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Abstract

Background

Active ageing is described as the process of optimizing health, empowerment, and security

to enhance the quality of life in the rapidly growing population of older adults. Meanwhile,

multimorbidity and neurological disorders, such as Parkinson’s disease (PD), lead to global

public health and resource limitations. We introduce a novel user-centered paradigm of age-

ing based on wearable-driven artificial intelligence (AI) that may harness the autonomy and

independence that accompany functional limitation or disability, and possibly elevate life

expectancy in older adults and people with PD.

Methods

ActiveAgeing is a 4-year, multicentre, mixed method, cyclic study that combines digital phe-

notyping via commercial devices (Empatica E4, Fitbit Sense, and Oura Ring) with traditional

evaluation (clinical assessment scales, in-depth interviews, and clinical consultations) and

includes four types of participants: (1) people with PD and (2) their informal caregiver; (3)

healthy older adults from the Helgetun living environment in Norway, and (4) people on the

Helgetun waiting list. For the first study, each group will be represented by N = 15 partici-

pants to test the data acquisition and to determine the sample size for the second study. To

suggest lifestyle changes, modules for human expert-based advice, machine-generated

advice, and self-generated advice from accessible data visualization will be designed.

Quantitative analysis of physiological data will rely on digital signal processing (DSP) and AI

techniques. The clinical assessment scales are the Unified Parkinson’s Disease Rating

Scale (UPDRS), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale
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(GDS), Geriatric Anxiety Inventory (GAI), Apathy Evaluation Scale (AES), and the REM

Sleep Behaviour Disorder Screening Questionnaire (RBDSQ). A qualitative inquiry will be

carried out with individual and focus group interviews and analysed using a hermeneutic

approach including narrative and thematic analysis techniques.

Discussion

We hypothesise that digital phenotyping is feasible to explore the ageing process from clini-

cal and lifestyle perspectives including older adults and people with PD. Data is used for clin-

ical decision-making by symptom tracking, predicting symptom evolution, and discovering

new outcome measures for clinical trials.

Background

The term “active ageing” was coined by the World Health Organization (WHO) in the late

1990s and was defined formally in its policy framework of 2012 [1] to describe “the process of

optimizing opportunities from health, participation and security in order to enhance quality of

life as people age”. Autonomy, quality of life, and longer life expectancy were identified as the

key factors that influence active ageing [2]. An increasing caregiving burden shows the need

for a new paradigm of ageing that fosters increased autonomy [3]. Emergent digital means,

such as wearable devices and home sensors, can arguably enable empowerment and self-deter-

mination, as proven by their extensive use in neurology [4,5].

Among the many causes of disability in older adults, neurological disorders are the leading

ones worldwide [3]. Parkinson’s disease (PD) is the fastest growing neurological disorder,

increasing faster than Alzheimer’s disease [3,6]. From 1990 to 2015, the prevalence of PD has

more than doubled with consequential morbidity, disability and mortality [3]. The Global Bur-

den of Disease Study [7] estimates that 6.2 million individuals currently have PD, and the

number is expected to increase towards 14.2 million in 2040. About 40% of people with PD

develop dementia within 10 years from diagnosis [8].

Clinically, PD is characterized by a combination of progressive motor and non-motor

symptoms and signs. Typical motor symptoms include bradykinesia, resting tremor, rigidity,

and postural instability. Non-motor dysfunction comprises a broad spectrum of features,

including but not limited to olfactory loss, sleep disorders, autonomic dysfunction affecting

the gastrointestinal and cardiovascular systems, dementia, and neuropsychiatric dysfunction,

including apathy, anxiety, depression [9,10]. Many of these features can be measured, moni-

tored, and possibly better managed through activity-based monitoring technologies [11].

The assessment of PD symptoms is normally done by a clinician who observes the patient

perform a series of tasks [12]. Standardized instruments such as Unified Parkinson’s Disease

Rating Scale (UPDRS, [13]), Montreal Cognitive Assessment (MoCA, [14]), or the REM Sleep

Behaviour Disorder Screening Questionnaire (RBDSQ, [15]) assess disease development, cog-

nitive decline and associated sleep disorders, respectively. Meanwhile, agreement exists that

this form of data collection may have low degrees of reliability, reproducibility, and sensitivity

to treatment effects [16].

Digital phenotyping is the moment-to-moment quantitative description of a person in their

own environment obtained by automatically aggregated data (e.g., heart rate, movement or

electrodermal activity) collected by devices (e.g., mobile devices, activity monitors or video) to

measure human behaviour and function in health and disease [17]. Various studies concerned
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with the use of digital health in neurology show the potential of these technologies for clinical

studies related to ageing and PD [5]. Passively collecting data through wearable sensors

ensures compliance and lower attrition rates [18] and has the potential to increase the knowl-

edge base and to support people with PD [19]. A systematic review of the literature by Rovini

et al. (2017) identified 136 articles on wearable devices for the management of PD in different

application fields, such as early diagnosis or home and long-term monitoring, concluding that

this type of device is portable, light weight, unobtrusive, easy to use, inexpensive, and accurate

in the measurements [20]. In clinical research, wearable use is supported by evidence for the

capacity to monitor symptoms, minimize rater-bias and increase sensitivity to subclinical

physiological changes [21]. In combination with AI methods to analyse big and complex data

outputs, digital phenotyping holds vast potential [21–24]. However, few studies currently

explore the precise description of active ageing, how neurological disease presents and devel-

ops in the individual, prediction of symptoms using AI, and technology adoption in different

user groups of older adults.

