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Abstract—The application of AI in finance is increasingly 

dependent on the principles of responsible AI. These principles – 

explainability, fairness, privacy, accountability, transparency and 

soundness form the basis for trust in future AI systems. In this 

empirical study, we address the first principle by providing an 

explanation for a deep neural network that is trained on a mixture 

of numerical, categorical and textual inputs for financial 

transaction classification. The explanation is achieved through (1) 

a feature importance analysis using Shapley additive explanations 

(SHAP) and (2) a hybrid approach of text clustering and decision 

tree classifiers. We then test the robustness of the model by 

exposing it to a targeted evasion attack, leveraging the knowledge 

we gained about the model through the extracted explanation. 

Keywords—AI in Finance, Explainable AI, Feature Saliency, 

SHAP, Text Clustering, Rule Extraction, Decision Trees 

I. INTRODUCTION 

AI is becoming increasingly more omnipresent in the 
financial industry, with applications in customer interaction, 
investor services, fraud detection, customer relationship 
management and anti money laundering [1]. There exists 
enormous business potential for advanced analytics and 
economic modelling. Customer relations can be improved 
through innovative services in the form of digital financial 
advisors or personal assistants. Personal assistants such as 
Google Alexa, Apple Siri and Google Assistant have been 
developed for many applications.  

Currently, chatbots are the primary interface for digital 
assistants in finance. In the future, digital financial assistants 
will move beyond question answering and play a more active 
role in wealth management, smart payment solutions and 
credit and insurance management [1].  

The need for the responsible application of AI in finance 
has been highlighted [1] [2] [3], and there is increased interest 
in responsible AI [4]. 

This study considers a financial transaction classification 
model. Electronic financial transactions are classified into 
categories, such as “groceries”, “transportation”, “savings”, 
etc. The transactions are retrieved from the database of a major 
Norwegian bank and offer a good representation of the actual 
spending habits of customers. In Scandinavia, cash represents 
less than 5% of the total money supply [5] and is declining [6]. 
Electronic transactions therefore capture a significant portion 
of customer spending. The classifications made by the model 
of interest will, in the future, be used to develop a series of 
value adding products for customers, with the end goal of 
developing a digital financial advisor. As the basis for future 
work, it is important that the transaction classifier be 
implemented in accordance with the principles of responsible 
AI. In this study, we address one of the core principles of 
responsible AI, namely explainability.  

The aim of this empirical study is therefore to (1) identify 
the salient features of the transaction classification model and 
(2) extract an explanation for the function of the model, i.e. 
the rules that govern the model. We also illustrate 
vulnerability of the current financial transaction model to 
perturbations of the salient inputs. We achieve these goals in 
a hybrid approach where (1) we determine the feature 
importance using Shapley additive explanations (SHAP), (2) 
we generate explanations using a combination of clustering 
and decision trees and (3) we show model susceptibility to 
adversarial examples, leveraging knowledge from the 
explanation. 

In Section II, we discuss the concept of responsible AI. We 
then briefly review related work in Section III. We describe 
our transaction classification model in Section IV and we 
present the theory behind the methods used for extracting an 
explanation. Section V describes the methodology for our 
experiments, and we discuss the results in Section VI. The 
paper closes with a summary, conclusions and directions for 
future research in Section VII. 

II. RESPONSIBLE AI 

Responsible AI provides a framework that focuses on 
ensuring the ethical, transparent and accountable use of AI 
technologies in a manner consistent with user expectations, 
societal laws and norms. It can guard against the use of biased 
data or algorithms, ensure that automated decisions are 
justified and explainable, and ensure user trust and individual 
privacy. 

The principles of responsible AI can generally be 
summarized as fairness, privacy, accountability, transparency 
and soundness; however, no consensus exists on either a 
definition or measures for their quantification [4].  

