
Analysis and Hardware In the Loop Testing of
ADCS Algorithm for the CubeSat 3­AMADEUS

Hugo Brandão Pontes

Dissertação para obtenção do Grau de Mestre em

Engenharia Aeronáutica
(Mestrado Integrado)

Orientador: Anna Guerman Ph.D.
Co­orientador: João Filipe Fortuna Araújo M.Sc.

Novembro de 2020

ii

Acknowledgements

I would like to thank, firstly, all my professors at UBI that have taughtme a great deal,

not only in theoretical knowledge but in terms of work ethic and encouraged the students

to have an attitude of self development. They have accompaniedme throughout the whole

journey of my university life and to them I am thankful. I would also like to thank Anna

Guerman for being my UBI mentor in this project, for I could have not achieved this goal

without her expertise and guidance and whose immense knowledge of spacecraft related

phenomena I can’t help but dream of achieving one day.

My colleagues at UBI are also to be thanked, for I like to believe that we all learned

from each other and developed each other in various ways. A special thanks to Jorge

Monteiro for believing inUBI’s potential for space projects and boosting the space interest

and opportunities at UBI for students like me with a passion for space.

I would also like to thank everyone in CEiiA involved in the 3­AMADEUS project

for the amazing opportunity of working on this project ­ not only on this thesis but on

the summer internship I did before ­ for all the help and for giving me such an up close

experience of satellite development. It is something I personally gained a lot from. A

special thanks to Hélder Covas, who was tireless in trying to provide everything I required

for this project as well as always being available for whatever I needed help with. Another

special thank you is due to João Araújo ­ my CEiiA tutor ­ I appreciate all the knowledge

passed on, without which the FPGA implementation would be impossible.

I must also tip my hat in extreme gratitude to Dmitry Roldugin from KIAM who ex­

changed countless emails with me, without which I couldn’t have developed a valid atti­

tude model. I have learnt a great deal from him and also hope that one day I can reach his

knowledgeability.

I must also thank all the kind strangers on various internet forums who take their

free time to help other’s engineering endeavours and have helped me by pointing me in

the right direction at the times where I needed it the most.

Last but not least, I would also like to express my gratitude to my friends and family

who, with their love and support have probably kept me from descending into madness

at the direst times in this journey. Thank you!

iii

iv

Resumo

Um dos grandes entraves dos ADCSs (Attitude Determination and Control Subsys­

tems) de CubeSats é o elevado peso e o alto consumo dos seus componentes de maior

precisão, o que significa que desenvolver opções mais leves e de menor consumo é de ex­

trema importância.

A 3­AMADEUS é uma missão que visa a encontrar uma solução para este mesmo

problema. Componentes de ADCSmagnéticos estão entre as opções mais leves, de menor

consumo energético e mais fíaveis na indústria dos CubeSats. No entanto, devido à sua

baixa precisão, estes não podem ser utilizados por si só em missões cujos requisitos de

precisão de controlo de atitude sejam elevados. Uma das formas de aumentar a precisão

deste tipo de componentes é o uso de novos algoritmos que maximizem o desempenho de

ADCSsmagnéticos, que é a razão pela qual a 3­AMADEUS tem o propósito de desenvolver

e testar, em voo, vários destes algoritmos, com a esperança de que um dia a implemen­

tação de ADCSs exclusivamente magnéticos seja generalizada em CubeSats.

Para que seja possível analisar quais algoritmos devem ser implementados namissão

3­AMADEUS, este trabalho apresenta um modelo de atitude de um satélite que permite

uma simulação SIL (Software In the Loop). Para além disso, é também feita uma sim­

ulação HIL (Hardware In the Loop) que procura validar o uso de um FPGA (Field Pro­

grammable Gate Array) para a implementação deste tipo de algoritmo, já que o uso de

FPGAs em CubeSats tem tido um crescimento significativo, e é particularmente interes­

sante num projeto onde a reprogramabilidade é uma característica útil.

Tendo isto em conta, como os algoritmos para estamissão ainda estão emdesenvolvi­

mento, um algoritmo puramentemagnético desenvolvido noutro contexto é então testado

num ambiente SIL, no qual o seu desempenho em termos de precisão e estabilização, as­

sim como a sua viabilidade para a missão 3­AMADEUS, são analisados sob diferentes

condições. Por fim, um destes testes é realizado num ambiente de simulação HIL. Os

resultados desta simulação, que não têm em conta a determinação da atitude, são com­

parados com os obtidos no teste em ambiente SIL, fornecendo dados relevantes sobre a

viabilidade e desempenho de uma implementação de um algoritmo de ADCS num FPGA

na realidade.

Palavras­chave

CubeSat, Controlo de Orientação de Satélite, Modelo de Dinâmica Rotacional de Satélite,

Magnetorquer, Subsistema de Determinação e Controlo de Atitude, Algoritmo de Con­

trolo de Atitude A Bordo, Hardware In the Loop, Software in the Loop, Simulação de

Atitude de Satélite, Field Programmable Gate Array

v

Abstract

One of the main challenges with Cubesats’ ADCSs (Attitude Determination and Con­

trol Subsystems) is how heavy and power consuming the most precise systems are. This

means that developing lighter, less consuming ones is of the greatest importance.

3­AMADEUS is amission that aims to find a solution to this exact problem. Magnetic

ADCS components are among the lightest, least power consuming and most reliable op­

tions in the CubeSat industry. However, due to their lowprecision, this kind of component

can’t be used by themselves in missions that require precise attitude control. One of the

ways to improve the precision of this kind of component is to use novel ADCS algorithms

that maximize system performance for magnetic ADCSs. That is why 3­AMADEUS has

the purpose of, not only developing, but also testingmultiple of these algorithms in­flight,

with hopes that one day the implementation of purelymagnetic ADCSs can be generalized

in nanosatellites.

In order to possibilitate an analysis of what algorithms are to be implemented in the

3­AMADEUS mission, this work presents a satellite attitude model that allows for a SIL

(Software In the Loop) simulation. Furthermore, a HIL (Hardware In the Loop) simula­

tion is made, aiming at validating the usage of an FPGA (Field Programmable Gate Array)

for the implementation of this kind of algorithm, since the usage of FPGAs in CubeSats has

been rising significantly, and is particularly interesting in a project where reprogramma­

bility is useful.

Having that in mind, since the algorithms for this mission are still under develop­

ment, a purely magnetic ADCS algorithm that has been developed in another context is

then tested in a SIL environment, where its performance in terms of accuracy and stabi­

lization, as well as its suitability for the 3­AMADEUSmission, is analyzed under different

conditions. Finally, one of these tests is performed but this time in a HIL Simulation, not

considering attitude determination. The results of this simulation are compared to those

obtained in the SIL test, providing relevant data on the feasibility and performance of a

real life ADCS algorithm implementation in an FPGA.

Keywords

CubeSat, Spacecraft Attitude Control, Satellite Attitude Dynamics Model, Magnetorquer,

Attitude Determination and Control Subsystem, On­board Attitude Control Algorithm,

Hardware In the Loop, Software in the Loop, Spacecraft Attitude Simulation, Field Pro­

grammable Gate Array

vi

Nomenclature

r Orbit Radius

a Orbit Semi­Major Axis

e Orbit Eccentricity

θ True Anomaly

v Orbital Velocity

i Orbit Inclination

Ω Longitude of the Ascending Node

ω Argument of Perigee

ωo Orbital Angular Velocity

RB
A Rotation Matrix from A to B frame

q Quaternion

ε Quaternion Sub­vector 1

η Quaternion Sub­vector 2

a Euler Axis Vector

ϕ Angle of Rotation

I Identity Matrix

ϕ Roll

θ Pitch

ψ Yaw

L Angular Momentum

v Tangential Velocity

r Body Radius

m Body Mass

ωo Orbital Angular Velocity

To Orbital Period

ωe Earth’s Angular Velocity

Te Earth’s Rotation Period

I Inertia Tensor

J Principal Inertia Tensor

a, b, c Body Dimensions in the principal axes

ωb
ib Absolute Angular Velocity

ωb
ob Relative Angular Velocity

M Sum of all Torques applied on a body

τgg Gravity Gradient Torque

c3 Rotation Matrix Third Column

u3 Nadir Unit Vector

µ Earth’s Gravitational Coefficient

D Aerodynamic Drag Force

ρ Air Density

vii

CD Drag Coefficient

A Projected Area

uaero Drag Force Direction Unit Vector

d Center of Mass Offset

τaero Aerodynamic Torque

Frad Solar Radiation Pressure Force

Prad Solar Radiation Mean Momentum Flux

CP Spacecraft Solar Absorption Characteristic

usolar Solar Radiation Pressure Force Direction Unit Vector

τrad Solar Radiation Pressure Torque

B Magnetic Field Induction

u f Geomagnetic Field Dipole Strength

u Argument of Latitude

t Elapsed Time

τmag Residual Magnetic Dipole Torque

mres Residual Magnetic Dipole

τtrqr Magnetorquer Torque

mtrqr Magnetorquer Magnetic Dipole

h Simulation Step

Imax Magnetorquer Max Current

mmax Magnetorquer Max Magnetic Dipole

Acoil Magnetorquer Coil Area

ncoil Magnetorquer Coil Turns

k Control Gain

σ Standard Deviation

viii

List of Acronyms

ADC Analog to Digital Converter

ADCS Attitude Determination and Control Subsystem

ASIC Application Specific Integrated Circuit

BCR Battery Charge Regulator

C&DH Command & Data Handling

CLB Configurable Logic Block

COTS Commercial Off The Shelf

CPU Central Processing Unit

CSU Colorado State University

DAC Digital to Analog Converter

DCM Digital Clock Manager

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

EPS Electrical Power Subsystem

ESA European Space Agency

FPGA Field Programmable Gate Array

GNC Guidance, Navigation and Control

GND Ground

GNSS Global Navigation Satellite System

HDL Hardware Description Language

HIL Hardware In the Loop

I2C Inter Integrated Circuit

ICD Interface Control Document

IDE Integrated Development Environment

INTA Instituto Nacional de Técnica Aeroespacial

IOB Input/Output Block

KIAM Keldysh Institute of Applied Mathematics

LEO Low Earth Orbit

LUT Look Up Table

MCU Microcontroller Unit

MISO Master In Slave Out

MOSI Master Out Slave In

NASA National Aeronautics and Space Administration

ODCS Orbit Determination and Control Subsystem

P­POD Poly­Picosatellite Orbital Deployer

RAM Random Access Memory

RMD Residual Magnetic Dipole

ROM Read Only Memory

SIL Software In the Loop

ix

SPI Serial Peripheral Interface

SSC Surrey Space Center

SSO Sun Synchronous Orbit

UART Universal Asynchronous Receiver/Transmitter

UBI Universidade da Beira Interior

UCF User Constraints File

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

x

Contents

Acknowledgements iii

Resumo v

Palavras­chave v

Abstract vi

Keywords vi

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 3­AMADEUS Mission . 1

1.2 Motivation . 1

1.3 Research Objectives . 2

1.4 Thesis Outline . 3

2 State of the Art 5

2.1 The CubeSat paradigm . 5

2.1.1 CubeSats . 5

2.1.2 CubeSat Subsystems . 9

2.1.3 State of the Art CubeSat Missions 12

2.2 Attitude Determination and Control Subsystem 14

2.2.1 Sensors . 15

2.2.2 Actuators . 18

2.2.3 State of the Art ADCS Designs . 21

2.3 Command & Data Handling . 24

2.3.1 OBC Overview . 24

2.3.2 Field Programmable Gate Arrays . 25

2.3.3 State of the Art OBC Designs . 27

2.3.4 FPGAs in Satellite Attitude Control 28

3 Literature Review 31

3.1 Orbital Mechanics . 31

3.1.1 Keplerian Orbits . 31

3.1.2 Orbital Elements . 33

3.1.3 Sun­Synchronous Orbits . 34

3.2 Attitude Parameterization . 35

3.2.1 Reference Frames . 35

xi

3.2.2 Types of Attitude Parameterization 36

3.3 Attitude Dynamics . 40

3.3.1 Angular Momentum . 40

3.3.2 Equations of Motion . 42

3.3.3 Environmental Torque Models . 44

3.3.4 Control Torque Model . 47

3.4 Numerical Analysis Method . 48

3.4.1 Method of Runge­Kutta of the 4th Order 48

3.5 Binary Number Representation . 49

3.5.1 Signed Numbers . 50

3.5.2 Decimal Numbers . 50

3.5.3 Signed Fixed Point Arithmetic . 52

3.6 Communication Protocols . 55

3.6.1 UART . 55

3.6.2 SPI . 56

3.6.3 I2C . 57

3.7 FPGA Programming . 58

3.7.1 FPGA Design Flow . 58

3.7.2 Tools . 60

3.7.3 Programming Language . 60

3.7.4 Architectural Overview . 61

4 Mathematical Model For Attitude Dynamics 63

4.1 Simulation Parameters . 64

4.1.1 Numerical Parameters . 64

4.1.2 Control Parameters . 64

4.1.3 Physical Parameters . 64

4.1.4 Orbital Parameters . 65

4.1.5 Aerodynamic Parameters . 66

4.1.6 Solar Pressure Parameters . 66

4.1.7 Magnetic Parameters . 67

4.1.8 Initial Conditions . 67

4.2 Gravitational Stabilization Test Simulation 67

4.3 Environmental Perturbance Test Simulation 68

4.3.1 Gravity Gradient Torque . 68

4.3.2 Residual Magnetic Dipole Torque 69

4.3.3 Aerodynamic and Solar Radiation Torque 69

5 Uncontrolled Satellite Dynamics 71

5.1 LEO Environment . 71

5.2 Uncontrolled Behaviour . 72

xii

6 Mathematical Model For Attitude Control 75

6.1 The Control Law . 75

6.2 Attitude Control Tests . 76

6.2.1 Algorithm Verification . 76

6.2.2 Attitude Control with no RMD estimation 76

6.2.3 Attitude Control with RMD Estimation 78

6.2.4 Attitude Control with RMD Estimation and Uncertainties 79

6.2.5 Attitude Control with RMD Estimation, Uncertainties and Larger

Center of Mass Offset . 80

7 Attitude Control HIL Simulation 83

7.1 Components and Tools Used . 83

7.1.1 Components . 83

7.1.2 Tools . 85

7.2 Assumptions . 85

7.3 FPGA Design . 86

7.3.1 Design Requirements . 86

7.3.2 Proposed Architecture . 87

7.3.3 User Constraints . 90

7.3.4 System Performance . 90

7.3.5 Resource Usage . 90

7.4 HIL Simulation . 91

7.4.1 Setup . 91

7.4.2 Results . 92

8 Conclusions 97

8.1 Overview . 97

8.2 Constraints and Challenges . 98

8.3 Open Points and Future Works . 98

Bibliography 101

A ModelSim Simulation 109

A.1 3­AMADEUS FPGA Design Simulation . 109

xiii

xiv

List of Figures

2.1 Asteria, a NASA microsatellite [4]. 6

2.2 WikiSat, a femtosatellite [5]. 6

2.3 Typical CubeSat configurations [6]. 7

2.4 P­POD (Poly­Picosatellite Orbital Deployer) [7]. 7

2.5 Evolution of CubeSat launches and its categories [10]. 8

2.6 Projected evolution of CubeSat launches [10]. 9

2.7 3D render of ITU pSAT I [24]. 13

2.8 One of the MarCO CubeSats during production [26]. 14

2.9 NSS Fine Sun Sensor, a CubeSat optimized sun sensor [31]. 15

2.10 A star tracker’s ”view” [32]. 16

2.11 An IRES­C infrared Sun Sensor [34]. 17

2.12 The Earth’s Magnetic Field [35]. 18

2.13 A tetrahedral configuration for four reaction wheels. [37] 19

2.14 Depiction of thrusters working in the Space Shuttle [38]. 20

2.15 A three axis Magnetorquer CubeSat board [39]. 20

2.16 A 3D depiction of a fully deployed OPTOS CubeSat [42]. 22

2.17 TEMPEST­D CubeSat during production [43]. 22

2.18 XACT­50 integrated module [44]. 23

2.19 Artist’s depiction of DeOrbitSail fully extended [45]. 23

2.20 Typical FPGA architecture [50]. 26

2.21 ISIS On­Board Computer [54]. 27

2.22 Artist’s rendition of the Flying Laptop satellite [59]. 28

3.1 Conic Sections [62]. 32

3.2 Diagram of a 2d elliptical orbit. 32

3.3 Orbital elements depicting an orbit in 3D [65]. 34

3.4 Representation of the ECI frame. 35

3.5 Representation of Orbit Reference Frame. 36

3.6 Normal Euler angle representation (left) and a Gimbal locked representa­

tion (right) [75]. 40

3.7 Modelled geomagnetic field for the 3­AMADEUS’s orbit. 47

3.8 Full Duplex UART Communication between an FPGA and a PC. 55

3.9 Common UART transmission. 56

3.10 Full Duplex SPI communication [90]. 56

3.11 I2C communication. 57

3.12 An I2C message. 57

3.13 FPGA Design Flow. 58

4.1 Orientation angles and spin rate ­ Gravitational Stabilization Test Simulation. 68

xv

4.2 Spin rates of the body frame in relation to the orbit frame when different

torques and offsets are tested. 69

5.1 Perturbance torques in the LEO environment of the 3­AMADEUS mission

in the orbit frame. 71

5.2 Perturbance torques in the LEO environment of the 3­AMADEUS mission

in the body frame. 72

5.3 Evolution of the angular rate and orientation angles of the uncontrolled

satellite. 73

6.1 Orientation angles and spin rate ­ Ideal Environment. 76

6.2 Orientation angles and spin rate ­ LEO Environment, no RMD estimation. 77

6.3 Orientation angles and spin rate ­ LEO Environment, large satellite. 78

6.4 Orientation angles and spin rate ­ LEO Environment, with RMD estimation. 79

6.5 Orientation angles and spin rate ­ LEOEnvironment, with RMDestimation

and uncertainties. 80

6.6 Orientation angles and spin rate ­ LEO Environment, with RMD estima­

tion, uncertainties, and 4 mm offset. 81

7.1 The Xilinx Spartan 3E Starter Kit. 84

7.2 An USB to RS­232 cable. 84

7.3 Xilinx platform cable. 85

7.4 Block diagram of the proposed FPGA architecture. 88

7.5 Utilization Summary for the proposed FPGA design. 91

7.6 Block diagram comparing the mathematical and HIL simulations. 92

7.7 Real life setup used for the HIL Simulation 92

7.8 Orientation angles and spin rate in a HIL Simulation. 93

7.9 σ3 analysis for the offset of the desired current. 94

7.10 σ3 analysis for the offset of the relative angular rate. 95

7.11 σ3 analysis for the offset of the orientation angles. 95

A.1 ModelSim simulation of the proposed FPGA design: Data flow 110

A.2 ModelSim simulation of the proposed FPGA design: Current values 111

xvi

List of Tables

2.1 Classification of Small Sats. 6

xvii

xviii

Chapter 1

Introduction

The first chapter of this thesis introduces not only the project on which the thesis is

based, but also its relevance in that context, as well as the personal motivation for the

realization of this study. Additionally, the goals that this project aims at achieving are

described, and a brief overview of the document’s structure is provided.

1.1 3­AMADEUSMission

The 3­AMADEUS (3 Axis Magnetic Attitude Demonstration Experiment for a Unit

Spacecraft) CubeSat is a work in progress 1U CubeSat project that is being developed by

UBI (University of Beira Interior) and CEiiA (Centro para Excelência e Inovação para a

Indústria Automóvel), with the collaboration of KIAM(Keldysh Institute of AppliedMath­

ematics), that is planned to launch in a near future into a 550 km Sun Synchronous Low

Earth Orbit.

Magnetic attitude sensors and actuators are among the cheapest, most lightweight

and reliable attitude estimation and control components. They, however, have limited

precision. This means that in missions that require great attitude control precision, they

must be coupled with heavier ADCS components such as reaction wheels. Additionally,

using onlymagnetic actuators leaves the spacecraft underactuated. With that inmind, the

development and in­flight testing of novel ADCS algorithms, that allow for an upgraded

performance for this kind of component, is of the uttermost importance.

As a consequence of that, the purpose of this mission is to test and demonstrate the

validity and well functioning of a solely magnetic ADCS for providing 3­axis orbital at­

titude for CubeSats and for nanosatellites in general. This mission objective makes the

ADCS effectively the mission payload. One of the key factors for this satellite is the pos­

sibility of uploading control algorithms to it during flight, through the usage of an FPGA

(Field Programmable Gate Array) that is present in its On Board Computer (OBC), more

specifically an ABACUS OBC. This OBC is part of the Command & Data Handling subsys­

tem (C&DH).

1.2 Motivation

Despite having been around for over 60 years, up to very recently, satellites have been

financially unreachable for small companies, making space access incredibly difficult for

small businesses. This has changed with the rise of CubeSats and Small Sats in general in

the early 2000’s. This evolution has greatly reduced the costs of space access, due to not

1

only the miniaturization of the available technology but especially due to the standard­

ization of components and interfaces with the launch vehicle. Despite all this progress,

efforts must still be made to further reduce satellite costs, whether by using cheaper or

lighter technology.

One of the aspects that can be improved in such a way is the ADCS of a satellite. In or­

der to achieve precise attitude control, this subsystem still requires heavy and high power

consuming components. One of the solutions to this problem is to use magnetic sensors

and actuators, a much lighter and power saving option. Despite this, today, the preci­

sion of these components is low, meaning that they must often be combined with heavier

and more power consuming ADCS components. This is a problem that must be solved by

further developing this technology. One of the ways in which this can be achieved is by

developing and testing novel attitude control algorithms that optimize the capabilities of

this kind of actuators and sensors. Doing so can ultimately allow for the generalization of

solely magnetic ADCSs for a large number of CubeSat missions.

Understanding the functioning, advantages and limitations of this kind of component

is then of the utmost importance. Additionally, and with this in mind, it is crucial, not

only to understand how these algorithms can be modelled and simulated for the analysis

of their performance, but also to do that very analysis. Finally, the goal should be to test

these algorithms in­flight and prove their validity, with that being ultimately the purpose

of the 3­AMADEUS mission.

The use of FPGAs in nanosatellites has been on the rise as of late so it is also interest­

ing to assess how the aforementioned algorithms can be implemented in them, specially

in a mission which benefits immensely from reprogrammability.

1.3 Research Objectives

By creating an attitude simulation that is suited for the analysis of purely magnetic

control algorithms, doing such analysis and creating an FPGA design that implements

such algorithms, this works aims at not only verifying the validity of a specific algorithm

for the 3­AMADEUS mission, but also at creating a basis of models and methodologies

that can later be adapted for future testing of novel ADCS algorithms for the 3­AMADEUS

mission.

The generated attitude dynamics model must provide essential and realistic attitude

data during all times of simulation, that allow one to analyze the system performance,

as well as the viability of the usage of the tested ADCS algorithms for the 3­AMADEUS

mission.

In this model, a purely magnetic control algorithm, developed by KIAM that should

stabilize the satellite in the orbital reference frame [1], shall be implemented and its per­

formance considering a 1U satellite is to be analyzed, in order to assess its viability for the

3­AMADEUS mission.

Finally, the control law from the algorithm that is implemented in the mathematical

attitude model ought to be implemented in an actual FPGA, present on 3­AMADEUS’s

2

ABACUS OBC. This real­life implementation must be connected to the machine running

the simulation, creating a Hardware In the Loop (HIL) simulation. The HIL Simulation

shall provide data regarding not only the feasibility of an FPGA implementation for the

3­AMADEUSmission but how the performance of the algorithm in theory compares with

the FPGA implementation, keeping in mind that the HIL simulation featured concerns

the attitude control part of the algorithm, but not attitude determination.

1.4 Thesis Outline

The present chapter, Chapter 1, introduces the project and mission that this thesis

regards. Additionally, it presents the motivation behind this project, namely why it is

relevant within the current context of the space and nanosatellite industry. Besides that,

the research objectives are presented as well, to assert what relevant data and information

is expected from the completion of this thesis project. Finally, a brief overview of the

structure of the document is given.