Home-based continuous monitoring enables investigation of the interplay between health

factors and living environment, which is recognized as a major factor in the ageing process

[25–27]. Recently, new forms of senior housing are rapidly emerging, implying unmet needs.

Some of the most common housing typologies are independent living, co-housing, and assis-

ted living. Although these housing communities vary in embodiment, they share the same

goal: support the health and well-being of older adults, enable them to remain community-

dwelling and maintain autonomy longer. However, the quantification of the effects of these

innovative living arrangements by digital phenotyping are unreported.

Our main hypothesis is that digital phenotyping is a feasible, sensitive, and specific tool to

explore the ageing process from the clinical and the lifestyle perspectives in older adults with

and without PD. Several secondary hypotheses are explored:

1. A smart, engaging living environment increases physical, social, and mental activities in

older adults measurable with digital phenotyping.

2. Clinical diagnosis, symptom tracking, treatment-response, and symptom prediction in PD

can be conducted with digital phenotyping.

3. Caregiver burden in PD can be quantified by digital phenotyping by including informal

caregivers in clinical trials.

Methods

ActiveAgeing is a 4-year, multicentre, mixed-method, open (not blinded) cyclic study aimed

to develop a framework of digital phenotyping and traditional data collection intended to

explore a data-driven, active living process for older adults with or without PD. The study will

be conducted within the Western Norway Regional Health Authority and will include four

types of participants:

1. People with PD (for the first study N = 15; estimated for the second study N = 90) will be

included regardless of their age and gender given a life expectancy of more than 6 months.

They will be recruited during outpatient visits at the Centre of Excellence for Treatment of

Neurological Diseases (Neuro-SysMed), Haukeland University Hospital (HUS). The

responsible neurologist (CT) will oversee identifying the potential participants and inform-

ing them about the DIGI.PARK (DIGItal phenotyping in people with PARKinson’s disease)

study.
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2. The spouses or informal caregivers (partners, friends) of people with PD are invited to par-

ticipate in the second study (N = 90) if they have daily contact with the person with PD of

minimum 4 hours. The exclusion criteria and the recruitment strategy are the same as for

the participants with PD. People with PD and their spouses/caregivers will be represented

as dyads to shed light on the mutual effect of PD progression.

3. Older adults (for the first study N = 15; for the second study N = 40) from the innovative

Helgetun living environment, which is a popular housing concept in Bergen, Norway,

aimed to engage a mental, social, and physical active living style. The inclusion criteria are

regardless of age, sex, and initial health status given a life expectancy of more than 6

months. Exclusion criterion is a diagnosis of PD. Participants will be recruited through the

user-representatives of Helgetun and researchers at the University of Bergen (UiB) through

open presentations of the ActiveAgeing project, information packages (talks, flyers, news-

letters, slide presentations, website) with contact information and a link to register their

interest.

4. As Helgetun is a popular living environment, a waiting list of older adults from the Western

region of Norway has been established. For the second study, we aim to include participants

(N = 50) from this waiting list as a control group. The recruitment will be done by ran-

domly contacting people on the waiting list and providing them with the information pack-

ages offered to the residents of Helgetun (described above).

The study involves one user representative associated with the UiB research group (RS),

one user representative from Helgetun (KO), and the panel of user representatives from

Neuro-SysMed for the DIGI.PARK branch. They will assess the recruitment process and

ensure that the participants receive proper consent and project information material, ensuring

participant interests are considered and incorporated from the beginning and throughout the

project.

Sample size

Given the exploratory nature of this study, in terms of application of emergent technologies

unused for this purpose, formal sample size calculations were infeasible, as previous studies

that inform the calculation were unavailable. The size of the first study was based on a feasible

number of persons with PD from group 1 (described above) with an equivalent number of

Helgetun residents (group 3 above). The second study used the size of the waiting list for Hel-

getun (group 4 above), which contained around 100 applicants, and we estimated that half of

them would be willing to join, in a similar ratio to the number of Helgetun residents (group 3

above). The number of participants in the DIGI.PARK branch (group 1 above) in the second

study is based on the sum of Helgetun residents and future residents (groups 3 and 4 above).

Experimental configuration

Fig 1 shows the 4 categories of participants. The red discs (and their description on the upper

right side) show the aims of the study, and how they are related to each participant category.

