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Abstract

It is presented a general approach to the study of orthogonal polynomials related
to Sobolev inner products which are defined in terms of divided-difference operators
having the fundamental property of leaving a polynomial of degree n − 1 when
applied to a polynomial of degree n. This paper gives analytic properties for the
orthogonal polynomials, including the second order holonomic difference equation
satisfied by them.
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1 Introduction

The origins of Sobolev-type orthogonal polynomials, also known as Sobolev discrete or-
thogonal polynomials (see [19]), can be traced back to the study of inner products such
as [6, 7],

〈f, g〉S =

∫
R
f(x)g(x)dψ(x) + λ(Df)(c)(Dg)(c) , λ > 0 , (1)

where ψ is some distribution function with infinite support on R, D is an operator involving
differences, and c is some real constant fulfilling some conditions regarding the support of
ψ. In [6, 7], it was considered D = ∆, being ∆ the forward difference operator, ∆f(c) =
f(c+h)−f(c)

h
, h ∈ R, with c such that ψ has no points of increase in the interval ]c, c+1[. More

recently, in [12], it was considered (1) D replaced by the q-difference operator, Dq(x) =
f(qx)−f(x)

(q−1)x ; see also, [16], on new properties of (1) with with ψ the Poisson distribution
and D = ∆. Sequences of orthogonal polynomials with respect to inner products such
as (1), are nowadays commonly called Sobolev-type orthogonal polynomials or discrete
Sobolev orthogonal polynomials. Note that the presence of derivatives produces significant
changes, most of the nice properties of the standard orthogonal polynomials (e.g, the three-
term recurrence relation, Christoffel-Darboux formula, etc) no longer hold for Sobolev
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orthogonal polynomials. This is due to the fact that the Sobolev inner products, 〈·, ·〉S,
are non-standard, that is, 〈xf, g〉S 6= 〈f, xg〉S.

Sobolev orthogonal polynomials find many applications in several areas of Mathema-
tics. They were primarily introduced in the framework of the least square approximation
to a function and, simultaneously, to its derivatives in [1]. Since the 1980s, the research in
this field has been widely intensive, falling into several directions [19, 20]. The analysis of
algebraic, differential, and asymptotic properties of Sobolev orthogonal polynomials are
nowadays broadly active topics. We refer the interested reader to the survey [20].

In the present paper we shall consider inner products such as (cf. Section 3)

〈f, g〉λ = 〈u, fg〉+ λ(Df)(c)(Dg)(c) , λ ≥ 0 , (2)

where u is a linear functional defined in the linear space of polynomials, c is some real or
complex number, and D is a general divided-difference operator (given in [17, Eq.(1.1)]),
having the fundamental property of leaving a polynomial of degree n − 1 when applied
to a polynomial of degree n. Such operators D are related to the so-called special non-
uniform lattices (snul) [17, 18]. Essentially, there are four primary classes of divided
difference operators [17, Eq.(1.1)] (cf. (3)): the forward difference operator ([25, 24]),
the q-difference operator [15]; the Wilson operator [4], the Askey-Wilson operator [3, 4].
Further details on the hierarchy of operators and the main properties of the divided-
difference calculus to be used in the sequel are given in Sub-Section 2.1.

The purpose of the present paper is twofold: on the one hand, to provide un up-
dated analysis of the families of orthogonal polynomials with respect to linear functionals
u members of the semi-classical class (cf. Section 2), specifically, on the second-order
holonomic equation - a second-order divided-difference equation with polynomial coef-
ficients, for the corresponding orthogonal polynomials; on the other hand, to deduce
(general) identities for the Sobolev polynomials related to the inner product (2). Several
key formulas, commonly used in the literature on Sobolev orthogonal polynomials, will be
presented: connection formulae, expressing the orthogonal polynomials related to (2), say
Sn, n = 0, 1, . . . , in terms of the orthogonal polynomials related to u, say Pn, n = 0, 1, . . . ,
and a three-term recurrence relation (with rational coefficients) for Sn, n = 0, 1, . . . . In-
deed, the sequence {Sn}n≥0 inherit properties from {Pn}n≥0: when {Pn}n≥0 is a member
of the so-called semi-classical class on (snul), then we also derive a second order holonomic
difference equation for {Sn}n≥0. To the best of the author’s knowledge, the derivation of
the second order holonomic difference equation for {Sn}n≥0 is novel. For the semi-classical
case on snul, we can find the second order holonomic difference equation in [17, Sec. 6]
and [21, Sec. 4.2] using different aproaches/techniques than the ones in the present paper
(here, we take advantage of some of difference systems deduced in [8]). Also, let us note
that standard techniques, such as the ladder-operator approach (see, for for instance, [2]
or [16, Sec. 4]), do not hold for the snul case.

The remainder of the paper is organized as follows. In Section 2 we give the background
on the divided-difference calculus on special non-uniform lattices (snul), as well as on the
corresponding sequences of orthogonal polynomials; the second order holonomic equation
for semi-classical orthogonal polynomials on snul is deduced in 2.3. In Section 3 we
introduce the Sobolev-type orthogonal polynomials related to (2): the connection formulae
are deduced in Sub-Section 3.1; the three-term recurrence relation is deduced in 3.2; the
second order holonomic equation for Sobolev-type orthogonal polynomials is deduce in
sub-Section 3.3. Final remarks are presented in Section 4.
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2 The second order holonomic difference equation for

semi-classical orthogonal polynomials

2.1 Special non-uniform lattices (snul), and the divided-difference
calculus

We consider the divided difference operator D given in [17, Eq.(1.1)], with the property
that D leaves a polynomial of degree n−1 when applied to a polynomial of degree n. The
operator D, defined on the space of arbitrary functions, is given by

