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Abstract
1. Visibility (viewshed) plays a significant and diverse role in animals' behaviour and 

fitness. Understanding how visibility influences animal behaviour requires the 
measurement of habitat visibility at spatial scales commensurate to individual 
animal choices. However, measuring habitat visibility at a fine spatial scale over 
a landscape is a challenge, particularly in highly heterogeneous landscapes (e.g. 
forests). As a result, our ability to model the influence of fine- scale visibility on 
animal behaviour has been impeded or limited.

2. In this study, we demonstrate the application of the concept of three- dimensional 
(3D) cumulative viewshed in the study of animal spatial behaviour at a landscape 
level. Specifically, we employed a newly described approach that combines ter-
restrial and airborne light detection and ranging (LiDAR) to measure fine- scale 
habitat visibility (3D cumulative viewshed) on a continuous scale in forested 
landscapes. We applied the LiDAR- derived visibility to investigate how visibility 
in forests affects the summer habitat selection and the movement of 20 GPS- 
collared female red deer Cervus elaphus in a temperate forest in Germany. We 
used integrated step selection analysis to determine whether red deer show any 
preference for fine- scale habitat visibility and whether visibility is related to the 
rate of movement of red deer.

3. We found that red deer selected intermediate habitat visibility. Their preferred 
level of visibility during the day was substantially lower than that of night and 
twilight, whereas the preference was not significantly different between night 
and twilight. In addition, red deer moved faster in high- visibility areas, possibly 
mainly to avoid predation and anthropogenic risk. Furthermore, red deer moved 
most rapidly between locations in the twilight.

4. For the first time, the preference for intermediate habitat visibility and the adap-
tion of movement rate to fine- scale visibility by a forest- dwelling ungulate spe-
cies at a landscape scale was revealed. The LiDAR technique used in this study 
offers fine- scale habitat visibility at the landscape level in forest ecosystems, 
which would be of broader interest in the fields of animal ecology and behaviour.
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1  |  INTRODUC TION

Visual information plays a significant and diverse role in animals' be-
haviour and fitness. For prey species, visual information from the 
environment can affect their ability to remain hidden or to detect ap-
proaching predators, thereby avoiding predation (Camp et al., 2012; 
Embar et al., 2011; Lima & Dill, 1990). On the other hand, predators 
relying on the vision for hunting can locate their prey and use ap-
propriate predation strategies that increase their chance of success 
(Andersson et al., 2009; Hopcraft et al., 2005; Loarie et al., 2013). 
Visibility is the environmental property that provides lines of sight 
enabling an individual to visually detect prey or predators and has 
often been used to quantify what an animal can potentially see 
(Aben et al., 2018; Camp et al., 2013). Visibility has been shown to 
alter predation risk imposed by predators or perceived by prey spe-
cies and thus affect an animal's habitat selection for foraging (Dupke 
et al., 2017; Embar et al., 2011), hunting (Loarie et al., 2013), repro-
duction (Rearden et al., 2011), resting (Adrados et al., 2008; Davies, 
Marneweck, et al., 2016) and mating (Alonso et al., 2012), as well as 
its movement (Frair et al., 2005; Proffitt et al., 2009). Therefore, fur-
ther improvements in understanding animal spatial behaviour would 
greatly benefit from considering environmental visibility.

Behavioural responses of animals via habitat selection or 
movement occur at multiple scales (Johnson, 1980; Wiens, 1989). 
Therefore, understanding how visibility influences animal behaviour 
requires measuring habitat visibility at spatial scales that are com-
mensurate with the choices made by individual animals. However, 
there has always been a mismatch between the scales (e.g. plant, 
patch and landscape) at which animals make decisions and the res-
olution of the data on habitat visibility available across these same 
spatial scales. This mismatch becomes more severe at the fine end 
of this scale spectrum (Olsoy et al., 2014). Recent advances in sen-
sor tracking technology (e.g. GPS) allow the recording of movement 
paths of individual animals at a much finer spatiotemporal scale than 
previously possible, thus providing a new and valuable opportunity 
to investigate the direct interaction of a single animal with its sur-
roundings. However, it is a challenge to measure habitat visibility 
at a fine spatial scale linked to the high- resolution locational data 
of animals across a landscape, particularly in highly heterogeneous 
landscapes (e.g. forests) (Zong et al., 2021a). As a result, our ability to 
model the influence of fine- scale visibility on animal behaviour has 
been impeded or limited.

Traditional field methods of measuring fine- scale visibility in ter-
restrial ecosystems such as forests and grasslands are to observe or 
photograph obscurity boards or poles and determine the percent-
age covered by environmental features, often vegetation (Higgins 
et al., 1996). However, a key limitation of these approaches is that 
visibility will be obtained only from a predetermined viewpoint and 

in limited directions. Moreover, the sampling efficiency of these con-
ventional approaches is low and measurements are hard to replicate. 
The 360° range of visibility from an observation point is commonly 
referred to as a viewshed (Tandy, 1967). In the fields of landscape 
planning and archaeology, the aggregate visibility from multiple ob-
servation points has been conceptualized by the term cumulative 
viewsheds. This concept has been implemented in most geographic 
information system (GIS) software to calculate viewsheds across 
digital elevation surfaces. However, digital elevation surfaces are 
not suitable for assessing fine- scale visibility in forests, as they do 
not contain understorey information. As such, viewshed analysis 
functions in GIS have not been widely adopted in animal ecology 
research (Aben et al., 2018).

