Divided-difference operators from the geometric point of view

Maria das Neves Rebocho *

October 2022

Abstract

It is presented a study of general divided-difference operators having the fundamental property of leaving a polynomial of degree $n-1$ when applied to a polynomial of degree n.

1 Introduction

In the present paper it is shown a study on divided-difference operators having the fundamental property of leaving a polynomial of degree $n-1$ when applied to a polynomial of degree n. Primarily, the focus is on the geometric interpretation, by analysing the connection between the divided-difference operators and their relation with a corresponding conic, which, in turn, gives rise to a corresponding lattice of points that well-defines the operator (see [11]). Essentially, there are four primary classes of lattices and related divided-difference operators having the above mentioned property:
(i) the linear lattice, related to the forward difference operator [15, Chapter 2, Section 12] ;
(ii) the q-linear lattice, related to the q-difference operator [6] ; (iii) the quadratic lattice, related to the Wilson operator [2]; (iv) the q-quadratic lattice, related to the AskeyWilson operator [2]. This list gives a hierarchy of operators, as each of the operators in (i)-(iv) is an extension of the preceding one, which can be recovered as a special case and/or a limit case, up to a linear transformation of the variable.

The analysis of divided-difference operators (i)-(iv) is rather sparse in the literature. For instance, they are a fundamental machinery for the study of certain special functions appearing in problems from Mathematical-Physics, e.g., within the general theory of orthogonal polynomials (see [2, 7, 9, 15]). Very often, when dealing with applications, final and combined formulae are given, together with a notation that may lead to a heavy reading for readers unaware of basic relations in the theory of divided-difference operators. With this idea in mind, the main goal of the present paper is to give a concise but detailed study of some basic aspects of the divided-difference operators above referred, showing details on fundamental formulae that emerge from the geometric interpretation (given in the seminal paper [10]) and its connection with algebraic aspects of operator calculus. Here, the following topics are covered: the geometric interpretation - namely,

[^0]the connection between the operator and a conic/lattice (cf. Section 2); the classification of operators in terms of a set of parameters in the given conic (cf. Section 3); the analysis of coalescences between the operators (cf. Section 4); basic and fundamental formulae in the divided-difference calculus (cf. Section 5).

2 The conic and the related lattice

We start by following the approach from [10], where it is considered a divided-difference operator involving the values of a function at two points, with the property that it leaves a polynomial of degree $n-1$ when applied to a polynomial of degree n. Let us take the divided-difference operator \mathbb{D}_{x} as given in [10, Eq.(1.1)], defined on the space of arbitrary functions, by

$$
\begin{equation*}
\mathbb{D}_{x} f(x)=\frac{f\left(y_{+}(x)\right)-f\left(y_{-}(x)\right)}{y_{+}(x)-y_{-}(x)} \tag{1}
\end{equation*}
$$

where, at this stage, y_{+}and y_{-}are unknown functions. To define them, one starts by using the property that $\mathbb{D}_{x} f$ is a polynomial of degree $n-1$ whenever f is a polynomial of degree n. Then, applying \mathbb{D}_{x} to $f(x)=x^{2}$ and $f(x)=x^{3}$, we obtain, respectively,

$$
\begin{gather*}
y_{-}(x)+y_{+}(x)=\text { polynomial of degree } 1, \tag{2}\\
\left(y_{-}(x)\right)^{2}+y_{-}(x) y_{+}(x)+\left(y_{+}(x)\right)^{2}=\text { polynomial of degree } 2, \tag{3}
\end{gather*}
$$

the later condition being equivalent to $y_{-}(x) y_{+}(x)=$ polynomial of degree less or equal than two. From standard polynomial properties, the conditions (2)-(3) define y_{-}and y_{+} as the two y-roots of a quadratic equation, say,

$$
\begin{equation*}
a y^{2}+2 b x y+c x^{2}+2 d y+2 e x+f=0 . \quad a \neq 0 . \tag{4}
\end{equation*}
$$

The conic defined by the equation above plays an essential role in the sequel. The following identities, to be used later on, follow from the fact that y_{-}, y_{+}are the y-roots of (4):

$$
\begin{align*}
& y_{-}(x)+y_{+}(x)=-2(b x+d) / a \tag{5}\\
& y_{-}(x) y_{+}(x)=\left(c x^{2}+2 e x+f\right) / a \tag{6}\\
& y_{-}(x)=p(x)-\sqrt{r(x)}, \quad y_{+}(x)=p(x)+\sqrt{r(x)} \tag{7}
\end{align*}
$$

with p, r polynomials given by

$$
\begin{equation*}
p(x)=-\frac{b}{a} x-\frac{d}{a}, \quad r(x)=\frac{\left(b^{2}-a c\right)}{a^{2}} x^{2}+2 \frac{(b d-a e)}{a^{2}} x+\frac{\left(d^{2}-a f\right)}{a^{2}} . \tag{8}
\end{equation*}
$$

By virtue of (7), the operator \mathbb{D}_{x} defined in (1) is given as

$$
\begin{equation*}
\mathbb{D}_{x} f(x)=\frac{f(p(x)+\sqrt{r(x)})-f(p(x)-\sqrt{r(x)})}{2 \sqrt{r(x)}} \tag{9}
\end{equation*}
$$

Remark 1. The polynomials p,r will play a fundamental role in the sequel. Note that, from (7), it follows that

$$
\begin{equation*}
y_{-}(x)+y_{+}(x)=2 p(x), \quad\left(y_{-}(x)-y_{+}(x)\right)^{2}=4 r(x) \tag{10}
\end{equation*}
$$

Let us now look at the lattices.
Associated to each conic (4) two lattices are determined: the x-lattice and the y-lattice. The construction is based on the parametric representations of the conic, as follows (see [11]):
Let $\{x(s), y(s)\}$ be a parametric representation of the conic (4). For a given $x=x(s)$ value, the quadratic (4) defines two y-roots, say $y_{s}:=y(s)$ and $y_{s+1}:=y(s+1)$, which are the two ordinates associated to the abcissa $x(s)$. Then one starts from some point $\left\{x_{1}=x\left(s_{1}\right), y_{1}=y\left(s_{1}\right)\right\}$ on the conic, and one looks for the points $\left\{x_{k}=x\left(s_{1}+k\right), y_{k}=\right.$ $\left.y\left(s_{1}+k\right)\right\}, k=1,2, \ldots$. This determines the so-called y-lattice, also known as the dual lattice. Conversely, if $c \neq 0$ in (4), then, for a given y-value, the quadratic (4) defines two x-roots, say $x_{s}:=x(s), x_{s+1}:=x(s+1)$, which are consecutive points on the so-called x-lattice, also known as the direct lattice.

Remark 2. With the above notation, in terms of the operator \mathbb{D}_{x} defined in (1), we have

$$
y_{s}=y_{-}(x(s)), \quad y_{s+1}=y_{+}(x(s))
$$

2.1 The quadratic class of lattices - explicit parameterizations

The quadratic class of lattices appears when the conic (4) is such that $\left(b^{2}-a c\right)\left(d^{2}-a f\right)-$ $(b d-a e)^{2} \neq 0$. Two sub-cases hold: the conic is a parabola - when $b^{2}-a c=0$ - this corresponds to the quadratic case; the conic is a hyperbola or an ellipse - when $b^{2}-a c>0$ or $b^{2}-a c<0$, respectively - this corresponds to the q-quadratic case.

