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Abstract

It is presented a study of general divided-difference operators having the funda-
mental property of leaving a polynomial of degree n—1 when applied to a polynomial
of degree n.

1 Introduction

In the present paper it is shown a study on divided-difference operators having the fun-
damental property of leaving a polynomial of degree n — 1 when applied to a polynomial
of degree n. Primarily, the focus is on the geometric interpretation, by analysing the
connection between the divided-difference operators and their relation with a correspond-
ing conic, which, in turn, gives rise to a corresponding lattice of points that well-defines
the operator (see [11]). Essentially, there are four primary classes of lattices and related
divided-difference operators having the above mentioned property:

(1) the linear lattice, related to the forward difference operator [15, Chapter 2, Section 12];
(ii) the g-linear lattice, related to the g-difference operator [6]; (iii) the quadratic lattice,
related to the Wilson operator [2]; (iv) the g-quadratic lattice, related to the Askey-
Wilson operator [2]. This list gives a hierarchy of operators, as each of the operators in
(i)-(iv) is an extension of the preceding one, which can be recovered as a special case
and/or a limit case, up to a linear transformation of the variable.

The analysis of divided-difference operators (i)-(iv) is rather sparse in the literature.
For instance, they are a fundamental machinery for the study of certain special functions
appearing in problems from Mathematical-Physics, e.g., within the general theory of
orthogonal polynomials (see [2, 7, 9, 15]). Very often, when dealing with applications,
final and combined formulae are given, together with a notation that may lead to a
heavy reading for readers unaware of basic relations in the theory of divided-difference
operators. With this idea in mind, the main goal of the present paper is to give a concise
but detailed study of some basic aspects of the divided-difference operators above referred,
showing details on fundamental formulae that emerge from the geometric interpretation
(given in the seminal paper [10]) and its connection with algebraic aspects of operator
calculus. Here, the following topics are covered: the geometric interpretation - namely,
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the connection between the operator and a conic/lattice (cf. Section 2); the classification
of operators in terms of a set of parameters in the given conic (cf. Section 3); the analysis
of coalescences between the operators (cf. Section 4); basic and fundamental formulae in
the divided-difference calculus (cf. Section 5).

2 The conic and the related lattice

We start by following the approach from [10], where it is considered a divided-difference
operator involving the values of a function at two points, with the property that it leaves
a polynomial of degree n — 1 when applied to a polynomial of degree n. Let us take the
divided-difference operator D, as given in [10, Eq.(1.1)], defined on the space of arbitrary

functions, by

F( ()~ f () "
yr(r) —y-(z)
where, at this stage, y, and y_ are unknown functions. To define them, one starts by
using the property that D, f is a polynomial of degree n — 1 whenever f is a polynomial

of degree n. Then, applying D, to f(z) = 2? and f(z) = 23, we obtain, respectively,

y_(z) + y4 () = polynomial of degree 1, (2)
(y_(2))* +y_(2)ys(z) + (y4(x))* = polynomial of degree 2, (3)

the later condition being equivalent to y_(x)y(z) = polynomial of degree less or equal
than two. From standard polynomial properties, the conditions (2)-(3) define y_ and y,
as the two y-roots of a quadratic equation, say,

ay® + 2bxy +cx® +2dy +2ex+ f=0. a#0. (4)

The conic defined by the equation above plays an essential role in the sequel. The following
identities, to be used later on, follow from the fact that y_,y, are the y-roots of (4):

y-(2) + yi(z) = =2(bx + d)/a, ()
Y- (x)y+( ) (Cflf2 + 2ex + f)/a (6)
y-(z) (@), yi(z) = plr) + Vr(z), (7)

with p,r polynomials given by

plx) = —Sx—g, r(z) = (b;—ac)x2+2(

bd—ae)x_i_(dQ—af). (8)

a a

By virtue of (7), the operator D, defined in (1) is given as

Remark 1. The polynomials p,r will play a fundamental role in the sequel. Note that,
from (7), it follows that

g (@) 4y (@) = 2(2), (y-(x) — gy (2))2 = dr(x). (10)
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Let us now look at the lattices.

Associated to each conic (4) two lattices are determined: the z-lattice and the y-lattice.