Light detection and ranging (LiDAR) technology provides a good 
opportunity to develop a more effective and efficient approach to 
estimating visibility in forests due to its capability of providing hor-
izontal and vertical information for different canopy layers (Ciuti 
et al., 2018). Terrestrial laser scanning (TLS, also known as terres-
trial LiDAR) can generate highly dense laser returns, especially in 
the lower vegetation layers (e.g. canopy base, understorey and ter-
rain). Hence, it can capture the three- dimensional (3D) structure at 
a fine spatial resolution (<2 cm), allowing the 3D structure of forest 
stands to be represented with substantial details. Recent studies 
have proven the success of the TLS technique in rapidly estimating 
fine- scale visibility in forests (Lecigne et al., 2020; Olsoy et al., 2014; 
Zong et al., 2021b). 3D viewsheds and cumulative viewsheds can 
be generated using TLS- based methods (Lecigne et al., 2020; Zong 
et al., 2021a). Extended from a gridded digital surface in GIS to a 
3D space, a 3D viewshed is represented by all voxels of a voxelized 
space that are connected by the lines of sight to the viewpoint. A 
3D cumulative viewshed is created by repeatedly calculating the 3D 
viewsheds from multiple viewpoints, then summing them into a sin-
gle 3D viewshed. This determines how well a voxel can be seen from 
many viewpoints. Furthermore, TLS- based methods can improve 
sampling efficiency compared to traditional field methods that rely 
on obscurity boards. However, the estimates of fine- scale visibility 
derived from obscurity board- based and TLS- based methods are 
both ground based at a plot level, and therefore are site specific with 
limited spatial coverage. It is impractical to replicate these measure-
ments from many locations across a landscape to obtain a continu-
ous visibility map at a landscape scale.

Due to the absence of methods to continuously characterize the 
habitat visibility of animals, surrogate metrics that can index visibil-
ity to some extent have often been used in studies analysing the in-
fluence of visibility on animal behaviour. These metrics include land 
cover type, topography, vegetation cover and vegetation density 
(Acebes et al., 2013; Filla et al., 2017; Johnson et al., 2000; Salvatori 
et al., 2022). However, these are not physical measurements of real 

K E Y W O R D S
fine- scale visibility, habitat selection, integrated step selection analysis, movement rate, red 
deer, viewshed
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visibility, even though they are related to visibility. Moreover, proxies 
for visibility cannot account for the effects of the height of animal 
eyes. Airborne laser scanning (ALS, also known as airborne LiDAR) 
can provide information about 3D vegetation structure and the 
underlying terrain surface at a landscape scale and has been used 
to map visibility for analyses of animal habitat selection in recent 
studies (Aben et al., 2018; Davies et al., 2021; Davies, Marneweck, 
et al., 2016; Davies, Tambling, et al., 2016; Loarie et al., 2013). 
However, in these studies, airborne LiDAR was used to model the 
upper (forest) canopy surfaces from which viewsheds were calcu-
lated at limited sites of interest, ignoring visual obstruction of the 
understorey vegetation. Rather than directly calculating viewsheds 
from ALS data, Zong et al. (2021a) extracted predictive metrics from 
ALS data over a temperate forest and upscaled the 3D cumulative 
viewshed derived from TLS at the ground level to the landscape 
level. Thus, the integration of TLS and ALS has proven to be a viable 
method to produce a high- resolution wall- to- wall map of habitat vis-
ibility in forested landscapes.

Compared to traditional measurements (e.g. scores derived from 
obscurity boards), 3D cumulative viewsheds can provide represen-
tations of an animal's potential visual space with much higher reso-
lution. Moreover, traditional visibility measurements are viewpoint 
specific and thus change when the viewpoint is moved. By contrast, 
a 3D cumulative viewshed is derived from the integration of 3D 
viewsheds from multiple viewpoints. It can therefore account for the 
movement of viewpoints and comprehensively quantify the relative 
visibility of an area of interest in a landscape. Although some previ-
ous studies have highlighted the potential of the viewshed approach 
for animal ecology (Lecigne et al., 2020, Olsoy et al., 2014, Zong 
et al., 2021a) and have called for the study of the ‘viewshed ecology’ 
(Aben et al., 2018), 3D cumulative viewshed is a new concept that 
has not yet been applied in animal ecology research. The 3D cumu-
lative viewshed, integrated with animal position data, provides an 
opportunity to characterize the influence of visual information on 
animal behaviour and fitness. It can promote the use of the concept 
of viewshed (visibility) in animal ecology research.

As a forest- dwelling herbivore, and also one of the most widely 
distributed deer in the world, the red deer Cervus elaphus is known 
to be susceptible to predation and thus sensitive to habitat visibil-
ity. First, visibility can affect habitat use patterns in red deer. For 
example, red deer more often feed in open habitats (e.g. meadows) 
because reduced canopy shading means that forage is more abun-
dant and of better quality in open habitats than in covered habitats 
(mainly forests; Godvik et al., 2009). On the other hand, red deer 
more often rest in forests to avoid predation risk from rifle hunters 
who rely on long lines of sight in open habitats (Lone et al., 2015). 
Second, there is evidence that red deer adapt their movement be-
haviour to habitat visibility. A notable example is that when hunted, 
red deer were observed to flee longer distances and move faster 
in more open areas where their visibility to predators/hunters is 
greater (Jarnemo & Wikenros, 2014). One of the impediments to 
examining the relationships between environmental visibility and 
the use of space by red deer in previous studies was the binary 

categorization of visibility as ‘open’ or ‘closed’. For example, the lev-
els of habitat visibility were frequently represented by land cover 
type. The visibility levels of various forested habitats were usually 
assumed to be lower and thus categorized as closed, whereas the 
visibility levels of meadow habitats were assumed to be higher and 
thus categorized as open (Godvik et al., 2009). However, visibility is 
not just open (high) or closed (low), it occurs at a range of values in 
a landscape. Currently, how red deer continuously select areas of 
varying visibility and adapt their movement behaviour accordingly in 
a landscape remains largely unexplored.