Chapter 2, State of the Art, describes what the context for this project is in terms of

what is being done nowadays and what has been done in the past regarding Small Sats.

The usual subsystems found in CubeSats are looked into. A further look is taken at what

the ADCS and C&DH designs usually are for CubeSats missions, including what compo­

nents exist and how they function and including missions with features similar to that of

3­AMADEUS.

The third chapter, Literature Review, reviews some of the theoretical aspects that

one must appreciate in order to understand the work that has been undergone for this

project. This chapter covers the topics relevant to the ADCS part of this thesis. These

topics are attitude and orbital mechanics, attitude modelling, and the numerical analysis

method that is used. Regarding the C&DHpart of this work, basic concepts such as binary

numbers, their arithmetic and communication protocols are covered, as well as important

concepts for understanding the programming and design of FPGAs, such as some of their

fundamental functional elements and the FPGA design flow.

Mathematical Model For Attitude Dynamics, the fourth chapter of this document,

describes the model parameters set for the satellite attitude simulation that has been cre­

ated in order to analyze a solely magnetic attitude control algorithm. Additionally, that

very model is put to test in this chapter in order to assess its validity for analysis in the

chapters that follow.

The fifth chapter, Uncontrolled Satellite Dynamics, simply provides an analysis of the

behaviour of the satellite when no controlling torques are being exerted on it and all en­

vironmental torques are present. The presented results provide data with which attitude

control data can be compared, facilitating the assessment of the effect that the attitude

control algorithm has on the satellite’s behaviour. Additionally, this chapter presents an

analysis of the LEO environment that the satellite is expected to be in.

The sixth chapter presents and analyzes the results of the implementation of the

purelymagnetic control algorithm that has beenused for this study [1] on the 3­AMADEUS

3

CubeSat. This chapter presents not only attitude data, but also an analysis of system per­

formance in parameters such as angular rate stabilization and attitude control accuracy

regarding the desired attitude. In this case, that is alignment with the orbital reference

frame. Implementation in different scenarios is presented, providing information on the

strong points and limitations of this algorithm and how these can be exploited/mitigated,

as well as on the viability of the implementation of this algorithm for the 3­AMADEUS

mission.

Attitude Control HIL Simulation is the seventh chapter of this document. It describes

the tools and components necessary for an FPGA HIL Simulation, as well as the assump­

tions necessary in the case of this thesis. Additionally, the final FPGA design is presented

and examined. Lastly, the results of running the HIL simulation in a specific scenario dis­

cussed in Ch. 6 are presented and analyzed, with the analysis consisting of comparing the

obtained results with those obtained also in Ch. 6 and assessing the validity of the FPGA

implementation.

The final chapter, Conclusions, delivers the conjectures that can be drawn from the

analysis of the obtained research data, regarding the appropriateness for the 3­AMADEUS

mission, of not only the control algorithm under study and this kind of control algorithm

in general, but also of the implementation of these algorithms into an FPGA. Furthermore,

this chapter presents the issues and challenges that have been faced in the development

of this project, as well as the solutions for them and the methodology that has been used

for their obtaining. Finally, suggestions for future work are presented.

4

Chapter 2

State of the Art

This section aims at reviewing what the latest and most relevant projects and ad­

vancements are in the area of, not only Attitude Control and Command & Data Handling

for CubeSats, but in Nanosatellites in general. Additionally, it should provide a better un­

derstanding of the context in which this thesis has been produced and show the relevance

of the results that have been obtained.

For both Command & Data Handling as well as Attitude Determination and Con­

trol subsystems, the most commonly found components are presented, along with a brief

explanation of their functioning. On top of that, a few nanosatellite missions that are sim­

ilar in someway to 3­AMADEUS, are presented with the purpose of showing what is being

done today in terms of these subsystems.

2.1 The CubeSat paradigm

This section focuses on how Small Sats and CubeSat came to be and how and why

they have become such a prominent subsector of the space industry as well as why they

have revolutionised the sector, having triggered what some call the New Space Age.

2.1.1 CubeSats

Ever since the dawnof humankind, humanshave lookedup at the sky in awe andwon­

der aboutwhat lies beneath the stars. The firstmajor step in achieving that knowledgewas

the launch of the Sputnik 1 satellite in 1957, the first of his kind, as part of the Soviet Space

Program. The launch of Sputnik is considered by many to be the beginning of the space

age and in the sixty­odd years that followed, the space industry has provided humanity

with a plethora of applications in fields ranging from biology, military, Earth observation

or communications, with its contribution to communications in particular having revo­

lutionised the modern world. At the same rate that the technology available has evolved,

electronics have decreased in size at an astonishingly fast rate, leading to miniaturization

in countless technological fields, from cellphones to medical cameras. The global trend

towards miniaturization has meant that the massive satellites of the past, that could only

be developed by space agencies funded by governments, have been replaced by the so

called Small Sats: lightweight, small satellites, with short design time and small design

teams. In a field where sending a 1 kg object to space costs about 50,000 $ [2] on top of

labor expenses, this makes all the difference. Small satellites can be categorized in several

categories, as described by table 2.1.

As Small Sats grew in predominance, some professors at Cal Poly [3], pioneered, in

1999, the concept of a CubeSat. CubeSats are cube shaped nanosatellites, created with the

5

Table 2.1: Classification of Small Sats.

Class Mass [kg]
Minisatellite 100­500
Microsatellite 10­100
Nanosatellite 1­10
Picosatellite 0.1­1
Femtosatellite 0.01­0.1

purpose of standardizing space access and therefore reducing costs, allowing aerospace

engineering students to gain full hands­on experience in satellite development, from the

mission requirements definition to the testing phase. With that in mind, Cubesats’ most

important characteristic is how they have drastically reduced costs. Standardizing the

actual CubeSat bus ­ the assembly of all the components that support the payload ­ has

allowed designers to be left with (practically) only the payload design to worry about. The

standardization of the deployer, in turn, has increased launch availability and allowed for

fast development cycles, as well as low­cost launches.

Figure 2.1: Asteria, a NASA microsatellite [4].

Figure 2.2: WikiSat, a femtosatellite [5].

The standardization of the bus means that all CubeSats must share the same shape.

The engineers at CalPoly decided that the most appropriate shape would be a 10x10x10

cm cube, called a Unit (U). This has led to the appearance of Commercial Off The Shelf

(COTS) components, specialized for CubeSats, that can be used in differentmissions. This

is attractive not only because there doesn’t need to be any adaptation of these components

for the specificmission, but also due to the flight heritage (proved to haveworked in space)

this kind of component has. A unit should also not exceed a mass of 1.33 kg and it is also

possible to have combinations of units, the most common being 3U, though there are

6

several other possibilities, as can be seen in Fig. 2.3.

Figure 2.3: Typical CubeSat configurations [6].

What really makes the CubeSat revolutionary is the standardization of the way they

can be transported into orbit. Typically, CubeSats are too small of a mission to require a

launch vehicle for themselves, meaning most CubeSats ride as secondary payloads (pig­

gybacks) in launch vehicles designated for other missions. By standardizing the CubeSat

deployer, one can create an interface that is compatible both with all CubeSats and all

launch vehicles interested in piggybacks, minimizing the cost of the launch for the launch­

ing agency, by making the most out of the free room in the launch vehicle, as well as the

cost for the CubeSat developers, in comparison with the cost of a dedicated launch. On

top of this, this interface maximizes launch availability since CubeSats can ride in any

launch vehicle prepared for CubeSats. This uniformized interface has been achieved with

the creation of the P­POD (Poly­Picosatellite Orbital Deployer).

Figure 2.4: P­POD (Poly­Picosatellite Orbital Deployer) [7].

AcommonP­PODcanhouse up to three units, either as amonolith (3U) or in separate (3×
1U), though there are variations for other sizes. P­PODs are located in launch vehicles, and

through a mechanical spring mechanism deploy the CubeSats onto their desired orbits.

7

CubeSats must comply with a document called ICD (Interface Control Document) [8, 9],

a document that makes sure the CubeSat fits in standard deployers and interfaces with

them correctly as well as making sure it poses no threat to the launch vehicle they are in.

By adopting this new standard, the costs associatedwith a full CubeSatmission can be

reduced to around 100,000 $, a value well within the reach of many technological compa­

nies. This explains why the number of CubeSat mission has been growing exponentially,

with over a thousand CubeSat having been launched at the time of writing. CubeSats have

grown out of their initial academic purpose and are now seen as a serious and commer­

cially viable option for space access, allowing many companies to reach space without

external funding, and thrusting the space industry even further. Nowadays, CubeSats are

applicable in a wide range of missions, that can be classified in different categories, ac­

cording to their field of application [10], including Communications, Education, Remote

Sensing, Science, andTechnologyDevelopment, with 3­AMADEUSbeing one of the latter.

Figure 2.5 shows, on one hand, how the number of CubeSat launches has been growing

steadily, as well as its move away from mostly educational objectives to a broader range

of applications. Figure 2.6 shows the bright future that is expected for the CubeSat and

Small Sat industry [10], as future advancements in nano technology will cause CubeSats

to be used increasingly and for even more purposes, probably for an even smaller price.

Figure 2.5: Evolution of CubeSat launches and its categories [10].

8

Figure 2.6: Projected evolution of CubeSat launches [10].

Although it is not the case for the mission that is the object of this thesis, CubeSats

also allow for satellites to be produced in series [8], almost on a trial and error basis, since

the risk and consequences of losing a CubeSat areminimal when compared to the benefits

of the data it gathers, that can be used to improve future designs.

2.1.2 CubeSat Subsystems

All spacecraft are built around their main purpose: to transport a Payload. The pay­

load is the part of a spacecraft which gives it a reason to exist and makes investors want

to pay for its launch and design, while all other components are there solely to make sure

the payload performs its mission according to plan. If, for example, a satellite is launched

with the purpose of capturing pictures of the Earth, the camerawould be the payloadwhile

other components would be the so called Bus. The bus in this example would be, among

others, the system that points the camera to the target that is to be photographed, and the

system that sends the pictures to the Earth. In the case of Sputnik [11], for example, the

payload was a radio sending a simple signal to the Earth, while the bus was the outside

shell that kept the radio at the appropriate conditions as well as the battery that powered

it.

In the case of CubeSats, buses are composed of subsystems, that are, like everything in

a CubeSat, standardized, meaning that almost all CubeSats should feature the same sub­

systems, although the subsystems themselves can differ. These subsystems can be divided

into several categories. These categories are [12, 13]: Structure; Electrical Power; Propul­

sion; Guidance, Navigation and Control; Communications; Command & Data Handling

and Thermal Control.

9

Structure

The structure of a CubeSat can be seen as its skeleton, in the sense that it mechani­

cally keeps everything in place and also protects the sensitive CubeSat components safe

from physical harm, mainly during launch [14]. CubeSat structures are usually made of

aluminum alloy, more specifically Al 7075, though Al 6061­T6 is also often found in this

kind of component.

Electrical Power Subsystem

The Electrical Power Subsystem (EPS) is the subsystem in charge of collecting, man­

aging and supplying electrical energy to a CubeSat [15]. The EPS is generally composed

of a battery, a number of solar panels, and a Battery Charge Regulator (BCR). In space­

craft, the most used components for energy gathering are, by a large margin, solar panels.

State of the art solar panels can collect energy with about 30% efficiency, meaning that

a CubeSat face with an area of 100 cm² can generate around 2W [16] if hit directly by

sunlight. This gathered energy is directed, through a BCR, either directly to the various

subsystems, powering them, or to the battery, where it is stored for later usage. Energy

storage is extremely important in spacecraft especially if they go into eclipse situations

quite often. Being in eclipse means that no sunlight is present, which usually happens

when the Earth’s shadow is cast upon the satellite. No sunlight, in turn, means that no

energy is being gathered by the spacecraft, creating a need for the usage of stored energy.

On top of that, batteries can also be required if there is a large discrepancy between the

components nominal power consumption and their peak power consumption.

Propulsion

Spacecraft need propulsion systems, either to change orbits, whether to a higher or

lower orbit, or to maintain an orbit that decays due to dissipative forces. Due to their

small size, most CubeSats do not possess a propulsion system and are not designed for

orbital maintenance. However, some missions do require such a system to be installed.

Furthermore, for spacecraft that do operate at a greater distance from the Earth, due to

the strict ESA space debris mitigation policies stating that satellite re­entry must be done

within 25 years [17], some engineers are starting to think about some propulsion systems

that guarantee such condition.

The vastmajority of the propulsion systemsusednowadaysworkswith the sameprin­

ciple: by ejecting mass with a certain momentum, the same momentum is exerted in the

spacecraft, creating a thrusting force. The best way to assess the efficiency of a propulsion

system is to measure the change in momentum in relation to the mass of propellant used.

This measurement is called the Specific Impulse, usually represented by Isp and its units

are seconds s. For those CubeSats that do operate outside of LEO there are three main

options for propulsion subsystems (though these options can be divided into subgroups

10

themselves)[18, 14]. The first propulsion option is the most simple, cold gas propulsion.

In this type of system, cold gas is simply expelled out of the CubeSat, thrusting it in the

opposite direction. This kind of propulsion system usually has a specific impulse of about

30­70 s. Chemical Propulsion systemswork similarly butwhat is expelled are the gases re­

sulting from the combustion of propellant, that can be solid or liquid. This option is much

more efficient than cold gas (280­320 s) but needs a more complex and heavier propul­

sion subsystem. Lastly, propulsion can be achieved electrically [19]. There are several

ways to achieve this but the basic principle is that electricity gathered by the solar panels

is used to charge the particles of an on­board propellant, that, when exposed to an electric

field, accelerate and are expelled out of the spacecraft. This kind of propulsion is by far

themost efficient (300­3000 s), but produces a very small amount of thrust, making orbit

evolution relatively slow.

Guidance, Navigation and Control

The Guidance, Navigation and Control (GNC) subsystem can be divided into two sep­

arate sections [12]: Orbit Determination and Control Subsystem (ODCS) and Attitude

Determination and Control Subsystem (ADCS). Orbit determination in CubeSat is often

done using a GPS signal from the Global Navigation Satellite System (GNSS), while orbit

control is done by applying thrust on the spacecraft, through one of themethods described

in Sec. 2.1.2. The ADCS is, in fact, the object of this thesis. It is responsible for, firstly,

determining where the satellite is facing and then pointing (controlling) it in the right

direction when required. Attitude determination gathers attitude data from attitude sen­

sors. This can be done in various ways, combining many different kinds of readings from

various sensors, depending on the mission the CubeSat is supposed to perform. Attitude

control, points the satellite in the desired orientation bymeans of attitude actuators. This

can also be done in various ways, depending primarily on the mission requirements, and

secondly, on how tight the mass budget of the satellite is and what kind of orbit it is on.

Usually two or more kinds of actuators are found on satellites, giving it more controlabil­

ity and pointing accuracy. Since this topic is crucial to this thesis, it is covered in greater

detail in Sec. 2.2.

Communications

TheCommunications subsystem [15] consists of the components that create a link be­

tween the satellite and the Earth (or rather a ground station on it), and is one of the most

essential subsystems in any spacecraft and CubeSats are no exception. The main reason

why this subsystem is so important is because even if everything else is fully functional

and the satellite is gathering immensely important data, if it can’t send it to the Earth,

engineers can’t see it. Consequently, all payload and telemetry data is rendered useless,

jeopardizing the mission itself. To operate a communicating satellite successfully, it is

necessary to have a ground station. A ground station is the assembly of the equipment

11

necessary to communicate with a satellite, with most satellites operating using profes­

sional ground stations. In the case of Europe based satellites, the ground stations in ESA’s

Ground Station Network, ESTRACK [20], are themost commonly used. Besides the obvi­

ous payload data, it is often also required that spacecraft transmit housekeeping data that

show engineers on Earth if everything is going according to plan [21]. It is also interesting

to note that the communications subsystem is one of the most underdeveloped parts of

the CubeSat industry, in that it is very difficult to achieve data rates high enough to send

all the essential data gathered in the CubeSat mission to the Earth [12].

Command & Data Handling

The Command & Data Handling (C&DH) Subsystem is composed of an On­Board

Computer (OBC) and it is the part of the spacecraft that is responsible for decoding sig­

nals sent and received by other components. It performs the necessary computations that

provide the operation sequences to be performed by the different subsystems. It also has

the important mission of storing payload and housekeeping data, before encoding it and

sending it to the Communications subsystems that can send it to the Earth. OBCs can

have many configurations of data handling systems, altering the architecture of how they

process data, and that means there are several options for these configurations, depend­

ing on the mission requirements in question. This subsystem is also an integral part of

this thesis and is discussed further in Sec. 2.3.

Thermal Control

Due to the dire and often unforgiving characteristics of space, spacecraft can experi­

ence intense shifts in temperature [12, 15] with temperature changes ranging from about

­100°C to 100°C, depending mainly on sunlight conditions. This is extremely prejudicial

to the well being of the CubeSat since the kind of micro components it uses are often very

sensitive to both high and low temperatures. This means that a satellite must be able to

cope with intense heat and intense cold using the same subsystem. This can be done ac­

tively, using electrically powered heaters and coolers, although that is not often chosen

by CubeSat developers, due to the added power consumption in such a small spacecraft.

The most common type of thermal control used in CubeSats is passive thermal control.

Passive thermal control is achieved by insulating components, using reflective surfaces,

sun shields, and thermal coatings, among other options. Additionally, missions are often

designed in a way that exploits the sunlight conditions of the spacecraft’s orbit to their

benefit, offering a thermal control system that is, in fact, free.

Thermal control for the 3­AMADEUS project is discussed in [22].

2.1.3 State of the Art CubeSat Missions

In this section, two missions are analyzed. The first one is ITU pSAT I, a mission

that, like 3­AMADEUS, is a technology demonstration mission for ADCS components.

12

Despite it being a relatively old mission (launched in 2009), it is quite similar to the 3­

AMADEUS mission, and gives a good insight at how these kinds of missions operate to

this day, despite the technology demonstrated no longer being of great relevance. The

second mission that is discussed is MarCO, a landmark CubeSat mission, that shows the

true potential of this kind of spacecraft.

ITU pSAT I

ITU pSAT I [23] is a satellite that has been designed by students at the Istanbul Tech­

nical University (ITU). It is Turkey’s first student designed picosatellite. The CubeSat has

been launched on September 23rd 2009, aboard a PSLV C14 launch vehicle, from Satish

Dhawan FLP in India. It has been placed in an almost circular orbit with an altitude of

715 km and an inclination of 98.31°, meaning that it is sun­synchronous.

Figure 2.7: 3D render of ITU pSAT I [24].

ITU pSAT I is a technology demonstrator satellite, featuring two payloads: a low

resolution camera and a two­axis passive stabilization experiment. ITU pSAT I’s ADCS

features a magnetorquer rod as an actuator and multiple sensors: three gyros, three ac­

celerometers and a three­axis magnetometer. The OBC is a FM430 flight module, featur­

ing a MSP430 microcontroller, also present on 3­AMADEUS’ OBC, although the Abacus

OBC also has a FPGAmodule. FM430’smicrocontroller has several buses (in this context,

a bus is a system that transfers data between electronic components), including I²C, SPI

andUART, withmost subsystems being controlled by the I²C bus. Regarding the payload,

it is interesting to note that the magnetometer data is used to correct the inertial drift as

well as the inherent bias. The most important part of this mission is that that the attitude

data is sent back to the Earth. This is done by grouping it into packets and sending it

to the OBC via the I²C bus. The OBC, in its turn formats the signal for downlink by the

Communications subsystems. The satellite is still operational to this day.

13

MarCO

MarCO (Mars Cube One) [25] was a deep space NASA CubeSat mission that oper­

ated alongside Insight, aMars landermission, providing operational support. TheMarCO

mission, launched on December 29th 2018, consisted of two 6U CubeSats (MarCO­A and

MarCO­B) that flew to Mars with Insight. The CubeSats stayed in Mars’ orbit while In­

sight prepared for landing. The MarCO CubeSats served as information relays, providing

Insight with useful telemetry information while it landed. While having the information

relayed to Insight was of great utility, the true importance of the MarCO mission was to

test and show the potential of using CubeSats on deep space missions, proving not only

that they can work there on their own, but also provide important assistance to other

larger deep space missions.

Figure 2.8: One of the MarCO CubeSats during production [26].

The payload of theMarCOCubeSats was a radio, more concretely the Iris v2 radio, an

X­band transceiver that includes a UHF receiver [27] that was used to receive telemetry

data sent from Insight during its landing. The ADCS for the MarCO mission was com­

posed of a star tracker, a gyro, and coarse sun sensors for sensors and three­axis reaction

wheels for actuators. In terms of C&DH, the MarCO CubeSats used an OBC based on the

one used in the INSPIRE mission, featuring an MSP430 microcontroller. The software

implemented in this OBC had a key feature in the fact that it allowed for fault detection

and response to those faults within the satellite subsystems.

2.2 Attitude Determination and Control Subsystem

The Attitude Determination and Control Subsystem is, as previously mentioned, the

subsystem responsible for satellite orientation identification and control. This subsystem

can be divided into sensors and actuators. In this section, the most common types of

14

components for this subsystem are analyzed in greater detail, as well as the combinations

of those components that are often found on satellites nowadays.

2.2.1 Sensors

The ”Determination” part of ADCS refers to the ascertaining of the orientation of the

satellite, or rather, its attitude. Attitude determination is done with the aid of Attitude

Sensors. In space, some physical parameters are directly dependent on the attitude of

the satellite, meaning that, by getting a reading of one of those parameters, it is possible

to compare them with known specific values for specific attitudes and infer the current

attitude. Most sensorswork in this fashion, and themost common examples are described

next [28, 29].

Sun Sensors

Although there aremultiple types of Sun Sensors the working principle is valid across

all types [30]. In typical sun sensors, an array of photosensitive cells detects the sunlight

intensity in each cell, yielding a signal that is later translated into a sun vector indicating

the sun’s direction. If one knows in what direction the sun is and has access to additional

attitude data, it is possible to determine the satellite’s attitude with precision.

Figure 2.9: NSS Fine Sun Sensor, a CubeSat optimized sun sensor [31].

Sun sensors can be a great choice, depending on themission they are implemented in.

While they are extremely light and low power consuming, their biggest flaw is that, quite

obviously, they don’t work in eclipse conditions. If a satellite is to go on a sun synchronous

orbit that is constantly lit by sunlight, sun sensors are a great option. On the other hand, a

mission with a large eclipse period needs to extrapolate its attitude in eclipse conditions,

which may be dangerous and require an extra set of sensors.

15

Star Trackers

Star Trackers are attitude sensors that consist of a camera or photocell that image

the sky, as seen by the spacecraft’s perspective. Using a star catalog along with data about

the spacecraft’s spatial position, the star tracker can identify which stars are which. Con­

sidering a data base that is uploaded to the satellite, the star tracker relates the stars’ sizes

and positions in relation to one another to ascertain where the spacecraft is facing, thus

determining its attitude.

Figure 2.10: A star tracker’s ”view” [32].

One of star trackers’ [30] biggest advantage is that they can determine a spacecraft’s

attitude with a fair degree of reliability, even in eclipse conditions. On the other hand,

they usually weigh up to 300g and consume up to 1W, a lot more than, say, a three­axis

magnetometer. Despite being one of the most reliable options for attitude sensing, star

trackers also have some risk of failure since they can give bad readings when light is re­

flected on the satellite itself, as well as having amultitude of optical errors associated with

their cameras.

Horizon Sensors

Horizon Sensors, or when Earth based, Earth Sensors, are attitude sensors often

found in spacecraft. Their working principle is that by using infrared sensors (some Earth

sensors use sensors in the visible spectrum but that is not optimal since it doesn’t work in

eclipse conditions), they can detect where the Earth’s horizon is, in relation to the satellite,

giving its attitude [13, 33].

16

Figure 2.11: An IRES­C infrared Sun Sensor [34].

Much like star trackers, horizon sensors give a fair estimate of the satellite’s attitude.

In general they share the same advantages and disadvantages, save for the fact that star

trackers aremore accurate andmore expensive, while consumingmore power and weigh­

ing more. When accuracy is not of the uttermost importance, horizon sensors are a very

valid option. Their obvious constraint is that they can’t be usedwhen not orbiting a planet,

and don’t work as well in elliptic orbits.