The construction is based on the parametric representations of the conic, as follows (see
[11]):
Let {x(s), y(s)} be a parametric representation of the conic (4). For a given x = x(s)
value, the quadratic (4) defines two y-roots, say ys := y(s) and ys11 := y(s + 1), which
are the two ordinates associated to the abcissa z(s). Then one starts from some point
{z1 = x(s1), y1 = y(s1)} on the conic, and one looks for the points {z}, = z(s1 + k), yx, =
y(s1+k)}, k=1,2,.... This determines the so-called y-lattice, also known as the dual
lattice. Conversely, if ¢ # 0 in (4), then, for a given y-value, the quadratic (4) defines two
x-roots, say xs := z(s), xsr1 := x(s + 1), which are consecutive points on the so-called
x-lattice, also known as the direct lattice.

Remark 2. With the above notation, in terms of the operator D, defined in (1), we have
Ys = y-(2(s)), Yss1 = ys(2(s)) .

2.1 The quadratic class of lattices - explicit parameterizations

The quadratic class of lattices appears when the conic (4) is such that (b* —ac)(d* —af) —
(bd — ae)? # 0. Two sub-cases hold: the conic is a parabola - when > — ac = 0 - this
corresponds to the quadratic case; the conic is a hyperbola or an ellipse - when b? —ac > 0
or b* — ac < 0, respectively - this corresponds to the g-quadratic case.

For the quadratic class of lattices there is a parametric representation of the conic,
say {z(s), y(s)}, such that the functions y_ and y, in (1) satisfy [11, 16, 14]

y—(z(s)) = y(s) =2(s = 1/2), yy(a(s)) =y(s + 1) =2(s +1/2). (11)
Hence, the divided-difference operator (1) is given as

fla(s +1/2)) - fla(s — 1/2))

D, f(2(s)) = (s +1/2) — (s — 1/2) (12)
The parametrization on s is explicit [13], given by
2(8) = Fps® + Ris + g (13)
where k9 # 0 in the quadratic case, and
1(s) = K1¢° + K2q”° + K3 (14)

where k1Ko # 0 in the g-quadratic case. Here, the k’s and &’s are appropriate constants.

The parameterizations of the form (13) and (14) cover the whole set of canonical
forms for the lattices. A formal deduction of formulae (13) and (14), based on properties
of adjoint operators, will be given in Sub-Section 5.1.

Remark 3. Note that, in the account of (10) and (11), the polynomials p,r in (9) are
then recovered under

x(s+1/2)+x(s —1/2) = 2p(x(s)), (x(s+1/2) —x(s— 1/2))2 = 4r(z(s)).
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Indeed, by writing p(x) = p1x + po, 7(x) = rex? + 112 + 19, We get
pr=1, po=FRe/4, r2=0, ri = ko, 70 = i1 /4 — RaRo (15)

in the case (13), and

12 4 g-1/2 12 4 o1/
P et ' Y PR C ok MO A (16)
2 2
/2 —1/2\2 /2 —1/2\2

q q q q
7“22( 4 ) ,7”12—/%'3( 9 ) ) (17>

_ ’f_g 12 —1/2)\2
To = (—K1kg + 1 )(q q ) (18)

in the case (14).
A.P. Magnus, in [11, p. 255], gives the following precise parameterizations.

Proposition 1. Consider the conic (4), ay®+2bxy+ cx? +2dy+2ex+ f = 0, with ac # 0.
The following assertions hold.
(a) If the conic has a center X :=b? — ac # 0, then, with the center coordinates
ae — bd cd — be
= y Le= )
A A

T

one has (4) written in the form

a’(y - yc)2 + 2b(£lf - zc)(y - yc) + C(JT - xC)Q + f = 07

with
cd? — 2bde + ae?

A

]E:f_ayg_2bxcyc_cxz:f—{'dyc"'e-rc:f"i_

(a.1) If f #0, then
(s) = we +EValg" +47°), y(s) = ye +EVelg™ 2+ g7 ),
is a parametric representation of (4), where £* = f/(4)\), and
_ 2b . A
q1/2+q 1/2:_ﬁ7 1.€., q—i—ql:E—Z
(a.2) If f =0, then one finds the parametric representation
2(s) =z + Xvaq®, y(s) =y + X/eg™*'/?,

for arbitrary parameters X .
(b) If the conic has a center \ :=b* — ac =0, then

2(s) :\/5( &> —af 2(d\ﬁ+6\/5)82>

2a(d+/c + ey/a) ac

is a parametric representation of (4).