Here, we demonstrate the application of the concept of 3D cu-
mulative viewshed in the study of animal spatial behaviour at the 
landscape level. Specifically, we employed the newly described 
LiDAR- based fine- scale visibility approach to investigate how vis-
ibility in forests influences the summer habitat selection and the 
movement of 20 GPS- collared female red deer in a temperate forest 
in Germany. In this study, we have two specific aims and associated 
hypotheses: (1) To determine the preference of red deer for fine- 
scale visibility and test whether the preference differs depending on 
the time of day considering the daily activity pattern of red deer. We 
hypothesized that red deer would prefer intermediate habitat visibil-
ity and their preferred visibility during the day would be lower than 
that of night and twilight; (2) To examine the relationship between 
visibility and the movement rate of red deer. We hypothesized that 
red deer will move faster in high- visibility areas throughout the day 
and night.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The study site, Bavarian Forest National Park (BFNP, 49°3′19″N, 
13°12′9″E), is located in Southeast Germany (Figure 1). This moun-
tainous park extends over an area of approximately 240 km2, with 
elevations ranging from 590 to 1553 m above sea level. The mean 
annual precipitation of BFNP varies from 965 to 1860 mm and 
the mean annual air temperature ranges from 3.9 to 8.6°C (Röder 
et al., 2010). Snow cover can last up to 7 months per year on the 
mountain tops (October to May) and 5 months per year in the val-
leys (November– April). Ninety- eight percent of the area in BFNP 
is covered by a mixed temperate forest, and the main vegetation 
types found in the park include deciduous forest, coniferous forest, 
mixed forest, meadows and lying or standing deadwood. The domi-
nant tree species are Norway spruce Picea abies (67%) and European 
beech Fagus sylvatica (24.5%), with other tree species (e.g. Abies alba, 
Acer pseudoplatanus, Fraxinus excelsior and Sorbus aucuparia) making 
up the remaining 10% of forest (Cailleret et al., 2014). In the last 
decades, the infestation of Norway spruce with spruce bark beetles 
Ips typographus and wind throws have resulted in large swathes of 
standing or lying deadwood (Fahse & Heurich, 2011).

Red deer use the whole area of the national park in summer. The 
majority of red deer spend the winter in four enclosures established 
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within the park where they are fed and where their numbers are 
controlled (Möst et al., 2015). Hunting of red deer is prohibited 
within the non- hunting area of the national park, while outside the 
non- hunting area, red deer are occasionally hunted to protect the 
forest enterprises and agricultural areas at lower altitudes from 
damage (Möst et al., 2015). The Eurasian lynx Lynx lynx is the only 
large carnivore species inhabiting the study area permanently, and 
red deer, mainly young and female individuals, make up about 17% 
of lynx kills (Belotti et al., 2015).

2.2  |  GPS telemetry data

A total of 20 reproductively mature female red deer were selected 
for the study. The hinds had an average weight of 67.1 (±11.3) kg. 
These red deer were caught and fitted with Vertex Plus GPS collars 
from Vectronic Aerospace GmbH in the winter of 2017/2018 using 
two different approaches. In the first approach, red deer were at-
tracted to an enclosure by food (apple pomace, sugar beets). Within 
the enclosure, the deer were captured, and GPS collars were at-
tached without chemical immobilization. A second approach was to 
tranquillise deer using an immobilization gun, with the Hellabrunner 
mixture (Ketamin and Xylazine) on sites where they were attracted 
by food. All of the experimental procedures involving animals 
were approved by the Ethics Committee of the Government of 
Upper Bavaria (permit number: 55.2Vet- 2532.Vet_02– 17- 190 and 
55.2- 1- 54- 2531- 82- 10).

The GPS collars used were equipped with 6- bit GSM and VHF 
radio communication capacity as well as GPS sensors (Vectronic 
Aerospace, Berlin). Collars were programmed to record the positions 
of red deer with 1 h time intervals between successive fixes. We 
removed recordings if positional dilution of precision exceeded 10 
(D'eon & Delparte, 2005) or velocities between successive locations 
exceeded 6.5 m/s. For this study, we recorded locations from the be-
ginning of June to the end of September in 2018 and 2019. However, 
there were six deer whose movement data in the summer of 2019 
were missing due to collar malfunction. This resulted in an average 
of 2554 (±448) locations for six individuals and an average of 5157 
(±190) locations for 14 individuals for the analysis.

2.3  |  LiDAR data

TLS data were gathered over the summer (July or August) of 2016, 
2017 and 2019, respectively, using a RIEGL VZ- 400 3D terrestrial 
scanner (Riegl LMS GmbH, Table 1). In total, we scanned 93 forest 
plots, representing the main forest types and developmental stages 
of stands within the park, each with a radius of 20 to 30 m. The cen-
tral location of each plot was measured using a Leica GPS 1200 with 
a spatial accuracy of approximately 5– 10 cm. To reduce the occlu-
sion effect, we collected four scans for each plot, with one scan in 
the centre of the plot, and three on the edge of the plot. We placed 
12– 14 artificial retro- reflective targets in the plot to use as control 
points for georeferencing and co- registration of multiple scans.

F I G U R E  1  The location of the study 
site, the Bavarian Forest National Park, 
Germany.
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The ALS data were acquired in June 2017 using a Riegl LMSQ 
680i instrument, which was carried by helicopter (Table 1). It covers 
the entire national park with an average point density of 30 points/
m2. The vertical and horizontal accuracy of the ALS data, verified by 
geometric control using polygons of flat buildings, was 6 and 5 cm, 

respectively. As a result, the TLS data can be spatially co- registered 
to ALS data with the vertical and planimetric displacement between 
the two less than 15 and 16 cm, respectively.