(Df)(x) =
f(y2(x))− f(y1(x))

y2(x)− y1(x)
, (3)

where y1 and y2 are functions that satisfy

y1(x) + y2(x) = polynomial of degree 1 , (4)

(y1(x))2 + y1(x)y2(x) + (y2(x))2 = polynomial of degree 2 , (5)

the later condition being equivalent to y1(x)y2(x) = polynomial of degree less or equal
than 2. Conditions (4)–(5) define y1 and y2 as the two y-roots of a quadratic equation

ây2 + 2b̂xy + ĉx2 + 2d̂y + 2êx+ f̂ = 0 , â 6= 0 . (6)

Identities involving y1 and y2, following from the fact that y1, y2 are the y-roots of (6):

y1(x) + y2(x) = −2(b̂x+ d̂)/â , (7)

y1(x)y2(x) = (ĉx2 + 2êx+ f̂)/â , (8)

(y2(x)− y1(x))2 = 4
(

(b̂2 − âĉ)x2 + 2(b̂d̂− âê)x+ d̂2 − âf̂
)
/â2 , (9)

y1(x) = p(x)−
√
r(x) , y2(x) = p(x) +

√
r(x) , (10)

with p, r polynomials given by

p(x) = − b̂x+ d̂

â
, r(x) =

(b̂2 − âĉ)
â2

x2 +
2(b̂d̂− âê)

â2
x+

d̂2 − âf̂
â2

. (11)

When b̂2 − âĉ 6= 0, then we have

r(x) =
λ̂

â2

(
x+

b̂d̂− âê
λ̂

)2

+
τ

âλ̂
,

where λ̂ = b̂2 − âĉ, τ =
(

(b̂2 − âĉ)(d̂2 − âf̂)− (b̂d̂− âê)2
)
/â.

There are four primary classes of divided difference operators (3) and related lattices.
Such a classification is done according to the two parameters λ and τ defined above,
assuming âĉ 6= 0:
(i) λ̂ = τ = 0 - the linear lattice, related to the forward difference operator [25, Chapter
2, Section 12];
(ii) λ̂ 6= 0, τ = 0 - the q-linear lattice, related to the q-difference operator [15];

3



(iii) λ̂ = 0, τ 6= 0 - the quadratic lattice, related to the Wilson operator [4];
(iv) λ̂τ 6= 0 - the q-quadratic lattice, related to the Askey-Wilson operator [4].

Each of the operators in (i)—(iv) is an extension of the preceding one, which is recov-
ered as a particular case or as a limit case, up to a linear transformation of the variable.

For the quadratic and q−quadratic lattices, there is the parametrization of the conic
(6), say x = x(s), y = y(s), such that

y1(x) = x(s− 1/2) , y2(x) = x(s+ 1/2) ,

given as [5, 17, 18]

x(s) =


κ1q

s + κ2q
−s + κ3 , if − b̂√

âĉ
6= ±1 ,

κ4s
2 + κ5s+ κ6 , if − b̂√

âĉ
= 1

for some appropriate constants κ’s, and q defined through

q1/2 + q−1/2

2
= − b̂√

âĉ
.

Note that, in this case, we have the divided-difference operator (3) given as

Df(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
,

and the polynomials p, r are recovered via

x(s+ 1/2) + x(s− 1/2) = 2p(x(s)) , (x(s+ 1/2)− x(s− 1/2))2 = 4r(x(s)) .

In the present paper we will consider the general case, λ̂τ 6= 0, and we shall operate
with the divided difference operator D given in its general form (3), with y1, y2 given in
(10), defined in terms of the polynomials p and r in (11). Throughout the paper we shall
use the notation ∆y = y2 − y1. From (10), it follows that

∆y = 2
√
r . (12)

By defining the operators E1 and E2 (see [17]), acting on arbitrary functions f as

(E1f)(x) = f(y1(x)) , (E2f)(x) = f(y2(x)) ,

then the formula (3) is given by

(Df)(x) =
(E2f)(x)− (E1f)(x)

(E2x)(x)− (E1x)(x)
.

The companion operator of D is defined as (see [17])

(Mf)(x) =
(E1f)(x) + (E2f)(x)

2
.
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The operators D and M satisfy the product and quotient rules listed below (see [17]):

D(gf) = DgMf + MgDf , (13)

D(g/f) =
DgMf − DfMg

E1f E2f
, (14)

M(gf) = MgMf +
∆2
y

4
DgDf , (15)

M(g/f) =
E1g E2f + E2g E1f

2E1f E2f
. (16)

The operators D and M also satisfy the product rules II (see [14, Eq. 16])

DM = αMD + U1D2 , M2 = U1MD + αU2D2 + I , (17)

where I is the identity operator, α is the constant

α = −b̂/
√
âĉ , (18)

where â, b̂, ĉ are the coefficients in (6), and

U2(x) =
∆2
y

4
, U1(x) = r2x+

r1
2
, (19)

with the notation r(x) = r2x
2 + r1x + r0 for the polynomial r in (11) (cf. also (12) and

(15)).
Note that Mf is a polynomial whenever f is a polynomial. Furthermore, if deg(f) = n,

then deg(Mf) = n [9, Lemma 1]. Let us emphasize that, throughout the text, unless
stated in contrary, by a polynomial we mean a polynomial in the variable x, that is, an
element in C[x].