ML algorithms tend to adopt the bias present in the 
training data. This could translate into discrimination, e.g. 
credit rating according to postal codes [7], which violates the 
standards of fairness. AI systems can potentially use personal 
information in ways that intrude on individual privacy [8] by 
collecting and relating data that then becomes a commodity 
beyond the individual’s knowledge or control. Accountability 
ensures that the system operator can be held liable for any 
adverse effects or consequences of the actions of AI systems; 
it does not necessarily remove bias. The imperative of AI 
transparency demands explainability and interpretability of AI 
systems, as well as data provenance. Explainability provides 
an accurate proxy or symbolic representation of the AI system 
whereas interpretability explains a model’s predictions in 
human understandable terms, e.g. in relation to the input 
features. Explainability does not automatically imply 
interpretability [4]. Trustworthy AI systems must be reliable 
and accurate, behave predictably, and operate within in the 
boundaries of applicable rules and regulations. This also 

1 Strategy Innovation and Development, SpareBank 1 SR-Bank ASA, 

Norway. 

This research was partially funded by a grant from The Norwegian 

Research Council; project nr 311465 



 

 

implies robustness and security against attacks such as 
poisoning or evasion, as demonstrated in [9]. These core 
principles of responsible AI must be equally weighted in any 
responsible AI application.   

III. RELATED WORK 

Interpretable models require mitigation of their 
complexity; an explanation of an AI system may have high 
fidelity and accuracy, but it may be incomprehensible to 
humans. There is a common perception about the existence of 
a trade-off between model interpretability and performance 
[4]; the work reported in [10] addresses this issue. It unifies 
six existing methods; which lack certain desirable properties: 
(1) local accuracy, which requires the explanation model to at 
least match the output of the target model for some simplified 
input; (2) missingness, which requires features with zero 
values to have no attributed impact; (3) consistency, which 
states that if a model changes such that some simplified 
input’s contribution does not decrease, then that input’s 
attribution should increase or remain the same, irrespective of 
the other inputs. 

The six unified methods are (1) local interpretable model 
explanations (LIME), which explains model predictions based 
on local approximations of the model around a given instance; 
(2) deep learning important features (DeepLIFT), which 
measures the change in model output resulting from changing 
a given input value to a reference value; (3) layer-wise 
relevance propagation, which estimates feature relevance 
from the changes prediction similar to DeepLIFT but uses a 
different underlying mechanism; (4) Shapley regression 
values, which calculate feature importance for linear models 
by retraining the model on different subsets of the features; (5) 
Shapley sampling values, which approximate the effect of 
removing a variable from the model by integrating over 
samples from the training set and (6) quantitative input 
influence, which addresses more than just feature importance, 
but that independently proposes sampling approximation 
which is nearly identical to Shapley values. 

In general, calculating the exact SHAP values is a 
computationally impractical problem. SHAP unifies the 
insights from methods 1-6 to approximate them (see Section 
IV.B). In [11], the authors apply SHAP in order to explain the 
predictions of a non-linear model on a financial time-series. 
They reveal the salient features and show which features are 
responsible for predicting a given class of output. They show 
how SHAP values can be used to improve prediction accuracy 
by assessing the usefulness of adding additional data.  

Once we have identified salient features, we intend to 
simplify the input space by means of clustering. In [12], the 
authors identify salient features, then use the most important 
feature to reduce model complexity through clustering of the 
input space; they then fit a unique decision tree on each 
cluster. The resulting small decisions trees are more compact 
and thus more interpretable than a single larger tree. In [13], a 
dataset is clustered in order to improve the performance of a 
decision tree classifier. The idea is that many smaller 
classifiers are more elastic in terms of underlying algorithms 
and parameters, compared to a single, larger classifier. The 
authors report a 40% improvement in classification 
performance using this method.  

IV. CLASSIFICATION MODEL AND EXPLANATION 

Our target system is a transaction classification system 
which is currently in production and receives between 10 and 
1500 requests per second. A typical request has about 100 
transactions and processing time for requests increases 
linearly with the number of transactions. Processing time is 
typically between 2ms and 50ms. 

In this section, we discuss the features used in the target 
model and give a short overview of the target model. We then 
introduce the methods extracting an explanation. 