2.4  |  Mapping habitat visibility with LiDAR

As shown by the workflow in Figure 2, we combined TLS and ALS 
to contiguously measure fine- scale habitat visibility in the study 
area for red deer using the methods proposed by Zong et al. (2021b, 
2021a). First, habitat visibility was estimated from TLS data at the 
plot level with four major steps. Then, five metrics were calculated 
from ALS data. Finally, the TLS- based fine- scale visibility was re-
gressed on ALS metrics using the Random Forest algorithm to gener-
ate a contiguous visibility map. The code and sample dataset used to 
generate the fine- scale LiDAR- based visibility were made available 
in the Dryad repository: DOI https://doi.org/10.5061/dryad.tx95x 
6b21.

2.4.1  |  Estimating visibility from TLS

Visibility at the plot level was estimated by 3D viewshed analysis. 
Viewshed analysis is normally conducted by testing if the compo-
nents block the line of sight between an observer and a target in 

TA B L E  1  Specifications for terrestrial LiDAR (TLS) and airborne 
LiDAR (ALS) data

Specification Value

TLS Sensor RIEGL VZ- 400

Wavelength 1550 nm

Beam divergence 0.35 mrad

Scan angle Horizontal: 360°
Vertical:100° (+60°/−40°)

Measurement rate 122,000 measurements/second

Range accuracy 5 mm

Range 1.5– 600 m

ALS Sensor Riegl LMSQ 680i

Wavelength 1550 nm

Beam divergence 0.5 mrad

Flying altitude 550 m

Side lap of parallel 
flight strips

60%

F I G U R E  2  Workflow to continuously map fine- scale habitat visibility in forested landscapes by combining terrestrial LiDAR (TLS) and 
airborne LiDAR (ALS).
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the modelled environmental scene (Burrough & McDonnell, 1998). 
Rather than testing the obstruction of lines of sight typical across 
surface models in GIS, we operated lines- of- sight analysis in 3D 
voxel- based models (Figure 2) reconstructed from the TLS point 
cloud using the occupancy grid algorithm.

First, the space of a TLS plot was divided into a regular grid of 
3D voxels, and every voxel was determined to be either ‘empty’ or 
‘occupied’ by tracing each TLS laser beam through the pre- defined 
voxel grid. The more laser beams that ‘hit’ a voxel, the higher the 
probability of its being occupied, whereas the more laser beams 
that ‘pass through’ a voxel, the higher the likelihood of its being 
empty. We set the side length of the voxel as 10 cm, as recom-
mended by Zong et al. (2021b), and the plot size was 35 × 35 m, 
which has been proven optimal for temperate forests by Zong 
et al. (2021a). The habitat visibility from the ground to 2 m high was 
calculated as this height range enables adult red deer to examine 
their environment for potential predators while feeding or being 
vigilant (head up). Therefore, we extracted a subset of point clouds 
from 0 to 2 m above the ground within the 35 × 35 m square plot 
for the reconstruction of the scene. In addition, to prevent lines 
of sight from penetrating the ground in the following lines- of- sight 
tracing procedure, we generated a digital terrain model (DTM) from 
TLS points classified as the ground for each plot and combined it 
with the obtained occupancy grid model.

Second, we created a single 3D viewshed from a specified 
viewpoint for each plot, by tracing the lines of sight between every 
voxel in the occupancy grid model and the viewpoint. We assumed 
that a line of sight will pass through empty voxels until it is ob-
structed by an occupied voxel, a boundary of the occupancy grid 
model, or the DTM. After tracing all lines of sight, each voxel in 
the occupancy grid model will be classified as either ‘visible’ or ‘in-
visible’ depending on whether it is hit by a line of sight. All visible 
voxels form the single 3D viewshed of a plot from the designated 
viewpoint (Figure 2).

The single 3D viewshed for a plot is viewpoint specific and 
thus changes as one moves around the plot. To account for this 
movement, we repeatedly calculated the 3D viewsheds from 225 
viewpoints and summed them into a 3D cumulative viewshed for 
each plot (Figure 2), which indicates the number of viewpoints from 
which every voxel is visible, that is, its cumulative visibility. The 
225 (25 × 25) viewpoints were distributed in a grid pattern inside 
the plot, equally spaced northwards and eastwards at a specified 
eye height of red deer. The number of viewpoints was a trade- off 
between accuracy and computational cost (Zong et al., 2021a). To 
account for the difference in the eye height of standing or bedded 
red deer, we set the height of viewpoints as 140 cm and 30 cm, re-
spectively. Then, the two cumulative viewsheds for different posi-
tions of red deer were averaged into a final cumulative viewshed 
for each plot.

Finally, we normalized the cumulative visibility of each voxel 
based on the total number of viewpoints, that is, the proportion 
of visible viewpoints in 225 viewpoints. Then we calculated the 

average normalized cumulative visibility of all voxels in a plot scene 
and this defined the fine- scale visibility of the whole plot.

2.4.2  |  Up- scaling TLS- based visibility using ALS

As Zong et al. (2021a) have demonstrated, five ALS- derived metrics 
provided the most accurate predictions of fine- scale visibility at a 
35 m resolution in temperate forests using the Random Forest al-
gorithm. These metrics were as follows: 10th height percentiles of 
canopy returns, 70th height percentiles of understory returns, nor-
malized relative point density (NRD), percentage of NRD and coef-
ficient of variation of 99th height percentiles of understory returns. 
We extracted the five ALS metrics with a 35 m resolution and put 
them into the calibrated optimal Random Forest model to continu-
ously map fine- scale visibility over the whole park.

