Poster Communication Abstract – 2.30

LEAF HYDRAULIC CAPACITANCE IS KEY DETERMINANT OF GRAPEVINE DROUGHT CONTROL

VITALI M., FERRANDINO A., LOVISOLO C.

University of Turin, DISAFA, Largo Braccini 2, 1005 Grugliasco (Italy)

abscisic acid, embolism, stress avoidance, stress tolerance

The grapevine is used as model plant to understand plant strategies to avoid/tolerate water stress. Two *Vitis vinifera* L. varieties have been described to represent them. 'Grenache' points to stress avoidance, acting abscisic acid (ABA)-driven stomatal closure and maintaining high levels of leaf water potential during water stress (isohydric response). On the contrary, 'Syrah' does not strictly control stomatal closure upon drought and tolerates a water potential decrease through osmoregulation (anisohydric behavior). By following stress/recovery routines we found a strategic contribution of leaf hydraulic capacitance in isohydric leaves, that allows water retaining in leaves during drought. In isohydric plants, a rehydration after a water shortage period causes a transient decrease in leaf turgor, by restoring stomatal opening and following transpiration. On the contrary, rehydrated water droughted anisohydric plants recover leaf turgor and water potential through a hydraulic, non-hormonal control of stomatal behaviour.