For the quadratic class of lattices there is a parametric representation of the conic, say $\{x(s), y(s)\}$, such that the functions y_{-}and y_{+}in (1) satisfy $[11,16,14]$

$$
\begin{equation*}
y_{-}(x(s))=y(s)=x(s-1 / 2), \quad y_{+}(x(s))=y(s+1)=x(s+1 / 2) . \tag{11}
\end{equation*}
$$

Hence, the divided-difference operator (1) is given as

$$
\begin{equation*}
\mathbb{D}_{x} f(x(s))=\frac{f(x(s+1 / 2))-f(x(s-1 / 2))}{x(s+1 / 2)-x(s-1 / 2)} . \tag{12}
\end{equation*}
$$

The parametrization on s is explicit [13], given by

$$
\begin{equation*}
x(s)=\tilde{\kappa}_{2} s^{2}+\tilde{\kappa}_{1} s+\tilde{\kappa}_{0} \tag{13}
\end{equation*}
$$

where $\tilde{\kappa}_{2} \neq 0$ in the quadratic case, and

$$
\begin{equation*}
x(s)=\kappa_{1} q^{s}+\kappa_{2} q^{-s}+\kappa_{3} \tag{14}
\end{equation*}
$$

where $\kappa_{1} \kappa_{2} \neq 0$ in the q-quadratic case. Here, the κ 's and $\tilde{\kappa}$'s are appropriate constants.
The parameterizations of the form (13) and (14) cover the whole set of canonical forms for the lattices. A formal deduction of formulae (13) and (14), based on properties of adjoint operators, will be given in Sub-Section 5.1.

Remark 3. Note that, in the account of (10) and (11), the polynomials p, r in (9) are then recovered under

$$
x(s+1 / 2)+x(s-1 / 2)=2 p(x(s)), \quad(x(s+1 / 2)-x(s-1 / 2))^{2}=4 r(x(s)) .
$$

Indeed, by writing $p(x)=p_{1} x+p_{0}, r(x)=r_{2} x^{2}+r_{1} x+r_{0}$, we get

$$
\begin{equation*}
p_{1}=1, p_{0}=\tilde{\kappa}_{2} / 4, r_{2}=0, r_{1}=\tilde{\kappa}_{2}, r_{0}=\tilde{\kappa}_{1}^{2} / 4-\tilde{\kappa}_{2} \tilde{\kappa}_{0} \tag{15}
\end{equation*}
$$

in the case (13), and

$$
\begin{gather*}
p_{1}=\frac{q^{1 / 2}+q^{-1 / 2}}{2}, p_{0}=\kappa_{3}\left(1-\frac{\left(q^{1 / 2}+q^{-1 / 2}\right)}{2}\right), \tag{16}\\
r_{2}=\frac{\left(q^{1 / 2}-q^{-1 / 2}\right)^{2}}{4}, r_{1}=-\kappa_{3} \frac{\left(q^{1 / 2}-q^{-1 / 2}\right)^{2}}{2}, \tag{17}\\
r_{0}=\left(-\kappa_{1} \kappa_{2}+\frac{\kappa_{3}^{2}}{4}\right)\left(q^{1 / 2}-q^{-1 / 2}\right)^{2} \tag{18}
\end{gather*}
$$

in the case (14).
A.P. Magnus, in [11, p. 255], gives the following precise parameterizations.

Proposition 1. Consider the conic (4), $a y^{2}+2 b x y+c x^{2}+2 d y+2 e x+f=0$, with $a c \neq 0$. The following assertions hold.
(a) If the conic has a center $\lambda:=b^{2}-a c \neq 0$, then, with the center coordinates

$$
x_{c}=\frac{a e-b d}{\lambda}, \quad x_{c}=\frac{c d-b e}{\lambda},
$$

one has (4) written in the form

$$
a\left(y-y_{c}\right)^{2}+2 b\left(x-x_{c}\right)\left(y-y_{c}\right)+c\left(x-x_{c}\right)^{2}+\tilde{f}=0,
$$

with

$$
\tilde{f}=f-a y_{c}^{2}-2 b x_{c} y_{c}-c x_{c}^{2}=f+d y_{c}+e x_{c}=f+\frac{c d^{2}-2 b d e+a e^{2}}{\lambda} .
$$

(a.1) If $\tilde{f} \neq 0$, then

$$
x(s)=x_{c}+\xi \sqrt{a}\left(q^{s}+q^{-s}\right), \quad y(s)=y_{c}+\xi \sqrt{c}\left(q^{s-1 / 2}+q^{-s+1 / 2}\right),
$$

is a parametric representation of (4), where $\xi^{2}=\tilde{f} /(4 \lambda)$, and

$$
q^{1 / 2}+q^{-1 / 2}=-\frac{2 b}{\sqrt{a c}}, \quad \text { i.e., } \quad q+q^{-1}=\frac{4 b^{2}}{a c}-2 .
$$

(a.2) If $\tilde{f}=0$, then one finds the parametric representation

$$
x(s)=x_{c}+X \sqrt{a} q^{s}, \quad y(s)=y_{c}+X \sqrt{c} q^{s \pm 1 / 2}
$$

for arbitrary parameters X.
(b) If the conic has a center $\lambda:=b^{2}-a c=0$, then

$$
\left\{\begin{array}{l}
x(s)=\sqrt{a}\left(\frac{d^{2}-a f}{2 a(d \sqrt{c}+e \sqrt{a})}-2 \frac{(d \sqrt{c}+e \sqrt{a})}{a c} s^{2}\right) \\
y(s)=\sqrt{c}\left(\frac{e^{2}-c f}{2 c(d \sqrt{c}+e \sqrt{a})}-2 \frac{(d \sqrt{c}+e \sqrt{a})}{a c}(s-1 / 2)^{2}\right)
\end{array}\right.
$$

is a parametric representation of (4).
Remark 4. In the generic case q-quadratic case $|q| \neq 1$ the conic gives a hyperbola. In such a case, the asymptotes are given by $y=(c / a)^{1 / 2} q^{ \pm 1 / 2} x$, thus, q is precisely the ratio of the slopes of the asymptotes of the conic.

3 Classification

There are four primary classes of lattices and related divided-difference operators:
(i) the linear lattice, related to the forward difference operator [15, Chapter 2, Section 12] ;
(ii) the q-linear lattice, related to the q-difference operator [6];
(iii) the quadratic lattice, related to the Wilson operator [2];
(iv) the q-quadratic lattice, related to the Askey-Wilson operator [2].