Gyroscopes

Gyroscopes are a particularly interesting attitude sensor, in that they sense the an­

gular rate in each of satellite’s axis, rather than the attitude itself. Gyros are seldom, if not

never, used by themselves since they don’t provide attitude data. If coupled with another

sensor that does yield attitude data, gyros can be a very powerful component to increase

accuracy [13, 30].

Magnetometers

The use of Magnetometers is central to this thesis, and consequently, the opera­

tion and characteristics of this components are explored more thoroughly. As it is widely

known, planet Earth has a magnetic field around it. This field can be schematically repre­

sented by Fig. 2.12. It is worth noticing that due to the effect of the Sun on this field, Fig.

2.12 depicts the shape of the geomagnetic only in the close vicinity of the planet Earth,

since outside of it the effect of the Sun’s pull disrupts its symmetry.

17

Figure 2.12: The Earth’s Magnetic Field [35].

The interesting aspect of this field is that, from years of studying it, scientists onEarth

have developed good models for the geomagnetic field induction vector. Since that vec­

tor can be calculated a priori, when a satellite is in a known position, the offset between

the reading in a magnetometer and the expected reading at that point (in an Earth­bound

reference frame) gives relevant data on the attitude of the satellite that can be coupled

with other sensor data to yield a precise estimation of the satellite’s attitude [13, 30, 36].

This process can also be reversed to give a satellite’s position, considering a known atti­

tude. Considering that, a three­axismagnetometer is simply a sensor of themagnetic field

induction in each axis.

Due to their exceptionally lowmass and power consumption, magnetometers are the

most used sensors in the CubeSat industry. Despite all the advantages that make mag­

netometers such a popular choice, they still have their share of constraints. The most

obvious one being that they can only operate in geocentric orbits, rendering them un­

usable for deep space missions. Another issue with magnetometers is how easy it is to

disturb the readings with the dipole moment of the magnetorquer (a common actuator

that is discussed in Sec. 2.2.2), as well as with any ferromagnetic materials found within

the satellite. A typical magnetometer shouldn’t weigh over 0.1 kg and should consume

around 0.75W.

2.2.2 Actuators

Actuators are related to the ”Control” part of ADCS since they control the satellite atti­

tude. Often, a control law is implemented into the spacecraft’s OBC. In this case, the OBC,

considering inputs for the attitude sensors, outputs the actuation necessary to achieve the

desired attitude. The way in which that actuation can be achieved is, quite intuitively,

through actuators. The kind of actuators that is to be used depends on various mission

details, with many combinations of these factors leading to a different kind of actuator

or even to different kinds of actuators implemented simultaneously. A description of the

most common attitude actuators as well as their functioning follows.

18

ReactionWheels

Reaction Wheels are one of the most common actuators found in CubeSats. They

are accurate and easy to implement, with the working principle being quite simple: by

spinning a physical wheels of a certain mass and radius, through conservation of angular

momentum, the satellite responds by increasing its angular velocity in the opposite direc­

tion [15]. To achieve control on all three axis, at least three wheels are needed, however,

configurations of four wheels are often used to achieve some fault tolerance in the satel­

lite’s design [29]. One of the biggest issues with reaction wheels is that they may become

saturated: if one of the wheels reaches itsmaximum angular velocity, it can no longer pro­

duce torque on that axis, which is problematic. To overcome this problem other actuators

are often used to desaturate the reaction wheel. The other important issue with reac­

tion wheels is how heavy they are, considering CubeSats’ mass limitations. The weight of

reaction wheels can vary depending on the torque output that is required but their perfor­

mance/weight ratio is low when compared to other actuators. Control algorithms using

solely magnetic actuators such as the one present in this thesis intend to solve this issue.

Figure 2.13: A tetrahedral configuration for four reaction wheels. [37]

MomentumWheels

Momentum wheels are very much like reaction wheels, in that they are spinning fly

wheels that control a spacecraft’s attitude. The main difference is in how they are op­

erated: In the case of momentum wheels, the wheel is spinning constantly, leading to a

much more stable situation. Using momentum wheels, disturbance torques on axes per­

pendicular to the momentum wheel’s spin axis cause the satellite’s wheel induced spin

axis to tilt slightly, rather than causing an unwanted rotation.

Thrusters

Thrusters are the simplest, most intuitive way to achieve attitude control on a satel­

lite. The system however, is by far the heaviest, as it requires propellant as well as the

19

thrusters themselves. A possible more efficient implementation of thrusters would be on

a spacecraft that already features a propulsion system to begin with. One factor in favour

of thrusters is the fact that they should work under any circumstances, should there be

sufficient propellant [29, 15].

Figure 2.14: Depiction of thrusters working in the Space Shuttle [38].

Thrusters simply push gas out of the spacecraft, generating as opposing force. Thrusters

should be placed near the edges of a spacecraft, so that the force is exerted as far away

from the spacecraft’s center of mass as possible, maximizing the produced torque.

Magnetorquers

Like magnetometers, magnetorquers too are key to this work, so a more in­depth

analysis ismade. Magnetorquers work in a simple fashion (simplicity is common in Cube­

Sat subsystems). They are merely a metallic coil, through which a current flows, gener­

ating a magnetic dipole and respective torque that forces the magnetorquer rod to align

itself with the magnetic field vector. Magnetorquers are a lightweight, low power con­

suming component, that is widely used in the Small Sat sector, often along one or more

reaction wheels [15].

Figure 2.15: A three axis Magnetorquer CubeSat board [39].

20

This need for a reaction wheel comes from the biggest issue related to magnetor­

quers: underactuation [40]. Considering a reference frame with one axis aligned with the

geomagnetic field vector and the other axes having no magnetic induction, any magnetic

dipole vector generated by a set of magnetorquers will result in a torque vector that is al­

ways zero on the plane of the geomagnetic field. This means there are three degrees of

freedom for the satellite, but only two that can be actuated upon, meaning that this sys­

tem is underactuated. The other obvious disadvantage of this kind of actuator is that, like

magnetometers, they are of no use outside beyond the Earth’s vicinity. The torque they

produce is also small when compared to other actuators.

2.2.3 State of the Art ADCS Designs

There are several options, both for attitude actuators and sensors alike, but what re­

ally makes an ADCS work is how different types of sensors and actuators can be put to­

gether to achieve a specific goal, while maintaining the power consumption and mass at a

minimum. Besides the consumption and mass design criteria, when designing an ADCS,

one can set a third indicator. Usually, this third indicator is either to maximize precision

or to maximize long term performance [41].

One option for selecting ADCS configurations is the usage of integrated units. In­

tegrated units are pre­assembled ADCS modules that spacecraft designers can acquire

directly from the manufacturer. One of the biggest advantages of using this kind of mod­

ule is that their performance is already validated, with many of them having considerable

flight heritage, a crucial factor when selecting CubeSat components. According to [41],

from fifteen selected CubeSats missions, seven of them have used integrated units. In

this section, a few ADCS state of the art ADCS configurations, including integrated units,

are described.

OPTOS

TheOPTOSmission [42] is a 3UCubeSat project by the Spanish SpaceAgency (INTA)

that launched in 2013. Its purpose is to test the in­flight capabilities of optical fiber com­

munications as well as novel OBC designs. These designs are, like the one in the center

of this thesis, FPGA based. Despite not being directly related to the payload, an ADCS is

still required, although its accuracy and precision is not paramount to the success of the

OPTOS mission.

21

Figure 2.16: A 3D depiction of a fully deployed OPTOS CubeSat [42].

This mission’s ADCS is not an integrated unit, but rather a selection of actuators and

sensors. More concretely, it features a reaction wheel and five magnetorquers. The inclu­

sion of several magnetorquers is due to their ability to desaturate the reaction wheel, the

primary actuator. Additionally, they are used to point the satellite to the Earth when in

observation mode. The sensors used are two sun sensors and a three­axis magnetometer.

Additionally, its camera can be used as a sunlight sensor for attitude data.

TEMPEST­D

TEMPEST­D [43] is a project by the Colorado State University (CSU) consisting of a

6U CubeSat whose purpose is to demonstrate the capabilities of nanosatellites to perform

weather monitoring.

Figure 2.17: TEMPEST­D CubeSat during production [43].

Since this mission requires precise imaging, a precise and reliable pointing system is

required, thus, the designers at CSU have opted for an integrated unit for this mission’s

ADCS. TEMPEST­D uses an XACT­50 ADCS module, produced by Blue Canyon Tech­

nology. The XACT­50 module features a star tracker, a gyroscope, a sun sensor, and a

22

magnetometer as sensors, while its actuation is achieved via reaction wheels and magne­

torquer rods. This module has an impressive five year life expectancy considering how

precise it is.

Figure 2.18: XACT­50 integrated module [44].

DeOrbitSail

The DeOrbitSail CubeSat mission [45] has been developed at the Surrey Space Cen­

ter (SSC) with the purpose of demonstrating a novel de­orbitingmechanism. Thismecha­

nism involves a sail being deployed, maximizing the drag effect of the Earth’s atmosphere.

In this particularmission, the ADCS is important because in order tomaximize this effect,

the sail should be perpendicular to the satellite’s orbital velocity.

Figure 2.19: Artist’s depiction of DeOrbitSail fully extended [45].

The designers at SSC, aiming for reliable and precise control have chosen to use a

integrated ADCS module, CubeADCS. CubeADCS features a three axis magnetometer, a

sun sensor yielding data on two axes and a nadir sensor yielding information on two axes

as well, a coarse sun sensor and a rate sensor. Amomentumwheel is installed as actuator,

as well as magnetorquers. Additionally, the sail can extend in a manner that can also

control rotation on one axis.

23

After the satellite’s launch in 2015, there has been a failure in the ADCS system, that

the developers think was caused by reaction wheel motor cables being disconnected. This

failure has led to the inability to detumble (stop the satellite’s initial spin rate after deploy­

ment) the satellite, making the sail deployment impossible. The expected de­orbit time is

of about 20 years.

After looking at these state of the art concepts, one can see howmagnetic components

are extensively used in ADCS systems and consequently, how improving them is of the

uttermost importance.

2.3 Command & Data Handling

Command & Data Handling [15] or C&DH is, like mentioned previously, the satel­

lite’s subsystem in charge of handling received and sent data, whether that communica­

tion is between components or between the satellite and a ground station. This subsystem

consists of an On Board Computer, itself consisting of several sub­components.

2.3.1 OBC Overview

An OBC can usually be divided into three main sections [46]: the processing unit,

the memory unit and the connecting interfaces. Many factors associated with these parts

must be taken into account when designing or selecting an OBC, depending on what is

required for the mission’s successful completion. Next, the main factors and parameters

are discussed.

Processing Capability

An OBC’s Processing Capability is one of its most pivotal aspects since it affects how

fast and how many processes can be run simultaneously in an OBC and how complex

these processes can be. These processes can be of various natures, but in most satellites

they are attitude control computations, energy management, coding and decoding radio

signals, as well as controlling the payload. These tasks are handled by the OBC’s Central

Processing Unit (CPU), usually a microprocessor, that can be used standalone or within

ASICs (Application­Specific Integrated Circuits) such as Microcontrollers (MCUs) that

contain them, or even programmed inside Field Programmable Gate Arrays (FPGAs).

This thesis focuses on the implementation of an attitude control algorithm in the

FPGA of an Abacus OBC, produced by Gauss Srl, so it is important to clarify the function­

ing and why the choice has been to implement the algorithm in the OBC’s FPGA rather

than on amicrocontroller or a standalone microprocessor. This is discussed in Sec. 2.3.2.

Memory and Storage

In any sort of computer, in broad terms, memorymeans the ability to store data. Typ­

ically, memory is divided into Read­Only Memory (ROM) and Random Access Memory

24

(RAM). The main difference is that while ROM is non­volative, meaning that the data is

still kept when the device is turned off (usually ROM is only used to store the program

that boots the device), RAM reflects an OBC’s ability to keep relevant data while running

numerous and complex processes inside the OBC. This is incredibly important when a

satellite requires strict management and coordination of all subsystems.

While memory contemplates the computer’s capacity to keep track of tasks instan­

taneously, storage regards its capacity to hold data that it isn’t using. This means that

storage is pivotal in circumstances such as holding large payload data before sending it to

the Earth.

Interfaces

A crucial aspect of any OBC is also its interfaces. Since most components are COTS,

they all have different ways of communicating with other devices. Since the OBC is the

center of all these communications, it is important that is has as many interfaces as possi­

ble. I2C, SPI, CAN, UART and USB are some of the most common interfaces found in this

kind of component. The most common interfaces found in OBCs are discussed further in

Ch. 3.

Size and Power Consumption

Like any other component, the lighter and least power consuming an OBC is, the

better. Despite this, the OBC is central to the well­functioning of a satellite unlike any

other component,meaning that it can never really be switched off, only set to power saving

modes. Having this in consideration, it is fundamental to assess how these modes in an

OBC can be tweaked and managed to prevent unnecessary energy consumption. Despite

this energy manageability, depending on the mission, a smaller OBC with less processing

power might be a better choice.

2.3.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays or FPGAs are a type of integrated circuit that is

mostly distinguishable from most other circuits of the sort for its capability to be pro­

grammed and reprogrammed after its manufacture [47, 48].

FPGA Overview

Traditionally, only major electronic companies could afford to design circuitry, and

as a result, most designs were application specific, and consequently are usually called

Application Specific Integrated Circuits (ASICs). Since these integrated circuits weren’t

customizable at all, for someone to produce a functioning design, large amounts of repet­

itive and often unused hardware used to be required. The creation of FPGAs ­ a device

whose circuitry can be designed to fit the designer’s needs ­ has come to solve this issue,

25

however, it was not until recently that FPGAs became financially accessible to most com­

panies [49].

What an FPGA is, in practice, is an array of hundreds of thousands or evenmillions of

programmable logic blocks, that can be connected in different ways to produce different

designs. More specifically, the fabric of FPGAs are logic gates, registers that hold data,

and wires that connect them, with the typical arrangement looking something like Fig.

2.21, even though specific functional elements may be present.

Figure 2.20: Typical FPGA architecture [50].

Usually, to program an FPGA device, one uses a Hardware Description Language

(HDL). The most common languages used to program these type of devices are VHDL

and Verilog, though some new languages such as OpenCL are also starting to be used.

FPGAs vs. ASICs

Electrical engineers nowadays are often posed with the question [47, 51]: should one

use an FPGA or an ASIC for an embedded system design? As a result, it is important to

know what exactly is the context for which one is more appropriate than the other, and

why an FPGA is the most appropriate choice for this thesis’ project.

While ASICs such as microcontrollers/microprocessors have built­in circuitry onto

which a program can be loaded in order to perform the required tasks, an FPGA is much

more flexible since, when it is programmed, the actual circuitry is changed, so that the

necessary task can be performed. This allows for specific capabilities and much more de­

sign freedom. In fact, despite having typically lower clock counts (being slower), FPGAs

can parallelize hardware, meaning that tasks can be performed concurrently, thus boost­

ing the amount of data that can be treated per second. On top of that, FPGAs are field

programmable, allowing for several programs to be uploaded onto the same product at

different times. This makes it look like FPGAs would be preferable but what sets FPGAs

back is that due to extensive hardware, they are quite power consuming, which is one of

the limiting factors in OBC design and management. Apart from that, one must also con­

sider the longer design time for an FPGA. As a result, themanagement of all the spacecraft

26

subsystems for this mission apart from the ADCS is done by the microcontroller on the

ABACUS OBC. For the ADCS, the employment of an FPGA is crucial since this mission

is an ADCS technology demonstrator, in which several attitude control algorithms must

be tested. Using an FPGA in this particular context is useful since it allows for the satel­

lite to receive a bit­stream from Earth containing a new program that it can load, thus

implementing a new control algorithm that can be tested as well.

2.3.3 State of the Art OBC Designs

In this section, a brief look is taken at two CubeSat OBCs so as to better grasp what

current OBC technology offers.

IMT CubeSat On­Board Computer

The IMTCubeSatOn­BoardComputer [52] features a 200MHzmicroprocessor (CPU),

16MBofRAM, two channels for each of the following communication protocols: SPI, CAN

Bus, I2C andUART, while it can also be connected by USB and JTAGwhile on Earth. This

OBC weighs 38 grams and should consume about 300 mW of power. It also has a built in

interface for a camera, which is a useful feature for Earth observation missions.

ISIS OBC

The ISIS OBC [53] in turn, has a 400 Mhz CPU as well as 64 MB of RAM. It features

the same communication ports as the IMT OBC. This component weighs 76 grams and

consumes 400mW of power. An interesting characteristic of this OBC is that it features a

three axis magnetometer as well as magnetorquer adapted interfaces to ease the commu­

nication with ADCS components.

Figure 2.21: ISIS On­Board Computer [54].

It’s interesting to see that the ISIS OBC has almost every parameter doubled in re­

lation to the IMT OBC, while the weight and size is also doubled. One can assume that

the price also increases significantly. This analysis goes to show that different options are

27

available, and as a consequence it is important to assess what the mission requirements

so as not to oversize or undersize such an important subsystem.

2.3.4 FPGAs in Satellite Attitude Control

FPGAs in Space

Before taking a look at specific examples of FPGAs being used in Attitude Control in

CubeSats, it’s relevant to discuss themany other applications that FPGAs have in the space

industry. According to [55], the spaceborne reprogrammability of FPGA is a characteristic

that is highly sought after in the space industry due to the hazardous conditions of space

that often requires changes to the designer’s initial plans.

One example of such applications is discussed in [56], where an FPGAs capabilities

are exploited to enable optimized image compression. This is essential in satellites given

the limited storage and transmission rates found in spacecraft.

The configurable aspect of FPGAs in this example is relevant in that, when it is com­

pared with a software implementation, for example in amicrocontroller, the FPGA imple­

mentation is much less complex. This simplicity largely reduces the risk of computational

errors due to the effect of radiation found in the Earth’s orbit.

The Flying Laptop

An example of an FPGA used in the ADCS of a CubeSat that actually flew can be found

in the Flying Laptop mission [57, 58]. In this mission, an FPGA has been selected as a

processing device since it allows for parallelization, making the required image processing

faster. For the ADCS part, the attitude sensors and actuators communicate through RS­

422 (UART), digital I/O lines, I2 C and IBIS buses. The FPGA takes attitude inputs from

the sensors via the aforementioned channels and calculates the necessary actuation via a

control law, that is then sent to the actuators. This method is somewhat similar to the one

used in the current work, as is discussed in greater detail in Ch. 7.

Figure 2.22: Artist’s rendition of the Flying Laptop satellite [59].

28

A FPGA­based Approach to Attitude Determination for Nanosatellites

A final example of an FPGA based attitude control is proposed in [60], where all pro­

cessing in the OBC is done by the FPGA. The reasoning behind this decision is that the

FPGA can run all these processes parallelly, thus maximizing system performance. In

this case, the employment of an FPGA regarding attitude control has more to do with

the somewhat complex computation done when estimating the current attitude through

a Spherical Simplex Unscented Kalman Filter. The computations are perfomed using sin­

gle floating point precision. An algorithm named CORDIC is used to accurately represent

trigonometric functions. The FPGA designers, similarly to the work done on this thesis,

have implemented counters in order to employ iterative processes. The authors of this

article claim that implementing the OBC’s processing solely on the FPGA increases sys­

tem performance to a level superior to even some desktop computers, due to how they can

allocate resources.

29

30

Chapter 3

Literature Review

The Literature Review chapter aims at reviewing some of the theoretical concepts

that are pivotal to the completion of this thesis’ project. Firstly, a few notions of how

satellites orbit the Earth are presented, as it is important to understand how some orbital

parameters affect a satellite’s attitude.

Additionally, the concepts and formulations that allow one to understand and model

how a satellite behaves in terms of its attitude, as well as the effect that the space environ­

ment and attitude control torques have on such behaviour, are presented.

Finally, the digital systems notions required to understand the real life FPGA imple­

mentation of the control algorithm that allows for aHIL simulation are presented, namely

how decimal and negative numbers are represented in a way that the FPGA can under­

stand ­ binary ­ and how arithmetic can be performed with those numbers. Digital com­

munication between systems such as an FPGA and a personal computer is also covered,

while an overview of a typical FPGA’s building blocks is also made.

3.1 Orbital Mechanics

3.1.1 Keplerian Orbits

If a body is in the vicinity of a celestial body of great mass, its trajectory about it is a

conic section, called an orbit. In his time, JohannesKepler proposed laws of planetarymo­

tion that describe an idealized orbit that are still used to this day in the aerospace sector.

Modelling orbits mathematically allows one to parametrize several aspects of a specific

orbit and predict orbital motion with a good degree of accuracy, due to the interfering

forces existing in space being so small.

These orbits have a focus ­ the larger body being orbited ­ while the smaller body

orbits around it in a motion that can be described through several types of conic sections,

such as ellipses, circles (symmetric ellipses), parabolas, and hyperbolas [61].

31

Figure 3.1: Conic Sections [62].

While circles and ellipses are limited by the central body, parabolas and hyperbolas

describe the motion of a body that escapes its pull.

The position of an orbiting body in relation to the central one, in polar coordinates

is then given by Eq. (3.1) [61], with an elliptical orbit being schematically represented by

Fig. 3.2.

r = a
1 − e2

1 + ecosθ
(3.1)

Figure 3.2: Diagram of a 2d elliptical orbit.

In Eq. (3.1), r, the polar radius, is the distance to the central body. e is the orbit

eccentricity, and a is the semi major axis. θ is the true anomaly of a given position. It is

important to note that the polar radius is the sum of the orbiting body’s altitude at a given

point and the Earth’s radius. These concepts are discussed more thoroughly in Sec. 3.1.2.

It is important to discuss some more orbital concepts relevant in the context of atti­

tude control before moving to three dimensional orbits [61, 63]. With that in mind, the

orbital linear velocity for a circular orbit is given by v =
√

µ
a , where µ is the Earth gravi­

tation parameter discussed further in Sec. 3.3.3. The orbital period, the time it takes for

32

the orbiting body to complete an orbit, is of course inversely proportional to the orbital

velocity and is given by T = 2π
√

a3

µ .

3.1.2 Orbital Elements

The orbital parameters and Eq. (3.1) allow one to describe the motion of the orbiting

body in two dimensions, within the plane of an orbit, but if one wants to describe a three

dimensional orbit around a three dimensional central body such as the Earth, in total,

six keplerian orbital elements are necessary [61, 64]. The first three parameters are used

to describe the position of the satellite within the orbit and have been briefly described

earlier, while the last three represent the orientation of the orbit plane and the position of

the apsides line within that plane. This orientation is described in relation to a reference

plane, that for Earth orbiting spacecraft is usually the equatorial plane [61].

Eccentricity

The eccentricity is a dimensionless value that represents the shape of the orbit in

terms of conic sections: e = 0 describes a circular orbit where r is constant and 0 < e < 1

represents an elliptical orbit. Finally e = 1 describes a parabola, while e > 1 describes a

hyperbola. The remaining orbital parameters are described assuming an elliptical orbit.

Semi­Major Axis

The semi­major axis, a, is the descriptor of the orbit size. It is the average between

the perigee and apogee radii. For a circular orbit, this parameter becomes simply the orbit

radius.

True Anomaly

The true anomaly, θ gives the position of the satellite within the orbit. It is the angle

between the radius vector at a chosen point and at perigee.

Inclination

The orbital inclination, i, is one of the parameters that describes the orientation of the

orbital plane. It is the angle between the normal to the equatorial plane and the normal

to the orbit plane. An inclination of 0º means that the orbit is equatorial, while an orbit

with an inclination of 90º is called a polar orbit.

Longitude of the Ascending Node

The longitude of the ascending node, Ω, is the angle (measured eastwards) between

the point of zero longitude and the ascending node. From the two points that are at the

33

ends of the line that intercepts the orbital and reference planes, the ascending node is the

one in which the satellite goes from the southern to the northern hemisphere.