Remark 4. In the generic case q-quadratic case |q| # 1 the conic gives a hyperbola. In
such a case, the asymptotes are given by y = (c/a)'/?q*/?x, thus, q is precisely the ratio
of the slopes of the asymptotes of the conic.



3 Classification

There are four primary classes of lattices and related divided-difference operators:
(1) the linear lattice, related to the forward difference operator [15, Chapter 2, Section 12];
(ii) the g-linear lattice, related to the ¢-difference operator [6];
(iii) the quadratic lattice, related to the Wilson operator [2];
(iv) the g-quadratic lattice, related to the Askey-Wilson operator [2].

Such a classification can be done according to the two parameters A\, 7 defined in terms
of the conic (4), ay® + 2bzy + cx® + 2dy + 2ex + f = 0, as follows:

A=b"—ac, 7= ((t"—ac)(d®—af)—(bd—ae)?)/a, (19)
or, using the determinant notation,

a b d
T=det |[b ¢ e
d e f

Note that A # 0 allows us to write the polynomial 7 in (8) as

) = 2 (x%—h1;(w>2%—£§. (20)

a2

A detailed analysis of each case (i)-(iv), showing each of the operators in the form (9)
with the corresponding polynomials p,r, is given in the following sub-sections.

3.1 The linear lattice: A =7 =0 in (19)

If A\ =0 and 7 = 0, then, from (19), bd — ae = 0, thus, the the polynomial r defined in (8)

d* —
is constant, r(z) = 2af‘ Hence, we have the polynomials p, r defined in (8) given by
a

b d & —af
X .

(21)
that is, we have two parallel lines,
y+(x) =ma £ by,

with
b d d? —

m=—-——, bi:——ﬂ:—zaf.

a a a

Proposition 2. The canonical divided-difference operator related to the linear lattices is
the forward difference operator D, = A,, - the so-called Hahn’s operator [6], where

w
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for arbitrary functions f. Hence, the operator A, can be written in the form (9), with
the polynomaials p,r given by

,w2

p(z) :$+%, r(x) = I
Proof. Combining (1) with (21), the operator (22) is recovered through the specialization
b=—-a c=a, d=—-aw/2, e=aw/2, f=0, (23)
and it follows the assertion on the polynomials p, r. O
Also, by using the values of (23) into (4), we get the conic with equation
Yy —2zy 4+ 22 —wy+wr =0,

which can be factorized as

(y—2)(y -z —w) =0,
The linear lattice, obtained via two parallel lines, is illustrated through Fig. 2.d) in [11,
pp. 256]).

3.2 The g-linear lattice: A #0, 7 =0 in (19)
If A # 0 and 7 = 0, the polynomials p, r defined in (8) are given by

pa)= 2o r(x)z%(x+bd_ae>2.

a a a A

Recalling (7), it follows that

yi(x):—éx—gj:\/—x <x+bd_ae) , (24)

a a a A

that is, we have two intersecting lines,

yo(@) =miz by, y (@) =m a+b,

with
b VA b A
m+:__+_7 m*:____u
a a a a
V) [ bd — ae d V) [ bd — ae d
by = — — =, b=—— - =
a A a a A a

Proposition 3. The canonical divided-difference operator related to the q-linear lattices
is the q-linear difference operator, D, = A, ,, [6], where

flgz +w) — f(z)
(¢—Dz+w

AQ,wf(x) = ) q 7é 1 ) (25>

for arbitrary functions f. Hence, the operator A,., can be written in the form (9), with
the polynomaials p,r given by

p(x):(q_gl)x—i-%, T(x):(qzll) (x%—qfl) :




Proof. Combining (1) with (24), the operator (25) is recovered through the specialization

1
b:—(q; >a, c=qa, d:—%a, e:%a, f=0, (26)
and it follows the assertion on the polynomials p,r. O]

Also, by using the values of (26) into (4), we get the conic with equation
v — (q+ Doy +qz° —wy +wz =0,
which can be factorized as
(y =)y — gz —w) =0.

The g-linear lattice, obtained via two intersecting lines, is illustrated through Fig. 2.b) in
[11, pp. 256]).

Remark 5. In [6, pp. 6], it is shown that, whenever q # 1, the constant w in (25) can
be eliminated through a linear transformation: by setting x = az +b and f(x) = h(z), the
operator A,,, can be written as

h (qz + W) — h(z)
Agwf(z) = .