The yellow discs (and their description on the lower right side) show the experimental dimen-

sions. We envision 4 experimental configurations of participants, addressing different dimen-

sions of the ageing process:

Fig 1 shows where the lifestyle recommendations or treatment changes that are generated

from each cycle of the framework will be applied and assessed. Of note is that for the PD

dyads, their respective interventions are expected to have a secondary effect on their

counterpart.
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Ethics approval and consent to participate

Participants can withdraw from the study at any time, without giving any reason for doing so.

Participants can withdraw their data after data collection is finished. However, data cannot be

retracted after being analysed and published. All study data is recorded via digital platform

(electronic form administered via tablet), transferred to and stored on a secure server in collabo-

ration with BIOS, UiB. The project involves human data collection and processing e.g., mental,

physical health, demographics, activities. Regarding data protection and data privacy, we respect

the Data Protection Directive, EU Directive 95/46/EC aimed at protecting the fundamental

rights and freedoms of natural persons and their right to privacy with respect to processing of

personal data. We adhere to directive 2016/679, an EU-wide law including the General Data

Protection Regulation (GDPR), as a significant step towards more responsible protection of

individuals [28]. GDPR Article 35 requires the Data Protection Impact Assessment (DPIA), to

ensure data minimization of relevant data and it limits data access to those who are authorized

or given permission by the individual [28]. The project has received ethical approval to initiate

the first study from the Norwegian Center for Research Data (NSD, RN-792472). Further data

collections will be carried out after reviewing and renewing this ethical approval.

ActiveAgeing framework

The ActiveAgeing framework describes the interaction between older adults and their data,

that 1) fosters lifestyle changes towards active ageing and 2) advances the understanding of

Fig 1. Participants in ActiveAgeing and their experimental features. I. Clinical dimension: Considering the

participants with PD as the experimental group, and the participants in Helgetun as the control group, we explore the

impact of a neurological condition (i.e., PD) on the ageing process. II. Environmental dimension: Considering the

residents of Helgetun as the experimental group, and the people on the waiting list as the control group, we explore the

impact of living in an innovative living environment like Helgetun on the ageing process. III. Caregiving dimension:

Considering the participants with PD as the experimental group, and their informal caregivers as the control group, we

explore the impact of a neurological condition (i.e., PD) on the ageing process in dyads of participants. IV.

Psychological dimension: Considering the caregivers of people with PD as the experimental group, and the people on

the waiting list for Helgetun as the control group, we explore the psychological impact of having caregiving duties on

the ageing process.

https://doi.org/10.1371/journal.pone.0275747.g001
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PD, in a cyclic and data-driven manner (Fig 2). The participant is at the centre of this frame-

work, from which data is collected and upon which interventions or lifestyle changes are

applied. As a generic label, “the participant” represents any participant from any category, in

any iteration of the cycle, as well as caregivers and clinicians. Thus, we suggest an approach for

the development of individualised lifestyle, treatment interventions, and decision making.

Additionally, this framework and the cyclic aspect of its implementation is oriented towards

developing, investigating, and adapting new outcome measures to advance the understanding

of PD. The impact of the living environment, the adoption of technology, and the effect of the

caregiving burden on informal caregivers of people with PD are complementary targets of

investigation in this study. This approach is aimed to benefit three types of stakeholders: a)

older adults that will make use of the proposed ActiveAgeing framework, b) researchers inves-

tigating PD that will apply the new outcome measures in future clinical trials, and c) policy

makers that will be able to use the performance indicators of the ActiveAgeing framework to

allocate resources for senior care.

Two main loops can be observed in the framework: the DIGI.PARK branch and the Helge-

tun branch. Both loops describe different analyses made over data generated from the partici-

pants by two means.

DIGI.PARK branch

The DIGI.PARK branch investigates PD, as a representative disorder of the neurological con-

ditions that affect older adults. By collecting physiological data via wearable devices, data from

clinical assessment scales, and clinical records of traditional consultations, we aim to open

three fronts that complement each other to achieve the goal to better understand PD:

• Inform clinical diagnosis and symptom tracking: for this purpose, digital signal processing

(DSP) techniques [29] such as pattern discovery, correlation analysis, and human activity

Fig 2. ActiveAgeing framework.

https://doi.org/10.1371/journal.pone.0275747.g002
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recognition (HAR) [30] are applied to sensor data. Then, these findings are available to the

clinician in an understandable manner, to use in diagnosis and tracking symptoms.

• Predict symptom development: PD is a complex condition, characterised by sets of intercon-

nected symptoms varying over time and from person to person. As such, specialised models

are built using inference engines and reasoning systems [31] to construct a matching set of

prediction models. These models are used to estimate, within confidence intervals, the future

development of one or more symptoms that can assist treatment by a clinician.

• Develop new outcome measures: clinical trials that address PD currently rely on clinical

assessment scales. However, these scales carry a significant amount of subjectivity and vari-

ability (i.e., their output depends on the clinician who applies the scales) [21]. Additionally,

these assessment scales provide the clinicians with rough evaluations of the symptoms that

may not capture the subtleties of slighter changes that might occur because of treatment

and/or treatment adjustments. Therefore, clinical trials will benefit from the objectivity and

sensitivity that daily-life physiological data from digital phenotyping can provide.