2.5  |  Analysis of red deer habitat selection and 
movement in relation to visibility

2.5.1  |  Integrated step selection function

We analysed red deer habitat selection and movement behaviour 
using an integrated step selection function (iSSF), which compared 
used steps (two consecutive GPS locations) with a set of available 
steps, starting from an observed GPS location and ending at a ran-
dom coordinate (Avgar et al., 2016; Fortin et al., 2005). We paired 
10 available steps to each used step (i.e. 11 steps per stratum) using 
functions within the amt package in R statistical software (Signer 
et al., 2019). For our iSSF, we generated available steps using a pa-
rameterized gamma distribution of the observed step lengths and the 
von Mises distribution to the turn angles of the deer in our dataset 
(Avgar et al., 2016; Forester et al., 2009). After generating random 
steps, we removed the invalid used- available strata where either 
the used step or more than four random steps occurred in areas for 
which covariate data was unavailable (i.e. outside the study area). 
The resulting dataset comprised 401,569 steps from 20 individuals.

2.5.2  |  Model covariates

In addition to fine- scale visibility, we included environmental covari-
ates that are expected to influence habitat selection and movement 
of red deer as well as three covariates that describe movement at-
tributes of red deer (Table 2).

Topography and land use can influence habitat selection and 
movement by red deer (Frair et al., 2005; Godvik et al., 2009). We 
generated the DTM of the study area with a resolution of 10 m based 
on the classified ground ALS points. To measure terrain ruggedness, 
we calculated the terrain ruggedness index (Riley et al., 1999) from 
the ALS- derived DTM. We divided the land use map supplied by 
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the park into six habitat types: coniferous forest, deciduous forest, 
mixed forest, deadwood, meadow and bare ground, by merging hab-
itat classes from the original maps (see Silveyra Gonzalez et al., 2018 
for a description of the classification of the habitat types). Bare 
ground class includes roads, railways and residential areas. A study 
regarding the distribution of forage mass for ungulates in the same 
park found that herbaceous forage was related to canopy openness 
(Ewald, Braun, et al., 2014). Therefore, we calculated canopy cover 
from ALS data with a resolution of 35 m as the proportion of all re-
turns with height >2.0 m above ground.

We included step length, the natural logarithm of step length 
and turning angle to reduce bias in selection estimates (Duchesne 
et al., 2015; Forester et al., 2009) and to explicitly model the inter-
action between step length and habitat visibility (Avgar et al., 2016). 
The time of day was included as red deer were found to move and 
choose their habitat differently during different periods of the day 
(Ensing et al., 2014). A time- of- day category roughly corresponding to 
daylight, crepuscular light and darkness was calculated to capture the 
temporal behavioural differences. Steps occurring between 1 h before 
the sunset and the civil dusk or between the civil dawn and 1 h after 
sunrise were classified as ‘twilight’ (crepuscular). Steps classified as 
‘day’ occurred between 1 h after sunrise and 1 h before sunset, and 
steps taken between the civil dusk and civil dawn were assigned to the 
‘night’ class.

2.6  |  Statistical analysis

We constructed generalized linear mixed models (GLMMs) using the 
glmmtmB package (Brooks et al., 2017) to fit the iSSF containing our 
variables of interest and interactions between some variables. The 
full model is listed below:

where ‘:’ denotes interactions between two variables, Visibility_end 
is the visibility value extracted at the end of a step and Visibility_start 
is the visibility value extracted at the start of a step. We included a 
quadratic term for visibility to allow for non- linearity and threshold 
effects. To evaluate how well a quadratic term fitted the nonlinear 
relationship (between visibility and red deer locations), we produced 
used- habitat calibration plots introduced by Fieberg et al. (2018), 
which provide a way to validate models by comparing the distributions 
of the explanatory variables at the observed and predicted location. 
Since we expect that the step length and the selection of visibility 
and land use of red deer will differ among the periods of the day, we 
included the interactions between Time_day and these variables. In 
addition, to test the response regarding the step length of red deer 
when exposed to certain habitat visibility, we included the interaction 
of step length and the visibility at the start of a step. We included 
random intercepts and random slopes for all main effects. We fixed 
the random intercept variance to 106, following the framework pro-
posed by Muff et al. (2020) to avoid shrinkage and subsequent bias. 
Random slopes avoid bias of model coefficients and standard errors 
arising from the autocorrelation of GPS observations within each an-
imal and allow the estimation of selection to vary among different 
individuals. In addition, to avoid multi- collinearity (O'Brien, 2007) in 
our model, we calculated generalized variance inflation factors be-
tween variables using the ‘vif’ function in the car package of R (Fox 
& Weisberg, 2018, see Table S1). We then conducted k- fold (k = 5) 
cross- validation on our model and calculated Spearman rank cor-
relation (mean of 10 replications) to evaluate model fit based on the 
methods of Fortin et al. (2009).

Effect sizes of habitat features are reported as relative selection 
strength (RSS) for one location in the landscape relative to another 
reference location, given the difference in a variable of interest be-
tween the two locations while holding the values of all other vari-
ables in the model constant (Avgar et al., 2017). To understand how 
strongly visibility may influence deer movement rates regardless of 
habitat selection, the expected step length was calculated by using 
the iSSF coefficients to adjust the initially observed von Mises and 
gamma distributions (Avgar et al., 2016; Fieberg et al., 2021).

Use ∼ Visibility_end2+Time_day:

(Visibility_end+Land_use+Step_length+ ln(Step_length))

+Canopy_cover+Elevation+Ruggedness+cos(Turn_angle)

+Visibility_start: (Step_length+ ln(Step_length)).

