111–121, 1999.

[126] P. M. Roget, “Roget’s thesaurus of english words and phrases.” [Online]. Available:

https://www.gutenberg.org/cache/epub/10681/pg10681.txt

85

https://medium.com/sciforce/towards-automatic-text-summarization-extractive-methods-e8439cd54715
https://medium.com/sciforce/towards-automatic-text-summarization-extractive-methods-e8439cd54715
https://medium.com/sciforce/towards-automatic-text-summarization-extractive-methods-e8439cd54715
https://medium.com/sciforce/towards-automatic-text-summarization-extractive-methods-e8439cd54715
https://towardsdatascience.com/introduction-to-hidden-markov-models-cd2c93e6b781
https://towardsdatascience.com/introduction-to-hidden-markov-models-cd2c93e6b781
https://www.gutenberg.org/cache/epub/10681/pg10681.txt

Automatic Text Summarization

[127] Y. Chen, X. Wang, and Y. Guan, “Automatic text summarization based on lexical

chains,” in International Conference on Natural Computation. Springer, 2005, pp.

947–951.

[128] H. G. Silber and K. F. McCoy, “An efficient text summarizer using lexical chains,” in

Proceedings of the first international conference on Natural language generation­

Volume 14. Association for Computational Linguistics, 2000, pp. 268–271.

[129] R. Barzilay and K. R. McKeown, “Sentence fusion for multidocument news summa­

rization,” Computational Linguistics, vol. 31, no. 3, pp. 297–328, 2005.

[130] S. M. Harabagiu and F. Lacatusu, “Generating single and multi­document summaries

with gistexter,” in Document Understanding Conferences, 2002, pp. 11–12.

[131] H. Tanaka, A. Kinoshita, T. Kobayakawa, T. Kumano, andN. Kato, “Syntax­driven sen­

tence revision for broadcast news summarization,” in Proceedings of the 2009 Work­

shop on Language Generation and Summarisation. Association for Computational

Linguistics, 2009, pp. 39–47.

[132] P.­E. Genest and G. Lapalme, “Fully abstractive approach to guided summarization,”

in Proceedings of the 50th Annual Meeting of the Association for Computational Lin­

guistics (Volume 2: Short Papers), 2012, pp. 354–358.

[133] H. T. Le and T. M. Le, “An approach to abstractive text summarization,” in 2013 Inter­

national Conference on Soft Computing and Pattern Recognition (SoCPaR). IEEE,

2013, pp. 371–376.

[134] K. Ganesan, C. Zhai, and J. Han, “Opinosis: A graph based approach to

abstractive summarization of highly redundant opinions,” in Proceedings of the 23rd

International Conference on Computational Linguistics (Coling 2010). Beijing,

China: Coling 2010 Organizing Committee, Aug. 2010, pp. 340–348. [Online].

Available: https://www.aclweb.org/anthology/C10­1039

[135] Kavita, C. Zhai, Ganesan, and J. Han, “Opinosis: A graph based approach to abstrac­

tive summarization of highly redundant opinions.” Coling 2010, 2010.

[136] D. Wang and T. Li, “Weighted consensus multi­document summarization,” Informa­

tion Processing & Management, vol. 48, no. 3, pp. 513–523, 2012.

[137] Y. J. Kumar and N. Salim, “Automatic multi document summarization approaches,”

inKS Gayathri, Received BE degree in CSE fromMadras University in 2001 andME

degree from Anna University, Chennai. She is doing Ph. D. in the area of Reasoning

in Smart. Citeseer, 2012.

[138] A. T. B. Choi, “Knowledge based automatic summarization,” 2017.

[139] L. Li, D. Wang, C. Shen, and T. Li, “Ontology­enriched multi­document summariza­

tion in disaster management,” in Proceedings of the 33rd international ACM SIGIR

86

https://www.aclweb.org/anthology/C10-1039

Automatic Text Summarization

conference on Research and development in information retrieval, 2010, pp. 819–

820.

[140] H. Saggion and G. Lapalme, “Generating indicative­informative summaries with su­

mum,” Computational linguistics, vol. 28, no. 4, pp. 497–526, 2002.

[141] A. Gatt and E. Reiter, “Simplenlg: A realisation engine for practical applications,”

in Proceedings of the 12th European Workshop on Natural Language Generation

(ENLG 2009), 2009, pp. 90–93.

[142] P.­E. Genest and G. Lapalme, “Framework for abstractive summarization using text­

to­text generation,” in Proceedings of the workshop on monolingual text­to­text gen­

eration, 2011, pp. 64–73.