A. Feature Encoding and Target Model 

The features in the dataset include categorical, numerical 
and text attributes. The target model is a series of two opaque 
models: a word2vec encoder followed by a deep neural 
network (DNN). In the first model, the transaction text is 
encoded into a vector representation 

 𝑋𝑡 = {𝑋𝑡
𝑖},  𝑖 ∈ {1, … , 𝑛} ⊂ 𝑁 (1) 

where 𝑁 is the number of features in the feature space, 𝑛 
is the dimensionality of the vector representation of the text, 
i.e. the product of the size of embedding vector 𝑘, and the 
number of words in the text 𝑙, i.e. 𝑛 = 𝑘 × 𝑙. This vector is 
concatenated with one-hot encodings of the transaction code 
𝑋𝑐  and day of week 𝑋𝑑 , normalized transaction amount 𝑋𝑎 
and customer age 𝑋𝑔  as well as binary series representing 

whether the transaction amount is negative or positive 
(payment vs deposit) 𝑋𝑑  and whether the amount includes 
cents 𝑋𝑒 . This concatenated dataset 𝑋, which is sent into a 
DNN is formally represented by: 

 𝑋 = {𝑋𝑡 , 𝑋𝑐 , 𝑋𝑑 , 𝑋𝑎 , 𝑋𝑔, 𝑋𝑑 , 𝑋𝑒} (2) 

The model is a classification net, producing a probability 
distribution 𝑌𝑖 ∈ 𝑌,  𝑖 ∈ {1, … , 𝑚} where 𝑚 is the number of 
output classes.  

The training set was labelled using a mixed technique of 
defined rules and manual labelling. The rules did not 
accurately classify all transaction; misclassified transactions 
had to be hand labelled.  

B. Salient Feature Extraction using SHAP 

The selection of salient features i.e. features containing 
high predictive information, is imperative for the development 
of machine learning models with high performance, 
particularly when it involves high-dimensional feature spaces. 
An ad-hoc heuristic trains and tests models with features 
omitted one at a time. Shapley additive explanations (SHAP) 
[10] offers an alternative, mathematically sound and 
parsimonious approach to salient feature extraction. In [14] 
the authors demonstrate that SHAP appropriately adjusts 
feature salience ratings when features are replaced one at a 
time with random noise.  

SHAP is based on the collaborative game theory method, 
Shapley values [15]. It clarifies the prediction of an instance 
𝑥 ∈ 𝑋, where 𝑋 is the set of all instances, by computing the 
contribution of each input feature 𝑥𝑖 ∈ 𝑥,  𝑖 ∈ {1, … , 𝑁} 
where 𝑁 is the number of features in the dataset. SHAP values 
assign weights to each feature cluster, where a feature cluster 
can be either a single feature, e.g. in numeric data, or a group 
of features, e.g. several words in a sentence. SHAP uses these 
weights in an additive linear model to explain the overall 



 

 

contribution of all features, thus elegantly blending elements 
from Shapely values [15], LIME [16] and others. 

In [10], the authors define a given explanation model 𝑔 as 

 𝑔(𝑧′) = 𝜙0 + ∑ 𝜙𝑗𝑧′
𝑗

𝑁

𝑗=1

 (3) 

where 𝑧′𝜖 {0,1}𝑁 is the feature space vector indicating the 
presence of each feature, 𝑁 is the size of the feature space and 
SHAP values 𝜙𝑗 𝜖 ℝ is the individual feature contribution for 

a feature 𝑗. The feature space refers to a simplified feature 
space that maps to the original feature space through a 
mapping function 𝑧 =  ℎ𝑧(𝑧′) . The individual feature 
contributions 𝜙𝑗 𝜖 ℝ  are estimated using the collaborative 

game theory approach Shapley [15]. 

Shapley explores a game where the prediction of a model 
𝑓(𝑥)  is seen as the result, or payout, of the game. The 
individual features 𝑥𝑖 ∈ 𝑥  are the players. The goal is to 
determine the contribution that each player has to the payout. 
Shapley determines how to fairly distribute the payout among 
the players through comparison of the model outputs for 
different coalitions of feature values. Feature coalitions are 
made by randomly sampling values from the feature space, i.e. 
a coalition is a fictitious instance 𝑥′ ∉ 𝑋, where feature values 
of the instance 𝑥𝑖

′ ∈ 𝑥 are drawn randomly from the feature 
space. The Shapley value of a feature is defined as the average 

change in the prediction Δ𝑓(𝑥) = 𝑓(𝑥′) − 𝑓(𝑥′′)  that a 
coalition 𝑥′ receives when a new feature value 𝑥𝑖

′′ ∈ 𝑥 joins 
the coalition. 