TA B L E  2  Variables incorporated in the integrated step selection function of red deer habitat selection and movement

Name Covariates Description

Visibility Fine- scale habitat visibility 3D cumulative visibility derived from LiDAR data

Canopy_cover Canopy cover The proportion of all returns with height >2.0 m above- ground within a 
35 × 35 m plot

Land_use Land use The land use of the study area was classified into coniferous forest, 
deciduous forest, mixed forest, deadwood, meadow and bare ground

Elevation Terrain elevation DTM generated with a resolution of 10 m from ALS data

Ruggedness Terrain ruggedness Terrain ruggedness index calculated from DTM

Time_day Time of day Steps were classified as ‘day’, ‘night’ and ‘twilight’

Step_length Step length The distance between two consecutive GPS fixes

ln(Step_length) Natural logarithm of step length The natural logarithm of step length

cos(Turn_angle) Cosine of turn angle The angle between two consecutive steps

 13652656, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13847 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8  |   Journal of Animal Ecology ZONG et al.

3  |  RESULTS

3.1  |  LiDAR- derived fine- scale habitat visibility at 
the landscape level

Figure 3 illustrates the contiguous map of the fine- scale visibility 
of the whole study area with a spatial resolution of 35 m, with the 
visibility of bare ground being the highest (Figure 4). The mean and 
minimum visibility levels of meadows are both significantly higher 
compared to the other four forested habitats. The mean visibility of 

coniferous, deciduous, and mixed forests is at a similar level and is 
relatively higher than that of deadwood.

3.2  |  Red deer movement and habitat selection

Parameter coefficients and standard errors for our model are shown 
in Table 3. K- fold cross- validation of our model demonstrated that 
our model was more significant than random at predicting where red 
deer moved— the mean Spearman rank correlation coefficient was 
0.96 for observed steps.

3.2.1  |  Red deer habitat selection in relation to 
habitat visibility

The RSS rose as habitat visibility approached a certain level but de-
clined with further increases during all three time periods of the day, 
showing a hump- shaped selection pattern of habitat visibility by red 
deer (Figure 5). The most preferred visibility level was 0.28 for day-
time, whereas the most preferred visibility level was approximately 
0.55 for both night and twilight. Selection for visibility was not sig-
nificantly different between night and twilight as the two standard 
deviation intervals of RSS always overlap with each other. In addi-
tion, the used- habitat calibration plot (Figure S1) indicates that a 
quadratic term fitted the nonlinear relationship between visibility 
and the used locations of red deer well.

3.2.2  |  Red deer movement in relation to 
habitat visibility

As the visibility at the start point of a step increased from 0.3 to 
0.7, the expected 1- h step length of red deer increased more or less 
exponentially from 53 to 121 m, from 66 to 158 m, and from 116 
to 374 m, during the day, night and twilight, respectively (Figure 6). 
In addition, the expected 1- h step length of deer was significantly 
higher during twilight than that during daytime and night. There was 
no significant difference in the expected 1- h step length between 
night and twilight.

4  |  DISCUSSION

In this paper, we employed a newly described method that com-
bines terrestrial and airborne LiDAR to continuously measure the 
fine- scale habitat visibility at the landscape level in forest ecosys-
tems. We then applied the LiDAR- derived visibility to investigate 
how a forest dweller (i.e. red deer) selects visibility and adjusts its 
movement accordingly on a home- range scale. We found that red 
deer selected intermediate habitat visibility throughout the day and 
night. Their preferred level of visibility during daylight was lower 
than that during night and twilight, whereas the preference was not 

F I G U R E  3  Fine- scale visibility map of the Bavarian Forest 
National Park generated using terrestrial LiDAR (TLS) and airborne 
LiDAR (ALS) data.

F I G U R E  4  Box and whiskers representing fine- scale visibility for 
various land use.
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significantly different between night and twilight. In addition, red 
deer moved faster in areas with high visibility at all times of the day. 
Furthermore, red deer most rapidly transited between locations in 
the twilight.

The hump- shaped selection pattern of habitat visibility by red 
deer might arise from multiple factors. First, the trade- off be-
tween food availability and predation risk (Gower et al., 2008; Lone 
et al., 2015; Ripple & Beschta, 2003) limits the time spent by red 
deer in both open and closed habitats. In addition, to reduce being 
exposed to more intense human disturbance during daylight com-
pared to darkness, red deer have been observed to use more open 
forage- rich habitats during darkness, and covered habitats with less 
forage during daylight (Godvik et al., 2009; Green & Bear, 1990). 
The red deer population in our study area has shown the same hab-
itat selection pattern where meadows were preferred compared to 

various types of forested habitats (i.e. coniferous, deciduous, and 
mixed forest and deadwood) during both twilight and night, whereas 
forests were more used than meadows during daylight (Table 3 and 
Figure S2a). Consequently, the most preferred level of visibility by 
deer during daylight was substantially lower than that during night 
and twilight, as the visibility of meadows is higher than in forested 
habitats (Figure 4). It is worth noting that the 1- h GPS fix frequency 
in our study is relatively coarse compared to the 4- h duration of the 
twilight periods (i.e. 2 h during dawn and dusk, respectively). Thus, 
some behaviour of the red deer at finer temporal scales could have 
been hidden. This might be used to partially explain why we found 
no significant difference in the selection for habitat visibility by red 
deer between night and twilight in our analysis. Nonetheless, the 
spatial resolution of our visibility map is high, which can be used to 
support analyses with much finer temporal resolution GPS tracking 