Such a classification can be done according to the two parameters λ, τ defined in terms of the conic (4), $a y^{2}+2 b x y+c x^{2}+2 d y+2 e x+f=0$, as follows:

$$
\begin{equation*}
\lambda=b^{2}-a c, \quad \tau=\left(\left(b^{2}-a c\right)\left(d^{2}-a f\right)-(b d-a e)^{2}\right) / a, \tag{19}
\end{equation*}
$$

or, using the determinant notation,

$$
\tau=\operatorname{det}\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right]
$$

Note that $\lambda \neq 0$ allows us to write the polynomial r in (8) as

$$
\begin{equation*}
r(x)=\frac{\lambda}{a^{2}}\left(x+\frac{b d-a e}{\lambda}\right)^{2}+\frac{\tau}{a \lambda} . \tag{20}
\end{equation*}
$$

A detailed analysis of each case (i)-(iv), showing each of the operators in the form (9) with the corresponding polynomials p, r, is given in the following sub-sections.

3.1 The linear lattice: $\lambda=\tau=0$ in (19)

If $\lambda=0$ and $\tau=0$, then, from (19), $b d-a e=0$, thus, the the polynomial r defined in (8) is constant, $r(x)=\frac{d^{2}-a f}{a^{2}}$. Hence, we have the polynomials p, r defined in (8) given by

$$
p(x)=-\frac{b}{a} x-\frac{d}{a}, \quad r(x)=\frac{d^{2}-a f}{a^{2}} .
$$

Recalling (7), it follows that

$$
\begin{equation*}
y_{ \pm}(x)=-\frac{b}{a} x-\frac{d}{a} \pm \frac{\sqrt{d^{2}-a f}}{a^{2}} \tag{21}
\end{equation*}
$$

that is, we have two parallel lines,

$$
y_{ \pm}(x)=m x \pm b_{ \pm},
$$

with

$$
m=-\frac{b}{a}, \quad b_{ \pm}=-\frac{d}{a} \pm \frac{\sqrt{d^{2}-a f}}{a^{2}}
$$

Proposition 2. The canonical divided-difference operator related to the linear lattices is the forward difference operator $\mathbb{D}_{x}=\Delta_{w}$ - the so-called Hahn's operator [6], where

$$
\begin{equation*}
\Delta_{w} f(x)=\frac{f(x+w)-f(x)}{w}, \quad w \neq 0 \tag{22}
\end{equation*}
$$

for arbitrary functions f. Hence, the operator Δ_{w} can be written in the form (9), with the polynomials p, r given by

$$
p(x)=x+\frac{w}{2}, \quad r(x)=\frac{w^{2}}{4} .
$$

Proof. Combining (1) with (21), the operator (22) is recovered through the specialization

$$
\begin{equation*}
b=-a \quad c=a, \quad d=-a w / 2, \quad e=a w / 2, \quad f=0 \tag{23}
\end{equation*}
$$

and it follows the assertion on the polynomials p, r.
Also, by using the values of (23) into (4), we get the conic with equation

$$
y^{2}-2 x y+x^{2}-w y+w x=0
$$

which can be factorized as

$$
(y-x)(y-x-w)=0 .
$$

The linear lattice, obtained via two parallel lines, is illustrated through Fig. 2.d) in [11, pp. 256]).

3.2 The q-linear lattice: $\lambda \neq 0, \quad \tau=0$ in (19)

If $\lambda \neq 0$ and $\tau=0$, the polynomials p, r defined in (8) are given by

$$
p(x)=-\frac{b}{a} x-\frac{d}{a}, \quad r(x)=\frac{\lambda}{a^{2}}\left(x+\frac{b d-a e}{\lambda}\right)^{2} .
$$

Recalling (7), it follows that

$$
\begin{equation*}
y_{ \pm}(x)=-\frac{b}{a} x-\frac{d}{a} \pm \frac{\sqrt{\lambda}}{a}\left(x+\frac{b d-a e}{\lambda}\right), \tag{24}
\end{equation*}
$$

that is, we have two intersecting lines,

$$
y_{+}(x)=m_{+} x+b_{+}, \quad y_{-}(x)=m_{-} x+b_{-},
$$

with

$$
\begin{gathered}
m_{+}=-\frac{b}{a}+\frac{\sqrt{\lambda}}{a}, \quad m_{-}=-\frac{b}{a}-\frac{\sqrt{\lambda}}{a}, \\
b_{+}=\frac{\sqrt{\lambda}}{a}\left(\frac{b d-a e}{\lambda}\right)-\frac{d}{a}, \quad b_{-}=-\frac{\sqrt{\lambda}}{a}\left(\frac{b d-a e}{\lambda}\right)-\frac{d}{a} .
\end{gathered}
$$

Proposition 3. The canonical divided-difference operator related to the q-linear lattices is the q-linear difference operator, $\mathbb{D}_{x}=\Delta_{q, w}[6]$, where

$$
\begin{equation*}
\Delta_{q, w} f(x)=\frac{f(q x+w)-f(x)}{(q-1) x+w}, \quad q \neq 1 \tag{25}
\end{equation*}
$$

for arbitrary functions f. Hence, the operator $\Delta_{q, w}$ can be written in the form (9), with the polynomials p, r given by

$$
p(x)=\frac{(q+1)}{2} x+\frac{w}{2}, \quad r(x)=\frac{(q-1)^{2}}{4}\left(x+\frac{w}{q-1}\right)^{2} .
$$

Proof. Combining (1) with (24), the operator (25) is recovered through the specialization

$$
\begin{equation*}
b=-\frac{(q+1)}{2} a, \quad c=q a, \quad d=-\frac{w}{2} a, \quad e=\frac{w}{2} a, \quad f=0 \tag{26}
\end{equation*}
$$

and it follows the assertion on the polynomials p, r.
Also, by using the values of (26) into (4), we get the conic with equation

$$
y^{2}-(q+1) x y+q x^{2}-w y+w x=0
$$

which can be factorized as

$$
(y-x)(y-q x-w)=0 .
$$

The q-linear lattice, obtained via two intersecting lines, is illustrated through Fig. 2.b) in [11, pp. 256]).

Remark 5. In [6, pp. 6], it is shown that, whenever $q \neq 1$, the constant w in (25) can be eliminated through a linear transformation: by setting $x=\hat{a} z+\hat{b}$ and $f(x)=h(z)$, the operator $\Delta_{q, w}$ can be written as

$$
\Delta_{q, w} f(x)=\frac{h\left(q z+\frac{(q-1) \hat{b}+w}{\hat{a}}\right)-h(z)}{(q-1) z+\frac{(q-1) \hat{b}+w}{\hat{a}}} .
$$

Now, choosing $\hat{a}=1, \hat{b}=\frac{w}{1-q}$, we get the operator

$$
\begin{equation*}
\mathcal{D}_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} . \tag{27}
\end{equation*}
$$

3.3 The quadratic lattice: $\lambda=0, \tau \neq 0$ in (19)

If $\lambda=0$ and $\tau \neq 0$, the polynomials p, r defined in (8) are both of degree one, given by

$$
p(x)=-\frac{b}{a} x-\frac{d}{a}, \quad r(x)=2 \frac{(b d-a e)}{a^{2}} x+\frac{\left(d^{2}-a f\right)}{a^{2}} .
$$

