
2202 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

A Novel Strategy for Solving the Stochastic Point
Location Problem Using a Hierarchical

Searching Scheme
Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen, Fellow, IEEE, and Morten Goodwin

Abstract—Stochastic point location (SPL) deals with the prob-
lem of a learning mechanism (LM) determining the optimal
point on the line when the only input it receives are stochastic
signals about the direction in which it should move. One can
differentiate the SPL from the traditional class of optimization
problems by the fact that the former considers the case where
the directional information, for example, as inferred from an
Oracle (which possibly computes the derivatives), suffices to
achieve the optimization—without actually explicitly computing
any derivatives. The SPL can be described in terms of a LM
(algorithm) attempting to locate a point on a line. The LM
interacts with a random environment which essentially informs it,
possibly erroneously, if the unknown parameter is on the left or
the right of a given point. Given a current estimate of the optimal
solution, all the reported solutions to this problem effectively
move along the line to yield updated estimates which are in
the neighborhood of the current solution.1 This paper proposes
a dramatically distinct strategy, namely, that of partitioning the
line in a hierarchical tree-like manner, and of moving to relatively
distant points, as characterized by those along the path of the
tree. We are thus attempting to merge the rich fields of stochastic
optimization and data structures. Indeed, as in the original
discretized solution to the SPL, in one sense, our solution utilizes
the concept of discretization and operates a uni-dimensional
controlled random walk (RW) in the discretized space, to locate
the unknown parameter. However, by moving to nonneighbor
points in the space, our newly proposed hierarchical stochastic
searching on the line (HSSL) solution performs such a controlled
RW on the discretized space structured on a superimposed
binary tree. We demonstrate that the HSSL solution is orders

Manuscript received April 17, 2013; revised October 17, 2013; accepted
December 28, 2013. Date of publication February 17, 2014; date of current
version October 13, 2014. The work of B. J. Oommen was supported by the
Natural Sciences and Engineering Research Council of Canada. A preliminary
version of this paper was presented at IEAAIE’12, the 2012 International
Conference on Industrial and Engineering Applications of Artificial Intel-
ligence and Expert Systems, Dalian, China, in June 2012. This paper was
recommended by Associate Editor S. Hu.

A. Yazidi is with the Department of Computer Science, Oslo and Ak-
ershus University College, Oslo 0167, Norway and earlier he was with
Teknova AS, Sorlandet Kunnskapspark, Kristiansand 4630, Norway (e-mail:
Anis.Yazidi@hioa.no).

O.-C. Granmo and M. Goodwin are with the Department of ICT, Uni-
versity of Agder, Grimstad 4630, Norway (e-mail: ole.granmo@uia.no;
morten.goodwin@uia.no).

B. J. Oommen is with the School of Computer Science, Carleton University,
Ottawa, ON K1S 5B6, Canada and also with the University of Agder,
Grimstad 4630, Norway (e-mail: oommen@scs.carleton.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2303712
1As we shall see later, hierarchical solutions have been proposed in the field

of LA.

of magnitude faster than the original SPL solution proposed
by Oommen. By a rigorous analysis, the HSSL is shown to be
optimal if the effectiveness (or credibility) of the environment,
given by p, is greater than the golden ratio conjugate. The
solution has been both analytically solved and simulated, and
the results obtained are extremely fascinating, as this is the first
reported use of time reversibility in the analysis of stochastic
learning. The learning automata extensions of the scheme are
currently being investigated.

Index Terms—Controlled random walk, discretized learning,
learning automata, stochastic-point problem, time reversibility.

I. Introduction

IN its most general form, any optimization problem can be
characterized as being one which searches for a parameter

(or a point in the appropriate space) which minimizes or
maximizes a criterion function. If one considers the parameter
that is sought for, as a point on the line, for example, we can
model this problem as the so called stochastic point location
(SPL) problem. This paper deals with a general solution to the
SPL problem. However, as opposed to the existing solutions
to the SPL problem, we resolve it by proposing a merging of
two completely disjoint fields in computer science, those of
directional stochastic optimization2 and data structures.