Covariates Coefficient SE p value Significance

Visibility_end2 −11.41 2.82 0.000 ***

Visibility_end:Day 6.39 2.57 0.031 *

Visibility_end:Night 12.59 3.02 0.000 ***

Visibility_end:Twilight 12.55 3.03 0.000 ***

Bare Ground:Day −1.79 0.76 0.019 *

Bare Ground:Night −0.54 0.26 0.039 *

Bare Ground:Twilight −0.32 0.43 0.454

Coniferous:Day 0.18 0.24 0.447

Coniferous:Night −0.83 0.16 0.000 ***

Coniferous:Twilight −0.56 0.27 0.037 *

Deadwood:Day 0.41 0.22 0.048 *

Deadwood:Night −0.26 0.12 0.030 *

Deadwood:Twilight −0.21 0.18 0.245

Deciduous:Day 0.52 0.21 0.014 *

Deciduous:Night −0.70 0.15 0.000 ***

Deciduous:Twilight −0.59 0.20 0.003 **

Mixed:Day 0.34 0.24 0.168

Mixed:Night −0.85 0.11 0.000 ***

Mixed:Twilight −0.58 0.23 0.014 *

Canopy_cover −0.86 0.11 0.000 ***

Elevation −0.00046 0.0005 0.363

Ruggedness −0.05 0.008 0.000 ***

Step_length:Day −0.0067 0.00073 0.000 ***

Step_length:Night −0.0059 0.00069 0.000 ***

Step_length:Twilight −0.0036 0.00060 0.000 ***

ln(Step_length):Day −0.15 0.038 0.000 ***

ln(Step_length):Night −0.076 0.049 0.126

ln(Step_length):Twilight 0.11 0.052 0.034 *

Step_length:Visibility_start 0.01 0.0011 0.000 ***

ln(Step_length):Visibility_start 0.40 0.082 0.000 ***

cos(Turn_angle) −0.0091 0.012 0.441

*, ** and *** indicate statistical significance at p < 0.05, p < 0.01 and p < 0.001, respectively

TA B L E  3  Coefficient estimates, 
standard errors (SE), and p values for the 
integrated step selection function of red 
deer habitat selection and movement.
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data. Second, the interaction between habitat visibility and hunting 
modes of predators is presumably another driving factor. A high de-
gree of visibility might increase the detection of predators; however, 
it also implies low concealment cover, which tends to increase prey 
detectability (Camp et al., 2013; Olsoy et al., 2014). In open habi-
tats, predation risk from humans counting on long lines of sight is 
high (Farmer et al., 2006; Norum et al., 2015), whereas, in covered 
habitats with low visibility, it is more difficult for red deer to detect 
an approaching lynx, a stalking predator in the study area (Ewald, 
Dupke, et al., 2014; Filla et al., 2017). Therefore, to prevent preda-
tion from hunters and lynx in areas of higher risk, red deer avoid 
extremely high and low habitat visibility. Furthermore, very low 
visibility often implies the presence of more objects on the ground, 
which potentially impose more escape impediments to red deer, and 
thus the habitats with low visibility were avoided. For example, it has 
been proven that tree logs or rocks can reduce visibility and hinder 
escape movement for ungulates (Halofsky & Ripple, 2008; Kuijper 
et al., 2015). Finally, as shown in Figure 4, the areas with intense 
human activities such as roads and residential areas usually have 
high visibility (i.e. low concealment).

The avoidance of areas with extremely low and high visibility 
as shown in the used- habitat calibration (Figure S1) suggests that a 
quadratic effect of visibility might be needed. Given the quadratic 
term for visibility included in the iSSF model, the distribution of vis-
ibility values at the observed locations largely fell within the 95% 
simulation envelope, indicating that this model was well- calibrated. 
Nonetheless, it is noteworthy that compared to nonparametric types 
of regression such as generalized additive models and classification 
trees, GLMM approach is bound to clear but rather limited paramet-
ric shapes. Therefore, although a quadratic term was enough to fit 
the nonlinear relationship between visibility and space use of red 
deer in our study well, using polynomials of higher orders or even 
fitting a more flexible model with a nonparametric approach is pos-
sible if the species of interest behave in a more complex manner in 
response to habitat visibility.

The preference for intermediate fine- scale visibility implies that 
red deer make a trade- off between visibility and concealment, which 
are the opposing functional properties of the habitat and influence 
predation risk. Although visibility inversely relates to concealment, 
the correlation is not necessarily one to one, which allows the prey 
to balance between the two to gain more of one while giving up 
relatively less of the other (Camp et al., 2013; Olsoy et al., 2014). 
Similar to red deer, pygmy rabbits Brachylagus idahoensis have been 
observed to make a trade- off between visibility and concealment in 
a shrub- steppe habitat at small scales (Camp et al., 2013). It has been 
well documented that foraging animals seek concealment cover 
when exposed to high predation risk (Chassagneux et al., 2020; 
Mysterud & Østbye, 1999; Stankowich & Blumstein, 2005), but 
open lines of sight can also reduce perceptions of predation risk 
by herbivores (Altendorf et al., 2001; Embar et al., 2011; Ripple & 
Beschta, 2003). Most likely, the trade- off between visibility and 
concealment might be practiced by other forest- dwelling foragers 
when making decisions on location choice (Aben et al., 2018; Lima 

F I G U R E  5  The natural logarithm of relative selection strength 
(Avgar et al., 2017) of fine- scale visibility by red deer during the day 
(blue), night (black) and twilight (red), with the reference visibility 
value as 0.5. The plotted lines represent the relative probability of 
selection, and the shaded areas are standard errors. The dotted 
horizontal line denotes no response, whereas values above that line 
indicate selection for and values below that line indicate avoidance 
against habitat.