Recalling (7), it follows that

$$
\begin{equation*}
y_{ \pm}(x)=-\frac{b}{a} x-\frac{d}{a} \pm \frac{\sqrt{2(b d-a e) x+\left(d^{2}-a f\right)}}{a} \tag{28}
\end{equation*}
$$

Proposition 4. The canonical divided-difference operator related to the quadratic lattices is the Wilson operator [1, 2], $\mathbb{D}_{x}=\mathcal{W}$ where

$$
\begin{equation*}
\mathcal{W} f(x)=\frac{f\left(\left(\sqrt{x}+\frac{i}{2}\right)^{2}\right)-f\left(\left(\sqrt{x}-\frac{i}{2}\right)^{2}\right)}{2 i \sqrt{x}} \tag{29}
\end{equation*}
$$

for arbitrary functions f. Hence, the operator \mathcal{W} can be written in the form (9), with the polynomials p, r given by

$$
p(x)=x-\frac{1}{4}, \quad r(x)=-x .
$$

Proof. Combining (1) with (28), the operator (29) is recovered through the specialization

$$
\begin{equation*}
b=-a, c=a, \quad d=e=\frac{a}{4}, \quad f=\frac{a}{16} . \tag{30}
\end{equation*}
$$

and it follows the assertion on the polynomials p, r.
Also, by using the values of (30) into (4), we get the conic with equation

$$
y^{2}-2 x y+x^{2}+\frac{y}{2}+\frac{x}{2}+\frac{1}{16}=0
$$

which is a parabola (we have $\lambda=0$ and $\tau<0$). The corresponding lattice, obtained via a parabola, is illustrated through Fig. 2.c) in [11, pp. 256]).

3.4 The q-quadratic lattice: $\lambda \neq 0, \tau \neq 0$ in (19)

If $\lambda \neq 0$ and $\tau \neq 0$, the polynomials p, r defined in (8) are of degree one and two, respectively, given as

$$
p(x)=-\frac{b}{a} x-\frac{d}{a}, \quad r(x)=r(x)=\frac{\lambda}{a^{2}}\left(x+\frac{b d-a e}{\lambda}\right)^{2}+\frac{\tau}{a \lambda} .
$$

Recalling (7), it follows that

$$
\begin{equation*}
y_{ \pm}(x)=-\frac{b}{a} x-\frac{d}{a} \pm \sqrt{\frac{\lambda}{a^{2}}\left(x+\frac{b d-a e}{\lambda}\right)^{2}+\frac{\tau}{a \lambda}} . \tag{31}
\end{equation*}
$$

Under some specializations, by considering the centred and symmetrised forms of the lattice, one can recover the Askey-Wilson operator [1, 2] (see also [7, Eq. (12.1.12)]), given by

$$
\begin{equation*}
\mathbb{D}_{x} f(x)=\frac{f\left(\frac{1}{2}\left(q^{1 / 2} z+q^{-1 / 2} z^{-1}\right)\right)-f\left(\frac{1}{2}\left(q^{-1 / 2} z+q^{1 / 2} z^{-1}\right)\right)}{\frac{1}{2}\left(q^{1 / 2}-q^{-1 / 2}\right)\left(z-z^{-1}\right)} \tag{32}
\end{equation*}
$$

Indeed, let us begin by defining the base $q=e^{2 i \eta}$ and consider the projection map from the unit circle $\left\{z=e^{i \theta}, \theta \in[-\pi, \pi[\}\right.$ onto $[-1,1]$ by

$$
x=\frac{1}{2}\left(z+z^{-1}\right) .
$$

Note that we have

$$
\begin{equation*}
y_{-}(x)=\frac{1}{2}\left(q^{-1 / 2} z+q^{1 / 2} z^{-1}\right), \quad y_{+}(x)=\frac{1}{2}\left(q^{1 / 2} z+q^{-1 / 2} z^{-1}\right) . \tag{33}
\end{equation*}
$$

Proposition 5. The canonical divided-difference operator related to the q-quadratic lattices, in the symmetrical form, is the Askey-Wilson operator (32) [1, 2]. The operator (32) can be written in the form (9), with the polynomials p, r given by

$$
p(x)=\frac{\left(q^{1 / 2}+q^{-1 / 2}\right)}{2} x, \quad r(x)=\frac{\left(q^{1 / 2}-q^{-1 / 2}\right)}{4}\left(x^{2}-1\right) .
$$

Proof. Combining (1) with (33), we have, after basic computations,

$$
\begin{gather*}
y_{-}(x)+y_{+}(x)=2 \cos (\eta) x=\left(q^{1 / 2}+q^{-1 / 2}\right) x, \tag{34}\\
\left(y_{-}(x)-y_{+}(x)\right)^{2}=\left(q^{1 / 2}-q^{-1 / 2}\right)\left(x^{2}-1\right) . \tag{35}
\end{gather*}
$$

In the account of (10), that is, $y_{-}(x)+y_{+}(x)=2 p(x)$ and $\left(y_{-}(x)-y_{+}(x)\right)^{2}=4 r(x)$, there follow the polynomials p, r as stated.

The operator (32) is recovered through the specialization

$$
a=c, \text { arbitrary and non-zero, } b=-a \cos (\eta), \quad d=e=0, \quad f=-a \sin ^{2}(\eta)
$$

In the q-quadratic case, the conic is an hyperbola (when $\lambda>0$ and $\tau<0$), or an ellipse (when $\lambda<0$ and $\tau<0$, respectively). The corresponding lattice, obtained via an hyperbola or an ellipse, is illustrated through Figs. 1 and 2.a) in [11, pp. 256]).

4 Coalescence

The set of lattices previously defined can be classified through specifications on the constants in the parametrization formulae (13) and (14), that is, in

$$
x(s)=\tilde{\kappa}_{2} s^{2}+\tilde{\kappa}_{1} s+\tilde{\kappa}_{0}
$$

and

$$
x(s)=\kappa_{1} q^{s}+\kappa_{2} q^{-s}+\kappa_{3},
$$

respectively. Indeed, depending on the constants κ 's and $\tilde{\kappa}$'s, we recover the four primary classes for the lattices $x(s)$:
(i) Linear lattices : $\tilde{\kappa}_{2}=0$ and $\tilde{\kappa}_{1} \neq 0$ in (13);
(ii) q-linear lattices : $\kappa_{2}=0$ and $\kappa_{1} \neq 0$ in (14);
(iii) Quadratic lattices : $\tilde{\kappa}_{2} \neq 0$ in (13);
(iv) q-Quadratic lattices : $\kappa_{1} \kappa_{2} \neq 0$ in (14).

The q-quadratic lattice, in its general non-symmetrical form, is the most general case and the other lattices can be found from this by limiting processes.

It turns out that each of the operators listed in (i)-(iii) of the previous section, specified in Sub-Sections 3.1-3.3, can be recovered as a particular case or as a limit case, up to a linear transformation of the variable, from one of the operators in the list. Details are given as follows.