Argument of Perigee

The final parameter that describes the orbit orientation is theargument of the perigee,

ω. It measures a rotation of the orbit about its central body. This rotation is given by the

angle between the ascending node and the radius vector at perigee, measured in the di­

rection of motion. For circular orbits this parameter is, of course, meaningless.

Figure 3.3 illustrates the set of orbital parameters for an elliptical orbit in three di­

mensions.

Figure 3.3: Orbital elements depicting an orbit in 3D [65].

3.1.3 Sun­Synchronous Orbits

There are several types of special orbits. One of these types is the geostationary orbit,

in which a satellite stays above the same location on the Earth’s surface, but one that

must be discussed further, since it is the orbit type of the 3­AMADEUS mission, is the

Sun­Synchronous Orbit (SSO) [66, 67]. An SSO, often called heliosynchronous orbit, is a

kind of orbit that, like the name suggests, is synchronized with the sun. What this means

is that the angle between the orbital plane and the sun’s direction is kept constant. For this

to happen, the orbit must precess, i.e., rotate, as the Earth rotates about the Sun, meaning

that it needs to rotate about 1 degree per day. The aspect of SSOs that is exploited in this

mission is, in fact, the sunlight conditions it allows for.

By placing a spacecraft in a special kind of SSO, the dusk­dawn SSO ­ that can be

achieved by launching it at the right time ­ the satellite can ”chase” the sunset and sunrise

at either side of the globe, making it pass at locations where it is dusk and then where it

is dawn. What this means is that the satellite is always sunlit, maximizing the amount of

solar energy received by the solar panels. This kind of orbit is ideal for satellites with very

small solar array area, as is the case of the 3­AMADEUS CubeSat.

34

Finally, to compute the necessary orbital inclination leading to SSO orbital preces­

sion, given a certain orbit altitude, Eq. (3.2) can be used:

cos(i) = −(
a

12352
)7/2 (3.2)

where a is the orbit semi­major axis and i its inclination.

3.2 Attitude Parameterization

This section presents some of the various ways in which attitude can be represented

that allowone to clearly understand anobject’s orientation. Initially, the references frames

that are commonly used are addressed. Additionally, a few ways of describing the current

orientation of a body in space, in relation to those reference frames are presented. In this

thesis all reference frames used are right hand orthogonal systems.

3.2.1 Reference Frames

When one describes the attitude of an object, its orientation is always expressed in

relation to a reference. In light of that, some of the reference frames that are usually used

in spacecraft attitude control and are used in this thesis are presented [68]:

Earth­Centered Inertial (ECI) Reference Frame

The first reference frame discussed is the Earth­Centered Inertial (ECI) Reference

Frame, denoted here with an index i. The ECI frame has its origin on the center of the

Earth. The frame is fixed in the absolute space, and the Earth rotates about its iz axis

(which points Northwards) with an angular velocity of ωe =
2π
Te
, where Te is the Earth’s

rotation period. The ix axis points toward the current epoch vernal equinox and the iy axis

completes a right­hand system.

Figure 3.4: Representation of the ECI frame.

35

Orbit Reference Frame

The first of the two satellite­bound reference frames that are discussed is the Orbit

Reference Frame. This reference frame is denoted with an index o. The chosen orbit

frame considers a circular orbit and its center lies on the satellite’s center of mass. The

ox axis points towards the satellite’s motion (which is tangential to the orbit). The oz axis

points to the local vertical (also called zenith) and the oy axis is along the orbit normal.

This means that the orbit reference frame spins about its oy axis with an angular velocity

of ωo =
2π
To
, with To being the orbit period.

Figure 3.5: Representation of Orbit Reference Frame.

Body Reference Frame

The Body Reference Frame ­ denoted with an index b ­ shares its origin with the

orbit frame and is attached to the satellite’s principal inertia axes, that are addressed in

Sec. 3.3.1. This means that this frame spins as the satellite spins. In this case it is chosen

that the bz axis is the axis of smallest moment of inertia, while the by axis is the axis of

largest moment of inertia.

Now that all axes has been defined, it is paramount that one looks back at the def­

inition of attitude and sees that the notion of attitude and the ways to represent it that

are discussed in this chapter, in fact describe nothing more than the rotation of the body

frame ­ the object ­ in relation to other frames (ECI or Orbit) ­ the reference.

3.2.2 Types of Attitude Parameterization

Some methods to describe attitude in a way that can represent all possible orienta­

tions are discussed in this section. While some methods to describe attitude have advan­

tages over others ­ this is also discussed in this section ­ the quaternion representation is

one of the most commonly used for simulation and mathematical modelling [28]. As a

result, quaternions are used to compute this work’s attitude model.

36

Rotation Matrix

Considering an arbitrary vector v in an arbitrary frame A so that:

vA = [vA
x , v

A
y , v

A
z]

Consider now the same vector v but this time represented in a different reference frame

B:

vB = [vB
x , v

B
y , v

B
z]

there is a matrix RB
A [69, 70] that can transform a vector in frame A into the same vector

but with its components in frame B such that:

vB = RB
A vA (3.3)

where R complies with:

R ∈ R3x3, RT R = I, det(R) = 1

also, the matrix that transforms vector v from frame B back to frame A is one such that:

RA
B = RB

A
−1
= RB

A
T

(3.4)

Suchmatrix is called aRotationMatrix. Besides this interpretation, in which a frame

is rotated to another frame ­ useful when interpreting vectors in the different frames dis­

cussed in Sec. 3.2.1 ­ a rotationmatrix can also represent a rotation of a given vectorwithin

a frame. The first interpretation can also be viewed as a representation of the rotation of

a frame in relation to another frame. A rotation matrix can also be called a Direction Co­

sine Matrix, in which its elements represent the cosine of the angle between the axes of

two reference frames. If one chooses the body frame as one of those reference frames, the

object’s attitude/rotation of its body frame is represented.

Quaternions

Quaternions are a parameter that represents attitude/rotation of the body frame through

a four dimensional vector. They do so through a three­dimensional sub­vector ­ an axis

about which the reference frame must be rotated in order to get the rotated body frame

­ and lastly, a one­dimensional vector ­ the angle of rotation about that axis. The usage

of quaternions is recommended since they have no singularities and usually require less

computational power, despite the rotation they represent being harder to visualize directly

from their parameters [71, 36]. The two parts of a quaternion are then represented as:

37

ε =


q1

q2

q3

 ; η = q4 (3.5)

so that,

q =

ε
η

 = a sin(ϕ2)

cos(ϕ2)

 =

q1

q2

q3

q4

 (3.6)

where a is the Euler axis vector (the one about which a reference frame must be rotated)

and ϕ is the angle of rotation (how much it has spun).

To convert from a quaternion rotation notation to the rotation matrix representation one

uses [69, 36]:

R = I + 2ηS (ε) + 2S (ε)2 (3.7)

where I is the identity matrix and S is the skew­symmetric operator for a three dimen­

sional vector. This means that S (ε) is given by Eq.(3.8).

S (ε) = S ([q1, q2, q3,]T) =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (3.8)

If the quaternions represent a rotation of a frame B in relation to a frame A, the rotation

matrix that Eq. (3.7) yields is the rotation matrix that relates the components of a vector

in frame B to the components of the same vector in frame A, RA
B.

Euler Angles

The finalway of representing rotations that is discussed here areEuler Angles [71, 72].

To represent rotations (either of reference frames or of vectors), Euler angles interpret

them as a sequence of three different sub­rotations about each axis. Three angles rep­

resent the sequence of rotations necessary to achieve the complete rotation. The angles

naturally depend on the rotation sequence that is chosen.

Considering that consecutive rotations about the same axis and negative rotations

about an axis aremeaningless then there are only twelve different valid rotation sequences:

ZXZ ; XYX ; YZY ; ZYZ ; XZX ; YXY and XYZ ; YZX ; ZXY ; XZY ; ZYX ; YXZ

The angle of rotation about the X axis is commonly referred to as roll, ϕ. About the Y

axis it is usually called pitch, θ, while about the Z axis it is yaw, ψ.

The corresponding rotation matrix can be obtained by multiplying matrices of each

38

one of the single rotations. If one assumes the representation of the rotation of frame B

in relation to frame A by a (ψ, θ, ϕ) set of Euler Angles, in the ZYX rotation sequence (for

example) with the rotation matrix for each of the rotations being:

Rx(ϕ) =


1 0 0

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ) cos(ϕ)


Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)


Rz(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



(3.9)

then the corresponding rotation matrix representation is:

RA
B = Rz(ψ)Ry(θ)Rx(ϕ) (3.10)

RA
B =


c(θ)c(θ) c(θ)s(θ)s(ϕ) − s(θ)c(ϕ) c(θ)c(ϕ)s(θ) + s(θ)s(ϕ)

s(θ)c(θ) s(θ)s(θ)s(ϕ) + c(θ)c(ϕ) s(θ)s(θ)c(ϕ) − c(θ)s(ϕ)

−s(θ) c(θ)s(ϕ) c(θ)c(ϕ)

 (3.11)

or in quaternions [73]:

q =


s(ϕ2)c(θ2)c(ψ2) − c(ϕ2)s(θ2)s(ψ2)

c(ϕ2)s(θ2)c(ψ2) + s(ϕ2)c(θ2)s(ψ2)

c(ϕ2)c(θ2)s(ψ2) − s(ϕ2)s(θ2)c(ψ2)

c(ϕ2)c(θ2)c(ψ2) + s(ϕ2)s(θ2)s(ψ2)

 (3.12)

where s and c represent the sine and cosine trigonometric functions.

Despite being a seemingly attractive form of attitude representation, since they are

more intuitive than quaternions, Euler angles have amajor issues thatmakes quaternions

best for some applications. Using Euler angles, if two axis of rotation align (in the ZYX

sequence that happens if θ = ±π2 , as Z and X are aligned), rotating about one of these axis

produces the same result as rotating about the other. This means that in such a position

it is impossible to unambiguously assert the Euler angles from a given attitude. This phe­

nomenon is a singularity calledGimbal Lock that is avoided by applying it in vehicles that

mainly spin on two axes like a boat, or by using another attitude representation in the

vicinity of the positions that cause this problem [74].

39

Figure 3.6: Normal Euler angle representation (left) and a Gimbal locked representation (right) [75].

3.3 Attitude Dynamics

AttitudeDynamics refers to howanobject rotates andhowexactly its attitude changes

through time, given how it is spinning. Before discussing those aspects it is important to

reviewwhat physical characteristics of an object affect the attitude dynamics. Afterwards,

the set of equations that rule a satellite’s attitude dynamics are presented, in order to es­

tablish how different attitude parameters affect each other and how such dynamics can

be simulated.

3.3.1 Angular Momentum

A body’s Angular Momentum, here represented by the letter L, measures a rotating

object’s tendency to keep rotating. For an object with mass δm, it is given by: [76, 77]:

L =

∫
r × v δm (3.13)

where m is an object’s mass, v its velocity vector and r its position vector in relation to

the point used for the evaluation of moments of vector quantities. One also knows that

if a body is rotating about its center of mass, the velocity of every mass element can be

decomposed into:

v = ω × r (3.14)

where ω is the angular velocity. One can also state that:

L =

∫
r × (ω × r) δm (3.15)

40

if

r =


x

y

z

 and ω =


ω1

ω2

ω3


then

L =

∫ 
(y2 + z2)ω1 −(xy)ω2 −(xz)ω3

−(xy)ω1 (x2 + z2)ω2 −(yz)ω3

−(xz)ω1 −(yz)ω2 (x2 + y2)ω1

 δm (3.16)

or, since the angular velocities are independent of the position vector,

L =

∫ 
(y2 + z2) −(xy) −(xz)

−(xy) (x2 + z2) −(yz)

−(xz) −(yz) (x2 + y2)

 δm

ω1

ω2

ω3

 (3.17)

calculating the integral and replacing the resulting matrix with I, which is called Inertia

Matrix or Inertia Tensor from here on out, one gets:

L = Iω (3.18)

in which I is symmetric:

I =


∫

(y2 + z2)δm
∫
−(xy)δm

∫
−(xz)δm∫

−(xy)δm
∫

(x2 + z2)δm
∫
−(yz)δm∫

−(xz)δm
∫
−(yz)δm

∫
(x2 + y2)δm

 =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 (3.19)

The diagonal elements of the I matrix are called themoments of inertiawhile the off­

diagonal elements are called products of inertia. Since thematrix I is real and symmetric,

its eigenvalues are real and one can always select three eigenvectors that are mutually

orthogonal. This premise leads one to conclude that there exists a body reference frame

F, in which the inertia tensor becomes diagonal with elements that are the eigenvalues of

I [76]. The resulting tensor is often denoted by J , as shown in Eq.(3.20).

J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (3.20)

In fact, if frame F has its origin in the body’s the center of mass, its axes are called central

principal axes of inertia and the respective moments of inertia become central principal

moments of inertia. The satellite body frame used throughout this thesis is the reference

frame of central principal axes of inertia.

In this work, it is considered that the CubeSat is a uniform parallelipipede with sides

41

a, b, and c. Considering that, its products of inertia are 0 and its moments of inertia are:

Ixx = Jxx =
m
12

(b2 + c2)

Iyy = Jyy =
m
12

(a2 + b2)

Izz = Jzz =
m
12

(a2 + c2)

(3.21)

3.3.2 Equations of Motion

Now that the physical parameters that affect the attitude dynamics of a body have

been described, it is time to introduce firstly the dynamic equations, and later the kine­

matic equations, the two equations that govern a satellite’s attitude behaviour.

Dynamic Equations

Before discussing the dynamic equations, it is important to review how a satellite’s

angular velocity can be represented. Across this thesis, angular velocities are represented

in the body reference frame. They either represent the rotation of the body frame in re­

lation to the ECI frame, the absolute angular velocity, or in relation to the orbit frame,

the relative angular velocity. In the chosen notation ωb
ib means the angular velocity of the

body frame in relation to the ECI frame, in the body frame, with the relative velocity be­

ing ωb
ob, the angular velocity of the body frame in relation to the orbit frame, in the body

frame.

ωb
ob = [ωb

obx
, ωb

oby
, ωb

obz
]

ωb
ib = [ωb

ibx
, ωb

iby
, ωb

ibz
]

(3.22)

To get ωb
ib from ωb

ob, Eq. (3.23) is used [68]:

ωb
ib = ωb

ob +RB
O ωo (3.23)

whereωo is the orbital angular velocity vector. In the chosen orbital frame this parameter

is [0, ωo, 0], andRB
O is the rotation matrix, from orbit to body frame.

The dynamic equations are a set of ordinary differential equations that describe how

a body reacts to torques applied to it, i.e., how its angular velocity changes. They were

proposed by Leonhard Euler and are also known as Euler’s rotation equations. They are

given by Eq. (3.24) [76, 68]:

J ω̇b
ib + ωb

ib × (J ωb
ib) = M (3.24)

where J is the inertia tensor andM is the sum of all torques acting upon the satellite.

42

From a simulation point of view, it is convenient to put Eq. (3.24) as a function ofωb
ob

instead. By inserting Eq. (3.23) into Eq. (3.24) one gets Eq. (3.25).

J(ω̇b
ob +

˙(RB
O
ωo)) + (ωb

ob +RB
Oωo)× J(ωb

ob +RB
Oωo) = M (3.25)

This equation can be decomposed:

J(ω̇b
ob +

˙(RB
O
ωo)) + (ωb

ob +RB
Oωo)× J(ωb

ob +RB
Oωo) = M

⇔ J(ω̇b
ob +

˙(RB
O
ωo)) + ωb

ob × Jωb
ob + ωb

ob × JRB
Oωo +RB

Oωo × J(ωb
ob +RB

Oωo) = M

⇔ Jω̇b
ob + JṘB

Oωo) + ωb
ob × Jωb

ob + ωb
ob × JRB

Oωo +RB
Oωo × J(ωb

ob +RB
Oωo) = M

⇔ Jω̇b
ob + ωb

ob × Jωb
ob = M − JṘB

Oωo − ωb
ob × JRB

Oωo −RB
Oωo × J(ωb

ob +RB
Oωo)

one can transform one step further since [78]:

ṘB
O =W b

obR
B
O (3.26)

whereW b
ob is the transpose of the 3×3 skew symmetric operator corresponding to ωb

ob:

W b
ob =


0 ωb

obz
−ωb

oby

−ωb
obz

0 ωb
obx

ωb
oby

−ωb
obx

0

 (3.27)

leading to the final ”new” Euler equation:

Jω̇b
ob + ωb

ob × Jωb
ob = M +Q (3.28)

withQ being:

Q = −JW b
obR

B
Oωo − ωb

ob × JRB
Oωo −RB

Oωo × J(ωb
ob +RB

Oωo) (3.29)

Kinematic Equations

The dynamic equations tell one how the satellite’s angular velocity reacts to applied

torques but how does it influence the actual attitude? Through kinematic equations, that

process is described. The kinematic equations that follow use the quaternion representa­

tion [28]:

q̇ =
1
2
Ωb

obq (3.30)

where q is the quaternion representation of the rotation of the body frame in relation to

the orbit frame and Ωb
ob is the 4×4 skew symmetric operator that corresponds to ωb

ob, as

43

shown by Eq.(3.31).

Ωb
ob =


0 ωb

obz
−ωb

oby
ωb

obx

−ωb
obz

0 ωb
obx

ωb
oby

ωb
oby

−ωb
obx

0 ωb
obz

−ωb
obx

−ωb
oby

−ωb
obz

0


(3.31)

If one knows the external torques and the initial conditions, solving Eq. (3.28) and

Eq. (3.30) as system of ordinary differential equations yields the full attitude behaviour

of the satellite for each instance. The external torques that affect a satellite’s attitude,M

in Eq. (3.28) [36], are defined in Sec. 3.3.3 and Sec. 3.3.4.

3.3.3 Environmental Torque Models

The first set of torques that interact with the satellite are the environmental torques.

These are torques present in geocentric orbits. They are of different natures and depend

on different parameters, such as the altitude of the satellite or even its magnetic residue.

Gravity Gradient Torque

The gravity gradient torque comes from a physical property of any asymmetric object

subject to a gravitational field, as the axis of largest moment of inertia tends to align itself

with a plane that is normal to the orbit, while the axis with the smallest moment of inertia

aligns itself with the local vertical. This is the same as saying that bz aligns with oz and by

aligns with oy. The gravity gradient torque, in the orbit frame, is given by:

τo
gg =

3µ
r3 ue × Iue (3.32)

where µ is the Earth’s gravitational coefficient (µ = 3.986×1014m3s−2), r is the orbit radius,

I is the inertia tensor and ue is a unit vector pointing towards zenith in the selected orbit

frame [68, 14]. To have this equation yield the torque in the body frame, onemust replace

ue with c3, the third column of the rotation matrix, from orbit to body frame. c3 also rep­

resents the offset between bz and oz, to which the gravity gradient torque is proportional to

[36]. By doing such replacement one gets Eq.(3.33), the equation that governs the gravity

gradient torque vector in the body frame, in a given instance.

τ b
gg =

3µ
r3

0

c3 × Ic3 (3.33)

Aerodynamic Torque

In the close vicinity of the Earth, wheremost satellites operate, some air particles can

still be found. That air, when colliding with the satellite’s surface at the very high speeds

that spacecraft travel at, applies a force on the satellite. This force is called atmospheric

44

drag and can bemodelled as having the opposite direction of the satellite’smotion, assum­

ing the symmetrical distribution of the satellite’s surfaces. As a result, the atmospheric

drag is an exerted force D on the satellite’s aerodynamic center:

Do =
1
2
ρ CD A v2 uaero (3.34)

where ρ is the air density at the orbit’s altitude, CD is the drag coefficient ­ typically be­

tween 2 and 2.5 for CubeSats [14] ­ A is the effective area orthogonal to the velocity di­

rection, and v is the orbital velocity of the satellite. Lastly, uaero is the vector that de­

scribes the direction of the force on the satellite. In the chosen orbital frame this vector is

uaero = [−1, 0, 0]T .

If the center of mass is shifted from the aerodynamic center due to an imbalanced

mass distribution, the force is applied at a distance that is measured from the center of

mass to the aerodynamic center. This distance is represented on all axes by vector d,

generating a torque of d × Do, or in its complete form [36]:

τo
aero = d × 1

2
ρ CD Av2 uaero (3.35)

which is the aerodynamic torque vector in the orbit frame.

Solar Radiation Pressure Torque

The sun, behaving like a massive fusion reactor, emits all sort of radiation, includ­

ing electromagnetic radiation. When this radiation hits the spacecraft surface it causes a

pressure that acts as a force on the satellite solar radiation pressure center.

As a result, the solar radiation pressure torque behaves analogously to the aerody­

namic torque. Much like its counterpart, the solar radiation torque comes from a force

being applied at the solar radiation pressure center while the center of mass is at a differ­

ent position. The solar radiation pressure is then given by:

F o
rad = Prad A CP urad (3.36)

in which Prad is the mean momentum flux of the solar radiation and is of about Prad =

4.5×10−6kg m−1s−2, A is again the effective area (but this time normal to the solar pressure

vector), CP is the spacecraft surface absorption characteristic, that can be somewhere be­

tween 1 and 2 depending on how absorbent the satellite’s surface is [14]. Lastly,urad is the

vector defining the direction of the solar pressure vector, that depends on the position of

the satellite and on the position of the sun. This force is non­existent in eclipse conditions,

but, since the 3­AMADEUS satellite has a dusk­dawn sun­synchronous orbit, there are no

eclipse conditions to take into account. In the case of 3­AMADEUS’s orbit, because of the

sun synchronicity, one can roughly assume that the sun direction is always close to that

of oy, meaning that urad can be assumed to be urad = [0, 1, 0]T .

45

The torque that comes from this force is then given by d×Fo
rad, or in its complete form

[36]:

τo
rad = d × Prad A CP urad (3.37)

which is the solar radiation pressure torque vector in the orbit frame.

Residual Magnetic Dipole Torque

The gravitational field mentioned earlier isn’t the only field around the Earth. While

the gravitational field interacts with all bodies that have mass, there is another field, the

magnetic field, that interacts with magnetic dipoles. These dipoles can come from fer­

romagnetic materials, i.e., certain metals that have an uneven distribution of electrons

[15, 79], from electric components or even from artificial magnetic dipoles created by

magnetorquers. Frequently, CubeSats and spacecraft in general have such circuitry and

ferromagnetic materials, leading to the generation of an undesired magnetic dipole, often

called residual magnetic dipole (RMD). When the Earth’s magnetic field interacts with a

magnetic dipole, a magnetic dipole moment is generated. In the case of a spacecraft, it

acts as torque that tends to align the spacecraft’s RMD with the magnetic field, which can

be prejudicial. Since this kind of torque is deeply reliant on the magnetic field ,the first

step in modelling it is to choose a model for the magnetic field.

In this work, instead of using the computationally heavy IGRF model [80], a simpli­

fied model has been chosen. A significant amount of controllers these days use simplified

magnetic fieldmodels due to their robustness [36]. Themodel used is the one described in

[81]. This model, considering the orbit frame chosen, suggests that the Earth’s magnetic

field induction vector, in the orbit frame, should be modelled as:

Bo =
u f

a3


cos(u)sin(i)

cos(i)

−2sin(u)sin(i)

 (3.38)

in which u f = 7.9×1015 Wbm is the dipole strength of the Earth’s magnetic field [36] while

a is the orbit semi­major axis and i the orbit inclination. u is the argument of latitude,

which is given by:

u = ϕ0 + ωot (3.39)

in which ϕ0 is the initial latitude for the simulation, and t is the time elapsed from its

start. Plotting the magnetic field for first 60,000 seconds of simulation for the orbit of

this mission yields Fig. 3.7.

46

Figure 3.7: Modelled geomagnetic field for the 3­AMADEUS’s orbit.

With themagnetic fieldmodelled, one can nowmodel the residualmagnetic dipole torque

in the body frame, given by:

τ b
mag =mres ×Bb (3.40)

in whichmres is the residual magnetic dipole vector discussed earlier, andBb is the geo­

magnetic field, in the body frame. It can be obtained fromBo with Eq.(3.41).

Bb = RB
O Bo (3.41)

3.3.4 Control Torque Model

By countering (or exploiting) the effects that environmental torques have on satel­

lites, ADCS actuators generate torques that stabilize the satellite in the desired attitude.