2.2 Orthogonal polynomials on snul

We shall consider formal orthogonal polynomials related to a (formal) Stieltjes function
defined by

S(x) =
+∞∑
n=0

un
xn+1

(20)

where (un)n≥0, the sequence of moments, satisfies the regularity condition

det
[
ui+j

]n
i,j=0
6= 0 , n = 0, 1, 2, ... , (21)

and, without loss of generality, u0 = 1. It is well-known [11, Th. 4.4] that (21) is a
necessary and sufficient condition for the existence of a sequence of polynomials, say
{Pn}n≥0, orthogonal with respect to the linear functional u : C[x] −→ C, defined by
〈u, xn〉 = un, n = 0, 1, 2, . . . , that is, the system {Pn}n≥0 satisfies

〈u, PnPm〉 = hnδn,m , n,m = 0, 1, . . . ,

where hn 6= 0 and δn,m is the Kronecker’s delta.
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If the moments satisfy the condition det((ui+j)
n
i,j=0) > 0, n ≥ 0 (that is, u is positive-

definite), then u has an integral representation in terms of a positive Borel measure, µ,
supported on an infinite point set, I, such that

〈u, xn〉 =

∫
I

xn dµ(x) , n ≥ 0 .

In this case, S is the so-called Stieltjes transform of the measure,

S(x) =

∫
I

dµ(y)

x− y
, x ∈ C \ I . (22)

Given the above context, throughout the text we shall also refer to {Pn}n≥0 as the
sequence of orthogonal polynomials related to S.

Throughout the paper we consider each Pn monic, and we will denote the sequence of
monic orthogonal polynomials {Pn}n≥0 by SMOP. Monic orthogonal polynomials satisfy
a three-term recurrence relation [26]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, ... , (23)

with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1, γ0 = 1. The parameters βn, γn are
commonly called the recurrence coefficients of {Pn}n≥0.

A central object in our study is the reproducing Kernel,

Kn(x, y) =
n−1∑
k=0

Pk(x)Pk(y)

〈u, P 2
k 〉

, n = 1, 2, . . . . (24)

Proposition 1. (Christoffel-Darboux formula)[10] Let {Pn}n≥0 be a SMOP with respect
to the linear functional u. For all n ≥ 1,

Kn(x, y) =
1

〈u, P 2
n−1〉

Pn(x)Pn−1(y)− Pn(y)Pn−1(x)

x− y
. (25)

We shall make use of the following notation:

K(i,j)
n (x, y) =

n−1∑
k=0

(DiPk)(x)(DjPk)(y)

〈u, P 2
k 〉

, n = 1, 2, . . . , (26)

where, naturally, Dk refers to the kth derivative. The reproducing property of the Kernel
gives us the following identity, for an arbitrary polynomial f of degree less of equal than
n− 1,

〈u, K(0,j)
n (x, y)f(x)〉 = (Djf)(y) .

Thus, if j = 0 in the formula above, then

〈u, Kn(x, y)f(x)〉 = f(y) .
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2.2.1 Semi-classical orthogonal polynomials on snul

Definition 1 ([17]). A SMOP {Pn}n≥0 related to a Stieltjes function, S, is said to be
semi-classical (on snul) if S satisfies a difference equation

A(x)DS(x) = C(x)MS(x) +D(x) , (27)

where A(x), C(x), D(x) are irreducible polynomials in x, A 6= 0.

Note that [17]

deg(A) ≤ m+ 2 , deg(C) ≤ m+ 1 , deg(D) ≤ m, (28)

where m is some nonnegative integer. When m = 0 we get the so-called classical polyno-
mials on snul [14, 23, 24].

Semi-classical orthogonal polynomials on snul are characterized through the following
equivalent properties:
(i) a distributional equation for the linear functional [14, 22],

D(φu) = M(ψu) , (29)

with polynomials φ, ψ such that φ 6= 0 , deg(ψ) ≥ 1;
(ii) a difference equation (27) for the Stieltjes function [17, 27],

ADS = CMS +D ,

with A,C,D irreducible polynomials (in x).
Furthermore, whenever S is defined through (22), with µ defined in terms of a weight

w as dµ(x) = w(x)dx, then we also have the equivalence between (i) and (ii) and the
Pearson equation for the weight [8, 27],

ADw = CMw , (30)

where A and C are the same polynomials as in (27).
The polynomials in (29)–(30) are related via

A = Mφ− α
∆2
y

4
Dψ − U1Mψ , C = −Dφ+ αMψ + U1Dψ , (31)

with α, U1 given in (18) and (19), respectively.

Remark 1. The polynomial D in (27) depends on A,C. It relates to φ, ψ as follows:

D = D(u θ0φ)− αM(u θ0ψ)− U1D(u θ0ψ) ,

with θ0f defined by θ0f(x) = f(x)−f(0)
x

, and the right product of the functional u by a
polynomial g(x) =

∑n
k=0 gkx

k defined as the following polynomial,

(u g)(x) =
n∑
k=0

(
n∑
j=k

gjuj−k

)
xk .
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In the sequel we will use the following matrices:

Pn =

[
Pn+1

Pn

]
, n ≥ 0 . (32)

In the account of (23), Pn satisfies the difference equation

Pn = AnPn−1 , An =

[
x− βn −γn

1 0

]
, n ≥ 1 , (33)

with initial condition P0 =

[
x− β0 1

1 0

]
. The matrix An is usually known as transfer

matrix.
According to [8, Cor. 1], if {Pn}n≥0 is a SMOP related to a semi-classical weight, w,

such that ADw = CMw, then {Pn}n≥1 satisfies the following equation:

An+1 DPn = (Bn − C/2 I)MPn , n ≥ 1 , (34)

where An+1 is the polynomial

An+1 = A+
∆2
y

2
πn , (35)

I is the identity matrix, and Bn is a matrix with polynomial entries of uniformly bounded
degrees, given by (in the account of [8, Eq. (57)])

Bn =

[
ln Θn

−Θn−1/γn −ln

]
. (36)

The polynomials Θn, ln and πn satisfy the fundamental relations, for all n ≥ 0 [9, 13]:

πn+1 = −1

2

n+1∑
k=0

Θk−1

γk
, (37)

ln+1 + ln + M(x− βn+1)
Θn

γn+1

= 0 , (38)

−A+ M(x− βn+1)(ln+1 − ln)−
∆2
y

2
(πn+1 + πn) + Θn+1 =

γn+1

γn
Θn−1 , (39)

ln+1 + ln = 2M(x− βn+1)(πn+1 − πn) , (40)

together with the initial conditions

π−1 = 0, π0 = −D/2, (41)

Θ−1 = D, Θ0 = A−
∆2
y

4
D − (l0 − C/2)M(x− β0) +B, (42)

l−1 = C/2, l0 = −M(x− β0)D − C/2 . (43)

2.3 The second order holonomic divided-difference equation for
semi-classical orthogonal polynomials on snul

Let us take a SMOP {Pn}n≥0 related to a semi-classical weight, w, such that (30) holds,
i.e., ADw = CMw, or, in more general terms, let us take the difference equation (27),
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ADS = CMS+D, for the corresponding Stieltjes function. Recall the equations enclosed
by (34),

An+1DPn+1 = (ln − C/2)MPn+1 + ΘnMPn , (44)

An+1DPn = −Θn−1

γn
MPn+1 − (ln + C/2)MPn . (45)

The above equations will play a fundamental role in the sequel, as they fully determine
the coefficients of the second order divided-difference equation - the holonomic equation,
to be deduced later on.

For matters of simplification in the sequel, let us write (44) and (45) as

µn = ΘnMPn , (46)

An+1DPn = −ηn + l̃nMPn , (47)

that is, we use the notation

µn = An+1DPn+1 − (ln − C/2)MPn+1 , ηn =
Θn−1

γn
MPn+1 , l̃n = −ln − C/2 .

Proposition 2. Let the previous notations hold. The following difference equations hold,

Dµn = DΘnM2Pn + MΘnDMPn , (48)

Mµn = MΘnM2Pn +
∆2
y

4
DΘnDMPn , (49)

−U1Dηn = −U1Dl̃nM2Pn + EnMDPn + FnDMPn , (50)

−U1Mηn = −U1Ml̃nM2Pn +GnMDPn +HnDMPn , (51)

with

En = U1DAn+1 − αMAn+1 , Fn = MAn+1 − U1Ml̃n , (52)

Gn = U1MAn+1 − α
∆2
y

4
DAn+1 , Hn =

∆2
y

4

(
DAn+1 − U1Dl̃n

)
. (53)

Proof. By applying D to (46) and using the product rule (13), we get (48).
By applying M to (46) and using the product rule (15), we get (49).
Equation (50) is obtained by applying U1D to (47), with U1 the polynomial defined in

(19), and using the product rule U1D2 = DM−αMD from (17). Equation (51) is obtained
by applying U1M to (47), with U1 the polynomial defined in (19), and using the product
rule U1D2 = DM− αMD from (17).

As a consequence of the previous proposition, we get the result that follows.

Proposition 3. Under the previous notations, the following equations hold,

DnM2Pn = (EnHn − FnGn)Mµn +
∆2
y

4
U1DΘn(EnMηn −GnDηn) , (54)

DnDMPn = U1MΘn(GnDηn − EnMηn) + U1(EnMl̃n −GnDl̃n)Mµn , (55)

with the polynomial Dn defined by

Dn = (EnHn − FnGn)MΘn +
∆2
y

4
U1(EnMl̃n −GnDl̃n)DΘn . (56)
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Proof. Take the system (49), (50), (51), in the unknowns M2Pn,MDPn and DMPn. The
polynomial Dn given by (56) is the determinant of that system. Solving for M2Pn and
DMPn, then equations (54) and (55) follow.

It is well to emphasize that Dµn,Mµn and Dηn,Mηn in Proposition 2 are constituted
by polynomials times factors of D2Pn+1,MDPn+1, and Pn+1. The precise formulae are
given in the next proposition.

Proposition 4. Under the previous notations, the following equations hold,

Dµn = Rn,1D2Pn+1 +Rn,2MDPn+1 − D (ln − C/2)Pn+1 , (57)

Mµn =
∆2
y

4
Rn,2D2Pn+1 +Rn,1MDPn+1 −M (ln − C/2)Pn+1 , (58)

Dηn = Tn,1D2Pn+1 + Tn,2MDPn+1 + D
Θn−1

γn
Pn+1 , (59)

Mηn =
∆2
y

4
Tn,2D2Pn+1 + Tn,1MDPn+1 + M

Θn−1

γn
Pn+1 , (60)

with

Rn,1 = MAn+1 − α
∆2
y

4
D (ln − C/2)− U1M (ln − C/2) ,

Rn,2 = DAn+1 − αM (ln − C/2)− U1D (ln − C/2) ,

Tn,1 = α
∆2
y

4
D

Θn−1

γn
+ U1M

Θn−1

γn
, Tn,2 = U1D

Θn−1

γn
+ αM

Θn−1

γn
.

Proof. Use the product rules (13), (15), as well as (17), to obtain only factors of D2Pn+1,
MDPn+1, and Pn+1.

We now deduce the second-order divided-difference equation with polynomial coeffi-
cients - the holonomic difference equation.