— 1)
a
Now, choosing a = 1, b= 1L—q’ we get the operator
flgz) — f(2)
D,f(x) = —"—"—=. 27

3.3 The quadratic lattice: A =0, 70 in (19)
If A=0and 7 # 0, the polynomials p, r defined in (8) are both of degree one, given by
b d (bd — ae)

d? —
p(x) = —am — r(x) =2 e T+ ( a2af)

Recalling (7), it follows that

s (z) = —éx—gj: \/Z(bd—ae)x—l—(d?—af).

a a a (28)

Proposition 4. The canonical divided-difference operator related to the quadratic lattices
is the Wilson operator [1, 2], D, = W where

_f(vE+3)?) - f (Ve - 3)°)

2i\/x ’
for arbitrary functions f. Hence, the operator W can be written in the form (9), with the
polynomials p,r given by

Wi (zx)

(29)



Proof. Combining (1) with (28), the operator (29) is recovered through the specialization

, [f=—. (30)
and it follows the assertion on the polynomials p,r. O

Also, by using the values of (30) into (4), we get the conic with equation

1
2_2 2 g % _:O
Y Ty +x +2+2+16 )

which is a parabola (we have A = 0 and 7 < 0). The corresponding lattice, obtained via
a parabola, is illustrated through Fig. 2.c) in [11, pp. 256]).
3.4 The g-quadratic lattice: A #£0, 7 # 0 in (19)

If A\ # 0 and 7 # 0, the polynomials p,r defined in (8) are of degree one and two,
respectively, given as

b d A bd —ae\* T
p(r) =——a——, r(m)—r(x)—a—(x+ 3 )4—6.

Recalling (7), it follows that

b d A bd —ae\> T
—_x-Z44/Z S 31
ye(r) = ——v -~ \/a2 <x+ A ) + (31)

Under some specializations, by considering the centred and symmetrised forms of the
lattice, one can recover the Askey-Wilson operator [1, 2] (see also [7, Eq. (12.1.12)]),
given by

FG(@"Pz +q71227h) = f(5(a722 +¢'227Y)
3@/ —q V) (2 — 271 '
Indeed, let us begin by defining the base ¢ = €2 and consider the projection map
from the unit circle {z = ¢, § € [, [} onto [—1,1] by

Dy f(x) = (32)

1
xr = 5(2 +271).
Note that we have
1, _ 1 _ _
y-(0) = 5a 4 g%, () = (a4, (3)

Proposition 5. The canonical divided-difference operator related to the q-quadratic lat-
tices, in the symmetrical form, is the Askey-Wilson operator (32) [1, 2]. The operator
(32) can be written in the form (9), with the polynomials p,r given by

(@) (=g
p(z) = #x, r(x) = f(x -1).



Proof. Combining (1) with (33), we have, after basic computations,

y—(x) + ys(z) = 2cos(n)z = (¢ + ¢ )z, (34)
(y-(z) —ys(2))? = (¢"* = ¢ P (a® = 1). (35)

In the account of (10), that is, y_(x) +y.(z) = 2p(x) and (y_(x) —y,(z))* = 4r(z), there
follow the polynomials p,r as stated.
The operator (32) is recovered through the specialization

a = c, arbitrary and non-zero, b= —acos(n), d=e=0, f=—asin’(n).
[l

In the g-quadratic case, the conic is an hyperbola (when A > 0 and 7 < 0), or an
ellipse (when A < 0 and 7 < 0, respectively). The corresponding lattice, obtained via an
hyperbola or an ellipse, is illustrated through Figs. 1 and 2.a) in [11, pp. 256]).

4 Coalescence

The set of lattices previously defined can be classified through specifications on the con-
stants in the parametrization formulae (13) and (14), that is, in

7(8) = Ros® 4 K15 + Ko

and
x(s) = k19" + Koq * + K3,

respectively. Indeed, depending on the constants k’s and &’s, we recover the four primary
classes for the lattices x(s):
(i) Linear lattices : &2 = 0 and &; # 0 in (13);
(ii) g-linear lattices : kg = 0 and k1 # 0 in (14);
(iii) Quadratic lattices : Ry # 0 in (13);
(iv) ¢-Quadratic lattices : k1k2 # 0 in (14).