C. Text Clustering using DBSCAN 

Text is typically clustered using a spatial clustering 
algorithm, such as the density based spatial clustering 
algorithm with noise (DBSCAN) [17], [18]. It starts with a 
random instance and identifies all its nearest neighbors. 
Proximity to other instances is determined through a given 
distance measure, e.g. Euclidean, Hamming, Cosine, etc. If a 
point has a minimum of 𝑚𝑖𝑛𝑃𝑡𝑠 neighbors within a distance 
of 𝜖, then a new cluster is defined. The algorithm will also 
identify outliers that do not fall in any cluster as noise. 

When text is represented as word vectors, through e.g. a 
word2vec encoder, the similarity between two sentences 
corresponds to the distance between the vectors. This is 
generally quantified as the cosine of the angle between the 
vectors [19] i.e. the cosine similarity. Given two sentences, the 
cosine similarity is defined as: 

 𝑠𝑖𝑚𝑐(𝑡𝑖 , 𝑡𝑗) =
𝑡𝑖  ⋅ 𝑡𝑗

|𝑡𝑖| × |𝑡𝑗|
 (4) 

Where 𝑡𝑖 ,  𝑡𝑗 ∈ 𝑇, are 𝑛-dimensional vectors in the term set 

𝑇 = {𝑡1, … , 𝑡𝑛}  and 𝑠𝑖𝑚𝑐 ∈ [0,1] . When two terms are 
identical, the cosine similarity is 1 i.e. 𝑠𝑖𝑚𝑐(𝑡𝑘, 𝑡𝑙) =
1,  ∀ 𝑡𝑘 = 𝑡𝑙. 

DBSCAN can therefore be used with cosine similarity as 
a clustering method for texts.  

V. EMPIRICAL METHODOLOGY 

A. Data 

Throughout this study, we used an initial dataset of 
roughly 10 million financial transactions. These transactions 

were labelled using the target model and resampled without 
replacement to provide a more uniform representation of the 
labelled classes. The final dataset, 𝑋 , had a cardinality of 
roughly 5 million transactions, i.e. |𝑋| ≅ 5 000 000. 

B. Explanation by Decision Trees 

Global surrogate modelling is a well-documented 
approach to model explainability [4]. In this study, we trained 
both a single decision tree and a random forest as global 
surrogates to explain the model. We used a random sample of 
10% of the total dataset (about half a million transactions) for 
training, 𝑋𝑡𝑟𝑎𝑖𝑛 ⊂ 𝑋 ∧  |𝑋𝑡𝑟𝑎𝑖𝑛| = 0.1 × |𝑋| , while testing 
was done on a randomly sampled set of 100 000 transactions, 
𝑋𝑡𝑒𝑠𝑡 ⊂ 𝑋 ∧  𝑋𝑡𝑒𝑠𝑡 ∉ 𝑋𝑡𝑟𝑎𝑖𝑛  ∧  |𝑋𝑡𝑒𝑠𝑡| = 100 000. 

We used these train and test sets to fit a decision tree 
classifier and a random forest classifier with 50 individual 
trees. The performance and human understandability of the 
tree and forest were used as a baseline to compare with a 
hybrid clustering / decision tree approach discussed below. 

C. Feature Importance through SHAP Analysis 

We estimate the feature importance using SHAP [10]. The 
feature importance, 𝜙𝑖  was estimated for each input feature 
𝑥𝑖  𝑖 ∈ {1, … , 𝑁}  where 𝑁  is the total number of encoded 
features. Note that due to encoding, 𝑁 > 7 where 7 is the 
number of original features. 

Equations (1) and (2) illustrate how the features are 
prepared, with equation (1) referring to the word vectors for 
the transaction text. SHAP values provide an estimate of the 

importance of individual features, 𝜙𝑖 → 𝑋𝑡
𝑖; however, this is 

not useful when the feature of interest is a superfeature: 𝑋𝑡 =
{𝑋𝑡

𝑖}, 𝑖 ∈ {1, … , 𝑛}. In order to derive the importance of the 

superfeature 𝑋𝑡 , we aggregate the SHAP values through 
addition [10]:  

 𝜙𝑡 = ∑ 𝜙𝑖

𝑛

1

 (5) 

D. Explanation through Clustering and Decision Trees 

Having identified the most important feature, we clustered 
the data according to this feature. In Section VI, we show that 
the most important feature in classification is the transaction 
text 𝑋𝑡; we therefore used the DBSCAN algorithm with cosine 
similarity as the distance measure. We trained a set of 𝑚 
superclusters, 𝑐𝑖 ∈ 𝐶, 𝑖 ∈ {1, … , 𝑚}, where 𝑚  is the number 
of classes in the output 𝑦𝑖 ∈ 𝑌, 𝑖 ∈ {1, … , 𝑚}. 