Theorem 1. Let {Pn}n≥0 be a semi-classical SMOP on snul. Assuming that {Pn}n≥0 is
related to a Stieltjes function satisfying the difference equation (27), ADS = CMS + D,
then, for all n ≥ 1, the following second-order difference equation holds,

ÃnD2Pn+1 + B̃nMDPn+1 + C̃nPn+1 = 0 , (61)
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with the polynomial coefficients given by

Ãn =

(
MAn+1 − α

∆2
y

4
D (ln − C/2)− U1M (ln − C/2)

)
Dn

−
∆2
y

4
(DAn+1 − αM (ln − C/2)− U1D (ln − C/2)) Jn

+U1

((
α

∆2
y

4
D

Θn−1

γn
+ U1M

Θn−1

γn

)
Gn −

∆2
y

4

(
αM

Θn−1

γn
+ U1D

Θn−1

γn

)
En

)
Vn ,(62)

B̃n = (DAn+1 − αM (ln − C/2)− U1D (ln − C/2))Dn

−
(
MAn+1 − α

∆2
y

4
D (ln − C/2)− U1M (ln − C/2)

)
Jn

+U1

((
U1D

Θn−1

γn
+ αM

Θn−1

γn

)
Gn −

(
U1M

Θn−1

γn
+ α

∆2
y

4
D

Θn−1

γn

)
En ,

)
Vn , (63)

C̃n = −DnD (ln − C/2) + JnM (ln − C/2) + U1

(
GnD

Θn−1

γn
− EnM

Θn−1

γn

)
Vn , (64)

where Dn is given by (56), and

Jn = (EnHn − FnGn)DΘn + U1MΘn(EnMl̃n −GnDl̃n) , (65)

Vn =
∆2
y

4
(DΘn)2 − (MΘn)2 . (66)

with En, Fn, Gn, Hn given in (52)–(53).

Proof. The difference equation (61) is obtained starting with (48). Indeed, by multiplying
(48) by Dn and using M2Pn and DMPn from (54) and (55), we get

DnDµn − JnMµn + U1GnVnDηn − U1EnVnMηn = 0 , (67)

with Jn, Vn given in (65)–(66). The use of equations (57)–(60) in (67) yields the second
order divided-difference equation (61) with coefficients (62)–(64).

Remark 2. Alternatively, the difference equation (61) can be deduced starting with (49)
instead of (48), and following the analogue procedure as the one described in the proof of
the previous theorem.

3 Sobolev-type orthogonal polynomials on snul

Let u be a linear functional defined in the linear space of polynomials with real or complex
coefficients. We consider the Sobolev-type inner product (2), that is,

〈f, g〉λ = 〈u, fg〉+ λ(Df)(c)(Dg)(c) , λ ≥ 0 ,

where D is the general divided-difference operator given by (3). Here, c will be taken as
a general real/complex number. Usually, c should be taken outside the support of u.

We denote by {Sn}n≥0 the sequence of orthogonal polynomials with respect to the
inner product (2). Without loss of generality, Sn will be taken monic, for n = 0, 1, 2 . . . .

Let {Pn}n≥0 be the SMOP related to u. The goal of the next section is to deduce
relations expressing Sn in terms of (quantities related to) {Pn}n≥0.
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3.1 Connection formulae

Proposition 5. Under the previous notations, the following connection formulae take
place:

Sn(x) = Pn(x)− λ(DSn)(c)K(0,1)
n (x, c) , (68)

Sn(x) = Pn(x)− λnK(0,1)
n (x, c) , (69)

Sn(x) = Pn(x)− λn
‖Pn−1‖2

{
Pn(x)(MPn−1)(c)− Pn−1(x)(MPn)(c)

(x− y1(c))(x− y2(c))

+
(Pn(x)(DPn−1)(c)− Pn−1(x)(DPn)(c))

(x− y1(c))(x− y2(c))
(x− p(c))

}
,(70)

where

λn = λ
(DPn)(c)

1 + λK
(1,1)
n (c, c)

, (71)

K
(0,1)
n (x, y) denotes the derivatives of the reproducing Kernel defined in (26), and

p(c) = (y1(c) + y2(c))/2 , (72)

with y1, y2 the functions defined in (11).

Proof. Recalling that Pn and Sn are both monic, let us write

Sn(x) = Pn(x) +
n−1∑
k=0

an,kPk(x) , n ≥ 1 . (73)

The Fourier coefficients an,k are given by

an,k =
〈u, SnPk〉
〈u, P 2

k 〉
, k = 0, 1, . . . , n− 1 . (74)

On the other hand, by writing

〈u, SnPk〉 = 〈Sn, Pk〉λ − λ(DSn)(c)(DPk)(c) ,

and using the orthogonality of {Sn} with respect to 〈·, ·〉λ, then 〈Sn, Pk〉λ = 0, thus, from
(74), we get

an,k = −λ(DSn)(c)(DPk)(c)
〈u, P 2

k 〉
, k = 0, 1, . . . , n− 1 .

Thus, the Fourier expansion (73) is given by

Sn(x) = Pn(x)− λ(DSn)(c)
n−1∑
k=0

(DPk)(c)
〈u, P 2

k 〉
Pk(x) . (75)

Noting that (cf. (26))
n−1∑
k=0

(DPk)(c)Pk(x)

〈u, P 2
k 〉

= K(0,1)
n (x, c) ,
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then (75) can be also written as (68).
Furthermore, let us apply D to (68) and compute its value at x = c. We get

(DSn)(c) = (DPn)(c)− λ(DSn)(c)K(1,1)
n (c, c) ,

thus,

(DSn)(c) =
(DPn)(c)

1 + λK
(1,1)
n (c, c)

.