The g-quadratic lattice, in its general non-symmetrical form, is the most general case
and the other lattices can be found from this by limiting processes.

It turns out that each of the operators listed in (i)-(iii) of the previous section, specified
in Sub-Sections 3.1-3.3, can be recovered as a particular case or as a limit case, up to a
linear transformation of the variable, from one of the operators in the list. Details are
given as follows.

Recall the polynomials p,r in (8): by writing p(z) = p1z + po, 7(x) = rox® + 111 + 1y,
we have

, (36)

(37)



4.1 From g-quadratic to quadratic

Taking limits ¢ — 1 in (16) as well as in (17) we get p; = 1 and r, = 0. In the account
of (37), ro = 0 yields b* — ac = 0. Furthermore, in the account of (37), note that 7 # 0
in (19) if, and only if, rory — (r1/2)* # 0. As we have r, = 0, then 7 # 0 if, and only if,
r1 # 0, which must hold upon a suitable choice of k3. Thus, we get the quadratic case:
A=0and 7 # 0 (cf. Sub-Section 3.3).

4.2 From ¢g-quadratic to ¢-linear
Recalling the remark 5, let us take the operator D, defined by (27),

f(gz) — f(z)
(¢—Dz

We begin by fixing the parameter ¢ # 1. Taking limits ko — 0, k3 — 0, and fixing g # 1
in (14) we get 79 # 0, r1 = 0, ro = 0 in (17)-(18), that, in the account of (37), yields
b —ac# 0, bd — ae = 0, d*> — af = 0. Thus, we get the g-linear case: A # 0 and 7 = 0
(cf. Sub-Section 3.2).

Note that, in such a situation, the operator D, obtained via the above limiting process
is given by

Dy f(x) =

F(s1q® %) = f(rag"™'/?)
Kll(qs-‘rl/Q _ qs—l/Z) ?

qu(:L‘(S)) =

which can be easily written as (27) trough the change of variable z(s) = x1¢*~'/2.

4.3 From g-linear to linear

The linear case follows easily by taking limits ¢ — 1 in (25). Indeed, we get the coefficients
of the polynomials p,r as given in Proposition 2, thus, in the account of (37), we have
A=0and 7 =0 (cf. Sub-Section 3.1).

5 Divided-difference operator calculus

Recall the operator D, in its general form given by (1), together with the corresponding
conic (4) and the polynomials p, r defined in (8). In the sequel we shall take A, =y —y_.
From (7), there follows

A, = 2. (38)

In order to deduce further properties, let us now introduce the operators E} and E_
(see [10]), acting on arbitrary functions f, as

E*f(z) = f(y«(x)).
With this notation, (1) is also given by

_ENf-ECS
- Efx—FEjz
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The companion operator of D is then defined as (see [10])

_Eff(x) + B; f(x)
! |

M f(x) (39)

Note that M, f is a polynomial whenever f is a polynomial. Furthermore, if deg(f) = n,
then deg(M, f) = n.
The operators D, and M, satisfy the product and quotient rules listed below (see [10]):

Dw(fg) =D, fM,g+M,fD,g, (4())
D (f/9) = ! E_gf E+fg / , (41)
AQ
M:ﬂ(fg) =M, f Mg + Iy D, fD.g, (42>
B fEJg+ESfE; g

Eq. (40) has the equivalent forms:

Do (g9f) =DogEf f +D. fEg.

Also, one has two equivalent forms for (41):

D.gE; f—D,fE;g

D.(g/f) = 2 2B
D,gE! f — D, fES
D.(g/f) = el el

The operators D, and M, also satisfy the product rules II (see [5, Eq. 15] and [4])

2

A
D, M, = aM, D, + U, D?, MizUleDeraIy]DiJr]I, (44)

where I is the identity operator, If(z) = f(x), « is defined in terms of the conic (4) as
o= _\/La*cv and

Ur(@) = (4} = D+ 5 . (45)

with p; and r; defined in (15) in the quadratic case, or in (16)-(18) in the g-quadratic
case.