1) The SPL problem: We can formally elucidate the SPL
as follows. Consider the problem of a robot [algorithm,
learning mechanism (LM)] moving along the real line
attempting to locate a particular point λ∗. To assist
the mechanism, we assume that it can communicate
with an environment (Oracle), which guides it with
information regarding the direction in which it should
go. If the environment is deterministic, the problem
is the deterministic point location problem, which has
been studied rather thoroughly. In its pioneering version,
Baeza-Yates et al. [6] presented the problem in a setting
such that the environment could charge the robot a
cost that is proportional to the distance it is from
the point sought for. The question of having multiple
communicating robots locate a point on the line has also
been studied by Baeza-Yates et al. [6], [7]. Of course,
vector-based versions of this problem lead to solutions

2Although hierarchical strategies have been earlier used in the field of
learning automata (LA) [3]–[5], [12], [28], [30], [45], [55], they have not
been used to resolve the SPL problem.

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2203

of the corresponding multidimensional optimization
problems.

2) Optimization and the SPL problem:3 While it is true that
we and a few others [16] have referred to this problem
as the SPL problem, the fact is that, essentially, every
optimization problem deals with locating the optimal
point within the domain of interest. Age-old techniques
resort to moving toward the optimal point by using
the first derivative of the criterion function, and where
these updates are, for example, either proportional to
the derivative(s) or involve the second derivative(s). In a
related manner, the SPL is also associated to the field of
learning automata (LA) in which the action space has an
infinite number of actions [52]. In this case, one would
not resort to invoking the derivatives of the criterion,
but rather to sampling the action space and moving
appropriately within the space. It is, however, one of
the authors of this paper (Oommen) who coined SPL
to distinguish it from the traditional class of optimiza-
tion problems which explicitly looks at the derivatives.
Rather, he considered the case where the directional
information provided by an alternate source, for ex-
ample, as inferred from the derivative, could suffice
to achieve the optimization—without actually explicitly
computing the first and higher-order derivatives. This is
what distinguishes the SPL from the traditional class
of optimization and LA problems. We should, however,
emphasize that all the well known traditional methods
could, just as well, be used to solve the SPL problem if
the derivatives/gradients are available or if they can be
inferred/approximated. Rather, we have chosen to not
resort to the latter schemes because applying them in
modern-day research does not involve either novelty or
scientific risk.
It is extremely pertinent and interesting to mention that
the SPL, almost exactly as it is described by us and
in [19], has been precisely the model used in selecting
doses in clinical practice and experiments. The problem
has been referred to as “The Design of Up and Down
Clinical Trials” and is cited in [19]. The model is
essentially the same as ours except that the solution
scheme allows the algorithm to also stay at the same
state at the next time instant. One should also observe
that the proof and the concepts are almost the same as
in the first proposed solution to the SPL [36]. It should
also be mentioned that Kpamegan and Flournoy [19]
suggest that the problem can be solved, as alluded to
earlier, using stochastic optimization methods.

3) Relationship between the SPL and LA: The field of
LA [13], [20], [29], [31], [34], [49], [56] deals with a
learning machine attempting to learn the optimal action
from a finite set of actions. LA, indeed, constitute the
foundational basis for the field of reinforcement learn-
ing. It is pertinent to emphasize that the SPL problem
generalizes the LA learning paradigm for the case when

3We are thankful to two anonymous referees who requested this
clarification—to primarily distinguish between these two families of problems.

the optimal action can be an element from an infinite
set.4 More specifically, unlike the traditional LA model
in which the LA attempts to learn the optimal action
offered by the environment, we consider the following
learning problem: the LM is trying to locate an unknown
point on a real interval (and not just an optimal action
from a set of actions) by interacting with the stochastic
environment through a series of informed guesses. Thus
the SPL problem, like the fundamental LA problem, is
of importance in its own right, and also on the merit of
the potential that it has in all LA-based applications.