Therefore, (68) can also be written as

Sn(x) = Pn(x)− λ (DPn)(c)

1 + λK
(1,1)
n (c, c)

K(0,1)
n (x, c) ,

or, using the notation (71), we write the previous equation as (69).
To deduce (70) we consider the following representation for the Kernel:

K(0,1)
n (x, c) = ∂yKn(x, y)|y=c ,

where ∂y here is used to denote the derivative of Kn(x, y) in the argument y evaluated at

y = c. In the account of (25), that is, Kn(x, y) =
Pn(x)Pn−1(y)− Pn(y)Pn−1(x)

(x− y)‖Pn−1‖2
, we have,

by using the the quotient rule (14),

K(0,1)
n (x, c) =

Pn(x)

‖Pn−1‖2

{
(DPn−1)(c)(x− p(c)) + (MPn−1)(c)

(x− y1(c))(x− y2(c))

}
− Pn−1(x)

‖Pn−1‖2

{
(DPn)(c)(x− p(c)) + (MPn)(c)

(x− y1(c))(x− y2(c))

}
, (76)

where p(c) = (y1(c)+y2(c))/2. Plugging (76) into (69) we get, after rearranging, (70).

In what follows it is shown a property to be used later on.

Proposition 6. Considering the inner product 〈·, ·〉λ defined in (2), the following property
holds, for arbitrary polynomials f, g:

〈(x− y1(c))(x− y2(c))f, g〉λ = 〈f, (x− y1(c))(x− y2(c))g〉λ . (77)

Proof. We have

〈(x− y1(c))(x− y2(c))f, g〉λ = 〈u, (x− y1(c))(x− y2(c))fg〉
+ λ (D((x− y1(c))(x− y2(c))f)) (c) (Dg) (c) .

and

〈f, (x− y1(c))(x− y2(c))g〉λ = 〈u, (x− y1(c))(x− y2(c))fg〉
+ λ (Df) (c) (D((x− y1(c))(x− y2(c))g)) (c) .

Taking into account that (cf. (3))

D((x− y1(c))(x− y2(c))h) = 0 , h ∈ C[x] , (78)

the result follows.
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Further expansions follow.

Proposition 7. The following expansion holds, for all n ≥ 2:

(x− y1(c))(x− y2(c))Sn(x) =
n+2∑

k=n−2

an,kPk(x) , (79)

with an,n+2 = 1, and

an,n+1 = bn+1 −
λn

‖Pn−1‖2
(DPn−1)(c) ,

an,n = bn −
λn

‖Pn−1‖2
{(MPn−1)(c) + (DPn−1)(c)(βn − p(c))− (DPn)(c)(βn−1 − p(c))} ,

an,n−1 = bn−1 +
λn

‖Pn−1‖2
{(MPn)(c)− γn(DPn−1)(c) + (DPn)(c)(βn−1 − p(c))} ,

an,n−2 = bn−2 +
λn

‖Pn−1‖2
γn−1(DPn)(c) ,

where the bk’s are defined in terms of the recurrence coefficients of {Pn}n≥0 as follows,

bn+1 = βn+1 + βn − 2p(c) , bn = γn+1 + γn + β2
n − 2βnp(c) + y1(c)y2(c) ,

bn−1 = γn(βn + βn−1 − 2p(c)) , bn−2 = γnγn−1 .

Here, p(c) = (y1(c) + y2(c))/2, with y1, y2 the functions defined in (11).

Proof. Let us write

(x− y1(c))(x− y2(c))Sn(x) =
n+2∑
k=0

an,kPk(x) . (80)

The Fourier coefficients an,k are given by

an,k =
〈u, (x− y1(c))(x− y2(c))SnPk〉

〈u, P 2
k 〉

. (81)

By virtue of (78), we can write

〈u, (x− y1(c))(x− y2(c))SnPk〉 = 〈u, (x− y1(c))(x− y2(c))SnPk〉
+ λ(D((x− y1(c))(x− y2(c))Sn))(c)(DPk)(c) ,

thus, we have

an,k =
〈(x− y1(c))(x− y2(c))Sn, Pk〉λ

〈u, P 2
k 〉

.

Recalling (77), there holds

〈(x− y1(c))(x− y2(c))Sn, Pk〉λ = 〈Sn, (x− y1(c))(x− y2(c))Pk〉λ .

Thus,

an,k =
〈Sn, (x− y1(c))(x− y2(c))Pk〉λ

〈u, P 2
k 〉

.
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From the orthogonality of {Sn}n≥0 there follows an,k = 0, k = 0, 1, . . . , n− 3 . Hence, the
expansion (80) is reduced to (79).

Let us now deduce the coefficients an,k, k = n− 2, n− 1, . . . , n+ 2.
As Sn and Pn are monic, then an,n+2 = 1. In order to compute the remaining an,k’s

recall (81),
an,k〈u, P 2

k 〉 = 〈u, (x− y1(c))(x− y2(c))SnPk〉 .
On the other hand, from (70), we have

(x− y1(c))(x− y2(c))Sn(x) = (x− y1(c))(x− y2(c))Pn(x)

− λn
‖Pn−1‖2

{Pn(x)(MPn−1)(c)− Pn−1(x)(MPn)(c)

+ (Pn(x)(DPn−1)(c)− Pn−1(x)(DPn)(c)) (x− p(c))} . (82)

Using the three-term recurrence relation (23) for {Pn}n≥0 in (82), we get the required
coefficients.

3.2 Three-term recurrence relations for Sobolev-type Orthogo-
nal polynomials

In order to deduce a recurrence relation for {Sn}n≥0, it is useful to deduce the expansion
given in the following proposition.

Proposition 8. The following expansion holds, for all n ≥ 1:

(x− y1(c))(x− y2(c))Sn(x) =
n+2∑
j=n−2

cn,jSj(x) , n ≥ 1 , (83)

with the coefficients cn,j given by

cn,j =

an,j‖Pj‖2 − λj
j−1∑

k=n−2

an,k(DPk)(c)

‖Sj‖2λ
, j = n− 2, . . . , n+ 2 , (84)

with the convention
∑b

k=a · = 0 whenever a > b.
Here, the an,j’s are the coefficients given in Proposition 7.