Recall the polynomials p, r in (8): by writing $p(x)=p_{1} x+p_{0}, r(x)=r_{2} x^{2}+r_{1} x+r_{0}$, we have

$$
\begin{gather*}
p_{1}=-\frac{b}{a}, \quad p_{0}=-\frac{d}{a} \tag{36}\\
r_{2}=\frac{b^{2}-a c}{a^{2}}, \quad r_{1}=2 \frac{(b d-a e)}{a^{2}}, \quad r_{0}=\frac{d^{2}-a f}{a^{2}} \tag{37}
\end{gather*}
$$

4.1 From q-quadratic to quadratic

Taking limits $q \rightarrow 1$ in (16) as well as in (17) we get $p_{1}=1$ and $r_{2}=0$. In the account of (37), $r_{2}=0$ yields $b^{2}-a c=0$. Furthermore, in the account of (37), note that $\tau \neq 0$ in (19) if, and only if, $r_{0} r_{2}-\left(r_{1} / 2\right)^{2} \neq 0$. As we have $r_{2}=0$, then $\tau \neq 0$ if, and only if, $r_{1} \neq 0$, which must hold upon a suitable choice of κ_{3}. Thus, we get the quadratic case: $\lambda=0$ and $\tau \neq 0$ (cf. Sub-Section 3.3).

4.2 From q-quadratic to q-linear

Recalling the remark 5 , let us take the operator \mathcal{D}_{q} defined by (27),

$$
\mathcal{D}_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} .
$$

We begin by fixing the parameter $q \neq 1$. Taking limits $\kappa_{2} \rightarrow 0, \kappa_{3} \rightarrow 0$, and fixing $q \neq 1$ in (14) we get $r_{2} \neq 0, r_{1}=0, r_{0}=0$ in (17)-(18), that, in the account of (37), yields $b^{2}-a c \neq 0, b d-a e=0, d^{2}-a f=0$. Thus, we get the q-linear case: $\lambda \neq 0$ and $\tau=0$ (cf. Sub-Section 3.2).

Note that, in such a situation, the operator \mathcal{D}_{q} obtained via the above limiting process is given by

$$
\mathcal{D}_{q} f(x(s))=\frac{f\left(\kappa_{1} q^{s+1 / 2}\right)-f\left(\kappa_{1} q^{s-1 / 2}\right)}{\kappa_{1}\left(q^{s+1 / 2}-q^{s-1 / 2}\right)},
$$

which can be easily written as (27) trough the change of variable $x(s)=\kappa_{1} q^{s-1 / 2}$.

4.3 From q-linear to linear

The linear case follows easily by taking limits $q \rightarrow 1$ in (25). Indeed, we get the coefficients of the polynomials p, r as given in Proposition 2, thus, in the account of (37), we have $\lambda=0$ and $\tau=0$ (cf. Sub-Section 3.1).

5 Divided-difference operator calculus

Recall the operator \mathbb{D}_{x} in its general form given by (1), together with the corresponding conic (4) and the polynomials p, r defined in (8). In the sequel we shall take $\Delta_{y}=y_{+}-y_{-}$. From (7), there follows

$$
\begin{equation*}
\Delta_{y}=2 \sqrt{r} . \tag{38}
\end{equation*}
$$

In order to deduce further properties, let us now introduce the operators \mathbb{E}_{x}^{+}and \mathbb{E}_{x}^{-} (see [10]), acting on arbitrary functions f, as

$$
\mathbb{E}^{ \pm} f(x)=f\left(y_{ \pm}(x)\right)
$$

With this notation, (1) is also given by

$$
\mathbb{D}_{x} f(x)=\frac{\mathbb{E}_{x}^{+} f-\mathbb{E}_{x}^{-} f}{\mathbb{E}_{x}^{+} x-\mathbb{E}_{x}^{-} x}
$$

The companion operator of \mathbb{D} is then defined as (see [10])

$$
\begin{equation*}
\mathbb{M}_{x} f(x)=\frac{\mathbb{E}_{x}^{+} f(x)+\mathbb{E}_{x}^{-} f(x)}{2} \tag{39}
\end{equation*}
$$

Note that $\mathbb{M}_{x} f$ is a polynomial whenever f is a polynomial. Furthermore, if $\operatorname{deg}(f)=n$, then $\operatorname{deg}\left(\mathbb{M}_{x} f\right)=n$.

The operators \mathbb{D}_{x} and \mathbb{M}_{x} satisfy the product and quotient rules listed below (see [10]):

$$
\begin{align*}
& \mathbb{D}_{x}(f g)=\mathbb{D}_{x} f \mathbb{M}_{x} g+\mathbb{M}_{x} f \mathbb{D}_{x} g \tag{40}\\
& \mathbb{D}_{x}(f / g)=\frac{\mathbb{D}_{x} f \mathbb{M}_{x} g-\mathbb{D}_{x} g \mathbb{M}_{x} f}{\mathbb{E}_{x}^{-} f \mathbb{E}_{x}^{+} f} \tag{41}\\
& \mathbb{M}_{x}(f g)=\mathbb{M}_{x} f \mathbb{M}_{x} g+\frac{\Delta_{y}^{2}}{4} \mathbb{D}_{x} f \mathbb{D}_{x} g \tag{42}\\
& \mathbb{M}_{x}(f / g)=\frac{\mathbb{E}_{x}^{-} f \mathbb{E}_{x}^{+} g+\mathbb{E}_{x}^{+} f \mathbb{E}_{x}^{-} g}{2 \mathbb{E}_{x}^{-} g \mathbb{E}_{x}^{+} g} \tag{43}
\end{align*}
$$

Eq. (40) has the equivalent forms:

$$
\begin{aligned}
& \mathbb{D}_{x}(g f)=\mathbb{D}_{x} g \mathbb{E}_{x}^{-} f+\mathbb{D}_{x} f \mathbb{E}_{x}^{+} g \\
& \mathbb{D}_{x}(g f)=\mathbb{D}_{x} g \mathbb{E}_{x}^{+} f+\mathbb{D}_{x} f \mathbb{E}_{x}^{-} g
\end{aligned}
$$

Also, one has two equivalent forms for (41):

$$
\begin{aligned}
& \mathbb{D}_{x}(g / f)=\frac{\mathbb{D}_{x} g \mathbb{E}_{x}^{-} f-\mathbb{D}_{x} f \mathbb{E}_{x}^{-} g}{\mathbb{E}_{x}^{-} f \mathbb{E}_{x}^{+f}} \\
& \mathbb{D}_{x}(g / f)=\frac{\mathbb{D}_{x} g \mathbb{E}_{x}^{+} f-\mathbb{D}_{x} f \mathbb{E}_{x}^{+} g}{\mathbb{E}_{x}^{-} f \mathbb{E}_{x}^{+} f}
\end{aligned}
$$

The operators \mathbb{D}_{x} and \mathbb{M}_{x} also satisfy the product rules II (see [5, Eq. 15] and [4])

$$
\begin{equation*}
\mathbb{D}_{x} \mathbb{M}_{x}=\alpha \mathbb{M}_{x} \mathbb{D}_{x}+U_{1} \mathbb{D}_{x}^{2}, \quad \mathbb{M}_{x}^{2}=U_{1} \mathbb{M}_{x} \mathbb{D}_{x}+\alpha \frac{\Delta_{y}^{2}}{4} \mathbb{D}_{x}^{2}+\mathbb{I} \tag{44}
\end{equation*}
$$

where \mathbb{I} is the identity operator, $\mathbb{I} f(x)=f(x), \alpha$ is defined in terms of the conic (4) as $\alpha=-\frac{b}{\sqrt{a c}}$, and

$$
\begin{equation*}
U_{1}(x)=\left(p_{1}^{2}-1\right) x+\frac{r_{1}}{2} \tag{45}
\end{equation*}
$$

with p_{1} and r_{1} defined in (15) in the quadratic case, or in (16)-(18) in the q-quadratic case.