4) The SPL and meta-learning: Before we proceed, it is
pertinent to mention that the SPL can be considered to be
a meta-learning algorithm in and of itself. Optimization
algorithms, such as those alluded to above, typically,
have a key meta-parameter that determines the conver-
gence of the algorithm to the optimum. The choice of
the value for this meta-parameter is therefore critical to
the algorithm. In many cases, the meta-parameter of the
scheme is related to the second derivative of the criterion
function, which results in a technique analogous to a
Newton’s root solving scheme. The disadvantages of
the latter are well known; if the starting point of the
algorithm is not well chosen, the scheme can diverge;
in addition, if the second derivative is small, the scheme
is ill defined. Finally, such a scheme requires the addi-
tional computation involved in evaluating the (matrix of)
second derivatives [47], [50], [59]. The application of the
SPL to learn such a meta-parameter is straightforward.

5) Applications of the SPL: LA have been utilized in many
real-life applications including power management in
smart grids [27], distributed channel selection [60], solv-
ing the minimum weight connected dominating set [58],
multiclass classification [1], power control [62], service
selection [61], solving a large class of wireless networks
related problems [33], a general class of stochastic
decentralized games [57], adaptive control of antennas
in wireless push networks [32], and in optimal sensor
placement [8]. Without belaboring the point, the reader
will see that in the light of the above, the SPL has appli-
cations in all these areas where LA have been utilized.

Apart from the LA-based applications, in the optimization
scenario alluded to above, although the optimal point is reck-
oned to be unknown, one usually assumes the existence of an
indicator as to the (approximate) value of the criterion function
for any specified value of the parameter. Thus, the SPL has
potential in all such optimization scenarios. Applications of
such optimization methods (which are, really, all-pervasive)
include the domains of image processing [46], pattern recog-
nition [11], neural computing [14], economics [48], robotics
[53], optimal control [10] and trajectory planning [22].

Apart from the above generic applications, the SPL has
actually been specifically utilized in real-life problems that
have to do with the processing of text in word-of-mouth

4We should observe, though, that LA interacting with environments offering
an infinite set of actions have also been studied [52]. However, the model of
the response given by the environment in [52] is distinct from the model used
here.

2204 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

services, and in multidimensional scaling [37]. Indeed, without
making much ado, we briefly state that if one had not
invoked an SPL-based solution, the latter would have been a
computationally infeasible problem. One should also observe
that the problem of tracking changes in a time-varying system,
which we have investigated here using the SPL solution, is also
closely related to estimation in nonstationary environments.
This problem has also been studied for decades, and even
more recently for web-based applications [15].

Finally, as stated above, the SPL in its virgin form, has been
precisely the model used in selecting doses in clinical practice
and experiments to resolve the problem of designing up and
down clinical trials [19].

II. Prior Art and Existing SPL Solutions

To place our work in the right perspective, we start this
section by providing a brief review of the main concepts of
the SPL problem as first introduced in [36]. We assume that
there is a LM whose task is to determine the optimal value of
some variable (or parameter), λ. We assume that there is an
optimal choice for λ—an unknown value, say λ∗ ∈ [0, 1).
The question which we study here is that of learning λ∗.
Although the mechanism does not know the value of λ∗, we
assume that it has responses from an intelligent environment,
�, which is capable of informing it whether any value of λ is
too small or too big. To render the problem both meaningful
and distinct from its deterministic version, we would like to
emphasize that the response from this environment is assumed
faulty. Thus, � may tell us to increase λ when it should be
decreased, and vice versa. However, to render the problem
tangible, in [36] the probability of receiving an intelligent
response was assumed to be p > 0.5, in which case � was
said to be informative. Note that the quantity p reflects on the
effectiveness of the environment. Thus, whenever the current
λ < λ∗, the environment correctly suggests that we increase
λ with probability p. It simultaneously could have incorrectly
recommended that we decrease λ with probability (1−p). The
converse is true for λ ≥ λ∗.