F I G U R E  6  Expected movement rate changes with fine- scale 
habitat visibility at the start point of a step by red deer during 
the day (blue), night (black) and twilight (red). The plotted lines 
represent the expected 1- h step length, and the shaded areas are 
standard errors.
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& Dill, 1990), with the balance between the two likely to be spe-
cies specific and even context dependent for specific species. The 
relative importance of concealment versus open lines of sight can 
depend on the characteristics of the animal, its activities, potential 
predators, habitat types and environmental factors, such as weather 
and light conditions (Arenz & Leger, 1997; Lima & Dill, 1990). For 
example, it might be expected that a forager with weak locomotion 
ability may trade more visibility for concealment as it cannot flee to 
refuge fast even though high visibility allows it to detect approach-
ing predators early. Due to the absence of methods to efficiently 
quantify fine- scale habitat visibility in a heterogeneous landscape, 
especially in a continuous way, the investigation of the trade- off 
between visibility and concealment for herbivore animals remains 
extremely limited. To our knowledge, this is the first time that the 
preference for intermediate fine- scale visibility by a forest- dwelling 
herbivore at a landscape scale was revealed, which is feasible thanks 
to the LiDAR technique. As stated in the study of Camp et al. (2013), 
because visibility for pygmy rabbits was measured using obscurity 
boards over a limited spatial extent relative to the high heteroge-
neity of the habitat, the significance of the revealed relationship 
between visibility and concealment was undermined. Here, we high-
light the opportunity to use the continuous map of fine- scale visi-
bility derived from LiDAR in conjunction with animal tracking data 
to refine our understanding of the functional relationships between 
predation risk and habitat visibility and concealment and provide in-
sight into how habitat structure mechanistically relates to predation 
risk in highly heterogeneous landscapes.

Red deer moved faster in areas with high visibility at all times 
of the day. We interpret the adaption of red deer movement rate 
to habitat visibility partially to reduce human disturbance. Red deer 
have been observed to be more likely to relocate in open areas with 
higher human and predator risks (Frair et al., 2005; Lone et al., 2015) 
as well as more intensive human recreational activities (Coppes 
et al., 2017) to reduce the time spent in such places. In addition, red 
deer spend more time resting in forested habitats and more often 
feed, mostly with accompanying forward motion, in open meadow 
habitats. Another reason might be that highly dense vegetation or 
rough terrain in areas with low visibility can slow the movement of 
deer. Furthermore, red deer transited most rapidly between loca-
tions in the twilight. This is consistent with the fact that red deer 
spend more time foraging and moving between resting and feeding 
sites during twilight hours (Green & Bear, 1990).

The preference for low canopy cover by red deer (Table 3 and 
Figure S2b) is probably associated with higher food availability in 
areas with lower canopy cover. Ewald, Braun, et al. (2014) found a 
moderately negative relationship between herbaceous forage for 
ungulates and canopy cover in Bavarian Forest National Park. In ad-
dition, the preference for low canopy cover by red deer observed 
in our study is in line with the previous findings that habitat suit-
ability for red deer consistently improved after forest disturbances 
including bark beetle infestations, windthrows and logging (Oeser 
et al., 2021), which usually cause a substantial decrease in canopy 
cover. The strong selection of rugged terrain by lynx in our study 

area (Filla et al., 2017) may be one reason why red deer avoided high 
terrain ruggedness (Table 3 and Figure S2c). Another possible rea-
son is that the movement of deer is hindered and therefore deer are 
more prone to follow paths in rough terrain, so their escape routines 
are more easily predicted by hunters or predictors (Lone et al., 2014). 
Elevation has been proven to play an important role in seasonal 
migration causing a concentration of deer in the valleys in winter 
mainly because of higher food availability (Mysterud et al., 2017; 
Rivrud et al., 2016). However, our results suggest that elevation had 
no significant effects on the summer habitat selection of red deer 
in our study area. Due to forage abundance for red deer, classified 
as an intermediate feeder, does not vary significantly along an ele-
vation gradient in summer (Ewald, Braun, et al., 2014), the effect of 
elevation partially brought by food availability on summer habitat 
selection of red deer was weakened.

The LiDAR- based approach could provide comparable measure-
ments of visibility (i.e. 3D cumulative viewshed) among studies. It is 
difficult to compare visibility measurements obtained by obscurity 
board- based methods and various surrogate metrics across studies 
conducted in various terrestrial ecosystems (Moll et al., 2017). For 
obscurity board- based methods, various factors, such as board size, 
distance from the board to the observer and observation direction, 
might lead to little cross- study comparability. Furthermore, it is 
impractical to compare different surrogate metrics (e.g. land cover 
type, topography, vegetation cover and vegetation density) and even 
to compare the same metric among different ecosystems. For ex-
ample, although vegetation cover is low in rock outcrop areas with 
‘rough’ local terrain, visibility could be low due to obstruction from 
rocks. By contrast, the LiDAR- based method calculated 3D views-
heds; therefore, the obstruction effects of all objects on the ground 
scanned by LiDAR can be accounted for.

In addition, the continuous map of fine- scale visibility over a 
landscape extent fills in the gaps of resolution where researchers 
can examine how visibility may shape the spatial variation in preda-
tion risk and therefore influence animal habitat selection and move-
ment in terrestrial ecosystems. Furthermore, the visibility measured 
with 3D cumulative viewshed is widely adaptable for various appli-
cations in animal ecological research. First, 3D cumulative viewshed 
can be calculated from the perspective of not only prey species but 
also predators and, therefore, holds potential for studying predation 
behaviour and strategy. In addition, 3D cumulative viewshed can be 
estimated with different viewing heights to represent different head 
positions for various animal activities. As in our study, the eye posi-
tion of red deer when active is higher than when lying down. Thus, 
3D cumulative viewshed allows the study of the influence of visi-
bility on behaviour- specific habitat selection of animals. Moreover, 
scanning angles of animals can be limited within different ranges to 
measure visibility along only horizontal or vertical directions so that 
predation risk from terrestrial or avian predators can be quantified, 
respectively. Therefore, 3D cumulative viewshed can also serve as 
an efficient tool to investigate the interactions between predators 
with different hunting domains and the vegetation structure on per-
ceived predation risk by prey species. Here, we advocate adopting 
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3D cumulative viewshed as a measurement of visibility for animal 
ecological research.
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