5.1 The explicit parameterizations revisited

Let us recall the conic (4), $a y^{2}+2 b x y+c x^{2}+2 d y+2 e x+f=0, \quad a \neq 0$, as well as its two y-roots, satisfying (5) and (6). Assuming $c \neq 0$ in (4), then one defines the inverse functions of y_{-}and y_{+}, denoted by y_{-}^{-1} and y_{+}^{-1}, respectively, such that

$$
y_{-}^{-1}\left(y_{-}(x)\right)=x, \quad y_{+}^{-1}\left(y_{+}(x)\right)=x
$$

together with the corresponding operators

$$
\begin{equation*}
\left(\mathbb{E}_{x}^{-}\right)^{-1} f(x)=f\left(y_{-}^{-1}(x)\right), \quad\left(\mathbb{E}_{x}^{+}\right)^{-1} f(x)=f\left(y_{+}^{-1}(x)\right) \tag{46}
\end{equation*}
$$

Let us also define the operators $\mathbb{E}=\left(\mathbb{E}_{x}^{-}\right)^{-1} \mathbb{E}_{x}^{+}, \mathbb{E}^{-1}=\left(\mathbb{E}_{x}^{+}\right)^{-1} \mathbb{E}_{x}^{-}$by (see [10])

$$
\begin{equation*}
\mathbb{E} f(x)=f\left(y_{+}\left(y_{-}^{-1}(x)\right)\right), \quad \mathbb{E}^{-1} f(x)=f\left(y_{-}\left(y_{+}^{-1}(x)\right)\right) . \tag{47}
\end{equation*}
$$

In order to deduce the parameterizations of the quadratic and q-quadratic cases, we first present the following lemma. The results are gathered in [10], but here we detail its proof.
Lemma 1. Recalling the conic (4) and the operators previously defined, the following equalities hold:

$$
\begin{align*}
\mathbb{E} x+x & =\frac{-2\left(b y_{-}^{-1}(x)+d\right)}{a}, \tag{48}\\
\mathbb{E}^{-1} x+x & =\frac{-2\left(b y_{+}^{-1}(x)+d\right)}{a}, \tag{49}\\
y_{-}^{-1}(x)+y_{+}^{-1}(x) & =\frac{-2(b x+e)}{c} \tag{50}\\
\mathbb{E} x+\mathbb{E}^{-1} x & =2\left(\frac{2 b^{2}}{a c}-1\right) x+4\left(\frac{b e-c d}{a c}\right) . \tag{51}
\end{align*}
$$

Proof. Equations (48) and (49) follow by taking $x=y_{-}^{-1}(X)$ and $x=y_{+}^{-1}(X)$, respectively, in (5), $\left.y_{-}(x)+y_{+}(x)=-2(b x+d) / a\right)$.

To deduce (50) we start by evaluating (6) at $y_{-}^{-1}(x)$ as well as at $y_{+}^{-1}(x)$, thus getting

$$
\begin{align*}
& x y_{+}\left(y_{-}^{-1}(x)\right)=\frac{c\left(y_{-}^{-1}(x)\right)^{2}+2 e y_{-}^{-1}(x)+f}{a}, \tag{52}\\
& x y_{-}\left(y_{+}^{-1}(x)\right)=\frac{c\left(y_{+}^{-1}(x)\right)^{2}+2 e y_{+}^{-1}(x)+f}{a} . \tag{53}
\end{align*}
$$

Subtracting (53) to (52) yields

$$
\begin{aligned}
& x\left(y_{+}\left(y_{-}^{-1}(x)\right)-y_{-}\left(y_{+}^{-1}(x)\right)\right) \\
&=\frac{c\left(\left(y_{-}^{-1}(x)\right)^{2}-\left(y_{+}^{-1}(x)\right)^{2}\right)+2 e\left(y_{-}^{-1}(x)-y_{+}^{-1}(x)\right)}{a} .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\mathbb{E} x+x-\left(\mathbb{E}^{-1} x+x\right)=\frac{\left(y_{-}^{-1}(x)-y_{+}^{-1}(x)\right)}{x a}\left(c\left(y_{-}^{-1}(x)+y_{+}^{-1}(x)\right)+2 e\right) . \tag{54}
\end{equation*}
$$

Using (48) and (49) in (54) gives us, after simplifications, equation (50).
Equation (51) follows from the sum of (48) with (49), and using (50).
Applying \mathbb{E}^{n} to (51) we obtain the difference equation

$$
\begin{equation*}
\mathbb{E}^{n+1} x+\mathbb{E}^{n-1} x=2\left(\frac{2 b^{2}}{a c}-1\right) \mathbb{E}^{n} x+4\left(\frac{b e-c d}{a c}\right) \tag{55}
\end{equation*}
$$

The solution of the equation (55) leads us to the form of the parameterizations already discussed in Sub-Section 2.1(see [10, pp. 264] and [13]). Here, it is given the detailed proof in what follows.

Theorem 1. Let q satisfy

$$
\begin{equation*}
q+q^{-1}=2\left(\frac{2 b^{2}}{a c}-1\right) \tag{56}
\end{equation*}
$$

The solution of the difference equation (55) is given by

$$
\begin{equation*}
\mathbb{E}^{n} x=k_{1} q^{n}+k_{2} q^{-n}+\frac{c d-b e}{b^{2}-a c}, \quad \text { if } q \neq 1 \tag{57}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbb{E}^{n} x=k_{1}+k_{2} n+\frac{2(b e-c d)}{a c} n^{2}, \quad \text { if } q=1, \tag{58}
\end{equation*}
$$

where k_{1}, k_{2} are constants.
Proof. Recall that the solution of a difference equation such as (55), say,

$$
\begin{equation*}
X_{n+1}-\xi X_{n}+X_{n-1}=4\left(\frac{b e-c d}{a c}\right), \quad \xi=2\left(\frac{2 b^{2}}{a c}-1\right) \tag{59}
\end{equation*}
$$

can be written as $X_{n}=X_{h, n}+X_{p}$, with $X_{h, n}$ the solution of the homogeneous equation

$$
\begin{equation*}
X_{n+1}-\xi X_{n}+X_{n-1}=0 \tag{60}
\end{equation*}
$$

and X_{p} a particular solution of the complete equation (59). Also, denoting by ξ_{1}, ξ_{2} the two roots of the so-called associated characteristic equation of (60),

$$
\begin{equation*}
x^{2}-\xi x+1=0, \tag{61}
\end{equation*}
$$

the solution of (60) is given by (see [12])

$$
X_{h, n}= \begin{cases}k_{1} \xi_{1}^{n}+k_{2} \xi_{2}^{n} & \text { if } \xi_{1} \neq \xi_{2} \\ k_{1} \xi_{1}^{n}+k_{2} n \xi_{1}^{n} & \text { if } \xi_{1}=\xi_{2}\end{cases}
$$