5.1 The explicit parameterizations revisited

Let us recall the conic (4), ay? + 2bxy + cx? + 2dy + 2ex + f =0, a # 0, as well as its
two y-roots, satisfying (5) and (6). Assuming ¢ # 0 in (4), then one defines the inverse
functions of y_ and y,, denoted by y~' and yjrl, respectively, such that

vy (y-(x) =z, yi'(y+(x) =2,

11



together with the corresponding operators

()" fla)=f (v="@) . (B S(@) = (ui' (@) - (46)
Let us also define the operators E = (E;) " Ef, E~' = (E}) ' E; by (see [10])
Ef(z) = f (y+(y=' () . E7'f(2) = f (y-(v7'(2))) - (47)

In order to deduce the parameterizations of the quadratic and g-quadratic cases, we
first present the following lemma. The results are gathered in [10], but here we detail its
proof.

Lemma 1. Recalling the conic (4) and the operators previously defined, the following
equalities hold:

—2(by~"(z) + d)

Ex+z = - : (48)
Elpts — —2(by11a(l") +d) 7 (49)
y—'(2) +yiM(z) = M (50)
Ex+E 'z = 2(2—b2—1>x+4(b6_0d). (51)

ac ac

Proof. Equations (48) and (49) follow by taking = = y~'(X) and z = y'(X), respectively,
in (5), y-(2) + y+(z) = =2(bz + d) /a).
To deduce (50) we start by evaluating (6) at y='(x) as well as at y;'(z), thus getting

rye(umi () = c(y='(z))? —|—a2ey: (.I)—Ff’ (52)
e e (53

Subtracting (53) to (52) yields

z (yr (=" (2) —y-(y; ' (x)))

a
Thus, we have
M) -y (x
Erx+2— (E'w +2) = (= )my+ (=) (c(y=" (=) +y'(x)) + 2e) . (54)
Using (48) and (49) in (54) gives us, after simplifications, equation (50).
Equation (51) follows from the sum of (48) with (49), and using (50). O
Applying E™ to (51) we obtain the difference equation
2b? be — cd
E”+1x+E”_lx:2(——1> E”x+4( — ) . (55)
ac ac

The solution of the equation (55) leads us to the form of the parameterizations already
discussed in Sub-Section 2.1(see [10, pp. 264] and [13]). Here, it is given the detailed
proof in what follows.

12



Theorem 1. Let q satisfy

q+q1:2(2—b2—1). (56)

ac

The solution of the difference equation (55) is given by

d—1b
E'w = kq" + kg " + 5o, if q#1 (57)

b? —ac

o 2be — cd
E”x=k1+k2n+%n2, if q=1, (58)

where ki, ko are constants.

Proof. Recall that the solution of a difference equation such as (55), say,

be — cd 2b2
Xn+1—5xn+xn1:4(e C), 5:2(——1), (59)
ac ac

can be written as X,, = X3, + X,, with X}, ,, the solution of the homogeneous equation
Xn+1 - an + X1 = (60)

and X, a particular solution of the complete equation (59). Also, denoting by &, &, the
two roots of the so-called associated characteristic equation of (60),

P —fr+1=0, (61)

the solution of (60) is given by (see [12])

X, = Fi&l + k&3 i & # &,
" ]ﬁgf + k2n£711 if fl = 52 .

+ /62 -4
Note that the roots of 22 —x+1 = 0 are ¢y = & Hence, when £2—4 # 0,
2

we have two different roots of the quadratic equation, which satisfy indeed ¢_ = (q+)_1,
and ¢_ + ¢ = £ Thus, we have the parameter ¢, say ¢ = ¢y, defined as in (56). If
€ —4 =0, then ¢ = 2, which implies the double root of the quadratic equation being
q:=q- = q4 = 1, thus, also defined as in (56).

cd — be

Finally, we get (57) in the account that A= is a particular solution of the

b? — ac
complete equation (59) in the case of two different roots of (61), and we get (58) in the

account that A := 20D p2 ig o particular solution of the complete equation (59) in the
case of a double root of (61). O

5.2 The divided-difference operators as exact lowering opera-

tors
. : d .,
We now give the analogues of the well-known formulae for the continuous case =
x
nz™"!, as proposed by [16]. Further details are given in the more recent approach [18].
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Let {l,(z;a)}t25} be a polynomial basis of L?(w(x)Dz,G), where I, is a polynomial
of exact degree n and the support is G = {E**z : k € 2Z} or, if finite, G = {x0,...,7p, },
and a denotes the set of parameters characterising the lattice. The general requirements
for the polynomial basis are:

(i) l.(x) is of precise degree n in x,

(ii) D, is an exact lowering operator in this basis, that is, D,l,(x) = ¢,l,—1(x), n > 1,
where ¢, = ¢,(a) is a constant with respect to x, depending on a set of parameters
a:={ay,as,...,an,}, characterizing the lattice.