 From these superclusters, we considered the individual 
words from the texts contained in each cluster. We created a 
list of keywords 𝑘𝑖 ∈ 𝐾 for each supercluster 𝑖 by extracting 
unique words from each cluster. Stop words such as place and 
street names were removed from the keyword lists. Formally, 

 

𝑘𝑖 ∈ 𝐾  ∧  𝑘𝑖 ∩ 𝑘𝑗 = ∅ 

𝑖, 𝑗 ∈ {1, … , 𝑚} ∧  𝑖 ≠ 𝑗 

(6) 

 The keywords were used as rules that associate a given 
transaction text with a given supercluster. For any given 
transaction text 𝑡, each word in the text 𝑤 ∈ 𝑡 was given the 
opportunity to vote for a supercluster 𝑐; we considered the 
keyword list for each supercluster; if a word 𝑤 appears in the 
keywords list 𝑘𝑖, the word voted for supercluster 𝑐𝑖. The votes 



 

 

for all words were tallied and the supercluster was selected 
through majority vote. If no supercluster was found, i.e. no 
words appear in the keyword list, a default supercluster 
representing the class “other” was selected. We used shallow 
decision trees to filter out those instances that did not belong 
to the homogeneous majority. This is similar to the approach 
in [12] and [13]; we intended to simplify the final explanation 
while simultaneously attaining improved accuracy compared 
to a single large classifier.  

E. Model Robustness against Evasion Attacks 

In order to test the robustness of the model, we subjected 
the model to a targeted evasion attack, leveraging the 
newfound knowledge about the model. A successful 
adversarial attack therefore suggests not only a vulnerability 
in the model, but also a working knowledge of the model by 
the attacker.  

The adversarial examples were generated by slightly 
perturbing existing instances, along the feature of highest 
importance, i.e. where the impact would be greatest. The 
perturbations therefore targeted the transaction text, 𝑋𝑡. The 
perturbed set of adversarial examples 𝑋𝑝𝑒𝑟𝑡 ∈ 𝑋 is therefore 

defined by: 

 

𝑥′ = {𝑥𝑡′, 𝑥𝑐 , 𝑥𝑑 , 𝑥𝑎 , 𝑥𝑔, 𝑥𝑑 , 𝑥𝑒} 

𝑥 ∈ 𝑋  ∧  𝑥′ ∈ 𝑋𝑝𝑒𝑟𝑡 

(7) 

Words from the texts were selected by matching the words 
with the keyword dictionary, 𝐾. If a word appeared in one of 
the keyword lists 𝑘𝑖 ∈ 𝐾, then that word was replaced by a 
word from another list 𝑘𝑗 ∈ 𝐾 , where 𝑖 ≠ 𝑗  ∧  𝑖, 𝑗 ∈
{1, … , 𝑚}. 

VI. RESULTS 

The labelled set of transactions was divided into training 
(80%), validation (10%) and test (10%) sets. The trained 
model achieved a mean accuracy of 98.2%, with a 95% 
confidence interval of 0.04% in 20 experiments. 

As a baseline to an explanation, we trained a decision tree 
and a random forest as surrogate models on data labelled by 
the DNN. The decision tree achieved an accuracy of 95.35% 
(95% confidence interval of 0.02%), while the random forest 
(with 50 estimators) achieved an accuracy of 96.2% (95% 
confidence interval of 0.02%). Both the single decision tree 
and the random forest had in excess of 50 000 nodes. Even 
though decision trees inherently explained the rules they have 
derived, they clearly do not provide interpretability in this 
instance.  

A. Feature Importance and Model Explanation 

The results from the SHAP feature importance evaluation 
are clear evidence of the model’s bias towards the text 
features. As seen in Fig. 1, the transaction text is largely 
responsible for the predictions. This is consistent with the 
importance of transaction text for the partial labelling of the 
original dataset.  

 

Fig. 1 The feature importance estimation by SHAP analysis shows that 
the transaction text is the most important feature for the transaction 

classification.  