Helgetun branch

The goal of the Helgetun branch is to understand which factors foster an active lifestyle physi-

cally, mentally, and socially, in a way that empowers older adults to engage in their ageing pro-

cess. Therefore, we aim to achieve this by tailoring individual advice that entails a desirable

change in the behaviour and/or lifestyle of a participant. This advice is the main output of

every iteration of the loop in the Helgetun branch and is delivered via a mobile phone applica-

tion (developed during the ActiveAgeing development phase) that aggregates the collected

physiological data. We envision three categories of advice that can be created:

• Human-generated self-advice: we apply Natural Language Generation (NLG) techniques

[32,33] to create an accessible and user-friendly presentation of the data collected with the

devices and the qualitative inquiry. This way, the participant will be able to understand what

that data means and will have the information needed to make a lifestyle change if they

deem so. This part of the framework appeals directly to our goal to empower older people to

engage in their ageing process.

• Human-generated clinical advice: we rely on the domain expert to make the analysis of the

collected data and tailor individual advice for the participant. A domain expert in this con-

text would be, for instance, a nurse that reviews movement data from the sensors and sug-

gests to the participant that they would benefit from a daily walk, or a GP that examines the

patient and analyses the sleep data to suggest a treatment change. Research and dissemina-

tion of the data retrieved from the qualitative inquiry is included in this loop, which is aimed

to shed light on the subjective perspectives, experiences, beliefs and reception of wearable

technology and living in innovative housing environments.

• Machine-generated advice: by matching the subjective data collected at the human level to

the objective data collected at the device level, we aim to discover patterns through analysis

based on Knowledge Discovery from Data (KDD) [34]; then, based on these patterns, build

an AI reasoning system using ML techniques (knowledge-based systems [31], context-based

reasoning [35], fuzzy logic [36,37]) to generate lifestyle-changing advice that is then commu-

nicated to the user.

For both branches, we will collect data from two sources: device monitoring and human

data collection (the “device level” and the “human level”, in Fig 2).
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Device level

The device level includes data from wearables generated by moment-to-moment, passive, and

unobtrusive sensing of the participants’ daily lives. The following devices (2 smartwatches and

1 smart-ring) are used. All devices are commercially available. We chose one smartwatch (Fit-

bit Sense) with widespread popularity and higher acceptance, and another smartwatch (Empa-

tica E4) that is oriented to research purposes and provides access to raw data with no pre-

processing. The smart-ring was chosen because it represents a more innovative line of smart

garments and has the potential to combine strong accuracy with high user acceptance [38].

Fitbit Sense [39] is a smartwatch released in 2021 under the Fitbit umbrella of devices, aim-

ing to be the new flagship device for advanced health and activity tracking. It has a 3-axis accel-

erometer, gyroscope, altimeter, multipath optical heart rate tracker, ECG and EDA sensors,

and on-wrist electrical sensor. It has connectivity to Android and iOS, and is waterproof.

The Oura Ring [40] is the first commercially available smart ring. It includes a 3-axis acceler-

ometer, gyroscope, multipath optical heart rate tracker, and on-wrist skin temperature sensor.

The Empatica E4 wristband [41] is a medical-grade wearable device that offers real-time

physiological data acquisition, enabling researchers to conduct in-depth analysis and visualiza-

tion. It is the only wearable on the market to combine electrodermal activity and heart rate

sensors, simultaneously enabling the measurement of sympathetic nervous system activity and

heart rate. It includes a 3-axis accelerometer, gyroscope, electrodermal activity sensor, infrared

thermopile, heart rate tracker, and an event mark button.

Software

The study uses the cloud services from Fitbit Sense (Fitbit Cloud) and Oura Ring (Oura

Cloud) to initially handle the data generated by them, which follow the California Consumer

Privacy Act of 2018 (CCPA) and the General Data Protection Regulation (GDPR). The soft-

ware Empatica E4 Manager is used to handle its data, although it does not use a cloud service.

Fitbit Studio and Jupyter Notebooks are the programming environments. Data analysis is car-

ried out with MATLAB R2021b (using the Signal processing, Simulation, and Statistics and

Machine Learning toolboxes) and SPSS version 28.0.1 for quantitative analysis, and MaxQDA

2020 for qualitative analysis.

Additionally, we use Ipsilon, an interactive task-based digital cognitive assessment tool that

uses tones to evaluate brain function. It can detect early signs of dementia and mild cognitive

impairment through testing attention, executive functioning, learning and memory. Ipsilon

evaluates executive function, inhibition control, attention, and memory function by quantify-

ing learning to assess brain functionalities. Specifically, Ipsilon assesses comprehension (visuo-

spatial/motor encoding) and time-stamped finger responses via a web-based computerized

cognitive assessment aid, running on a tablet device. Potential advantages include the elimina-

tion of language biases, relative ease and speed of operation, it is operable by a non-specialist

and administered in 3–5 minutes. Ipsilon developers are currently seeking approval for status

as a medical device software in the EU. DIGI.PARK plans to implement Ipsilon cognitive

assessment for participants with PD in DIGI.PARK.