The torque produced must be added to the sum of the environmental torques to repre­

sent M in Eq. (3.28). Since the 3­AMADEUS mission features only magnetic attitude

actuators, only magnetorquers are covered in this section.

Magnetorquer

Magnetorquers are attitude actuators that exploit the interaction with the geomag­

netic field. By generating a magnetic dipole on specific axes, magnetorquers can be used

to orientate the satellite as intended. The equations for the magnetorquer torque are the

same as for the residual magnetic dipole torque, except that for the actuating torque, the

47

magnetic dipole is generated by the magnetorquer instead of being residual, as shown by

Eq.(3.42).

τ b
t rqr =mt rqr ×Bb (3.42)

Theunderactuation issue discussed in Sec. 2.2.2 is also visible from the cross product:

magnetorquers cannot produce torque on the plane of the geomagnetic field.

All equations that govern the satellite attitude dynamics have been discussed. A

model running a solution for the equations of motion along with the equations for the

environmental torques is discussed in Ch. 4.

3.4 Numerical Analysis Method

3.4.1 Method of Runge­Kutta of the 4th Order

The method used in this thesis for the numerical analysis of the satellite’s attitude is

the 4th Order Runge­Kutta Method. In this work, this method is used to solve a system

of ordinary differential equations, Eq. (3.28) and Eq. (3.30). In this section these are

respectively denoted as ω̇ = fω(ω) and q̇ = fq(ω, q). TheRK4methoddescribes an iterative

method for integrating such a system of ordinary differential equations. It proposes that

several k coefficients are calculated for each equation for each integration step. These

coefficients are then added to calculate the solution of the system of differential equations

for the next step.

48

With the equations of motion, the RK4 method works as described by Eq. (3.43) [28].

k1ω(i) = h fω(ω(i))

k1q(i) = h fq(ω(i), q(i))

k2ω(i) = h fω(ω(i) +
k1ω(i)

2
)

k2q(i) = h fq(ω(i) +
k1ω

2
, q(i) +

k1q(i)

2
)

k3ω(i) = h fω(ω(i) +
k2ω(i)

2
)

k3q(i) = h fq(ω(i) +
k2ω

2
, q(i) +

k2q(i)

2
)

k4ω(i) = h fω(ω(i) + k3ω(i)

k4q(i) = h fq(ω(i) + k3ω , q(i) + k3q(i))

ω(i + 1) = ω(i) +
1
6

(k1ω(i) + 2k2ω(i) + 2k3ω(i) + k4ω(i))

q(i + 1) = q(i) +
1
6

(k1q(i) + 2k2q(i) + 2k3q(i) + k4q(i))

(3.43)

Here h is the simulation step and the above equations yield the values of the angular ve­

locity and the quaternion representation in each step.

In the chapters to come, in order to implement the attitude control algorithm in the

FPGA to perform an HIL simulation, it is necessary not only to represent data in a way

that a computer or an FPGA can handle, but also to transmit it using a communication

protocol. With that in mind, the next sections show how data can be represented digitally

and how that data can be transferred between digital systems.

3.5 Binary Number Representation

When computers were originally designed, their purpose was to automatically per­

form tasks that humans had to do. One of those tasks and the main task of a computer is,

intuitively, to compute. For a computation to be performed, numbers must be handled

by the computer. One way to represent these numbers is to sequentially set the voltage

in an electrical wire to either the value defined as low voltage or the value defined as high

voltage. The resulting sequence of high and low voltages (a bit sequence) is then inter­

preted as a number in base 2 [82], where only 1 ­ represents high voltage ­ and 0 ­ a low

one ­ are the available digits, as opposed to the widely used base 10 representation. In

this representation, frequently called binary, the rightmost digit represents 20 and the nth

digit represents 2n−1.

49

With that in mind, if one considers, for example, the number 12 in the decimal base:

12(10) = 1 × 101 + 2 × 100 (3.44)

its binary representation is 1100, as shown by Eq.(3.45).

1100(2) = 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 = 12(10) (3.45)

It is important to note that for a computer to interpret these numbers correctly, the num­

ber of bits of each number must be specified a priori.

3.5.1 Signed Numbers

In light of this, it is clear how onemust represent positive numbers but how can nega­

tive numbers be represented? If one adds an extra bit to the left of the number that would

indicate whether the number is positive or negative, a problem arises: 0 can either be

represented by 1000 or 0000 (assuming a 4­bit word), which is not optimal. Addition­

ally, simply using a sign bit makes binary arithmetic yield wrong results. A better way

to represent negative numbers is to use the 2’s complement [82]. The 2’s complement

representation of signed numbers works as follows: To represent a negative number in

binary, for example, ­5 one takes the binary representation of 5 (0101), afterwards, all the

bits are inverted, yielding 1010. Lastly, a 1 is added to this number, resulting in the final

representation of 1011. Using the 2’s complement representation, one can consider that

the leftmost (sign) bit represents a negative power of 2.

1011(2) = −1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = −5(10) (3.46)

The ordinary binary algebra operations such as addition andmultiplication, that are valid

for regular binary numbers are still valid using this representation, as is discussed in Sec.

3.5.3.

3.5.2 Decimal Numbers

With negative number representation described, how is one to represent numbers

that aren’t integers but rather decimals using a system that merely reads high and low

voltages? The two most common and established methods are fixed point representation

and floating point representation.

Floating Point Representation

One way to represent decimal numbers in binary is the floating point representation.

This representation works analogously to common scientific notation, but using base 2

instead of themore simply understood, base 10. Using this method, given a certain length

for the binary word (usually it’s either 32 or 64 bits), a certain part of it represents the sign

of the number, another the exponent and lastly, another part represents themantissa [82].

50

For a 32­bit word, one has 1 sign bit that determines the sign of the number, 8 bits for the

exponent, and 23 bits for the mantissa:

N = seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm

this binary number, in the IEEE­754 format [83] (the most commonly used), would rep­

resent a decimal number such that:

N(10) = (−1)sign × 2(e−127) × (1 +
23∑
i=1

n23−i 2−i) (3.47)

where n j is the jth bit of N. In this format, the exponent is an 8­bit unsigned integer in

biased form. Additionally, the mantissa has 23 fraction bits while one assumes implicitly

that there is a leftmost leading integer bit that is always 1. With that in mind, let’s look at

an example:

N(2) = 01000000010010010000111001010110(2)

0(2) = 0(10)

10000000(2) = 128(10)

N(2) = −10 × 2(128−127) × (1 × 20 + 1 × 2−1 + 0 × 2−2 + ... + 1 × 2−22 + 0 × 2−23

01000000010010010000111001010110(2) = 3.141499996185302734375(10)

the resulting value happens to be the closest representation of 3.1415 in this format. As

a result, one can see that this representation isn’t completely accurate. If it is considered

that the achieved accuracy is enough for a specific design then this is fine, however, if

more accuracy is needed, more bits are required.

Fixed Point Representation

The other approach that can be taken to represent decimal numbers is via fixed point

representation. This method assumes that a given binary number with n bits represents

a decimal number that is scaled by 2 f . The interpretation must then be that the leftmost

n − f bits represent the integer part of a number and that the rightmost f bits are the

fractional bits in the number [82]. For example, normally, 11001010 must be interpreted

as described by Eq. (3.48).

11001010(2) = −54(10) (3.48)

Despite this, interpreting this number as being scaled by 24 for example, means that there

are 4 integer bits and 4 fractional bits.

51

Having that in mind, for this particular case, one can say that:

1100.1010(2) = −54(10) × 2−4 = −3.375(10) (3.49)

or

1100.1010(2) = −1 × 23 + 1 × 22 + 0 × 21 + 0 × 20

+1 × 2(−1) + 0 × 2(−2) + 1 × 2(−3) + 0 × 2(−4) = −3.375(10) (3.50)

this, as shown, is still valid for numbers in 2’s complement. Since this method is simply

scaling up the number one wishes to represent, all binary arithmetic is still valid, since

one can just operate with the scaled numbers and scale down the result accordingly.

While most computer systems today use floating point representation since it is best

for most general applications, fixed point representation is better at handling operations

between incredibly large and incredibly small numbers, assuming that one knows the in­

terval in which these numbers can be [84], as is the case for the attitude control of the

3­AMADEUS satellite. Additionally, floating point logic is much harder to implement on

hardware without floating point units ­ often the case for FPGAs ­ than fixed point is. On

top of that, since an FPGA is used in this project, there are no great limitations in terms of

bit length, since the FPGA’s design freedom allows one to easily go over the 64 bits used

in floating point representation, increasing its accuracy. What this means is that the lim­

itations that fixed point arithmetic may imply on other types of hardware for other types

of implementations aren’t as relevant in this case. Additionally, fixed point increases pro­

cessing speed [85]. With that in mind, the FPGA implementation for this thesis is done

considering fixed point representation.

3.5.3 Signed Fixed Point Arithmetic

Now that the way to represent numbers has been defined, it is now time to take a

look at how to handle their arithmetic. While the general rules for binary arithmetic apply,

since fixed point numbers have a fixed number of bits, in which both operands and results

must be represented, some extra steps are required in order to obtain the correct result in

the correct format.

Addition

Adding numbers in base 2 is exactly the same as adding them in base 10, the only

difference is that there are only two digits that one can use, but the same rules of carry

still apply. For fixed point, the point is just an abstraction so it doesn’t affect the addition

in any way ­ adding 1001 and 1010 is the same as 10.01 and 10.10. One very important

thing to take into account when adding binary numbers is that the allocated number for

the result must be enough to represent the operands as well as the result. For example,

when calculating −1.75 + (−1.75) = −3.5, it is impossible to represent the result with 2

bits for the integer and 2 fractional bits since even though ­1.75 is representable with this

52

bit length, ­3.5 is not. For this to be possible one would need 3 bits for integer and 2 for

the fractional part. Having the same example in mind, the actual addition would go as

follows:

110.01 (­1.75)
+ 110.01 (­1.75)
1 100.10 (­3.5)

notice how the leftmost 1, which has been carried, is separated from the resulting

number. This happens because in fixed point representation the leftmost carry bit must

be discarded, as the actual result in the selected representation are the remaining right­

most bits, 100.10. In fact, for addition, the resulting number is always 1 bit longer than

the operands before it is truncated. In terms of hardware an adder like this is usually

implemented as a ripple carry adder [48].

Subtraction

Subtracting is merely adding negative numbers, meaning that:

111.01 (­0.75)
­ 010.10 (2.5)

is the same as:

111.01 (­0.75)
+ 101.10 (­2.5)
1 100.11 (­3.25)

this means that if one wishes to subtract a number from another all that is necessary is

to logically implement the conversion from the number that is to be subtracted to the 2’s

complement representation of its negative and add it to the other number.

Multiplication

Multiplication in binary also works analogously to that of regular base 10 numbers

[86, 87]. Multiplication is interpreted as a series of sums for each order of magnitude

of one of the operands, but for the case of signed numbers, since abstractions such as

the 2’s complement are necessary, a few extra steps are required. The fact that a fixed

point representation is being used affects only how one should treat the result but not the

multiplication itself, as it is done as if two scaled numbers are being multiplied.

The first nuance of multiplying signed numbers is that the partial products (the num­

bers that must be added) must be sign­extended to match the size of the result of the

product between the two operands ­ the sum of their sizes. Additionally, to represent the

negative weight of the most significant bit of the second operand, one must calculate the

2’s complement of the first operand and sign­extend it, resulting in what is the last par­

tial product. To make this clear, if one were to multiply 11.001(2) = −0.875(10) (the first

53

operand) by 10.010(2) = −1.75(10) (the second operand), the first step would be to calculate

the last partial product, the sign­extended 2’s complement of the first operand: 000111.

When that is done, the computation can be done, keeping inmind that all partial products

must also be sign­extended, and then added to obtain the final product:

1 1 0 0 1
× 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

+ 0 0 0 1 1 1
0 0 0 1 1 0 0 0 1 0

the result from this operation is simply the result from multiplying 11001(2) by 10010(2),

but it still doesn’t represent the product of 11.001(2) and 10.010(2) as is desired. To get to

this result, one must truncate the result of the product, by the number of integer bits (2)

at the left and by the number of fractional bits (3) at the right, yielding the final product

of 11.001(2) and 10.010(2) in the desired format, 01.100(2) = 1.5(10). The actual product of

−0.875 and −1.75 should in fact yield 1.53125 but with only 3 fractional bits, this is the best

approximation one can get. In hardware this multiplication is often done with the use of

shift registers [48].

Division

The division of binary numbers can be described as an algorithmic implementation of

successive shifts and subtractions. To divide 2 binary numbers, one can use the basic long

division that is valid for base 10 numbers. In this case, onemust analyze whether the divi­

sor is small enough so that if fits within the dividend and fill the quotient accordingly. To

account for negative numbers, one can change the sign of the divisor and/or the dividend

to their positive counterpart and afterwards adjust the sign of the quotient accordingly.

Looking at the example where 110.100(2) = −1.5 must be divided by 000.100(2) = 0.5, first

the negative 110.100 is transformed to its positive version, 001.100, then a normal division

can be computed:

000100))001100
000011

12340
1 0100
1 0100
100

the quotient of this division is 000011. Since there is no remainder to this operation, the

remainder field is empty, otherwise that would be where one would get the fractional bits.

The quotientmust be truncated to give the result in the desired format, yielding 011 for the

integer bits and 000 (no remainder) for the fractional bits. A sign change is still due, so one

takes the result 011.000 and changes its sign, yielding the final result 101.000(2) = −3. The

54

hardware for this operation is similar to that of multiplications, but the 2’s complement

must be used in the form of additions to perform the required subtractions.

3.6 Communication Protocols

Now that all numbers and the operations between them can be represented, it is time

to take a look at how devices transmit this data between them. This is is pivotal for a

work like this, where FPGA data must be received from and sent to a computer running a

simulation, and more importantly, in a real life application, where the OBC running the

satellite attitude control algorithm must communicate with the other components, such

as ADCS actuators and sensors.

3.6.1 UART

The first method to be looked at is UART, or Universal Asynchronous Receiver/­

Transceiver, a serial communication protocol that, being asynchronous, has no clock sig­

nal (a signal oscillating between high and low voltage at a given frequency) synchronizing

the sending and receiving of bits between two devices. [88, 89]. UART is a very popu­

lar choice due to its simplicity and ease of implementation, with it being implemented in

all kinds of embedded systems that have low data rate requirements (the maximum data

rate for UART nowadays is of about 115200 bps). In fact, low data rates is the greatest

limitation of communicating through UART. It consists of two connections between two

devices, as depicted in Fig. 3.8.

Figure 3.8: Full Duplex UART Communication between an FPGA and a PC.

With two connections, UART can be made to be full­duplex, meaning it can receive

and transmit data simultaneously. Since there is no clock involved in UART communica­

tions, both receiver and transmitter must agree on how fast the data must be transmitted,

i.e., the Baud rate (bits per second) of the communication. Receiver and transmitter must

also agree on what composes the transmitted data: the number of data bits (usually data

is sent in packets of 8 bits or 1 byte), whether there is a parity bit (used to detected errors)

or not, and how many stop bits there are. In light of this, a common UART transmission

looks like Fig. 3.9.

55

Figure 3.9: Common UART transmission.

AUART transmission is composedof a start bit that triggers the receiving of data, data

bits that actually contain the information that is to be transmitted, and the stop bit, ending

the transmission. In the depicted transmission, the start bit goes to low level activating

the transmission, afterwards, eight data bits are transmitted. At the end, the stop bit sets

the voltage to to high again, making the line susceptible to stimulation by the start bit of

the next transmission. It’s important that the receiving end of the UART communication

samples the data at the middle of the data bits (half a bit length away from the rising edge

of the data signal) since near the falling and rising edge of a signal the voltage measured

can be ambiguous, introducing errors in the data.

Since the communication between magnetometers and an FPGA doesn’t require a

large data rate and UART is overwhelmingly simple, the preferred option for this thesis is

to use the UART serial communication protocol.

3.6.2 SPI

SPI stands for Serial Peripheral Interface [88, 89], and it is a communication proto­

col that, unlike UART, allows for communication between several components, assuming

one is given the role of ”master”. This protocol is synchronised by a clock signal, allowing

for faster communication (about 1 Mbps) than that provided by UART.

Being slightlymore complex thanUART, SPI has four connections in themaster com­

ponent. In the case of a satellite’s OBC, this could be the FPGA, as is depicted in Fig. 3.10.

Figure 3.10: Full Duplex SPI communication [90].

The clock signal serves as an input that synchronizes the exchange of data. While MOSI

(Master Out Slave In) is the line in which data flows from the master to the slave compo­

56

nents, MISO (Master In Slave Out) is the line carrying the data that is sent from the slaves

to the master. Finally, the SS (Slave Selector) lines are set to low to select which slave

is actively communicating with the master. When the slave is selected the transmission

process is similar to that of an UART communication apart from a few details regarding

the clock, namely the fact that data is transmitted only when the clock signal allows it.

This synchronicity allows for a few parameters to be set, for example the clock polarity

(whether the clock is idle in high voltage or low voltage setting) and clock phase setting

(what edge ­ rising or falling ­ of the clock signal does data get transmitted on).

3.6.3 I2C

I2C stands for Inter­Integrated Circuit and just like SPI, it is synchronous and con­

nects amaster component to several slave components serially, but is an upgrade in terms

of pin count, since it requires only two connecting wires between all the components run­

ning on this communication protocol, of course at the cost of simplicity, speed (can run at

about 400 kbps) and full duplexability [88, 89]. It usually has the layout described by Fig.

3.11, which depicts an I2C interface between amaster microcontroller with a DAC (Digital

to Analog Converter), an ADC (Analog to Digital Converter) and another microcontroller

as slaves.

Figure 3.11: I2C communication.

From Fig. 3.11, the key feature of I2C is clear: it has only one data line and one clock line,

with both of them running from the master through all the slaves. The two pull­up resis­

tors depicted are essential in the implementation of this line that can be driven by several

components. That being said, all components read the data from the line simultaneously,

but if no problem occurs, only one should drive it at a time. For each component to under­

stand what it is supposed to do with a single line as both input and output, an I2C message

requires a few more informative bits than UART and SPI.

Figure 3.12: An I2C message.

The transmission starts with the master setting the data line to low, triggering the

transmission process as soon as the clock signal falls to low as well. After that, there are

57

7 bits that describe the I2C address, containing information about which slave the master

is communicating with. Afterwards, a R/W (Read/Write) bit tells the slave if the master

wants to write to it or read from it. If the slave recognizes his address and instruction and

gets ready to communicate, it transmits an ACK (Acknowledge) bit to the master. After

this process, I2C behaves like a regular serial communication, with data bits being sent

until a stop condition is reached.

3.7 FPGA Programming

Now that the main notions of digital systems required for the understanding of the

work that has been undergone for the development of this project have been presented, it

is time to look at how all these concepts should be programmed into an FPGA, so that it

not only communicates with other devices, namely a personal computer or ADCS compo­

nents, but also handles the data received correctly.

3.7.1 FPGA Design Flow

Before looking into any details, it is paramount that one understands all the steps

that must be taken in designing an FPGA, or what is usually called the FPGA design flow,

depicted in Fig. 3.13 [91].

Figure 3.13: FPGA Design Flow.

58

Design Requirements

The first step is to analyze the requirements of the design. Some of the most impor­

tant parameters that must be set are the accuracy of the required computations and the

processing speed requirements, that define, for example, what communication protocol

the design should use. All the structure of the design should be defined before moving

on to the next step, and if any fundamental alterations are required, the design flow must

restart at this step.

Design Entry

The first step in the actual design of an FPGA is the Design Entry. In this step, the

FPGA design is specified. For that, the designer must use the IDE (Integrated Develop­

ment Environment) of their choice to add amultitude of files to a project, including library

files, the actual source file in which the behaviour of the FPGA is described and even an

User Constraint File (UCF) that assigns the signals defined in the previously mentioned

files to actual pins on the FPGA device.

Simulation

The simulation step has no practical effect on the design process, but is extremely

important. Since programming an FPGA is very low level, it is usually impossible to cor­

rectly assess what is wrong with a design just by looking at its actual behaviour. To solve

this problem, designers, using a simulator tool that allows them to look at each signal

in every instance, simulate the behaviour of the FPGA and find any bugs present in the

design, reverting the design process back to the design entry step, where the design can

be corrected. To simulate an HDL design, a testbench file, with code that stimulates the

source code, must be created.

HDL Code Synthesis

TheHDL Code Synthesis [92], is a step in which the synthesis tool, often provided by

the device vendor, creates a netlist of all the connections between the logic blocks that a

design requires.

Place & Route

The Place & Route step is one that can take several hours if the target FPGA is a

large one. In this step, the IDE used, having the target FPGA in consideration, takes the

synthesized netlist and associatse those connections with physical resources in the FPGA,

creating a map that is used to create the programming file.

59

FPGA Configuration

Once all the previous steps have been completed successfully, the designer uses the

IDE’s feature to generate a binary bitstream programming file that contains all the in­

formation required to implement the design in the FPGA. After this file is generated, a

tool with FPGA programming capabilities must be used to download the program to the

FPGA, usually via a programming cable. Additionally, the same tool must generate and

implement a PROM(ProgrammableRead­OnlyMemory) file so that the program the code

describes stays programmed in the FPGA even when it is turned off.

Configured FPGA

Once all these steps are completed, the FPGA is ready to use, and the implementation

must be tested. Due to the simulations performed, there shouldn’t be design flaws. Should

there be any, further simulations must be made until the issue is identified.

3.7.2 Tools

Xilinx (the main FPGAmanufacturer) offers a very complete IDE, which nowadays is

Vivado. This IDE features not only a text editor where code can be inserted but also tools

to automatically generate the UCF as well as a simulator tool, among others. Additionally

it has synthesizing capabilities and can even generate the bitstream programming file and

download it onto the target device. In fact, the whole design of a Xilinx FPGA can be

done solely using their IDE. For FPGAs that aren’t supported by the most recent IDE, an

outdated version must be used.

Despite this, there are other alternatives for specific steps in the design flow men­

tioned earlier. As a result, some parts of the design can be done in the Xilinx IDE, while

others can be done elsewhere, as is the case for this thesis.

3.7.3 Programming Language

ToprogramanFPGA, onemust use anHDL (HardwareDescriptionLanguage). HDLs

were created with the intent of replacing the digital systems design methods of old, in

which engineers had to use schematics and design the system at gate level, with a method

that is at a higher level of abstraction that would simplify that process. HDLs are a unique

type of programming language that notably differ from software programming languages

as they allow for a description of the physical signal, and, perhaps more significantly, its

commands are not executed sequentially, but rather concurrently, meaning that time de­

lays and propagation must be described via hardware as well. The two most commonly

used languages are Verilog and VHDL (Very High Speed Integrated Circuit Hardware De­

scription Language), with both of them working at a Register­Transfer­Level abstraction

level. Among other things, while VHDL [93] is not as close to C based programming lan­

guages as Verilog [94] is, it is a simpler, more verbose language that is more easily under­

60

stood by itself. Additionally, synthesis tools often find errors more frequently on VHDL

than they do on Verilog codes. Ultimately, the usage of one or the other is a matter of

preference, and due to the availability of documentation, the FPGA programming done

for this thesis is done in VHDL.

As mentioned above, these kinds of language describes hardware, meaning that even

if a design is functionally correct and works in simulation, one must always keep in mind

what hardware the tool that synthesizes the code is inferring. By knowing the available

resources, the designermust always considerwhat resources the code is using andmanage

that usage. For example, if one wishes to multiply five 18­bit numbers, it is important to

write code that the synthesizing tool identifies as one multiplier used five times rather

than five multipliers used one time. This is important since inferring excessive hardware

might lead to a design that doesn’t fit within the available resources.

3.7.4 Architectural Overview

This section overviews the usual resources that physically exist on an FPGA and are

available when designing it, with focus on the Spartan 3E FPGA, the one used for this

project [95].

Configurable Logic Blocks (CLBs)

The CLBs are the main building block of an FPGA. They contain Look Up Tables

(LUTs) that can be set to specific outputs, implementing logical processes or storage ele­

ments such as flip flops and latches.