Note that the roots of $x^{2}-\xi x+1=0$ are $q_{ \pm}:=\frac{\xi \pm \sqrt{\xi^{2}-4}}{2}$. Hence, when $\xi^{2}-4 \neq 0$, we have two different roots of the quadratic equation, which satisfy indeed $q_{-}=\left(q_{+}\right)^{-1}$, and $q_{-}+q_{+}=\xi$. Thus, we have the parameter q, say $q=q_{+}$, defined as in (56). If $\xi^{2}-4=0$, then $\xi=2$, which implies the double root of the quadratic equation being $q:=q_{-}=q_{+}=1$, thus, also defined as in (56).

Finally, we get (57) in the account that $\tilde{\lambda}:=\frac{c d-b e}{b^{2}-a c}$ is a particular solution of the complete equation (59) in the case of two different roots of (61), and we get (58) in the account that $\tilde{\lambda}:=\frac{2(b e-c d)}{a c} n^{2}$ is a particular solution of the complete equation (59) in the case of a double root of (61).

5.2 The divided-difference operators as exact lowering operators

We now give the analogues of the well-known formulae for the continuous case $\frac{d}{d x} x^{n}=$ $n x^{n-1}$, as proposed by [16]. Further details are given in the more recent approach [18].

Let $\left.\left\{l_{n}(x ; a)\right\}_{n=0}^{+\infty}\right\}$ be a polynomial basis of $L^{2}(w(x) \mathbb{D} x, G)$, where l_{n} is a polynomial of exact degree n and the support is $G=\left\{\mathbb{E}^{+k} x: k \in 2 \mathbb{Z}\right\}$ or, if finite, $G=\left\{x_{0}, \ldots, x_{n_{0}}\right\}$, and a denotes the set of parameters characterising the lattice. The general requirements for the polynomial basis are:
(i) $l_{n}(x)$ is of precise degree n in x,
(ii) \mathbb{D}_{x} is an exact lowering operator in this basis, that is, $\mathbb{D}_{x} l_{n}(x)=c_{n} l_{n-1}(x), n \geq 1$, where $c_{n}=c_{n}(\check{a})$ is a constant with respect to x, depending on a set of parameters $\check{a}:=\left\{a_{1}, a_{2}, \ldots, a_{m_{0}}\right\}$, characterizing the lattice.

A general solution of the above requirements is the polynomial defined by (see [18, Sec. 2])

$$
l_{n}(x ; \check{a})=g_{n}(\check{a}) \prod_{j=0}^{n-1}\left(x-\left(\mathbb{E}_{x}^{+}\right)^{2 j} x(\check{a})\right)
$$

where $x(\check{a})$ denotes the so-called basal point, parameterized by \check{a}, and $g_{n}(\check{a}) \neq 0$.
We have the following.

1. In the q-quadratic lattice $x(s)=\kappa_{1} q^{s}+\kappa_{2} q^{-s}+\kappa_{3}$, with $q \neq 1$ and $\kappa_{1}>0, \kappa_{2}>0$, the basis is

$$
\begin{equation*}
l_{n}(x(s))=g_{n}\left(\frac{q^{-\frac{n}{2}+s+\frac{1}{4}} \sqrt{\kappa_{1}}}{\sqrt{\kappa_{2}}} ; q\right)_{n}\left(\frac{q^{-\frac{n}{2}-s+\frac{1}{4}} \sqrt{\kappa_{2}}}{\sqrt{\kappa_{1}}} ; q\right)_{n}, \quad n \geq 1 \tag{62}
\end{equation*}
$$

with

$$
g_{n}=g_{n}\left(\kappa_{1}, \kappa_{2}, q\right)=\left(-\frac{\kappa_{1}^{3 / 2} q^{1 / 4}}{\sqrt{\kappa_{2}}}\right)^{n}
$$

The divided-difference operator satisfies $\mathbb{D}_{x} l_{n}(x(s))=c_{n} l_{n-1}(x(s)), n \geq 1$, that is,

$$
\mathbb{D}_{x} l_{n}(x(s))=\frac{l_{n}(x(s+1 / 2))-l_{n}(x(s-1 / 2))}{x(s+1 / 2)-x(s-1 / 2)}=c_{n} l_{n-1}(x(s))
$$

with

$$
c_{n}=c_{n}\left(\kappa_{1}, \kappa_{2}, q\right)=\frac{\kappa_{1} q^{\frac{1-n}{2}}[n]_{q}}{\kappa_{2}} .
$$

Here, it is used the Pochhammer symbol, given by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{j=0}^{n-1}\left(1-a q^{j}\right), \quad n=1,2, \ldots
$$

and the number $[z]_{q}$ defined by

$$
[z]_{q}=\frac{q^{z}-1}{q-1} .
$$

2. In the quadratic lattice $x(s)=\tilde{\kappa}_{2} s^{2}+\tilde{\kappa}_{1} s+\tilde{\kappa}_{0}$, with $\tilde{\kappa}_{2} \neq 0$, the basis is

$$
\begin{equation*}
l_{n}(x(s))=4^{-n}\left(-\tilde{\kappa}_{2}\right)^{n}\left(-\frac{\tilde{\kappa}_{1}}{\tilde{\kappa}_{2}}-2 s+\frac{1}{2}\right)_{n}\left(\frac{\tilde{\kappa}_{1}}{\tilde{\kappa}_{2}}+2 s+\frac{1}{2}\right)_{n}, \quad n \geq 1 \tag{63}
\end{equation*}
$$

The divided-difference operator satisfies $\mathbb{D}_{x} l_{n}(x(s))=c_{n} l_{n-1}(x(s)), n \geq 1$, that is,

$$
\mathbb{D}_{x} l_{n}(x(s))=\frac{l_{n}(x(s+1 / 2))-l_{n}(x(s-1 / 2))}{x(s+1 / 2)-x(s-1 / 2)}=c_{n} l_{n-1}(x(s))
$$

with

$$
c_{n}=n
$$

Here, it is used the Pochhammer symbol $(A)_{n}=A(A+1) \cdots(A+n-1)$.
3. In the q-linear lattice, the basis is

$$
\begin{equation*}
l_{n}(x)=(\check{a} x ; q)_{n}=\prod_{j=0}^{n-1}\left(1-\check{a} q^{j} x\right), \quad n \geq 1 \tag{64}
\end{equation*}
$$