A general solution of the above requirements is the polynomial defined by (see [18,

Sec. 2]) )
b(a H(w— (E2)" 2(a)) .

7=0

where (@) denotes the so-called basal point, parameterized by @, and g, (@) # 0.
We have the following.

1. In the g-quadratic lattice x(s) = k1¢° + Kkoq™® + K3, with ¢ # 1 and k1 > 0, ko > 0, the

basis is
L (2(5)) = gn (q R ) (q q) , on>1, (62)

3/2 1/4
dn —gn K1, k2,4

The divided-difference operator satisfies D[, (x(s)) = ¢uln_1(x(s)), n > 1, that is,

ln(x(s+1/2)) = l(z(s — 1/2))
r(s+1/2) —z(s—1/2)

with

Dyl (z(s)) =

= cpln_1(x(s))

with

1-n
Cp = Cn(ﬁla’i%CJ) = M .

K2

Here, it is used the Pochhammer symbol, given by

n—1

(@@o=1, (a;0)a=]]0-0ag), n=12,...,

=0

and the number [z], defined by
¢ —1
[2]g = q—1
2. In the quadratic lattice x(s) = Fos? 4 Ris + Ko, with &9 # 0, the basis is
lo(z(s)) =47 (—Ro)" (—@ — 25+ 1) (@ + 25 + 1) , n>1. (63)
Ko 2/, \ K2 2/,

The divided-difference operator satisfies D[, (z(s)) = ¢uln—1(x(s)), n > 1, that is,

ln(z(s +1/2)) = lo(x(s —1/2))

Duln(@(s) = = o) —as — 17y~ Cnbn1(@(s)
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with

Chp=1.
Here, it is used the Pochhammer symbol (A), = A(A+1)---(A+n —1).
3. In the ¢-linear lattice, the basis is

n—1

ln(z) = (ax; q)n = H(l —ag’r), n>1. (64)

J=0

The divided-difference operator, taken in its canonical form as the D, operator given in
(27), satisfies Dyl (z) = cylp—1(x), n > 1, that is,

Dy () = ) = @)

(¢g— Dz
with
1—aqg"
Cn = —
qg—1
4. In the linear lattice, the basis is
n—1
: ['(z+1)
ln(z) = —J)) = >1, 65
@=Ile- =G oy (65)

where I'(+) denotes the Gamma function. The divided-difference operator, taken in its
canonical form as the forward difference operator Af(x) = f(x + 1) — f(x), satisfies

Al (z) =1, (x+1) = l,(x) = culy1(x)

with

5.3 Integrals

Let the lattice points be denoted by G[z] = {z(s) : s € Z}, with the point z(0) as the
basal point, and let us denote the dual lattice by Glz] = {z(s 4+ 1/2) : s € Z}. The
D-integral of a function defined on the z-lattice, f : G[z] — C with basal point zy = (0),
is defined by the Riemmann sum over the lattice points (see [18, Sec. 2])

1 f](wo) = /Gf(x(S))fo(S) = @)y (2(5) = y-(2(5)). (66)

Recalling that, in the quadratic case, y,(z(s)) = z(s + 1/2), y_(z(s)) = z(s — 1/2), and
also recalling the notation x4 := x(s)), then we can write

=) () (s + 1/2)) = (x(s = 1/2))) = Y _ f(z)A,

SEZ* SEZ*

Here, Z* is a finite subset of Z, namely {0,1,...,n0}, or Zs, or Z.
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Recalling that EX f(z(s)) = f(x(s £1/2)), for x(s) € G[z], the following properties
follow from (66) (see [18]):
1. an analog of the fundamental theorem of calculus:

/  Duf(e(e)Be(s) = f(Bfw,) - f(Erm). (67)

2. an analog of integration by parts for two functions f(x), g(z):

/ _ J@)Degla(s)Da(s) = (B *w0)g(EL ) = flan)a(Brm)
_ / D a(s)a(ELa(s)D (EXa(s)) . (69

Remark 6. The definition (66) reduces to the ususal definition of the difference integral
and the Thomae-Jackson q-integrals in the canonical forms of the linear and q-linear
lattices, respectively [8, 17].
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