Primary and secondary clinical assessment scales

People with PD are assessed with the UPDRS, which is a clinical tool for motor symptoms in

PD. This data is collected by CT and HR at Neuro-SysMed. The UPDRS is comprised of four

subscales: Part I, with an observer-rated assessment of six items and seven self-assessed items

relating to non-motor experiences of daily living; Part II with 13 items for self-assessing the

motor experiences of daily living; Part III is an 18-item observer-rated motor examination; Part
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IV assesses motor complications with a six-item observer-rated list, where each item is scored on

a scale from 0 (normal) to 4 (severe). Scores on all items within each subscale are summarized to

yield a total score for each part and discriminates between mild, moderate, and severe symptoms

with cut-offs validated for each of the subscales: Part I: mild (�10), moderate (11–21), severe

(�22); Part II: mild (�2), moderate (13–29), severe (�30); Part III: mild (�32), moderate (33–

58), severe (�59); Part IV: mild (�4), moderate (5–12), severe (�13) [42,43]. UPDRS is among

the most widely used assessment tools for motor symptoms in PD and belongs to the “gold stan-

dard” of clinical assessment tools, in which the patient performs tasks while a trained clinician

visually evaluates the movements and assesses motor symptoms [44,45].

The following assessment scales are applied for all participants. The MoCA has been shown

to reliably assess cognitive function in people with and without PD [46,47] and is used as a

screening tool for mild cognitive impairment and dementia. The MoCA test is a 30-item tool

probing various cognitive constructs including short-term memory, visuo-spatial abilities,

multiple aspects of executive functioning, phonetic fluency, language, verbal abstraction, atten-

tion, concentration, subtraction, and orientation to place and time. The total score ranges

from 0–30 and the cut-off for cognitive impairment is<26 [47]. The Geriatric Depression

Scale (GDS) is a self-reported scale which reliably assesses depression in older people with and

without PD [48,49]. The GDS is a 15-item one-dimensional scale with “yes” or “no” responses.

The total score ranges from 0–15 and the cut-off for depression is�5. The Geriatric Anxiety

Inventory (GAI) assesses anxiety and has been validated in older individuals without PD [50],

as well as in people with PD without dementia [51]. The GAI is an assessment scale comprised

of 20 questions with a binary “agree/disagree” response option, where a score of>10 indicates

clinically significant symptoms of anxiety [50]. Starkstein Apathy Scale (SAS) consists of 14

questions with answers ranging from “not at all” to “very”. The SAS has reliably measured apa-

thy in people with PD without cognitive impairment [52] and validated for measuring apathy

in healthy older adults [53]. The RBDSQ screens for REM behaviour disorder symptoms and

has been validated among people with and without PD [15,54]. The RBDSQ is a 10 item self-

reported scale with binary “yes/no” responses. The questions cover the patients’ dreams, noc-

turnal awakenings, nocturnal vocalization, nocturnal motor movement and behaviour, and

sleep-related injuries [55]. The total score ranges from 0–13 and a total score >6 indicates clin-

ically significant symptoms [15].

All described instruments have been validated and Norwegian translations are available. A

summary of the clinical assessment scales and the sensors involved in the digital phenotyping

is shown in Table 1.

Qualitative methods

In-depth interviews with the participants are carried out to gather subjective data about the

impact of the living environment on the ageing process, adoption of technology, and what

constitutes active ageing. These interviews are framed into a hermeneutic (interpretivist and

multiperspectivistic) approach aimed to capture what matters to the participants. The inter-

views are recorded and then transcribed and coded using MaxQDA software. This approach

explores common traits and variation in how these phenomena are experienced by partici-

pants, new opportunities of interpreting and understanding these perspectives and how to

apply this understanding in future interventions [56].

Cyclic methodology overview and outcome measures

The ActiveAgeing framework answers the research constructs formulated in Hypotheses

through a cyclic methodology (Fig 3), which is the result of the combination of AI methods
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and user-centred interventions. In a cyclic manner, we tune and adjust the algorithms and

models that analyse the data collected from the participants, based on the performance indica-

tors of each cycle. After the tuning process is completed, these indicators become the outcome

measures of ActiveAgeing:

Table 1. Clinical assessment scales.

Symptom Clinical assessment scales Sensors

UPDRS MoCA GDS GAI SAS RBDSQ Ipsilon IMU HR EDA Temp CSP

Tremor X X

Gait X X

Dyskinesia X X

Bradykinesia X

Rigidity X X

Cognition X X

Depression X X X X X X

Apathy X X X

Anxiety X X X

Sleep X X X X X X X

IMU: Inertial Measurement Unit, a combination of sensors (e.g., gyroscopes, accelerometers) detecting angular momentum and acceleration; HR: Heart rate sensor;

EDA: Electrodermal activity, a sensor which detects changes in skin conductance due to sweat; Temp: Temperature, measures body and ambient temperature; CSP:

Colour sensitive photodiode, a light sensor.