Knowing that the text is the most important feature for 
model classification is not an adequate explanation of the 
functioning of the model. To determine how the model uses 
the text, we used its vector representation in a clustering 
analysis; we used DBSCAN with the distance parameter 𝜖 =
0.07. The intent was to train tight clusters. The result was a 
set of clusters with high homogeneity (95%) and a low 
percentage of noise (2%), with a total of 12 734 clusters. We 
then grouped the clusters using the labelled training data into 
𝑚 superclusters. Fig. 2 shows a 2-dimensional representation 
of the supercluster for transactions relating to alcohol. 

 

Fig. 2. Text vectors are clustered and grouped into superclusters. A 2-
dimensional projection of the supercluster “Alcohol” is shown with each of 

the clusters containing several instances from the training set. The angles of 
the clusters shown in this plot are equal to the angles in the word2vec text 

embedding dimension. 

Finally, we fit a small, interpretable decision tree to each 
supercluster with less than 100% homogeneity; the shallow 
decision tree provides the final separation and explanation. An 
example tree is shown in Fig. 3, for cluster number 10 relating 
to expenditure on kindergartens. 

In Fig. 3, the tree distinguishes between transactions 
relating to kindergarten and those relating to property 
management. The transaction code “014” is the most 
important feature in this classification, while the amount and 
day of week also play roles. In Fig. 4, we plot the feature 
importance for the decision tree shown in Fig. 3.  



 

 

 

Fig. 3 The decision tree for supercluster 10 (kindergarten) makes the final 

distinction between transactions relating to kindergarten and those relating to 
property management. This is one of many trees, each relating to a single 

supercluster and separating instances observed in that supercluster during 

training. 

Fig. 4 shows that the transaction code is the most important 
feature. This correlates well to our previous estimated of the 
overall and average feature importance in the original model 
(Fig. 1). The SHAP feature importance coincides with the 
feature importance observed in Fig. 4. 

 

Fig. 4 Each decision tree supplies a feature importance estimate. The 

feature importance is shown for the decision tree of supercluster 10 

(kindergarten). 

The additive SHAP values allowed us to identify the 
transaction text as the dominant feature for transaction 
classification. Among the remaining features, the shallow 
decision trees identified the transaction code as the feature that 
filters transaction from heterogeneous clusters of the 
word2vec text embedding. In the large decision tree, the words 
from the transaction text were scattered throughout the nodes. 
It remains to be seen whether this is a general property. 

We evaluated the fidelity of the explanations by 
comparing their prediction with those of the transaction model 
[20]. The explanation model made the same prediction as the 
transaction model for 98.3% of the labelled data (95% 
confidence interval of 0.1%).  

To evaluate the transaction model’s robustness to changes 
in the transaction text, we scored a perturbed dataset and found 
that the model prediction typically changed for 80% of 
transactions with a single word replaced. We then repeated the 
experiment with a new set of perturbed transactions, where we 
replaced more than one word; this typically resulted in 90% of 
the transactions being classified differently.  

VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 

In this paper, we introduced a transaction classification 
model which is the basis for future value adding products for 
banking customers, with the end goal of developing a digital 
financial advisor. It is thus imperative that the transaction 
classifier be implemented in accordance with two of the 
principles of responsible AI: explainability and robustness. 

We found that decision trees and random forests derived 
from the transaction model may offer explainability, but their 
complexity (> 50 000 nodes) limits their interpretability.  

We mitigated the complexity of the feature space by 
identifying the transaction text as salient. The text was then 
used to cluster the dataset, before fitting a small tree to each 
cluster where necessary. These decision trees offered 
improved interpretability as they were smaller and easier for 
a human to understand.  

Finally, we briefly investigated the robustness of the 
model by subjecting it to an evasion attack. The large 
influence observed for text perturbations correlates well with 
our SHAP analysis which suggests a large model dependence 
on the text. We find that the model is vulnerable to changes in 
the transaction text. However, since vendors seldomly change 
their formulas for generating transaction texts and companies 
seldomly change their names, the text is mostly an immutable 
property of the transactions.  This vulnerability is therefore 
deemed low risk for such transactions. In the case of bank 
transfer transactions where customers may enter free text, 
there could be risk of masking fraudulent or money laundering 
transactions. If the classifier was ever to be used to detect such 
transactions this would be a point to address. 
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