[143] A. Khan, N. Salim, and Y. J. Kumar, “A framework for multi­document abstractive

summarization based on semantic role labelling,” Applied Soft Computing, vol. 30,

pp. 737–747, 2015.

[144] ——, “Genetic semantic graph approach for multi­document abstractive summariza­

tion,” in 2015 Fifth International Conference on Digital Information Processing and

Communications (ICDIPC). IEEE, 2015, pp. 173–181.

[145] E. Lloret, E. Boldrini, T. Vodolazova, P. Martínez­Barco, R. Muñoz, and M. Palomar,

“Anovel concept­level approach for ultra­concise opinion summarization,”Expert Sys­

tems with Applications, vol. 42, no. 20, pp. 7148–7156, 2015.

[146] B. Endres­Niggemeyer and B. Endres, “Human­style www summarization,” Report.

Hannover: University of Applied Sciences and Arts, 2000.

[147] H. H. Mikhchi, “Standards of textuality: Rendering english and persian texts based

on a textual model,” Journal of Universal Language, vol. 12, no. 1, pp. 47–74, 2011.

[148] Beaugrand and Dressler, “Seven standards of textuality?” [Online]. Available:

http://web.letras.up.pt/icrowcli/textual.html

[149] A. B. Tikarya, K. Mayur, and P. H. Patel, “Pre­processing phase of text summarization

based on gujarati language,” Int. J. Innovative Res. Comput. Sci. Technol.(IJIRCST),

vol. 2, no. 4, pp. 1–5, 2014.

[150] S. Singhal and A. Bhattacharya, “Abstractive text summarization,” 2015.

[151] L. CY, “Rouge: a package for automatic evaluation of summaries,” in Proceedings of

the Workshop on Text Summarization Branches Out. Barcelona, Spain, 2004, pp.

56–60.

[152] D. R. Radev, H. Jing,M. Styś, andD. Tam, “Centroid­based summarization ofmultiple

documents,” Information Processing & Management, vol. 40, no. 6, pp. 919–938,

2004.

87

http://web.letras.up.pt/icrowcli/textual.html

Automatic Text Summarization

[153] G. Salton, “Automatic text processing. addison­wesley publishing company,” 1988.

[154] H. Saggion, S. Teufel, D. Radev, and W. Lam, “Meta­evaluation of summaries in a

cross­lingual environment using content­based metrics,” in Proceedings of the 19th

international conference on Computational linguistics­Volume 1. Association for

Computational Linguistics, 2002, pp. 1–7.

[155] C.­Y. Lin, “Looking for a few goodmetrics: Automatic summarization evaluation­how

many samples are enough?” in NTCIR, 2004.

[156] GeeksForGeeks, “Longest common subsequence | dp­4.” [Online]. Available: https:

//www.geeksforgeeks.org/longest­common­subsequence­dp­4/

[157] D. R. Radev, S. Teufel, H. Saggion, W. Lam, J. Blitzer, H. Qi, A. Celebi, D. Liu, and

E. Drabek, “Evaluation challenges in large­scale document summarization,” in Pro­

ceedings of the 41st Annual Meeting on Association for Computational Linguistics­

Volume 1. Association for Computational Linguistics, 2003, pp. 375–382.

[158] A. Nenkova and R. J. Passonneau, “Evaluating content selection in summarization:

The pyramid method,” in Proceedings of the human language technology conference

of the north american chapter of the association for computational linguistics: Hlt­

naacl 2004, 2004, pp. 145–152.

[159] W.McKinney et al., “pandas: a foundational python library for data analysis and statis­

tics,” Python for High Performance and Scientific Computing, vol. 14, no. 9, 2011.

[160] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin et al., “Tensorflow: Large­scalemachine learning on heterogeneous

distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[161] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/fchollet/keras

[162] F. M. Kundi, M. Z. Asghar, S. R. Zahra, S. Ahmad, and A. Khan, “A review of text

summarization,” language, vol. 6, no. 7, p. 8, 2014.

[163] V. Saravanan, “Text summarization from scratch using encoder­

decoder network with attention in keras,” 2020. [Online]. Avail­

able: https://towardsdatascience.com/text­summarization­from­scratch­using­

encoder­decoder­network­with­attention­in­keras­5fa80d12710e

[164] P. Dwivedi, “Text summarization using deep learning,” 2019. [Online]. Avail­

able: https://towardsdatascience.com/text­summarization­using­deep­learning­

6e379ed2e89c

[165] M. Koupaee and W. Y. Wang, “Wikihow: A large scale text summarization dataset,”

arXiv preprint arXiv:1810.09305, 2018.