The precursor to the SPL was the work of Bentley and
Yao [9], who worked with the deterministic version of point
location (i.e., where the environment provided fault-free direc-
tional responses) by superimposing the search problem onto a
binary tree. The reader must observe that the SPL is far more
complex than its deterministic version, because any algorithm
which works with the latter could be led completely astray if
the responses from the Oracle are stochastic.

A. State-of-the-Art

We can summarize the existing SPL-related literature as
follows.

1) Oommen [36] pioneered the study of the SPL when
he proposed and analyzed an algorithm that operates
on a discretized search space5 while interacting with

5Some of the existing results about discretized automata are found in
[2], [21], [35], [38], [40], [43], [54]. Indeed, the fastest reported LAs are
the discretized pursuit and maximum likelihood and Bayesian estimator
algorithms [2], [40], [43].

an informative environment (i.e., p > 0.5). The search
space is first sliced into N sub-intervals at the positions
{0, 1

N
, 2

N
, . . . , N−1

N
, 1}, where a larger value of N will

ultimately imply a more accurate convergence to λ∗.
The algorithm then did a controlled random walk on
this space by obediently following the environment’s
advice in the discretized space. In spite of the Oracle’s
erroneous feedback, this discretized solution was proven
to be ε-optimal.

2) In the field of LA, Santharam et al. [52] presented an
alternative nondiscretized solution to find the optimal
action from an infinite number of actions in a continuous
space. But the results presented in [52] are not directly
applicable to the SPL.

3) An novel alternate parallel strategy6 that combined LA
and pruning was used in [41] to solve the SPL. By
utilizing the response from �, Oommen and Raghunath
[41] partitioned the interval of search into three disjoint
subintervals, eliminating at least one of the subintervals
from further search, and by recursively searching the
remaining interval(s) until the search interval was at
least as small as the required resolution. This paper
was subsequently enhanced in [42], where the authors
introduced the Continuous Point Location with Adaptive
d-ARY Search (CPL-AdS), which was another more
efficient ε-optimal scheme. Huang and Jiang [16] pro-
posed a rather straightforward modification of the latter
CPL-AdS to also track changes in λ∗. Indeed, to achieve
the latter, Huang and Jiang [16] proposed to perform an
additional parallel d-ARY search at each epoch on the
original search interval.7 However, more importantly, the
interesting facet of the solution presented in [42] is that
it converges with an arbitrarily high accuracy even if the
Oracle is a stochastic compulsive liar who is attempting
to stochastically deceive the LM.

4) Oommen et al. [39] reported the first known solution to
the SPL for a new model of nonstationarity referred to
as metalevel nonstationarity. The question of analyzing
our present HSSL scheme for the latter scenario is an
open problem.

5) The use of a hierarchical mechanism to traverse the
action space was earlier described in [3]–[5], [12], [28],
[30], [45], [55]. Our hierarchical strategy is distinct from
all of these, as is the modus operandus of the analysis,
i.e., the time reversibility of the Markov chain.

III. Time Reversible Markov Chains

A fundamental contribution of this paper is the analysis
of stochastic learning systems using the concepts of time
reversibility. Since this is crucial to this paper, this phe-
nomenon is briefly surveyed here. However, in order to fully
comprehend this contribution, it is necessary for the reader

6Put in a nutshell, in this paper, we aim to design a novel sequential (as
opposed to parallel) hierarchical SPL solution.

7It was shown in [16] that the strategy can only track λ∗ under certain
conditions relative to the frequency of change in λ∗ and the length of an
epoch.

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2205

to understand the mathematical tools used in the prior art, as
opposed to those which we propose.