Input/Output Blocks (IOBs)

IOBs control the flow of data between the FPGA input and output pins and the logic

inside it, supporting several signal standards.

Block RAM

Block RAM supplies the device with data storage. They usually come in the sizes of

4,8,16 or even 32 kilobits.

Multiplier Blocks

Multiplier blocks take two binary numbers of a predefined length as its input and

outputs its product. Usually, a number of them exist inside an FPGA and they can be

coupled with more multipliers to provide multiplying of words of greater lengths.

61

Digital Clock Manager Blocks (DCMs)

DCMs provide support for clock signals, namely solutions for distributing, delaying,

multiplying, dividing, and phase­shifting clock signals.

62

Chapter 4

Mathematical Model For Attitude Dynamics

In this chapter, the concepts that are introduced in Ch. 3 are put to use by simulating

the attitude dynamics of the satellite. This model serves as base not only for the chapters

to come, inwhich a control algorithm is tested in different conditions, but also to future al­

gorithm testing for the 3­AMADEUS CubeSat. The model is ran usingMATLAB software.

In this work, the arc cosines of the satellite’s diagonal direction cosines, which represent

the offset angles between the axes of the body and orbit frames, are referred to as either

offset angles or orientation angles.

To fully assess the validity of this model, firstly, a simple attitude control test simula­

tion is proposed: a gravitational stabilization test simulation inwhich there are no attitude

perturbances besides the gravity gradient torque, and the magnetorquer magnetic dipole

moment abides by the control law described by Eq. (4.1) ­ a simplified version of the one

present in [1].

mt rqr = −kωBb × ωb
ob (4.1)

In these conditions, if the model is correct, then the satellite’s orientation should tend to

orbitally stable attitudes. These attitudes should be such that the axis of smallest moment

of inertia, bz alignswith the nadir/zenith direction, and the axiswith the largestmoment of

inertia, by alignswith the orbit normal. If one of these attitudes is achieved, the orientation

angles should converge to either 0 or 180 degrees of offset between the axes of the body

and orbit frames. Consequently, the angular rate should converge to 0. If this happens,

the model should be validated.

In order to magnify the effect of the gravity gradient torque, for this section, a test

satellite model is used. The test satellite has considerably different moment of inertia on

its axes so that the attitude control ismore effective, contrary to the 3­AMADEUS satellite,

which is cube­like.

Afterwards, in an environmental perturbance test simulation, the same test satellite

is simulated in a series of environments where the perturbance torques discussed in Sec.

3.3.3 are present and there is no control torque. By looking at the spacecraft behaviour it

should be possible to assess the correct implementation of these torques.

All the simulation parameters set in this chapter are the ones used in the actual con­

trol simulations in Ch. 6, except when explicitly stated otherwise.

63

4.1 Simulation Parameters

4.1.1 Numerical Parameters

For the first test, the simulation time, t, is of 45,000 seconds or 12.5 hours, the ex­

pected time for the test satellite to completely gravitationally stabilize in these conditions.

In the second test, the same simulation time is used. The simulation step is of 1 sec­

ond for both simulations. On one hand this step size is small enough so that decreasing

it further would only negligibly affect the simulation results, and on the other, is large

enough, so that the computation time is reasonably low. This combination of course leads

to t
h = 45, 000 iterations for both tests.

4.1.2 Control Parameters

The control gain kω used for the implementation of control law of Eq. (4.1) is of 6,500
Nm
T 2 .

4.1.3 Physical Parameters

As mentioned earlier in Sec. 3.2.1, the axis of smallest moment of inertia is the bz,

while the axis of largest moment of inertia is by. These settings lead to the intuitive con­

clusion that bz is along the longest dimension of the satellite and the by axis on the shortest.

The dimensions along bx, by and bz are denoted as a, b, and c, respectively.

3­AMADEUS

It should be stated that the real dimensions of the 3­AMADEUS satellite are still to be

defined, meaning that the ones discussed in this section and used in the chapters to come

are mere estimates of 3­AMADEUS’ final dimensions.

Despite having considered a perfectly uniformmass distributionwhen calculating the

inertia tensor, in order to increase the realism of the external torques, it is assumed that

the center of mass is located 2 mm away from its geometrical center in the bz direction.

This assumption is only used for computing the aerodynamic and solar radiation pressure

torques. The solar radiation pressure center and the aerodynamic pressure center are

both assumed to lie on the geometrical center of the satellite. The dimensions and center

of mass offset vector used for the 3­AMADEUS satellite are then:

a = 0.100 [m]

b = 0.090 [m]

c = 0.110 [m]

d = [0, 0, 0.002][m]

(4.2)

the mass of the satellite is the expected mass of a 1U CubeSat, m = 1.33 kg.

64

This leads, according to Eq. (3.21) and assuming a uniformmass distribution, to the prin­

cipal inertia tensor:

J =


0.0022 0 0

0 0.0024 0

0 0 0.0020

 (4.3)

fully describing the 3­AMADEUS satellite for the simulations in this thesis, physically.

Test satellite

The test satellite physical parameters that are used only for the present chapter are

described by Eq. (4.4).

atest = 0.100 [m]

btest = 0.050 [m]

ctest = 0.200 [m]

d = [0, 0, 0.002][m]

(4.4)

Considering the same mass as the 3­AMADEUS model, that leads to the principal inertia

tensor described by Eq.(4.5).

Jtest =


0.0047 0 0

0 0.0055 0

0 0 0.0014

 (4.5)

4.1.4 Orbital Parameters

The orbital parameters considered for this simulation are those of a circular 550 km

SSO that allows for optimal sunlight conditions. For there to be such conditions, an orbital

inclination of approximately 97.5º is required.

65

This means that the orbital parameters relevant for this simulation are:

rearth = 6378 [km]

h = 550 [km]

a = rearth + h = 6928 [km]

e = 0

µ = 3.986 × 105 [km3/s2]

T = 2π

√
a3

µ
= 5739 [s]

ωo =
2π
T
= 0.0627 [deg/s]

i = 97.5 [deg]

v =
√
µ

a
= 7.58 [km/s]

(4.6)

where elements such as the longitude of the ascending node and the argument of perigee

aren’t defined. Since a circular orbit is being considered, the argument of perigee ismean­

ingless, and as a result it is not necessary to define it. In the case of the longitude of

the ascending node, it does not affect the attitude dynamics, but is important for the 3­

AMADEUS mission since the way it changes over time defines the orbit as a dusk­dawn

SSO.

4.1.5 Aerodynamic Parameters

The drag coefficient used for this simulation is that of a regular CubeSat [14]. The

exposed area is ever­changing, but for this simulation, it is considered that it is the area

of a regular 1U CubeSat face while the air density is the average air density found at an

altitude of 550 km [96].

CD = 2

A = 0.01 [m2]

ρ550km = 1.25 × 10−12 [kg/m3]

(4.7)

4.1.6 Solar Pressure Parameters

The solar parameters that affect the satellite’s behaviour are the mean momentum

flux of the solar radiation, as discussed previously andCP, for which a worst case scenario

is considered. The exposed area considered is the same as for the aerodynamic pressure

torque.

CP = 2

A = 0.01 [m2]

Prad = 4.5 × 10−6[kg m−1s−2]

(4.8)

66

4.1.7 Magnetic Parameters

The magnetic parameters refer to the residual magnetic dipole discussed in 3.3.3 as

well as the magnetorquer characteristics that produce magnetic moment. The residual

magnetic dipole is the typical value for CubeSats [97, 98] on all axes, while the magne­

torquer data (maximummagnetic dipole moment andmaximum current for each torquer

coil) considers a system based on the MOVE­II CubeSat mission’s magnetorquer board

[99].

Imax = 0.34 [A]

mmax = 0.10 [Am2]

mres = 0.01 [Am2]

(4.9)

4.1.8 Initial Conditions

The initial conditions for this simulation, i.e., the initial orientation and angular ve­

locities, are given respectively byEq.(4.10) inEulerAngles (sequenceZYX), andbyEq.(4.11).

ϕ = 50 [deg]

θ = 50 [deg]

ψ = 50 [deg]

(4.10)

ωb
obx
= 0.01 [rad/s]

ωb
oby
= −0.015 [rad/s]

ωb
obz
= 0.005 [rad/s]

(4.11)

The initial Euler angles must be converted to quaternions for computations. Addi­

tionally, it is important to note that the initial angular velocities are the usual ones found

after satellite deployment [1]. With all those parameters discussed, some results are pre­

sented next so that the model can be validated.

4.2 Gravitational Stabilization Test Simulation

It is worth reminding that in this simulation all perturbance torques are turned off

except for the gravity gradient torque. It is expected that the satellite converges to a grav­

itationally stable position, with bz facing the Earth or away from it, meaning it should be

aligned with the direction of oz (so the orientation angles should produce 0 or 180 degrees

of offset between the two axes). Additionally, by should align with the direction normal

to the orbit, meaning that in the orbit frame selected it should have a 0 or 180 degree off­

set from oy. The same goes for bx since it is bound to the two other axes. The results, in

orientation angles, are described by Fig. 4.1.

67

0 2 4 6 8 10 12

Time [h]

-0.02

-0.01

0

0.01
S

p
in

 r
a

te
 [

ra
d

/s
]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

12.2 12.4
-3
-2
-1
0
1

10-4

x

y

z

11 11.5 12

179.99

180

12 12.5

-20

-10

0

10-3

x

y

z

Figure 4.1: Orientation angles and spin rate ­ Gravitational Stabilization Test Simulation.

The spin rate rapidly converges to 0, which is ideal. The bz axis is 0 degrees away from

the zenith direction, as expected. Additionally, by aligns with the direction opposite of oy

axis, while bx completes the right­hand system by aligning with the direction opposite of

the linear velocity. These are the expected results for a well implemented model.

4.3 Environmental Perturbance Test Simulation

In this simulation run, the environmental perturbance torques are activated individu­

ally at a time, while all other torques are absent. Analyzing the attitude plots considering

the environmental perturbance torques should give enough information about the cor­

rectness of, not only their implementation, but of how the satellite reacts to these torques.

To stimulate a clear analysis of these torques, the center of mass offset vector is switched

from its regular setting of d = [0 0 0.002]T to the same distance, but in other axes, causing

different torques on the satellite. Additionally, both the initial conditions for the orienta­

tion angles and for the angular velocity are set to 0 on all axes. Since what is being tested

is how external torques individually affect the offset between the orbit and body reference

frames, the angular velocity of the orbital frame, ωo, is set to 0 on all axes, making it im­

mobile. This setting for ωo is valid for this test only and is not considered anywhere else

on this work.

4.3.1 Gravity Gradient Torque

As shown in Sec. 4.2 the gravity gradient torque helps stabilize the spacecraft in the

expected position, leading to the conclusion that it is well implemented.

68

4.3.2 Residual Magnetic Dipole Torque

Since the equation for the residual magnetic dipole torque is analogous to that of a

magnetorquer and such torque has been successfully implemented in Sec. 4.2, one can

infer that it is likely working correctly.

4.3.3 Aerodynamic and Solar Radiation Torque

The aerodynamic torque is resultant of a force applied on the direction opposite to

that of ox, meaning that given an offset in the bz axisd = [0, 0, 0.002]T , the torque generated

should make the satellite spin clockwise about by. If the offset vector is set to the by axis

d = [0, 0.002, 0]T , a counter clockwise rotation about the bz axis should occur. An offset on

the bx axis obviously produces no torque.

In the case of the solar radiation torque, resultant of a force being applied on the

direction of oy, an offset in the bx axis d = [0.002, 0, 0]T should cause a counter clockwise

rotation about bz. An offset in the bz axisd = [0, 0, 0.002]T should cause a clockwise rotation

about bx.

Considering these conditions, the satellite behaves as depicted by Fig. 4.2.

0 5 10

Time [h]

-2

-1

0

1

2

S
p

in
 r

a
te

 [
ra

d
/s

]

10-3 Solar z offset

0 5 10

Time [h]

-5

0

5

10-3 Solar x offset

0 5 10
-0.02

-0.01

0

0.01

0.02

S
p

in
 r

a
te

 [
ra

d
/s

]

Aero z offset

x

y

z

0 5 10
-0.05

0

0.05
Aero y offset

Figure 4.2: Spin rates of the body frame in relation to the orbit frame when different torques and offsets are
tested.

All the torques produce the expected results. One can conclude that the environmen­

tal torques are well implemented, as the satellite attitude model is. With that in mind, the

LEO environment and the uncontrolled behaviour of the satellite are examined in Ch. 5.

69

70

Chapter 5

Uncontrolled Satellite Dynamics

Before implementing an attitude control law, the Uncontrolled Satellite Dynamics

chapter analyzes the behaviour of the 3­AMADEUS satellite when no controlling torque

is applied to it, but all perturbance torques that are present in LEO are. Looking at what

happens to the satellite’s attitude in these circumstances should give a better understand­

ing of exactly what effects control torques have. Additionally, the LEO environment in

which the spacecraft lies is examined, including the magnitude of all the perturbances.

5.1 LEO Environment

Considering the orbit and the parameters specified in Ch. 4, the perturbance torques

to be found in LEO are described by Fig. 5.1, in the orbit frame.

0 5 10

Time [h]

-1

-0.5

0

0.5

1

T
o

rq
u

e
 [

N
m

]

10-8 GG Torque

0 5 10

Time [h]

-2

-1

0

1

2

T
o

rq
u

e
 [

N
m

]

10-9 Aero Torque

x

y

z

0 5 10

Time [h]

-5

0

5

T
o

rq
u

e
 [

N
m

]

10-10 SR Torque

0 5 10

Time [h]

-1

-0.5

0

0.5

1

T
o

rq
u

e
 [

N
m

]

10-6 RMD Torque

Figure 5.1: Perturbance torques in the LEO environment of the 3­AMADEUS mission in the orbit frame.

Both the aerodynamic drag torque and the solar radiation torque are constant. This

makes sense considering how they are implemented. Additionally, they both provide a

negative torque, causing the satellite to spin in a clockwise direction. Looking at the grav­

ity gradient, one can see that it is very chaotic for the ox and oy axes, but is null in the oz

axis. This also makes sense since it causes the bz axis to align with the zenith direction,

71

not to spin about it. The residual magnetic dipole also seems somewhat chaotic but one

can actually see the influence of the magnetic field given by the dipole model used, as

visualized in Fig. 3.7.

In terms ofmagnitude, at 1×10−6Nm, the residualmagnetic dipole surpasses the other

three torques, and so it is the one that the satellite will have the most trouble countering,

followed by the aerodynamic torque; the gravity gradient torque, at 1 × 10−8Nm, is help­

ful in providing orbital attitude. In light of that, the solar radiation torque is somewhat

neglectable.

In the body frame, the torques are represented in the way that most accurately rep­

resents how they affect the body frame’s spin, but they are too chaotic to be analyzed as

can be seen from Fig. 5.2.

0 5 10

Time [h]

-1

-0.5

0

0.5

1

T
o
rq

u
e
 [
N

m
]

10-8 GG Torque

0 5 10

Time [h]

-2

-1

0

1

2

T
o
rq

u
e
 [
N

m
]

10-9 Aero Torque

0 5 10

Time [h]

-5

0

5

T
o
rq

u
e
 [
N

m
]

10-10 SR Torque

x

y

z

0 5 10

Time [h]

-1

-0.5

0

0.5

1

T
o
rq

u
e
 [
N

m
]

10-6 RMD Torque

Figure 5.2: Perturbance torques in the LEO environment of the 3­AMADEUS mission in the body frame.

5.2 Uncontrolled Behaviour

Considering that the 3­AMADEUS is subject to all these torques, and that this sim­

ulation considers the starting angular rates described in Eq.(4.11), the orientation angles

and the relative angular rate evolve as described by Fig. 5.3.

72

0 2 4 6 8 10 12

Time [h]

-0.05

0

0.05

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

Figure 5.3: Evolution of the angular rate and orientation angles of the uncontrolled satellite.

This shows that the evolution of the orientation angles aswell as the spin rate is completely

erratic. In fact, if left uncontrolled, the spin rate of the satellite tends to increase over time,

indicating that control torque is crucial for the 3­AMADEUS satellite. In Ch. 6 this effect

is avoided by using the ADCS algorithm from [1].

73

74

Chapter 6

Mathematical Model For Attitude Control

This chapter aims at testing the ADCS algorithm from [1] by implementing the re­

spective control law in the 3­AMADEUS CubeSat, in order to verify the viability of its

implementation in this mission, as well as to demonstrate the methodology for this kind

of study. This chapter’s simulations run in the same LEO environment that has been an­

alyzed in Ch. 5, a quite realistic model proposed for this mission. Initially, the control

law of this algorithm is presented and afterwards five tests are made. The first one is per­

formed assuming no torques besides gravity gradient torque; the second one encompasses

all perturbance torques and assumes that there is no knowledge of the residual magnetic

dipole, while the third assumes that there is such knowledge. The fourth test assumes all

that has been tested previously but includes the presence of uncertainties on the attitude

data. Lastly, the same as fourth test is performed but this time doubling the center ofmass

offset.

6.1 The Control Law

The control law in study [1], is given by:

mt rqr = −kωBb × ωb
ob − kaBb × S (6.1)

where S is given by Eq.(6.2).

S = [a23 − a32, a31 − a13, a12 − a21]T (6.2)

In the above equation ai j are the elements of RB
O, the rotation matrix from orbit to body

frame.

The goal of this algorithm is to provide orbital attitude control to the satellite, that

is, to align its body axes with the axes of the orbit frame. More specifically, the objective

is to stabilize the satellite in a nominal position, where the orientation angles are all 0.

The first term of this control law is responsible for reducing the angular rate while the

second term is responsible for driving the satellite into the desired attitude. This control

law is deeply reliant on the gravity gradient torque, as this torque drives the satellite to

the desired attitude when in the vicinity of the nominal position. In addition to the gravity

gradient torque, the magnetorquer control torque acts to diminish the offset between the

body and orbit frame axes.

75

6.2 Attitude Control Tests

6.2.1 Algorithm Verification

Firstly, to verify the algorithm, it is tested by putting the 3­AMADEUS CubeSat in an

environment where no perturbance torques exist, beside the gravity gradient torque. The

initial conditions are those defined in Sec. 4.2. Using kω = 8, 000 Nm
T 2 and ka = 2 Nm

T 2 the

satellite behaves as shown in Fig. 6.1.

0 2 4 6 8 10 12

Time [h]

-0.02

-0.01

0

0.01

S
p
in

 r
a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n
g
le

 [
d
e
g
]

Offset angle between body frame axes and orbital frame axes

x

y

z

12 12.5

-3
-2
-1
0
1

10-5

x

y

z

12 12.2 12.4

-5

0

5

10-3

Figure 6.1: Orientation angles and spin rate ­ Ideal Environment.

The satellite behaves exactly as expected, as all orientation angles tend to 0 and stabilize

there. The algorithm works, now it is crucial to understand how its performance changes

in the presence of the perturbance torques in a LEO environment.

6.2.2 Attitude Control with no RMD estimation

Using the exact same model but with kω = 20, 000 Nm
T 2 and ka = 2 Nm

T 2 and all disturbance

torques active one gets the behaviour described by Fig. 6.2.

76

0 2 4 6 8 10 12

Time [h]

-0.02

0

0.02

0.04

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

12 12.5

-1
0
1
2

10-3

Figure 6.2: Orientation angles and spin rate ­ LEO Environment, no RMD estimation.

Even after several adjustment of the control gains in order to optimize the attitude

control, the results are clear: the satellite can’t avoid oscillating around the desired at­

titude with quite a large amplitude. Despite this, in terms of spin rates, this algorithm

is somewhat viable since it manages to decrease the spacecraft’s spin rate to about 2 ×
10−3 rad/s.

The reasoning behind this high amplitude oscillation is due to the satellite’s lowmass

and size and subsequent inertia tensor. Since this algorithm is so dependent on the gravity

gradient torque for attitude control, it requires that, in order to achieve high accuracy, the

gravity gradient torque ­ whosemagnitude is proportional to the satellite’s mass and size ­

is of at least the samemagnitude as the disturbing torque of largest magnitude ­ the RMD

torque. This isn’t the case as can be seen in Sec. 5.1. In fact, if one increases the simulation

time, uses kω = 5, 000, 000 Nm
T 2 and ka = 5, 000 Nm

T 2 and uses the inertia tensor provided by

[1] J = diag(3.2, 5.2, 2.2)[kg m2], the results are much better, with an accuracy of about 4º,

as depicted by Fig. 6.3.

77

0 2 4 6 8 10 12 14 16 18

Time [h]

-0.02

0

0.02

0.04

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

0 2 4 6 8 10 12 14 16 18

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

18 19
-2
0
2
4
6

18 19
-2

-1

0

1
10-4

x

y

z

Figure 6.3: Orientation angles and spin rate ­ LEO Environment, large satellite.

Considering these results, it is clear that this algorithm, as it is, is suited for larger

spacecraft but not for a very small and light 1U CubeSat, as is the case of 3­AMADEUS.

But if one could estimate the residual magnetic dipole, and compensate for it in real time,

could this algorithm work? Sec. 6.2.3 analyzes this possibility.

6.2.3 Attitude Control with RMD Estimation

If one knows at all timeswhat the residualmagnetic dipole is in all axes, then themag­

netorquer can generate a control magnetic dipole of equal magnitude but in the opposite

direction, cancelling the torque of the residual magnetic dipole in real time. If that is the

case, then the gravity gradient torque can better stabilize the satellite since it is of a larger

magnitude than the other torques, as has been seen in Sec. 5.1. With this assumption, one

can create an alternate version of the control law:

mt rqr = −kωBb × ωb
ob − kaBb × S −mres (6.3)

it is now considered that there is RMD knowledge. To implement such knowledge in the

attitude model, the model considers a constant RMD of mres = 0.01 (in reality it has to be

estimated in real time since it is not constant).

With this new control law, and using the control gains kω = 2, 600 Nm
T 2 and ka = 2 Nm

T 2 ,

the 3­AMADEUS satellite behaves as described by Fig. 6.4.

78

0 2 4 6 8 10 12

Time [h]

-0.02

0

0.02

0.04

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

12 12.5
-6
-4
-2
0
2

10-4

12 12.5
0

10

20

Figure 6.4: Orientation angles and spin rate ­ LEO Environment, with RMD estimation.

The control law does provide orbital attitude with an accuracy of 20º for the bx and

bz axis and of 9º for the by axis. Depending on the mission requirements, this control

algorithm can be applicable, despite its accuracy being relatively low. The satellite also

stabilizes its spin rate with a 2 × 10−4 rad/s accuracy, which is acceptable.

This study has shown the performance of this algorithm but it has assumed that the

inputs to it are completely correct, but errors in attitude determinationmust be accounted

for, if these results are to be of any relevance to the actual mission.

6.2.4 Attitude Control with RMD Estimation and Uncertainties

The same test as the previous one is performed, but this time assuming a 20% error

on the reading of the relative angular velocity, of themagnetic field and of S. For theRMD,

an error of 0.1% is considered. Through a series of tests, these errors have been found to

be themaximum the control algorithm can endure before losing the ability to stabilize the

satellite within the vicinity of the nominal attitude.

79

0 2 4 6 8 10 12

Time [h]

-0.02

0

0.02

0.04

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

12 12.5

-10

-5

0

10-4

11 12
0

20

Figure 6.5: Orientation angles and spin rate ­ LEO Environment, with RMD estimation and uncertainties.

As can be seen from Fig. 6.5, with all these limitations, the accuracy drops even fur­

ther to 31º on the bx and bz axes and 15º on the by axes. This, again, is far from ideal but

can be used in some scenarios.

6.2.5 Attitude Control with RMD Estimation, Uncertainties and Larger Center

of Mass Offset

The offset of 2 mm that has been considered is not a worse case scenario. It has been

found that the algorithm still provides attitude control with an offset increased to 4 mm.

However, in that case the disturbance torques double and the accuracy decreases even

further, as depicted by Fig. 6.6.