[166] M. Grusky, M. Naaman, and Y. Artzi, “Newsroom: A dataset of 1.3 million summaries

with diverse extractive strategies,” in Proceedings of the 2018 Conference of the

88

https://www.geeksforgeeks.org/longest-common-subsequence-dp-4/
https://www.geeksforgeeks.org/longest-common-subsequence-dp-4/
https://github.com/fchollet/keras
https://towardsdatascience.com/text-summarization-from-scratch-using-encoder-decoder-network-with-attention-in-keras-5fa80d12710e
https://towardsdatascience.com/text-summarization-from-scratch-using-encoder-decoder-network-with-attention-in-keras-5fa80d12710e
https://towardsdatascience.com/text-summarization-using-deep-learning-6e379ed2e89c
https://towardsdatascience.com/text-summarization-using-deep-learning-6e379ed2e89c

Automatic Text Summarization

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. New Orleans, Louisiana: Association for Computational

Linguistics, June 2018, pp. 708–719. [Online]. Available: http://aclweb.org/

anthology/N18­1065

[167] L. Shao and J.Wang, “Dtatg: an automatic title generator based on dependency trees,”

arXiv preprint arXiv:1710.00286, 2017.

[168] A. Pai, “Comprehensive guide to text summarization using deep learning in

python,” 2019. [Online]. Available: https://www.analyticsvidhya.com/blog/2019/

06/comprehensive­guide­text­summarization­using­deep­learning­python/

[169] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs: modeling the evo­

lution of user expertise through online reviews,” in Proceedings of the 22nd interna­

tional conference on World Wide Web, 2013, pp. 897–908.

[170] NIST, “Document understanding conferences.” [Online]. Available: https:

//duc.nist.gov/

[171] T. A. S. Pardo and L. H. M. Rino, “Temário: Um corpus para sumarização automática

de textos,” São Carlos: Universidade de São Carlos, Relatório Técnico, 2003.

[172] M. Mayank, “String similarity — the basic know your algorithms guide!” [On­

line]. Available: https://itnext.io/string­similarity­the­basic­know­your­algorithms­

guide­3de3d7346227

[173] K. Papineni, S. Roukos, T. Ward, and W.­J. Zhu, “Bleu: a method for automatic eval­

uation of machine translation,” in Proceedings of the 40th annual meeting of the As­

sociation for Computational Linguistics, 2002, pp. 311–318.

[174] M. Mendoza, S. Bonilla, C. Noguera, C. Cobos, and E. Leon, “Extractive single­

document summarization based on genetic operators and guided local search,” Expert

Systems with Applications, vol. 41, p. 4158–4169, 07 2014.

[175] K. Hong, M. Marcus, and A. Nenkova, “System combination for multi­document sum­

marization,” in Proceedings of the 2015 conference on empirical methods in natural

language processing, 2015, pp. 107–117.

[176] M. Gambhir and V. Gupta, “Recent automatic text summarization techniques: a sur­

vey,” Artificial Intelligence Review, vol. 47, no. 1, pp. 1–66, 2017.

[177] D. Marcu, “Discourse­based summarization in duc­2001,” in Proceedings of the Doc­

ument Understanding Conference (DUC01), 2001.

[178] A. Kornilova and V. Eidelman, “Billsum: A corpus for automatic summarization of us

legislation,” arXiv preprint arXiv:1910.00523, 2019.

89

http://aclweb.org/anthology/N18-1065
http://aclweb.org/anthology/N18-1065
https://www.analyticsvidhya.com/blog/2019/06/comprehensive-guide-text-summarization-using-deep-learning-python/
https://www.analyticsvidhya.com/blog/2019/06/comprehensive-guide-text-summarization-using-deep-learning-python/
https://duc.nist.gov/
https://duc.nist.gov/
https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227
https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227

Automatic Text Summarization

[179] S. Narayan, S. B. Cohen, andM. Lapata, “Don’t give me the details, just the summary!

Topic­aware convolutional neural networks for extreme summarization,” in Proceed­

ings of the 2018 Conference on Empirical Methods in Natural Language Processing,

Brussels, Belgium, 2018.