https://doi.org/10.1371/journal.pone.0275747.t001

Fig 3. Overview of the ActiveAgeing research methodology.

https://doi.org/10.1371/journal.pone.0275747.g003
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• Performance-based measures: standard evaluation metrics for the efficiency and accuracy of

the algorithms and models are applied. For knowledge discovery and symptom classification,

we use scores based on precision and recall (confusion matrix, F1 score, ROC). For dynamic

models, we use standard confidence-based validation by correlating expected outputs vs.

model outputs (for the same inputs), resulting in a confidence index for which a model is

valid at>95–98%. Additionally, we use measures based on the error between expected and

model outputs (mean, square sum, root mean square, absolute, time-weighted integral, etc.),

resulting in lowest error-tolerance scores, and k-fold cross-validation. For prediction evalua-

tion, we use accuracy (correct predictions), sensitivity (“yes” predictions), and precision

(correct “yes” predictions) on each predicted variable, where the “yes/no” dichotomy is

based on symptom appearance or increase/decrease (e.g., in frequency, intensity, etc.). We

will evaluate the performance of these algorithms in terms of optimisation (i.e., performance

analysis), given that they are meant to be executed by wearable devices, which have limited

computational power and battery life. This performance analysis consists of analysing space

and time complexity [57,58].

• Observer-reported measures: we will measure the effectiveness of the generated lifestyle

advice by estimating the difference between the digital phenotypes obtained before and after

the advice is delivered. The qualitative inquiries at every data collection round result in a set

of themes that are compared against each other to analyse intra-subjective differences in per-

spectives and experiences around technology adoption, health and living environment.

These subjective differences are treated as indicators of the feasibility and efficacy of our

framework in every iteration of the cycle, and determine the way we continue using these

technology, collecting data, and administering advice at future data collection points of the

timeline (see Fig 4).

• Clinician reported measures: the clinical assessment scales (UPDRS, MoCA, GAI, SAS,

RBDSQ) described above.

Use case scenarios

The following use case scenarios illustrate how ActiveAgeing is to be applied to different user

profiles.

Box 1: Use case 1: Ragnhild

Ragnhild is a female resident of Helgetun. She is 72 years old and is included in the Acti-

veAgeing program. She wears an Empatica E4 device on her wrist and an Oura Ring.

These devices capture physiological and activity data all day. She has the ActiveAgeing

app installed in her phone. Before going to bed, she checks the app, where she can look

at her own data in an accessible way, which has been tailored with Natural Language

Generation techniques. One night, she observes in the data that her sleep quality has

decreased, and her physical activity is lower lately. Then, she decides to sign up for the

winter hiking club in Helgetun. After three weeks, she observes in the app that not only

her sleep quality has improved, but that she has increased her average sleeping time

from 6.4 to 8.2 hours. She likes this lifestyle change and decides to continue participating

in the hiking club.

At the same time, the app prompts another piece of advice to her: she might benefit

from a darker bedroom, since the light sensor detected that the ambient light is bright at

night.

PLOS ONE Digital phenotyping with wearables for Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0275747 October 14, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0275747


Implementation

Fig 4 shows the implementation plan and development cycle of the ActiveAgeing framework.

It consists of 6 phases across 4 years.

P1. Planning. The first phase lasted 9 months and includes pre-project tasks. The research

group initiated contact with the user representatives and the participant groups involved in the

first study. The research group consolidated the planning of the project and received for ethical

approval from NSD and Regional Committees for Medical and Health Research Ethics (REK).

The first batch of devices was purchased and tested in-lab. The protocol for the first study was

Additionally, Ragnhild has given her GP access to her data. During her last consultation,

her GP assesses her activity data in the last months. She congratulates Ragnhild for her

increase of physical activity but suggests her to replace some of her hiking activities with

some weekly strength training in the Helgetun gym, since she considers this type of

physical activity beneficial. Then, her GP proposes to look again at her data at the next

consultation to see if the change has had any observable effect.

Box 2: Use case 2: Sigurd

Sigurd is a 66-year-old man with PD. He was diagnosed 2 years ago by his neurologist.

So far, his symptoms are tremor, balance issues, and anxiety. His right side is more

heavily affected by the disease, and he has not been able to tie his own shoes lately.

Trygve, his spouse, is currently performing such task for him. They sign up for the Acti-

veAgeing program. Sigurd wears an Empatica E4 and Oura Ring on the right (more

affected) wrist and a Fitbit Sense on his left (less affected) wrist. During the last consulta-

tion, his neurologist has seen in the movement data that Sigurd’s tremor and balance

issues have worsened. Consequently, his medication is adjusted, and a new appointment

for 2 months later is scheduled. In the following consultation, the movement data shows

that the symptoms have flattened, or they have not worsened. Sigurd is capable of tying

his shoes. Next, the neurologist opens the prediction tab, where she inputs a certain dos-

age of his medication for the next 6 months. The algorithms run that prediction from

the last 4 months data, and they infer that only a small adjustment on the dosage would

be enough to alleviate the symptoms for the next 6 months.