Proof. Let us write

(x− y1(c))(x− y2(c))Sn(x) =
n+2∑
j=0

cn,jSj(x) .

The Fourier coefficients cn,k are given by

cn,j〈Sj, Sj〉λ = 〈(x− y1(c))(x− y2(c))Sn, Sj〉λ . (85)

By virtue of property (77), we have

〈(x− y1(c))(x− y2(c))Sn, Sj〉λ = 〈Sn, (x− y1(c))(x− y2(c))Sj〉λ ,
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thus, due to the orthogonality of {Sn}n≥0, there follows that cn,j = 0, j = 0, 1, . . . , n− 3 .
Hence, we get the expansion (83).

In order to compute the coefficients cn,j, j = n − 2, . . . , n + 2, we start by recalling
property (78), thus (85) yields

cn,j〈Sj, Sj〉λ = 〈u, (x− y1(c))(x− y2(c))SnSj〉 . (86)

Using the two representations (69) and (79), respectively,

Sj(x) = Pj(x)− λjK(0,1)
j (x, c) , (x− y1(c))(x− y2(c))Sn(x) =

n+2∑
k=n−2

an,kPk(x) ,

into (86), and using the orthogonality of {Pn}n≥0, we obtain the required coefficients given
in (84).

Remark 3. As Sn is monic, for all n = 0, 1, . . . , then cn,n+2 = 1. Therefore, taking
j = n+ 2 in (84) we obtain the norm of Sn+2 in terms of the norm of Pn+2, as follows:

‖Sn+2‖2λ = ‖Pn+2‖2 − λn+2

n+1∑
k=n−2

an,k(DPk)(c) .

Proposition 9. Let Φ be the polynomial defined by Φ(x) = (x − y1(c))(x − y2(c)). The
following equations take place:

Φ(x)Sn(x) = Ân(x)Pn(x) + B̂n(x)Pn−1(x) , n ≥ 2 , (87)

Φ(x)Sn−1(x) = Ĉn(x)Pn(x) + D̂n(x)Pn−1(x) , n ≥ 2 , (88)

where Ân, B̂n, Ĉn, D̂n, are polynomials given by

Ân(x) = x2 − (βn+1 + βn + an,n+1)x−
an,n−2
γn−1

+ an,n − βnan,n+1 + βn+1βn − γn+1 ,(89)

B̂n(x) = (an,n−2/γn−1 − γn)x− an,n−2
γn−1

βn−1 + an,n−1 − γnan,n+1 + βn+1γn . (90)

Ĉn(x) = −B̂n−1(x)

γn−1
, (91)

D̂n(x) = Ân−1(x) +
(x− βn−1)

γn−1
B̂n−1(x) , (92)

where the an,j’s are the coefficients given in Proposition 7.

Proof. Let us start with equation (79). Using the three-term recurrence relation (23)
together with the (consequent) following equations

Pn+2(x) = ((x− βn+1)(x− βn)− γn+1)Pn(x)− (x− βn+1)γnPn−1(x) , (93)

Pn−2(x) =
1

γn−1
((x− βn−1)Pn−1(x)− Pn(x)) , (94)

into (79), we get (87) with polynomials Ân, B̂n given by (89)–(90).
To obtain (88) we take (87) for n− 1 and use (94), thus getting the required equation

with polynomials Ĉn, D̂n given by (91)–(92).
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Theorem 2. Let the previous notations hold. The sequence {Sn}n≥0 of Sobolev-type
orthogonal polynomials related to the inner product (2) satisfies a three-term recurrence
relation with rational coefficients,

Sn+1(x) = β̂n(x)Sn(x) + γ̂n(x)Sn−1(x) , n ≥ 1 , (95)

with initial conditions S0(x) = 1, S1(x) = P1(x), and

β̂n(x) =

(
γnĈn(x) + (x− βn)D̂n(x)

)
Ân+1(x) + B̂n+1(x)D̂n(x)

Ân(x)D̂n(x)− B̂n(x)Ĉn(x)
, (96)

γ̂n(x) =
−
(
γnÂn(x) + (x− βn)B̂n(x)

)
Ân+1(x)− B̂n+1(x)B̂n(x)

Ân(x)D̂n(x)− B̂n(x)Ĉn(x)
. (97)

Proof. For simplicity matter, let us write the system (87)–(88) in the matrix form

ΦSn−1 = EnPn−1 , (98)

where

Sn−1 =

[
Sn
Sn−1

]
, En =

[
Ân B̂n

Ĉn D̂n

]
, Pn−1 =

[
Pn
Pn−1

]
. (99)

Standard computations give us det(En) 6= 0.
By taking n+ 1 in (98), we get

ΦSn = En+1Pn .

Using Pn = AnPn−1 (cf. (33)) in the equation above and taking into account the regularity
of the matrix En, we obtain

Sn = En+1AnE−1n Sn−1 .

Hence, we have the difference equation

Sn = ÂnSn−1 , (100)

with the transfer-type matrix
Ân = En+1AnE−1n .

Standard computations give us

Ân =

[
β̂n(x) γ̂n(x)

1 0

]
with β̂n(x), γ̂n(x) given by (96) and (97), respectively.

3.3 The second order holonomic divided-difference equation for
Sobolev-type orthogonal polynomials

Let us now assume the semi-classical property of the linear functional u in (2). Let us
take u satisfying a Pearson equation such as (29), D(φu) = M(ψu), or, equivalently, such
that the corresponding Stieltjes function satisfies (27), ADS = CMS +D.
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Recalling the process from Sub-Section 2.3, the divided-difference equations of type
(44)–(45) are the starting point to deduce the holonomic equation satisfied by a sequence
of orthogonal polynomials.