90

Automatic Text Summarization

Appendix A

Attachments

A.1 Datasets Used

1. Amazon Fine FoodReviews ­ Dataset with reviews of fine foods fromAmazon. The

data span a period of more than 10 years, including all 500,000 reviews up to October

2012. Reviews include product and user information, ratings, and a plain text review.

It also includes reviews from all other Amazon categories [169];

2. Newsroom: Dataset of 1.3 Million Summaries with Diverse Extractive

Strategies ­ Newsroom is a free summarization dataset of 1.3 million articles and

summaries written by authors and editors in newsrooms of 38 major news publica­

tions. Extracted from search and social media metadata between 1998 and 2017, these

high­quality summaries demonstrate high diversity of summarization styles. In par­

ticular, the summaries combine abstractive and extractive strategies, borrowing words

and phrases from articles at varying rates. We analyze the extraction strategies used

in NEWSROOM summaries against other datasets to quantify the diversity and diffi­

culty of our new data, and train existing methods on the data to evaluate its utility and

challenges. [166];

3. WikiHowAll ­ WikiHowAll is a new large­scale dataset using the online WikiHow

knowledge base. Each article consists ofmultiple paragraphs and each paragraph starts

with a sentence summarizing it. By merging the paragraphs to form the article and the

paragraph outlines to form the summary, the resulting version of the dataset contains

more than 200,000 long­sequence pairs. [165];

4. Billsum: ACorpus forAutomatic Summarization ofUSLegislation ­ Dataset

that contains information about US Congressional and California state bills [178];

5. Xsum ­ Dataset that contains information, such as text and summary about several

document texts, from different areas [179].

6. DUC ­The DUC dataset contains conference documents for text summarization, from

2001 to 2007. Each edition has data has text data about all sorts of subjects. One can

have access to the full texts and three reference summaries, provided by three different

human writers.

91

Automatic Text Summarization

92

Automatic Text Summarization

Glossary

Deep­learning In artificial inteligence there is a field called machine learning, that

combines several algorithms that improve over time through

experience. Deep­learning is a field of machine­learning, where

some of these algorithms contain several layers where they can

process data and gain experience in their problems.

N­gram A n­gram is defined as a sequence of n elements, that can be of any

type: words, numbers, special characters. For example, a uni­gram

and bi­gram, are sequences of one and two elements, respectively.

Stop­words Stop­words are in most cases, words that are widely displayed in the

text. Even though frequency in the text is high, they do not convey

important information about it. Examples of stop­words are the

words ’our’, ’me’, ’what’, etc.

Corpus In linguistics, a corpus consists in a set of documents that give

respect to the same subject or discipline. For example, a set of

documents that have data about economics can be represented as a

corpus of economics.

93

Automatic Text Summarization

94

	Introduction
	Motivation
	Objectives
	Document Structure

	State Of The Art
	Human Summaries
	Automatic Text Summarization
	Historical Evolution
	Stages of Automatic Summarization
	Summary Classifications

	Automatic Summarization Approaches: Extractive and Abstractive
	Classic Approaches
	Feature Based Approaches
	Machine Learning Approaches
	Neural Network Based Approaches
	Conditional Random Fields
	Latent Semantic Analysis
	Fuzzy Logic Based Approaches
	Graph Based Approaches
	Clustering Based approaches
	Discourse Approaches
	Bayesian Topic Models
	Hidden Markov Models
	Lexical Chain Approaches
	Structure Based Approaches
	Semantic Based Approaches
	Issues of Extractive and Abstractive Summarizers

	Summary Evaluations
	Text-Quality Evaluation Measures
	Content Evaluation Measures
	Task Based Evaluation Measures

	Implementation
	Sources Used
	Term-Frequency Summarizer
	TextRank With Word Embeddings
	Deep Neural Network Summarizer
	Datasets
	Pre-Processing
	Feature Selection
	Model's Architecture
	Model Training
	Summary Generation

	Encoder-Decoder
	Overview of the Architecture
	Dataset Loading/Pre-processing
	Vocabulary Creation
	Initial Model's Architecture
	Training Phase
	Final Encoder-Decoder Architecture
	Summary Generation

	Neural network and encoder-decoder combined
	Program Execution
	Example Execution

	Evaluation Measures and Results
	Evaluation Measures
	Results
	Results for the Term-Frequency summarizer
	Results with TextRank and Word Embeddings
	Deep Neural Network Summarizer Results
	Encoder-Decoder Summarizer's Results
	Results from combining the neural network and the encoder-decoder
	Results of all the summarizers

	Conclusions and Future Work
	Bibliografia
	Attachments
	Datasets Used