80

0 2 4 6 8 10 12

Time [h]

-0.02

0

0.02

0.04

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

12 12.5

-4
-2
0
2

10-4

11.5 12 12.5

40
50
60

11.5 12 12.5

5

10

Figure 6.6: Orientation angles and spin rate ­ LEO Environment, with RMD estimation, uncertainties, and
4 mm offset.

Themain issuewith implementing this algorithm in the 3­AMADEUSCubeSat is how

small and light it is, since the algorithm is best suited for a different class of satellite. De­

spite this, the algorithmworks to an extent in detumbling the spacecraft after deployment.

Considering that in the context of the 3­AMADEUS mission, the satellite’s low size and

mass can’t be altered, the main issue is the RMD estimation, which must be done with a

maximum error of 0.1%. Nevertheless, the algorithm seems very tolerant of bad readings

for the other parameters, which is a good sign.

In Ch. 7, aHIL simulation ismade considering the alternate control law, RMDknowl­

edge and uncertainties, with an offset of 2 mm. Consequently, the results of this test

should match the results of Fig. 6.5.

81

82

Chapter 7

Attitude Control HIL Simulation

In this chapter, the results that have been obtained in the model with RMD estima­

tion, uncertainties and an offset of 2 millimeters are replicated. This time, the test is per­

formed using the FPGA present in an ABACUS OBC as a processing unit for the attitude

control algorithm, instead of the personal computer in which the simulation is ran, with

this process being a HIL simulation. As for the rest of this work, attitude determination

is not considered. If the results match the one that have been discussed in Ch. 6, with the

algorithm being processed by the simulating environment, then the FPGA implementa­

tion is validated, not only for this algorithm but for ADCS algorithms for the 3­AMADEUS

mission in general.

Firstly, the software tools and hardware components used to make this HIL simula­

tion possible are presented. Afterwards, the assumptions and simplifications that have

beenmade are discussed. Additionally, the FPGA design that has been used for the ADCS

algorithm implementation is presented. Lastly, the HIL Simulation is performed and its

results discussed.

7.1 Components and Tools Used

7.1.1 Components

The implementation of the control algorithm is made in a Xilinx Spartan 3E Starter

Kit board, that contains the Spartan 3E FPGA. This FPGA is the same as the one present in

the ABACUS OBC. The implementation is valid for the FPGA itself, meaning that it works

exactly the same if implemented on the ABACUS OBC, with just the User Constraint File

(UCF) ­ the file that associates signals in the code with pins on the actual board ­ having

to be slightly altered.

83

Figure 7.1: The Xilinx Spartan 3E Starter Kit.

To connect the FPGA and the computer running the simulation, an USB to RS­232

cable is used, just like the one depicted in Fig. 7.2, with visible wiring.

Figure 7.2: An USB to RS­232 cable.

To download the bitstream file onto the FPGA, an additional cable is required. In this

case, it is the platform cable available with the Spartan 3E starter kit, an Universal USB

Type B cable.

84

Figure 7.3: Xilinx platform cable.

Finally, the simulation is run onMATLAB software on aWindows 10 PC. Due to plat­

form cable compatibility issues, the FPGA programming is done using a Windows XP

virtual machine that itself runs the iMPACT software for bitstream downloading.

7.1.2 Tools

As mentioned in Ch. 3, the programming of Xilinx FPGAs is mostly done using their

IDE, Vivado. However, due to the fact that the Spartan 3E is a 15 years old FPGA, themost

recent version of the Xilinx IDE doesn’t support it. As a result, it is necessary to install

and use the Xilinx ISE Design Suite 14.7, an outdated version. The design entry is done on

this software, with the VHDL code and theUCF file being defined there. The simulation of

the design is made using the ModelSim software, simply for a matter of preference, since

a similar tool is available in the IDE. As mentioned earlier, the programming of the FPGA

and its PROM is done separately using the iMPACT software on a Windows XP virtual

machine.

To communicate with the FPGA, the serial communication features of MATLAB are

used.

7.2 Assumptions

Attitude determination is beyond the scope of this thesis, therefore one must assume

that the FPGA receives all the required attitude data ­ the magnetic field, angular veloc­

ity, S, and RMD readings ­ directly. The objective of this FPGA implementation is then

to directly receive all attitude data from MATLAB, calculate the required magnetorquer

85

current to generate the required dipole specified by the control law in [1] and send it back

to MATLAB, so that it can insert it into the next step of the simulation.

If one takes a look at a common magnetometer’s datasheet [100], it is possible to

see that the magnetometer data is sent as a 16­bit word divided into 2 bytes, meaning

that the range of the data is actually limited to 16 bits. Having this in mind, to make this

implementation more realistic, it is considered that all attitude data that is sent to the

FPGA must be comprised into 16 bits, more specifically as 16­bit signed numbers. This

means that the data must be scaled to fit within that range. The output current must also

be sent as 16­bit signed numbers.

Scaling by powers of 2 facilitates hardware implementation since only a bit shift is

required to obtain the scaled data. For example, if the angular rate is of −0.0144 rad/s, it

must be scaled by a factor of 220. This means that one gets approximately −0.0144 × 220 ≈
−1511[2−20 rad/s], which is the most accurate representation that one can get with 16 bits.

This scaled data is what the FPGA receives. The scale for the magnetic field is of 229, for

S of 213 and for ωb
ob and for mres it is of 220. Finally, the current that is passed to the

magnetorquers, the output of the FPGA, is in turn scaled by 219. Let’s now review the

actual design of the FPGA.

7.3 FPGA Design

7.3.1 Design Requirements

The first step in the design of every FPGA (and system in general) is to determine

what the design requirements are, and then devise what needs to be done to achieve said

requirements.

For this work, it is intended that the FPGA outputs the required current for the mag­

netorquer rods in each axis, based on the control law fromEq. (6.3). For that, it is required

that the FPGA implementation considers the control law as three separate equations, re­

placing the cross product with products between scalars. Additionally, the required dipole

is converted into required current, by multiplying it by Z:

Ireqx = Z(kω(Bbzω
b
obx
− Bbxω

b
obz

) − ka(BbzS x − BbxS z) − mresx)

Ireqy = Z(kω(Bbxω
b
oby
− Bbyω

b
obx

) − ka(BbxS y − BbyS x) − mresy)

Ireqz = Z(kω(Bbyω
b
obz
− Bbzω

b
oby

) − ka(BbyS z − BbzS y) − mresz)

(7.1)

where Z is simply the inverse of the total magnetorquer area. Considering the typical

magnetorquer data found in [99], with ncoil as the number of coil turns and Acoil as the

area for each coil turn, Z is given by Eq.(7.2).

Z =
1

ncoil Acoil
=

1
78 × 0.0039

= 3.2873 [m−2] (7.2)

Now that it is clear what the FPGA needs to do, it is necessary to define how well this

task must be performed. The main issues to consider are the precision of the output and

86

the processing time of this algorithm. The processing time is hardly a limitation in this

context since when running the simulationwith a 1 second step, the results have been fine.

This means that any processing time that is below that, works. In terms of precision, the

limitations are somewhat greater: it has been found that for the algorithm to be accurate,

the current must be precise, with an error below 1×10−5A. So now the three requirements

for this design are set: It must receive 14 (3 for each axis of each parameters plus gains)

16­bit numbers for attitude data and output 3 16­bit numbers for the current (one for each

axis), do this process in less than 1 second, and have an error that is below 1×10−5A, when

compared to the real required current.

7.3.2 Proposed Architecture

Overview

Let’s start with the definition of the FPGA inputs and outputs. The FPGA features a

UART transceiver and has only one input pin, called data_in, through which it receives

16­bit attitude data fromMATLAB, and one output pin, called data_out through which it

sends the 16­bit required current to MATLAB. Internally, a clock signal synchronizes the

processes inside the FPGA.

To achieve a design that allows for the precision requirements to be met, obviously,

a word length of 16 bits isn’t enough to perform the necessary mathematical operations,

especially considering that it is necessary to multiply numbers whose products wouldn’t

fit in a 16­bit format. The proposed solution is, after receiving the input numbers from

the UART transceiver, to convert them into another format, inside the FPGA. More pre­

cisely, a 64­bit format using fixed point representation with 16 integer bits and 48 fraction

bits is used, allowing for the desired precision. In fact, since the new format allows it, the

numbers are not only formatted to 64 bits but also scaled so that their new 64­bit repre­

sentation now represents their true value and not their scaled value that is received by the

FPGA.

After scaling and formatting, the FPGA should now hold 14 64­bit numbers andmust

now do the necessary computations with them so that one gets 3 64­bit numbers, corre­

sponding to the required current. To achieve this, multiplications, additions and subtrac­

tions are done in accordance to Eq. (7.1), using the fixed point arithmetic discussed in

Sec. 3.5.3.

Having the 3 desired outputs in a 64­bit format, the inverted process of the scaling

and formatting done earlier is performed. The FPGA must now scale the 64­bit numbers

so that their integer part becomes an integer as large as possible within the 16­bit interval

(−215 to 215). After that is done, the FPGA truncates the fractional bits, and gets a scaled

16­bit version of the 3 desired currents.

When the output data is available, itmust be sent. With the design of aUART transceiver,

it is possible to serially send the current data to MATLAB, so that it can insert it into the

simulation. By driving the data_out line to low, the FPGA signals MATLAB to receive the

incoming data. This data is sent by setting the data_out line to high or low depending on

87

the binary number representing the current. The sending of data to MATLAB is the last

step in the FPGA data flow. This implementation is made possible by the FPGA’s design

freedom, that allows for conversion between format at will, facilitating the meeting of the

precision requirements.

All this operation is done using 7 concurrent processes that run continuously and

simultaneously within the FPGA. Next, these processes are further looked into.

Processes

There is a main UART process, a state machine that, besides handling the data trans­

mission to and from fromMATLAB, drives to and gets data fromall other processes. There

is also another state machine, the Computations process. This process computes the re­

quired current while theUART process is in a waiting state. Additionally there is a process

for each arithmetic operation and for each format/scale operation that constantly output

the result of whatever their inputs are. Considering the light processing time requirement,

this FPGA design is done via concurrent processes that are used at a time. This causes the

hardware resources usage ­ one of the main issues of this design ­ to drop significantly.

All these processes execute concurrently and continuously, but its outputs and in­

puts are driven and read by the UART and computations blocks in a timely manner. A

block diagram is presented in Fig. 7.4, displaying the FPGA design in a very top level and

chronological manner.

Figure 7.4: Block diagram of the proposed FPGA architecture.

UART Process

The UART process is the main process in this design as it interacts with all others

processes and is responsible for receiving and sending data, the most fundamental as­

pect of the design. It has one main input and one main output, the data_in and data_out

88

lines. Additionally, it has several other inputs and outputs for connecting with the format­

ting, deformatting, and the computations processes. This process receives data from the

data_in line and assigns it to different signals. These signals are sent to other processes

that treat the data sequentially. While those processes run, the UART process waits un­

til their outputs are ready. When that happens, it sends the data they output to the next

process and waits again, until the 3 16­bit output numbers are available. At that time, the

UART process sends them through the data_out line, using the same UART protocol.

Computations Process

The computations process has 14 inputs that are directly connected to the 64­bit for­

matted data signals from theUART process. When the UART process goes into its waiting

mode, the computations process starts computing the required current, one operation at

a time until it outputs either the required current, or if that is too large, the maximum

current that the magnetorquer rod can handle. When this process is done, the UART pro­

cess proceeds with its execution. In reality, the computations process merely sends and

receives data sequentially and orderly from and to the multiplier, adder and subtractor

processes until finally it gets the required current and sends it to the UART process.

Scale and Format Process

The scale and format process has a single input, the 16­bit number that must be con­

verted to the scaled 64­bit format. However, it has 3 outputs, one for each possible scaling

factor. It works by appending 48 zeros to the right of the 16­bit number, and, depending

on the output, shifting its bits to the right by 13, 20 or 29 bits (the scale factors discussed

earlier). The UART process selects which output it requires depending on what data it

gives to this process.

De­Scale and De­Format Process

The De­scale factor only has one input, a 64­bit word, and one output, a 16­bit word.

Only one output is required since it only has current signals as its inputs, with all of them

sharing the same scaling factor. It works reversely to the scale and format process, as

firstly it de­scales the current by left shifting by 19 bits and then removes the 48 fractional

bits entirely.

Multiplier Process

The multiplier process takes 2 64­bit (16 integer bits, 48 fractional) numbers, and

outputs another 64­bit number that corresponds to their product. It works by creating a

128­bit word that holds the product of the 2 64­bit words and then truncating in on both

sides, according to the fixed point arithmetic discussed earlier.

89

Adder/Subtractor Processes

The adder and the subtractor processes take 2 64­bit (16 integer bits, 48 fractional)

numbers, and output another 64­bit number that corresponds to their sum/difference.

They work by creating a 65­bit word that holds the sum/difference of the 2 64­bit words

and then truncating by 1 bit on the left side, also according to fixed point arithmetic.

7.3.3 User Constraints

The User Constraints, the association of input and output signals in the code with

actual pins on the board, must be done via a User’s Constraints File. In this case there are

three signals that must be associated with physical elements: The data_in, data_out and

clock signals. Since the data is transmitted serially, it makes sense to use the available RS­

232 serial ports available on the starter kit (these ports are also available on the ABACUS

OBC). With that in mind, one must look in the board’s datasheet [101] and find what

locations the RS­232 Tx (associated with the data_out signal) and RS­232 Rx (associated

with the data_in signal) are in, and associate themwith their respective signals in theUCF.

Additionally, since a clock signal is necessary for this design, one can use the built­in 50

MHz clock and associate it with the clock signal in the code.

In the case of this board, the association of the board LEDs with internal signals has

been extremely useful when debugging the design.

7.3.4 System Performance

Simulations can be used to assess system performance before implementation, al­

though verifying the precision of this system using only one set of inputs is not very reli­

able. Having that in mind, the real precision test is made after the design is implemented,

though the well functioning of the design can be checked using a simulator. Apart from

that, what actually is checked using simulation is the processing time. The simulation

results are present in Appendix A.

The output values obtained in the simulation correspond to the values expected for

a given set of inputs, suggesting a good implementation of the control algorithm. The

results also indicate that the processing time for this design is of about 0.0024 seconds,

clearly under the limit set earlier.

7.3.5 Resource Usage

The ISE Design Suite produced the logic utilization summary described by Fig. 7.5.

90

Figure 7.5: Utilization Summary for the proposed FPGA design.

Despite the usage of concurrent processes having decreased resource usage by amas­

sive amount (it was over 100%before optimization), the utilization percentage is still quite

high. The high utilization percentage shown is expected to some extent due to the usage

of 14 64­bit words and a multiplier for them. For future applications of more computa­

tionally heavy algorithms, this utilization can be further optimized by altering the code to

ensure that block RAM is inferred rather than registers, for some of the signals.

7.4 HIL Simulation

7.4.1 Setup

InCh. 4, 5, and 6, both the kinematic and dynamic equations and theADCS algorithm

have been computed in MATLAB. In the case of a HIL simulation, the dynamic equations

are ran inside MATLAB but the ADCS computations are performed by the FPGA, as de­

picted by Fig. 7.6.

91

Figure 7.6: Block diagram comparing the mathematical and HIL simulations.

ForMATLAB to exchange data serially with the FPGA, the USB to RS­232 cable must

connect the computer and the FPGA, with the cable Tx connecting with the FPGA Rx and

the FPGA Tx connecting with the cable Rx. Additionally, the programming cable is used

to upload the program to the FPGA before running the simulation. A GND connection

must also be made between the board and the RS­232 cable.

Figure 7.7: Real life setup used for the HIL Simulation

7.4.2 Results

Now that all the steps in designing and setting up the FPGA have been described and

examined, the FPGA implementation can be tested by performing a HIL simulation. The

objective is to reproduce the results of the test done in Sec. 6.2.4, where RMD estimation,

estimating errors, and an offset of 2 mm have been considered. If the results using the

FPGA as the ADCS processing unit match the results for that test, the FPGA implementa­

92

tion should be validated for the 3­AMADEUS mission. Note that attitude determination

is not considered here.

The results for the HIL simulation using these conditions and the FPGA design pre­

sented earlier are described by Fig. 7.8.

0 2 4 6 8 10 12

Time [h]

-0.02

0

0.02

0.04

S
p

in
 r

a
te

 [
ra

d
/s

]

Spin Rates of Body Frame in Orbit Frame

x

y

z

0 2 4 6 8 10 12

Time [h]

0

50

100

150

A
n

g
le

 [
d

e
g

]

Offset angle between body frame axes and orbital frame axes

x

y

z

12 12.5

-5

0

5
10-4

11.5 12 12.5
0

20

Figure 7.8: Orientation angles and spin rate in a HIL Simulation.

At first sight, it is possible to see that the simulation results match almost exactly the

ones of Fig. 6.5. The little difference between the ideal and FPGA implementations in­

dicates that the latter is well implemented. Despite this, it is important to examine more

thoroughly the differences and consider their impact, if any. To do that, the σ3 standard

deviation of the offset between the required current value calculated by MATLAB and the

one calculated by the FPGA, is examined. By doing this analysis, one can find the 99.7%

confidence interval [102] for this offset, assuming of course that the attitude data received

by the FPGA is within the foreseen limits.

Additionally, the same analysis is made for the relative angular velocity and for the

orientation angles, more specifically the offset between the values of the simulation in Sec.

6.2.4 and the HIL simulation. This comparison should provide data on the performance

of this implementation when compared to the earlier one.

Firstly, performing the analysis of the required current, one gets Fig. 7.9.

93

0 2 4 6 8 10 12

Time [h]

-2

0

2
10-6 Required Current : x axis

Offset(x)

Mean +
3
 =1.4802e-06

Mean -
3
 =-1.8446e-06

Mean

0 2 4 6 8 10 12

Time [h]

-2

0

2

R
e

q
u

ir
e

d
 C

u
rr

e
n

t
[A

]

10-6 Required Current : y axis

Offset(y)

Mean +
3
 =1.4951e-06

Mean -
3
 =-1.8846e-06

Mean

0 2 4 6 8 10 12

Time [h]

-2

0

2
10-6 Required Current : z axis

Offset(z)

Mean +
3
 =1.4575e-06

Mean -
3
 =-1.7971e-06

Mean

Figure 7.9: σ3 analysis for the offset of the desired current.

The data show that all offset samples collected are below 1.1 × 10−6, indicating that the

precision requirement of a maximum error of 1 × 10−5 is fulfilled. Additionally, one can

be 99.7% sure that the error is smaller than 2 × 10−6. These findings indicate a good im­

plementation of the ADCS algorithm.

In the case of the relative angular rate and of the orientation angles the results are

given by Fig. 7.10 and Fig. 7.11.

94

0 2 4 6 8 10 12

Time [h]

-2
0
2

10-6 Angular Rate : x axis

Offset(x)

Mean +
3
 =2.4377e-06

Mean -
3
 =-2.3113e-06

Mean

0 2 4 6 8 10 12

Time [h]

-2

0

2

A
n

g
u

la
r

R
a

te
 [

ra
d

/s
]

10-6 Angular Rate : y axis

Offset(y)

Mean +
3
 =1.5726e-06

Mean -
3
 =-1.6257e-06

Mean

0 2 4 6 8 10 12

Time [h]

-4
-2
0
2
4

10-6 Angular Rate : z axis

Offset(z)

Mean +
3
 =3.074e-06

Mean -
3
 =-3.4757e-06

Mean

Figure 7.10: σ3 analysis for the offset of the relative angular rate.

0 2 4 6 8 10 12

Time [h]

-0.2

0

0.2

Orientation Angles : x axis

Offset(x)

Mean +
3
 =0.20467

Mean -
3
 =-0.12168

Mean

0 2 4 6 8 10 12

Time [h]

-0.2
0

0.2

O
ri
e

n
ta

ti
o

n
 A

n
g

le
s
 [

º]

Orientation Angles : y axis

Offset(y)

Mean +
3
 =0.26138

Mean -
3
 =-0.11829

Mean

0 2 4 6 8 10 12

Time [h]

-0.2

0

0.2

Orientation Angles : z axis

Offset(z)

Mean +
3
 =0.1741

Mean -
3
 =-0.12974

Mean

Figure 7.11: σ3 analysis for the offset of the orientation angles.

95

As expected, due to the small differences in magnetorquer current, there are also small

differences in these parameters.

For the angular rate, an extremely small difference below 4× 10−6 is expected and its

mean is very close to 0 on all axes, therefore this difference is completely negligible. As a

result, one can state that the satellite stabilizes as fast with the FPGA implementation as

it did earlier.

In terms of the orientation angles, the difference is somewhat more noticeable, de­

spite also being very small. The analysis shows that, on all axes, 99.7% of all instances

should have a difference that is below 0.3º. This error is negligible considering the ac­

tual precision of the algorithm and of most ADCS systems today. It is also noticeable that

the difference is larger during the early stage of simulation, where the spin rate is larger,

than on the end of the stabilization process, when the satellite approaches the nominal

position.

Based on above results, one can conclude that the HIL Simulation and the associated

FPGA design have been successful, with only minimal differences between the ideal and

FPGA results. This lets one confirm the suitability of the ABACUS OBC and its Spartan

3E FPGA for the ADCS of the 3­AMADEUS CubeSat.

96

Chapter 8

Conclusions

8.1 Overview

The reduction of weight and consumption of ADCS components is of the uttermost

importance to the further reducing of space access costs for small spacecraft and, con­

sequently, to further develop the Small Sat industry. To alleviate this issue, magnetic

ADCS components are often used, reducing costs but decreasing ADCS accuracy. The

development of this technology, namely through the in­flight testing of novel ADCS al­

gorithms, can potentially improve the performance of these magnetic components, and

consequently lead to the broadening of their applications.

This thesis develops an attitude model in which this sort of algorithm can be tested,

andperforms said testing to anADCSalgorithm, assessing its validity for the 3­AMADEUS

mission. Additionally, an FPGA design that implements this algorithm is proposed and

tested in aHIL simulation to assess the viability of using an FPGA, not only for this specific

algorithm, but for ADCS control algorithms in general.

The developed model is based on well documented equations and formulations and

has produced the expected results for every set of conditions and parameters that it has

been submitted to.

In terms of the control algorithm that has been studied, its functioning in principle

has been proven in an unperturbed environment. When submitted to more realistic LEO

conditions expected for the 3­AMADEUS mission, the algorithm manages to detumble

the satellite, but the orientation accuracy is very low, mainly due to the presence of the

residual magnetic dipole torque. This result is due to the fact that this algorithm relies

immensely on the gravity gradient torque, which depends on the mass distribution and

size of the spacecraft. 3­AMADEUS, being small and light, is not adequate for the appli­

cation of this algorithm in LEO conditions. If, however, one assumes that it is possible

to estimate the residual magnetic dipole in real time, it is possible to adapt the control

law to compensate for the RMD torque. In this case, the spacecraft improves its orien­

tation accuracy, although the results still aren’t great, with a pointing accuracy of about

20º. Additionally, in the presence of a significant error in the attitude data readings, the

algorithm still manages to detumble the satellite, keeping it oscillating in the vicinity of

the nominal position, although the amplitude of these oscillations in these conditions is

quite large.

In terms of the FPGA implementation, performing a HIL simulation using the FPGA

as a processing unit for the ADCS algorithm provides virtually the same results as doing

it in the numerical simulation environment. Nevertheless, one should keep in mind that

for this HIL simulation to be performed, a few assumptions have been done and attitude

97

estimation hasn’t been considered.

Concluding, the gathered data lead one to believe that the model is correct and thus,

its usage in the study of future ADCS algorithms is possible and recommended. The tested

ADCSalgorithm inparticular succeeds at detumbling the satellite, but its orientation accu­

racy is quite low, since it has been developed for larger satellites. The analysis performed

and the methodology used provide relevant data and can be applied to other algorithms.

Taking a look at the HIL simulation results, the FPGA implementation has been success­

ful and the FPGA design basis and methodology appear to be a good option for attitude

control, not only for this algorithm, but for ADCS algorithms as a whole.

Finally, and with all this in mind, one can conclude that the objectives for this work

have all been accomplished, with the only disappointment being the low accuracy of the

control law used. This is a problem that can be fixed only by using a newly developed

algorithm that is better suited for the 3­AMADEUS, or by including other types of ADCS

actuators.