Box 3: Use case 3: Trygve

Sigurd’s spouse, Trygve, is 71 years old, and is his informal caregiver. For the last two

months, Trygve has had increased fatigue and depression, probably caused by Sigurd’s

restless sleep, and started taking sleeping pills regularly. Then, Trygve is provided with

an Empatica E4 and an Oura Ring. After Sigurd’s medication adjustment, Trygve is

called by his GP to check his data. Since Sigurd sleeps better, Trygve finds it easier to

sleep, and the data shows that his stress levels are lower. His GP suggests reducing his

sleeping medication.
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defined and reviewed by the user representatives, and information was delivered to the partici-

pants accordingly. The recruitment for the first study and obtain oral and written informed

consent from the participants is under way.

P2 First study. This study (expected N = 15 residents from Helgetun and N = 15 persons

with PD) explores the data streams for the devices described in section MATERIALS, to assess

their functional and technical validity, and to obtain initial insight on the activity levels of the

residents in Helgetun and the symptoms of people with PD. For the latter purpose, the Helge-

tun residents represent the control group for the participants with PD. Additionally, the devel-

opment of this first study subsequently informs the practicalities and arrangement of research

tasks in the second study (see P5. Development). The first study begins with a baseline data

collection that includes a demographic questionnaire to characterise the sample, initial semi-

structured questions about their expectations and its technology, and the clinical assessment

instruments described previously. Then, the participants simultaneously wear one of each

device for 14 days, which passively capture physiological data in their daily life. The researchers

visit the participants every 3 days to carry out monitoring tasks: charge the devices, back-up

the sensor data, answer questions or resolve issues from the participants, and take notes about

their activities since last visit. After the device data collection, we conduct another standardised

clinical assessment and a set of in-depth interviews addressing technology adoption, activity

levels and current perceived wellbeing of the participants.

Fig 4. ActiveAgeing timeline and development cycle.

https://doi.org/10.1371/journal.pone.0275747.g004
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The anonymised sensor data is analysed in several steps. First, a correlation analysis compares

the data obtained from the different sensors and matches it with the ground truth obtained in the

monitoring sessions. Second, we perform a preliminary activity recognition from the sensor data

by segmenting, extracting features, and aggregating the different streams (pre-processing). Then,

in a cyclic manner, we develop and validate algorithms that detect daytime and night-time activity

patterns (rule-based reasoning machine based on moving window Fast Fourier Transform).

The analysis of qualitative data takes place in a thematic and narrative analysis process:

open coding, calculating inter-coder agreement, and then axial coding, to finally extract the

main categories and narratives. Qualitative data will be interpreted in a hermeneutical

approach aiming to explore varieties in the perspectives of the individual study participants

and common traits for the group. The process will be cyclic, interpreting each interview as sin-

gular texts, the whole body of interviews, each interview in relation to the whole and the whole

in relation to each individual interview (53).

P3. Transition. This stage includes dissemination of results from P2, purchase of further

device batches, application for ethical approval of P4, and recruitment of participants.

P4. Second study. We envision 3 data collections at different parts of the year to capture

seasonal and intra-subject variances: winter-spring, summer-autumn, and winter-spring

again. The arrangement of the data collection tasks will be similar to P2, unless the results of

the first study indicate otherwise. Sensor data is collected extensively, aiming to include 90

dyads from the DIGI.PARK branch (person with PD–informal caregiver) and 90 participants

from the Helgetun branch (residents and people on the waiting list).

Sensor data analysis begins with the same pre-processing as in P2. In AI-Driven Activity
Recognition (Fig 4), we will finalize the rule-based reasoning machine from P2 and tune it with

machine learning procedures. Knowledge Discovery will be performed using classifiers, cluster-

ing, and fusion to build digital phenotypes. Knowledge Correlation Analysis will be made by

matching the digital phenotypes to the qualitative data. Natural Language Generation associ-

ates dictionary words or idioms to the digital phenotypes and is part of the user interface devel-

oped in P5. Machine Learning involves designing and optimizing the AI modules that, based

on the discovered knowledge, generate machine advice for the participants from the Helgetun

branch. For the DIGI.PARK branch, we will build Inference Prediction Models based on fuzzy

intelligent technology which combines expert knowledge with data-driven knowledge.

P5. Development. In parallel to P4, and learning from it, we will undertake a develop-

ment stage where the digital phenotyping algorithms will be developed and validated in a

cyclic process. We plan to develop two main items in this stage: 1) the software that contains

and runs the algorithms on the wearable devices and paired mobile phones, as well as a visual

interface delivery of lifestyle advice and accessible data from digital phenotypes; 2) the new

outcome measures for PD and the algorithms or models that will compute them, as well as an

executable version (simple software & interface) to be used in future research. The ActiveAge-

ing software will be developed following an agile development methodology adapted to mobile

eHealth contexts [59]. The new PD outcome measures will be developed using a cyclic data-

driven methodology in which algorithms and models are designed, then iteratively adjusted

according to testing results and expert feedback, until validated (see Fig 4).