The divided-difference operator, taken in its canonical form as the \mathcal{D}_{q} operator given in (27), satisfies $\mathcal{D}_{q} l_{n}(x)=c_{n} l_{n-1}(x), n \geq 1$, that is,

$$
\mathcal{D}_{q} l_{n}(x)=\frac{l_{n}(q x)-l_{n}(x)}{(q-1) x}=c_{n} l_{n-1}(x)
$$

with

$$
c_{n}=-\frac{1-\check{a} q^{n}}{q-1} .
$$

4. In the linear lattice, the basis is

$$
\begin{equation*}
l_{n}(x)=\prod_{j=0}^{n-1}(x-j)=\frac{\Gamma(x+1)}{\Gamma(x-n+1)}, \quad n \geq 1 \tag{65}
\end{equation*}
$$

where $\Gamma(\cdot)$ denotes the Gamma function. The divided-difference operator, taken in its canonical form as the forward difference operator $\Delta f(x)=f(x+1)-f(x)$, satisfies

$$
\Delta l_{n}(x)=l_{n}(x+1)-l_{n}(x)=c_{n} l_{n-1}(x)
$$

with

$$
c_{n}=n
$$

5.3 Integrals

Let the lattice points be denoted by $G[x]=\{x(s): s \in \mathbb{Z}\}$, with the point $x(0)$ as the basal point, and let us denote the dual lattice by $\tilde{G}[x]=\{x(s+1 / 2): s \in \mathbb{Z}\}$. The \mathbb{D}-integral of a function defined on the x-lattice, $f: G[x] \rightarrow \mathbb{C}$ with basal point $x_{0}=x(0)$, is defined by the Riemmann sum over the lattice points (see [18, Sec. 2])

$$
\begin{equation*}
I[f]\left(x_{0}\right)=\int_{G} f(x(s)) \mathbb{D} x(s):=\sum_{s \in \mathbb{Z}^{*}} f(x(s))\left(y_{+}(x(s))-y_{-}(x(s))\right) . \tag{66}
\end{equation*}
$$

Recalling that, in the quadratic case, $y_{+}(x(s))=x(s+1 / 2), y_{-}(x(s))=x(s-1 / 2)$, and also recalling the notation $x_{s}:=x(s)$), then we can write

$$
I[f]\left(x_{0}\right)=\sum_{s \in \mathbb{Z}^{*}} f(x(s))((x(s+1 / 2))-(x(s-1 / 2)))=\sum_{s \in \mathbb{Z}^{*}} f\left(x_{s}\right) \Delta_{y}\left(x_{s}\right) .
$$

Here, \mathbb{Z}^{*} is a finite subset of \mathbb{Z}, namely $\left\{0,1, \ldots, n_{0}\right\}$, or $\mathbb{Z}_{\geq 0}$, or \mathbb{Z}.

Recalling that $\mathbb{E}_{x}^{ \pm} f(x(s))=f(x(s \pm 1 / 2))$, for $x(s) \in G[x]$, the following properties follow from (66) (see [18]):

1. an analog of the fundamental theorem of calculus:

$$
\begin{equation*}
\int_{x_{0} \leq x_{s} \leq x_{n_{0}}} \mathbb{D}_{x} f(x(s)) \mathbb{D} x(s)=f\left(\mathbb{E}_{x}^{+} x_{n_{0}}\right)-f\left(\mathbb{E}_{x}^{-} x_{0}\right) . \tag{67}
\end{equation*}
$$

2. an analog of integration by parts for two functions $f(x), g(x)$:

$$
\begin{align*}
\int_{x_{0} \leq x_{s} \leq x_{n_{0}}} f(x(s)) \mathbb{D}_{x} g(x(s)) \mathbb{D} x(s) & =f\left(\mathbb{E}_{x}^{+2} x_{n_{0}}\right) g\left(\mathbb{E}_{x}^{+} x_{n_{0}}\right)-f\left(x_{0}\right) g\left(\mathbb{E}_{x}^{-} x_{0}\right) \\
& -\int_{x_{0} \leq x_{s} \leq x_{n_{0}}} \mathbb{D}_{x} f\left(\mathbb{E}_{x}^{+} x(s)\right) g\left(\mathbb{E}_{x}^{+} x(s)\right) \mathbb{D}\left(\mathbb{E}_{x}^{+} x(s)\right) \tag{68}
\end{align*}
$$

Remark 6. The definition (66) reduces to the ususal definition of the difference integral and the Thomae-Jackson q-integrals in the canonical forms of the linear and q-linear lattices, respectively [8, 17].

Acknowledgements

This work was partially supported by the Centre for Mathematics of the University of Coimbra (UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES).

References

[1] G.E. Andrews and R. Askey, Classical orthogonal polynomials, pp. 36-62 in: "Polynômes Orthogonaux et Applications, Proceedings, Bar-le-Duc 1984", Lecture Notes Math. 1171 (C. Brezinski et al. Editors), Springer, Berlin 1985.
[2] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs AMS vol. 54 n. 319, AMS, Providence, 1985.
[3] N.M. Atakishiev, M. Rahman and S.K. Suslov, On classical orthogonal polynomials, Construct. Approx. 11 (1995), 181-226.
[4] M. Foupouagnigni, On difference equations for orthogonal polynomials on nonuniform lattices, J. Difference Equ. Appl. 14 (2008), 127-174.
[5] M. Foupouagnigni, M. Kenfack Nangho, and S. Mboutngam, Characterization theorem for classical orthogonal polynomials on non-uniform lattices: the functional approach, Integral Transforms Spec. Funct. 22 (2011), 739-758.
[6] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr. 2 (1949), 4-34.
[7] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Vol. 98 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2005.
[8] F. Jackson, On q-definite integrals. Q. J. Pure Appl. Math. 41 (1910), 193-203.
[9] R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues. With a Foreword by Tom H. Koornwinder, in: Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
[10] A.P. Magnus, Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials, Springer Lect. Notes in Math. 1329, Springer, Berlin, 1988, pp. 261278.
[11] A.P. Magnus, Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, J. Comput. Appl. Math. 65 (1995), 253-265.
[12] P. Montel, Leçons sur les récurrences et leurs applications, Gauthier-Villars. Paris, 1957.
[13] A.F. Nikiforov, S.K. Suslov, Classical Orthogonal Polynomials of a discrete variable on non uniform lattices, Letters Math. Phys. 11 (1986), 27-34.
[14] A.F. Nikiforov, S.K. Suslov and V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, Berlin, 1991).
[15] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications, Birkhäuser, Basel, Boston, 1988.
[16] S.K. Suslov, On the theory of difference analogues of special functions of hypergeometric type, Usp. Mat. Nauk 44 (1989), 185-226.
[17] J. Thomae, Beitrage zur Theorie der durch die Heinesche Reihe, J. Reine Angew. Math. 70 (1869), 258-281.
[18] N.S. Witte, Semi-classical orthogonal polynomial systems on nonuniform lattices, deformations of the Askey table, and analogues of isomonodromy, Nagoya Math. J. 219 (2015), 127-234.

[^0]: *Departamento de Matemática, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal. Email: mneves@ubi.pt