8.2 Constraints and Challenges

This work has two main constraints in the fact the algorithm doesn’t stabilize the

spacecraft very accurately, and in the fact that attitude determination isn’t considered,

which removes realism from this study.

During development of the attitude model, since the used control law isn’t the best

suit for the 3­AMADEUS CubeSat, it was difficult at times to grasp if that was the case or if

the problem was with the model. Upon gaining a better understanding of how the control

law worked, it has become clear it was the first option.

The FPGA design has also been quite troublesome, mainly due to the fact that the

available documentation is often scarce and vague. One of the main issues to solve was

the fact that the data to be exchanged between the computer and the FPGA is of different

magnitudes. This has led to significant number of iterations being necessary until a so­

lution was found. Even after solving this particular issue, the earlier designs took up too

much resources when the bitstream generation was attempted. This has led to a deeper

study regarding how the synthesis tools infer logic, and, consequently, to a complete re­

vamp of the design. TheMATLAB/FPGA interface was also quite difficult to grasp at first,

and has been solved only when an oscilloscope was used tomeasure the voltage on the RS­

232 lines.

8.3 Open Points and Future Works

In terms of works that can be developed in the future, an obvious choice would be to

deepen this study by implementing attitude determination, both to the model and to the

FPGA design. This would considerably improve the realism of this thesis and provide a

work that is much closer to the final design for the 3­AMADEUS CubeSat.

98

Considering the low accuracy of the algorithm used for this thesis, it would also be

interesting to do the same tests to the novel ADCS algorithms being developed at KIAM

and assess their viability for the 3­AMADEUS mission.

It could also be interesting to improve the realism of the attitude model proposed by

reducing the number of assumptions made. For example it could be interesting to model

the perturbance torques considering a varying exposed area, considering a heterogeneous

mass distribution for the computation of the inertia tensor, or even calculating the direc­

tion of the solar radiation torque more accurately, based on the positions of the Earth and

the sun.

99

100

Bibliography

[1] D. Ivanov et al, “Advanced numerical study of the three­axismagnetic attitude con­

trol and determination with uncertainties,” 2017.

[2] A. Toorian et al, “The cubesat approach to space access,” 2008.

[3] H. Heidt et al, “CubeSat: A new Generation of Picosatellite for Education and In­

dustry Low­Cost Space Experimentation,” 2000.

[4] ESA Earth Observation Portal, “Asteria (arcsecond space telescope enabling

research in astrophysics).” https://directory.eoportal.org/web/eoportal/
satellite-missions/a/asteria.
Accessed: 09­02­2020.

[5] L. N. Morcillo et al, “Use of hardware­on­the­loop to test missions for a low cost

mini­launcher,” 2011.

[6] Alén Space, “ABasicGuide toNanosatellites.” https://alen.space/basic-guide-
nanosatellites/.
Accessed: 13­02­2020.

[7] R. Nugent et al, “CubeSat: The Pico­Satellite Standard for Research and Educa­

tion,” 2008.

[8] R. P.Welle, “The CubeSat Paradigm: An Evolutionary Approach to Satellite De­

sign,” 2016.

[9] CDS, “CubeSat Design Specification Rev.13,” 2016.

[10] T. Villela et al, “Towards the Thousandth CubeSat: A Statistical Overview,” 2019.

[11] M. T. Tikhonravov, “The creation of the first artificial Earth satellite: some histor­

ical details. ,” 1994.

[12] A. Poghosyan et al, “CubeSat evolution: Analyzing CubeSat capabilities for con­

ducting science missions,” 2016.

[13] NASA, “State of the Art of Small Spacecraft Technology.” https://www.nasa.gov/
smallsat-institute/sst-soa/guidance-navigation-and-control.
Accessed: 10­02­2020.

[14] NANOSTAR, “NANOSTAR Project Methodology.” https://nanostar-
project.gitlab.io/main/contents.html.
Accessed: 15­02­2020.

[15] J. Wertz, Space Mission Analsysis and Design. 1991.

101

https://directory.eoportal.org/web/eoportal/satellite-missions/a/asteria
https://directory.eoportal.org/web/eoportal/satellite-missions/a/asteria
https://alen.space/basic-guide-nanosatellites/
https://alen.space/basic-guide-nanosatellites/
https://www.nasa.gov/smallsat-institute/sst-soa/guidance-navigation-and-control
https://www.nasa.gov/smallsat-institute/sst-soa/guidance-navigation-and-control
https://nanostar-project.gitlab.io/main/contents.html
https://nanostar-project.gitlab.io/main/contents.html

[16] ESA Earth Observation Portal, “DeOrbitSail (DOS) Nanosatellite Mission.”

https://directory.eoportal.org/web/eoportal/satellite-missions/d/
deorbitsail.
Accessed: 12­02­2020.

[17] I. S. O. (TEC­QI), “ESA Requirements on EOL De­orbit,” 2015.

[18] K. Lemmer, “Propulsion for CubeSats,” 2017.

[19] A. Bost, “Materials for Small­Scale Space Propulsion Systems,” 2017.

[20] ESA, “ESTRACK ground stations.” https://www.esa.int/Enabling_Support/
Operations/Estrack/Estrack_ground_stations.
Accessed: 05­05­2020.

[21] J. Bouwmeester, “Lecture Notes ­ Spacecraft Technology ,” 2016.

[22] D. C. et al, “Thermal Experiments for Validation of 3­AMADEUS Cubesat,” 2017.

[23] C. Kurtuluş et al, “ĐTÜ­ pSAT I: Istanbul Technical University StudentPico­

Satellite Program,” 2007.

[24] ESA Earth Observation Portal, “Itupsat­1 (istanbul technical university

picosatellite­1).” https://directory.eoportal.org/web/eoportal/satellite-
missions/i/itupsat-1.
Accessed: 11­02­2020.

[25] A. Klesh et al, “MarCO: CubeSats to Mars in 2016,” 2014.

[26] ESA Earth Observation Portal, “Marco (mars cube one).” https://
directory.eoportal.org/web/eoportal/satellite-missions/content/-/
article/marco.
Accessed: 09­02­2020.

[27] JPL, “Iris V2.1 CubeSat Deep Space Transponder Brochure,” 2016.

[28] J. Wertz, Spacecraft Attitude Determination and Control. 1978.

[29] F. L. Markley, J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination

and Control. 2014.

[30] X. Xia et al, “NanoSats/CubeSats ADCS Survey,” 2017.

[31] NewSpace Systems, “Sun Sensor Datasheet.” https://www.newspacesystems.com/
wp-content/uploads/2020/04/NewSpace-Sun-Sensor_7b.pdf.
Accessed: 14­02­2020.

[32] A. P. E. A. v. T.­J. Chin, S. Bagchi, “Star tracking using an event camera,” in CVPR

Workshop on Event­based Vision and Smart Cameras, 2019.

102

https://directory.eoportal.org/web/eoportal/satellite-missions/d/deorbitsail
https://directory.eoportal.org/web/eoportal/satellite-missions/d/deorbitsail
https://www.esa.int/Enabling_Support/Operations/Estrack/Estrack_ground_stations
https://www.esa.int/Enabling_Support/Operations/Estrack/Estrack_ground_stations
https://directory.eoportal.org/web/eoportal/satellite-missions/i/itupsat-1
https://directory.eoportal.org/web/eoportal/satellite-missions/i/itupsat-1
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/marco
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/marco
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/marco
https://www.newspacesystems.com/wp-content/uploads/2020/04/NewSpace-Sun-Sensor_7b.pdf
https://www.newspacesystems.com/wp-content/uploads/2020/04/NewSpace-Sun-Sensor_7b.pdf

[33] S. Zafar et al, “Earth horizon sensor for attitude determination of LEO satellites,”

2019.

[34] ESA Artes, “Coarse InfraRed Earth Sensor IRES­C.” https://artes.esa.int/
projects/coarse-infrared-earth-sensor-ires-c.
Accessed: 13­02­2020.

[35] K. Mizokami, “The Air Force May Ditch GPS for Earth’s Magnetic Field.”

popularmechanics.com/military/research/a33512412/air-force-magnetic-
field-gps/.
Accessed: 13­02­2020.

[36] F. Stray, “Attitude Control of a Nano Satellite,” 2010.

[37] G. Lavezzi et al”, “Attitude Control Strategies for an Imaging CubeSat,” 2019.

[38] S. Ulrich, Aerospace Stream Selection. 2017.

[39] Nano Avionics, “CubeSat Magnetorquer SatBus MTQ.” https://
nanoavionics.com/cubesat-components/cubesat-magnetorquer-satbus-mtq/.
Accessed: 13­02­2020.

[40] J. Gießelmann, “Development of an Active Magnetic Attitude Determination and

Control System for Picosatelliteson highly inclined circular Low Earth Orbits,”

2006.

[41] J. Guo et al, “Where is the limit? The analysis of CubeSat ADCS performance,”

2016.

[42] E. E. O. Portal, “OPTOS (Optical Nanosatellite.” https://
directory.eoportal.org/web/eoportal/satellite-missions/o/optos.
Accessed: 12­02­2020.

[43] ESA Earth Observation Portal, “TEMPEST­D (Temporal Experiment for

Storms and Tropical Systems Technology ­ Demonstration).” https:
//directory.eoportal.org/web/eoportal/satellite-missions/t/tempest-d.
Accessed: 12­02­2020.

[44] Blue Canyon Technologies, “Our Components.” https://bluecanyontech.com/
components.
Accessed: 13­02­2020.

[45] EnduroSat, “1U SOLAR PANEL X/Y.” https://www.endurosat.com/cubesat-
store/all-cubesat-modules/1u-solar-panel-x-y/?v=35357b9c8fe4.
Accessed: 13­10­2020.

[46] N. Prasad, “An overview of on­board computer (OBC) systems available on the

global space marketplace.” https://blog.satsearch.co/2020-03-11-overview-
of-on-board-computers-available-on-the-global-space-marketplace.
Accessed: 19­02­2020.

103

https://artes.esa.int/projects/coarse-infrared-earth-sensor-ires-c
https://artes.esa.int/projects/coarse-infrared-earth-sensor-ires-c
popularmechanics.com/military/research/a33512412/air-force-magnetic-field-gps/
popularmechanics.com/military/research/a33512412/air-force-magnetic-field-gps/
https://nanoavionics.com/cubesat-components/cubesat-magnetorquer-satbus-mtq/
https://nanoavionics.com/cubesat-components/cubesat-magnetorquer-satbus-mtq/
https://directory.eoportal.org/web/eoportal/satellite-missions/o/optos
https://directory.eoportal.org/web/eoportal/satellite-missions/o/optos
https://directory.eoportal.org/web/eoportal/satellite-missions/t/tempest-d
https://directory.eoportal.org/web/eoportal/satellite-missions/t/tempest-d
https://bluecanyontech.com/components
https://bluecanyontech.com/components
https://www.endurosat.com/cubesat-store/all-cubesat-modules/1u-solar-panel-x-y/?v=35357b9c8fe4
https://www.endurosat.com/cubesat-store/all-cubesat-modules/1u-solar-panel-x-y/?v=35357b9c8fe4
https://blog.satsearch.co/2020-03-11-overview-of-on-board-computers-available-on-the-global-space-marketplace
https://blog.satsearch.co/2020-03-11-overview-of-on-board-computers-available-on-the-global-space-marketplace

[47] J. Rajewski, Learning FPGAs. 2017.

[48] Charles H. Roth, Jr., L.K. John, Digital Systems Design Usign VHDL. 2007.

[49] A. Moore, FPGA for Dummies. 2017.

[50] F. Piltan et al, “Design FPGA­Based CL­Minimum Control Unit,” 2016.

[51] OurPCB, “FPGA Vs Microcontroller­Which Is Better For Your Needs.” https://
www.ourpcb.com/fpga-vs-microcontroller.html.
Accessed: 01­03­2020.

[52] IMT, “IMT Cubesat On­Board Computer.” http://www.imtsrl.it/obc-
cubesat.html.
Accessed: 08­06­2020.

[53] IMT, “ISIS On Board Computer.” https://www.isispace.nl/product/on-board-
computer/.
Accessed: 05­03­2020.

[54] ISIS, “ISIS On Board Computer.” https://www.isispace.nl/product/on-board-
computer/.
Accessed: 12­02­2020.

[55] S. Habinc, “Suitability of Reprogrammable FPGAs in Space Applications,” 2002.

[56] A. S. Dawood et al, “On­board Satellite Image Compression Using Reconfigurable

FPGAs,” 2002.

[57] G. Grillmayer et al, “FPGA Based Attitude Control System Architecture for In­

creased Perfomance,” 2008.

[58] M. Yasir et al, “Development of a Safe Mode Attitude Control for a FPGA based

Micro Satellite,” 2008.

[59] ESA Earth Observation Portal, “Flying Laptop.” https://
directory.eoportal.org/web/eoportal/satellite-missions/f/flying-
laptop#:~:text=Flying%20Laptop%20is%20is%20the,OSIRIS%20terminals%
20(Figure%2019).
Accessed: 16­02­2020.

[60] J. Soh et al, “A FPGA­based Approach to Attitude Determination for Nanosatel­

lites,” 2011.

[61] H. D. Curtis, Orbital Mechanics for Engineering Students. 2004.

[62] C.­. Foundation, “Conic Sections.” https://www.ck12.org/book/ck-12-algebra-
ii-with-trigonometry-concepts/section/10.0/.
Accessed: 24­06­2020.

104

https://www.ourpcb.com/fpga-vs-microcontroller.html
https://www.ourpcb.com/fpga-vs-microcontroller.html
http://www.imtsrl.it/obc-cubesat.html
http://www.imtsrl.it/obc-cubesat.html
https://www.isispace.nl/product/on-board-computer/
https://www.isispace.nl/product/on-board-computer/
https://www.isispace.nl/product/on-board-computer/
https://www.isispace.nl/product/on-board-computer/
https://directory.eoportal.org/web/eoportal/satellite-missions/f/flying-laptop#:~:text=Flying%20Laptop%20is%20is%20the,OSIRIS%20terminals%20(Figure%2019).
https://directory.eoportal.org/web/eoportal/satellite-missions/f/flying-laptop#:~:text=Flying%20Laptop%20is%20is%20the,OSIRIS%20terminals%20(Figure%2019).
https://directory.eoportal.org/web/eoportal/satellite-missions/f/flying-laptop#:~:text=Flying%20Laptop%20is%20is%20the,OSIRIS%20terminals%20(Figure%2019).
https://directory.eoportal.org/web/eoportal/satellite-missions/f/flying-laptop#:~:text=Flying%20Laptop%20is%20is%20the,OSIRIS%20terminals%20(Figure%2019).
https://www.ck12.org/book/ck-12-algebra-ii-with-trigonometry-concepts/section/10.0/
https://www.ck12.org/book/ck-12-algebra-ii-with-trigonometry-concepts/section/10.0/

[63] V. A. Chobotov, Orbital Mechanics . 1991.

[64] NASA, “Basics of Space Flight Section.” https://solarsystem.nasa.gov/basics/
chapter5-1/.
Accessed: 23­07­2020.

[65] E. G. S. Centre, “Orbital and Technical Parameters.” https://www.gsc-europa.eu/
system-service-status/orbital-and-technical-parameters.
Accessed: 13­10­2020.

[66] ESA, “ESA ­ Types of orbits.” https://www.esa.int/Enabling_Support/
Space_Transportation/Types_of_orbits.
Accessed: 23­07­2020.

[67] R. J. Boain, A­B­Cs of Sun­Synchronous Orbit Mission Design . 2004.

[68] J. T. Gravdahl et al, “Three Axis Attitude Determination and Control System for a

Pico­satellite : Design and Implementation,” 2003.

[69] K. G. Ganesh, “Controls Algorithm for a Satellite Using Earth’s Magnetic Field: Or­

bit Maneuvers Attitude Positioning,” 2005.

[70] M. J. Baker, “Euclidean Space: Maths ­ Rotation Matrices.” https:
//www.euclideanspace.com/maths/algebra/matrix/orthogonal/rotation/
index.htm.
Accessed: 15­05­2020.

[71] J. Diebel, Representing Attitude: Euler Angles, Unit Quaternions, and Rotation

Vectors. 2006.

[72] E. W. Weinstein, “Euler Angles.” https://mathworld.wolfram.com/
EulerAngles.html.
Accessed: 15­07­2020.

[73] D. Henderson, “Euler Angles, Quaternions and Transformation Matrices,” 1977.

[74] A. Alaimo et al, “Comparison Between Euler and Quaternion Parametrization in

UAV Dynamics,” 2013.

[75] H. Tanous, “Interactive and connected rehabilitation systems for e­health,” 2018.

[76] G. Avanzini, Spacecraft Attitude Dynamics and Control. 2008.

[77] M. Sidi, Spacecraft dynamics and control: a practical engineering approach.

1997.

[78] A. Kurdila et al, Dynamics and Control of Robotic Systems. 2019.

[79] A. Aharoni, Introduction to the theory of ferromagnetism. 2000.

105

https://solarsystem.nasa.gov/basics/chapter5-1/
https://solarsystem.nasa.gov/basics/chapter5-1/
https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters
https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://www.euclideanspace.com/maths/algebra/matrix/orthogonal/rotation/index.htm
https://www.euclideanspace.com/maths/algebra/matrix/orthogonal/rotation/index.htm
https://www.euclideanspace.com/maths/algebra/matrix/orthogonal/rotation/index.htm
https://mathworld.wolfram.com/EulerAngles.html
https://mathworld.wolfram.com/EulerAngles.html

[80] P. Alken, “International Geomagnetic Reference Field.” https://
www.ngdc.noaa.gov/IAGA/vmod/igrf.html.
Accessed: 01­04­2020.

[81] M. Ovchinnikov et al, “Geomagnetic field models for satellite angular motion stud­

ies,” 2018.

[82] Milos D. Ercegovac, Tomás Lang, Jaime H. Moreno, Introduction to Digital Sys­

tems. 1998.

[83] W. Kahan, “IEEE Standard 754 for Binary Floating­Point Arithmetic,” 1997.

[84] C. lnacio, “The DSP Decision: Fixed vs Float,” 1996.

[85] D. Silage, Signal Processing Algorithms into Fixed Point FPGA Hardware. 2017.

[86] A. Gilli, Binary Arithmetic and Boolean Algebra. 1965.

[87] S. Arar, “Multiplication Examples Using the Fixed­Point Representation.”

https://www.allaboutcircuits.com/technical-articles/multiplication-
examples-using-the-fixed-point-representation/.
Accessed: 02­07­2020.

[88] J. Steinmeyer, “Communication Protocols: Notes and/or Reference, MIT,” 2017.

[89] Jonathan Valvano, Ramesh Yerraballi, Embedded Systems ­ Shape The World.

2019.

[90] D. Inc., “Communications ­ SPI Serial Protocols.” https://
reference.digilentinc.com/learn/courses/unit-4-lab4c/start.
Accessed: 13­10­2020.

[91] Y. S. Ong et al, “Plastic Optical Fibre Sensor System Design Using the Field Pro­

grammable Gate Array,” 2018.

[92] P. Kurup, Taher Abbasi, FPGA Synthesis. 1997.

[93] B. C. Readler, Vhdl by Example: A Concise Introduction for Fpga Design. 2014.

[94] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis. 1996.

[95] Xilinx, “Spartan­3A FPGA Family ­ Data Sheet.” https://www.xilinx.com/
products/silicon-devices/fpga/spartan-3.html.
Accessed: 24­06­2020.

[96] J. R. French, Michael D. Griffin, Space Vehicle Design. 1991.

[97] S. A. Rawashdeh, “Passive Attitude Stabilization for Small Satellites,” 2010.

[98] J. M. Mbuthia et al, “1KUNS­PF: 1st Kenyan University NanoSatellite­Precursor

Flight,” 2016.

106

https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
https://www.allaboutcircuits.com/technical-articles/multiplication-examples-using-the-fixed-point-representation/
https://www.allaboutcircuits.com/technical-articles/multiplication-examples-using-the-fixed-point-representation/
https://reference.digilentinc.com/learn/courses/unit-4-lab4c/start
https://reference.digilentinc.com/learn/courses/unit-4-lab4c/start
https://www.xilinx.com/products/silicon-devices/fpga/spartan-3.html
https://www.xilinx.com/products/silicon-devices/fpga/spartan-3.html

[99] J. Kiesbye, “Hardware­in­the­Loop Verification of the Distributed, Magnetorquer­

Based Attitude Determination Control System of the CubeSat MOVE­II,” 2017.

[100] FreeScale Xtrinsic, “Xtrinsic MAG3110 Three­Axis Digital Magnetometer: Data

Sheet.” https://www.nxp.com/docs/en/data-sheet/MAG3110.pdf.
Accessed: 13­10­2020.

[101] Xilinx, “Spartan­3E FPGA Starter Kit Board User Guide.” https://
www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf.
Accessed: 24­06­2020.

[102] F.­W.Wellmer, Statistical Evaluations in Exploration forMineral Deposits. 1998.

107

https://www.nxp.com/docs/en/data-sheet/MAG3110.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf

108

Appendix A

ModelSim Simulation

This appendix presents the simulation performed on the proposed FPGA design, using

ModelSim software.

A.1 3­AMADEUS FPGA Design Simulation

109

Figure A.1: ModelSim simulation of the proposed FPGA design: Data flow

110

Figure A.2: ModelSim simulation of the proposed FPGA design: Current values

111

112

	Acknowledgements
	Resumo
	Palavras-chave
	Abstract
	Keywords
	List of Figures
	List of Tables
	Introduction
	3-AMADEUS Mission
	Motivation
	Research Objectives
	Thesis Outline

	State of the Art
	The CubeSat paradigm
	CubeSats
	CubeSat Subsystems
	State of the Art CubeSat Missions

	Attitude Determination and Control Subsystem
	Sensors
	Actuators
	State of the Art ADCS Designs

	Command & Data Handling
	OBC Overview
	Field Programmable Gate Arrays
	State of the Art OBC Designs
	FPGAs in Satellite Attitude Control

	Literature Review
	Orbital Mechanics
	Keplerian Orbits
	Orbital Elements
	Sun-Synchronous Orbits

	Attitude Parameterization
	Reference Frames
	Types of Attitude Parameterization

	Attitude Dynamics
	Angular Momentum
	Equations of Motion
	Environmental Torque Models
	Control Torque Model

	Numerical Analysis Method
	Method of Runge-Kutta of the 4th Order

	Binary Number Representation
	Signed Numbers
	Decimal Numbers
	Signed Fixed Point Arithmetic

	Communication Protocols
	UART
	SPI
	I2C

	FPGA Programming
	FPGA Design Flow
	Tools
	Programming Language
	Architectural Overview

	Mathematical Model For Attitude Dynamics
	Simulation Parameters
	Numerical Parameters
	Control Parameters
	Physical Parameters
	Orbital Parameters
	Aerodynamic Parameters
	Solar Pressure Parameters
	Magnetic Parameters
	Initial Conditions

	Gravitational Stabilization Test Simulation
	Environmental Perturbance Test Simulation
	Gravity Gradient Torque
	Residual Magnetic Dipole Torque
	Aerodynamic and Solar Radiation Torque

	Uncontrolled Satellite Dynamics
	LEO Environment
	Uncontrolled Behaviour

	Mathematical Model For Attitude Control
	The Control Law
	Attitude Control Tests
	Algorithm Verification
	Attitude Control with no RMD estimation
	Attitude Control with RMD Estimation
	Attitude Control with RMD Estimation and Uncertainties
	Attitude Control with RMD Estimation, Uncertainties and Larger Center of Mass Offset

	Attitude Control HIL Simulation
	Components and Tools Used
	Components
	Tools

	Assumptions
	FPGA Design
	Design Requirements
	Proposed Architecture
	User Constraints
	System Performance
	Resource Usage

	HIL Simulation
	Setup
	Results

	Conclusions
	Overview
	Constraints and Challenges
	Open Points and Future Works

	Bibliography
	ModelSim Simulation
	3-AMADEUS FPGA Design Simulation