P6. Follow-up. This phase contains the results dissemination to popular science and aca-

demic targets, user information, and seminars.

Discussion

The ActiveAgeing study protocol describes our approach that includes older participants

with and without PD who live in traditional and innovative living environments, and explores
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digital phenotyping with wearable devices to deepen the understanding of the ageing process

and PD. The following subsections address key practical aspects of this protocol and its

approach.

Practical pitfalls and obstacles

Carrying out digital phenotyping with consumer wearable devices entails practical challenges

that must be considered. Using commercial technology means that ergonomics, user-friendli-

ness, or reliability of the devices are not under the control of the researchers. However, this

study relies on the idea that using commercial devices is preferable to developing in-house sen-

sors or test custom, non-commercial designs, because this minimises potential stigmatisation

and facilitates knowledge and technology transference. Moreover, some of these devices do

not provide raw data, but their own calculations from black-boxed algorithms. In our cyclic

review, we dropped the device Philips Actiwatch Spectrum Plus, since the movement data and

activity count that it provides are calculated in a way that would not allow us to apply DSP to

the needed extent. We decided to change it to Empatica E4 before the first study, at the end of

the planning stage. Second, digital phenotyping implies collecting large sets of data, which

entails a logistic challenge for the second study. Additionally, another pitfall that we must con-

sider is the risk of AI algorithms failing to provide accurate outputs that serve as basis for clini-

cal and lifestyle decision-making. We aim to mitigate this risk by building a cyclic

methodology around it that allows us to finetune, re-design and validate our algorithms and

models.

Methodological considerations about AI

The ActiveAgeing study proposes to use AI to enhance clinical assessment made by humans

and be less time- and resource-consuming, not to replace the human expertise. Therefore, this

study takes a firm stance on the use of explainable AI. Explainable AI (XAI) is a label that

describes the subgroup of AI-based techniques whose models and algorithms are not just

internal constructs used by the model to produce an output or a classification, but non-

opaque, understandable decisions made by the machine [60]. Thus, the human can make an a-

posteriori assessment of that machine decision, as well as modify parameters and check biases.

Therefore, non-explainable AI models such as support vector machines, neural networks, or

deep learning are not prioritised in this study.

Methodological considerations about the health status of the participants

In studies including older adults and people with neurological diseases such as PD or demen-

tia, age may be a crucial inclusion or exclusion criteria. However, given the timespan (4 years)

and the target population of this study (older adults in different stages of their lives), we recon-

sidered this. Ageing, like life, is not a process that happens only once, and therefore we defend

that an initial exclusion based on an assessment of health would not be pragmatic, considering

that even initially healthy participants are likely to develop acute or chronic conditions any

time during these four years. Thus, changes in health status will not be a reason to exclude a

participant, unless it limits life expectancy. The consent can be withdrawn throughout the pro-

cess and written and oral informed consent will be renewed before every data collection.

Study status

At the time of writing this paper, the project is in mid-P2 (March 2022), the first study. Ethical

approval from NSD has been obtained (RN-792472). The Regional Committee for Medical
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and health Research Ethics of Vestlandet (REK) deemed not necessary to obtain their approval,

since no clinical intervention is applied, and we re-submitted the application with more detail

in case the clinical approval was necessary afterwards, but they confirmed their assessment. A

total of 17 participants from Helgetun have been recruited, provided written informed consent

for the first study, and recruitment for the DIGI.PARK branch has begun.

Supporting information

S1 Checklist. SPIRIT 2013 checklist: Recommended items to address in a clinical trial pro-

tocol and related documents�.

(DOC)

Acknowledgments

We thank Rune Samdal for his participation as user representative in the project, and Kristi

Odeen for her role as a contact person for the residents of Helgetun.

Author Contributions

Conceptualization: Juan C. Torrado, Bettina S. Husebo, Ane Erdal, Stein E. Fæø, Haakon

Reithe, Elise Førsund, Charalampos Tzoulis, Monica Patrascu.

Funding acquisition: Bettina S. Husebo, Charalampos Tzoulis.

Investigation: Juan C. Torrado, Bettina S. Husebo, Haakon Reithe, Elise Førsund, Charalam-

pos Tzoulis, Monica Patrascu.

Methodology: Juan C. Torrado, Heather G. Allore, Ane Erdal, Haakon Reithe, Elise Førsund,

Charalampos Tzoulis, Monica Patrascu.

Project administration: Ane Erdal, Charalampos Tzoulis.

Resources: Ane Erdal, Charalampos Tzoulis.

Supervision: Juan C. Torrado, Bettina S. Husebo, Heather G. Allore, Ane Erdal, Stein E. Fæø.

Writing – original draft: Juan C. Torrado, Bettina S. Husebo, Monica Patrascu.

Writing – review & editing: Juan C. Torrado, Bettina S. Husebo, Heather G. Allore, Ane

Erdal, Stein E. Fæø, Haakon Reithe, Elise Førsund, Charalampos Tzoulis, Monica Patrascu.

References
1. Organization WH. Active ageing: A policy framework. World Health Organization; 2002.
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