In what follows we will make use of the connection relations between {Sn}n≥0 and
{Pn}n≥0 given by (87)–(88), written in the matrix form (98), that is,

ΦSn = En+1Pn .

Recall that {Pn}n≥0 satisfies the system (34), thus we have

An+1DPn = (Bn − C/2 I)MPn , n ≥ 1 .

In what follows we shall deduce similar systems similar to (34) for {Sn}n≥0. These systems
are fundamental to the deduction of the the second order holonomic difference equation.

Proposition 10. Let {Sn}n≥0 be the sequence of Sobolev-type orthogonal polynomials
related to the inner product (2), with u a semi-classical linear functional. Under the
previous notations, the sequence {Sn}n≥0 satisfies the divided-difference equations, for all
n ≥ 1,

Ân+1DSn+1 = Ln,1MSn+1 + Θn,1MSn , (101)

Ân+1DSn = Ln,2MSn+1 + Θn,2MSn , (102)

where Ân+1 is the polynomial defined by Ân+1 = detGn+1, with

Gn+1 = An+1MΦ I −
∆2
y

4
Fn+1DE−1n+1 , Fn+1 = An+1DEn+1 +MEn+1 (Bn − C/2 I) , (103)

where Ln,1,Θn,1, Ln,2,Θn,2 are, respectively, the entries (1, 1), (1, 2), (2, 1), (2, 2) in the ma-
trix (adjGn+1)

(
Fn+1ME−1n+1 − An+1DΦ I

)
.

Proof. By applying D to ΦSn = En+1Pn we get, using the product rule (13),

DΦMSn + MΦDSn = DEn+1MPn + MEn+1DPn . (104)

Multiplying (104) by the polynomial An+1 defined in (34) we get, using the equation from
(34),

An+1DΦMSn + An+1MΦDSn = (An+1DEn+1 + MEn+1 (Bn − C/2 I)) MPn . (105)

Also, from Pn = E−1n+1Sn, using the product rule (15), we get

MPn = ME−1n+1MSn +
∆2
y

4
DE−1n+1 DSn . (106)

Now, using (106) into (105) we get

Gn+1DSn =
(
Fn+1ME−1n+1 − An+1DΦ I

)
MSn , (107)

where I denotes the identity matrix of order two, and Fn,Gn are the matrices given by
(103). By multiplying (107) by the adjoint matrix adjGn+1, and noting that detGn+1 6= 0,
we obtain the system

detGn+1DSn = adjGn+1

(
Fn+1ME−1n+1 − An+1DΦ I

)
MSn ,

thus we get the required equations.
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Theorem 3. Let {Sn}n≥0 be the sequence of Sobolev-type orthogonal polynomials related to
the inner product (2), with u a semi-classical linear functional. Let the previous notations
hold. The sequence {Sn}n≥0 satisfies the second order divided-difference equation

˜̃
AnD2Sn+1 +

˜̃
BnMDSn+1 +

˜̃
CnSn+1 = 0 , (108)

with rational coefficients given by

˜̃
An =

(
MÂn+1 − α

∆2
y

4
DLn,1 − U1MLn,1

)
Dn −

∆2
y

4

(
DÂn+1 − αMLn,1 − U1DLn,1

)
Ĵn

−U1

((
α

∆2
y

4
DLn,2 + U1MLn,2

)
Ĝn +

∆2
y

4
(αMLn,2 + U1DLn,2)En

)
V̂n ,

˜̃
Bn =

(
DÂn+1 − αMLn,1 − U1DLn,1

)
D̂n −

(
MÂn+1 − α

∆2
y

4
DLn,1 − U1MLn,1

)
Ĵn

−U1

(
(U1DLn,2 + αMLn,2) Ĝn +

(
U1MLn,2 + α

∆2
y

4
DLn,2

)
Ên ,

)
V̂n ,

˜̃
Cn = −D̂nDLn,1 + ĴnMLn,1 − U1

(
ĜnDLn,2 − ÊnMLn,2

)
V̂n ,

where

D̂n = (ÊnĤn − F̂nĜn)MΘn,1 +
∆2
y

4
U1(ÊnMΘn,2 − ĜnDΘn,2)DΘn,1 ,

Ĵn = (ÊnĤn − F̂nĜn)DΘn,1 + U1MΘn,1(ÊnMΘn,2 − ĜnDΘn,2) ,

V̂n =
∆2
y

4
(DΘn,1)

2 − (MΘn,1)
2 ,

with

Ên = U1DÂn+1 − αMÂn+1 , F̂n = MÂn+1 − U1MΘn,2 ,

Ĝn = U1MÂn+1 − α
∆2
y

4
DÂn+1 , Ĥn =

∆2
y

4

(
DÂn+1 − U1DΘn,2

)
.

Here, ∆y, α and U1 are given in (12), (18) and (19), respectively.

Proof. The proof follows the same technique of the proof of Theorem 1.

4 Final remarks

In this paper it is given an unified treatment to the study of Sobolev-type orthogonal
polynomials, related to inner products (2),

〈f, g〉λ = 〈u, fg〉+ λ(Df)(c)(Dg)(c) , λ ≥ 0 ,

where D is a general divided-difference operator (given in [17, Eq.(1.1)]) having the fun-
damental property of leaving a polynomial of degree n− 1 when applied to a polynomial
of degree n. Here, it was deduced several key properties of the sequences of orthogonal
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polynomials with respect to (2), namely, connection formulae; a three-term recurrence re-
lation; difference systems such as (101)–(102), inherited when the semi-classical character
of u holds, and a second order divided-difference equation with polynomial coefficients.
There are several works on Sobolev orthogonal polynomials related to inner products such
as (2) with specific operators D, for instance, [6, 7, 12, 16] (see also their references lists).
These works provide examples where the results of the present paper apply.
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