A. Prior and New Mathematical Tools Used

1) Mathematical tools used in the prior art: The informed
reader will observe that all the existing algorithms in
stochastic learning and LA work with the concept of
small-step processes. The reason for this is the most
difficult part in the design and analysis of LA con-
sists of the formal proofs of their convergence accu-
racies. The mathematical techniques used for the vari-
ous families [fixed structure (FSSA), variable structure
(VSSA), discretized, etc.] are quite distinct. The proof
methodology for the family of FSSA is the simplest.
It quite simply involves formulating the Markov chain
for the LA, computing its equilibrium (or steady state)
probabilities, and then computing the asymptotic action
selection probabilities. In almost all these cases (except
for the rare exception of the Krinsky LA), the state
transitions are to neighboring states only. The proofs of
convergence for VSSA are more complex and involve
the theory of distance diminishing operators, and the
theory of regular functions, all of which are effective
by virtue of the small-step Markov processes involved.
In other words, the LA must move from a point in the
probability space to a point in its neighborhood for the
convergence to be true. The proofs for discretized LA
involve the asymptotic analysis of the Markov chain that
represents the LA in the discretized space, whence the
total probability of convergence to the various actions
is evaluated. But in this case too, the discretized LA
would move to a neighbor state so that the analysis of
the Markov chain is feasible. This condition of moving
to points close enough to the current probability vector
is also true for the convergence of the family of the so
called estimator algorithms.

2) Novel mathematical tools used: In this paper, we are at-
tempting a completely new learning philosophy. When-
ever we move within the probability space, we will
choose to move to a point that could be significantly
distant from the current point. This could, of course,
imply huge perturbations of the present solution. But
the amazing aspect of this is that since these large
perturbations are done in a controlled manner, one
can still obtain asymptotically-optimal convergence. The
really fascinating issue here is that the convergence is,
indeed, an order of magnitude faster than what one
would obtain using a small-step paradigm. The reason
for this enhanced speed is probably because of the
fact that by making huge perturbations, the LM is able
to quickly explore unexplored areas of the probability
space, and discard the less crucial areas of the space
without wasting too much time on them, thus resolving
the exploitation versus exploration paradox.

From this perspective, this paper attempts to extend the
horizon of methods that can be used to analyze LA. Indeed,
this is the first reported use of time reversibility in the analysis
of stochastic learning. The LA extensions of the scheme

are currently being investigated, and we believe, hold vast
potential.

The question of interest is really one of knowing how
these huge perturbations are to be made. If these are done
in an uncontrolled manner, it could lead to nothing more
than a Monte-Carlo-type random sampling algorithm. But
we advocate making these large perturbations based on an
intelligent partitioning of the probability space by mapping
it onto a binary tree. We motivate this by stating that we
shall devise a counterpart tree-based search technique to solve
the SPL problem. The rationale of the solution is to take
advantage of the tree structure of the search space in order
to enhance the search speed. This would enable the LM to
quickly explore the search space and hopefully, focus its
visits on the region that contains λ∗. More philosophically, we
resolve this within the SPL framework by proposing a merging
of two completely disjoint fields in computer science—those
of stochastic optimization and data structures.

B. Time Reversibility

Certain specific Markov chains have the property that the
process behaves in just the same way regardless of whether
time is measured forward or backward. Kelly [18] made an
analogy saying that if we take a film of such a process and then
run the film backward, the resulting process will be statistically
indistinguishable from the original process. This property is
described formally in the following definition.

Definition 1: A stochastic process X(t) is time reversible if
a sequence of states (X(t1), X(t2), . . . , X(tn)) has the same dis-
tribution as the reversed sequence (X(tn), X(tn−1), . . . , X(t1))
for all t1, t2, . . . , tn. �

Consider a stationary Ergodic Markov chain (that is,
a Markov chain that has been in operation for a long
time) having transition probabilities Mst and stationary prob-
abilities P {πs}. Suppose that starting at some time we
trace the sequence of states going backward in time. That
is, starting at time t, consider the sequence of states
Xt, Xt−1, Xt−2, . . . X0, It turns out that this sequence of
states is itself a Markov chain with transition probabilities
Qst = (P{πt}/P{πs}) ∗ Mts. If Qst = Mst for all s, t, then
the Markov chain is said to be time reversible. Note that the
condition for time reversibility, namely, Qst = Mst, can also
be expressed as

P {πs} Mst = P {πt} Mts for all s �= t . (1)

The condition in the above equation can be stated as follows.
For all states s and t, the rate at which the process goes from
s to t (namely P{πs} Mst) is equal to the rate at which the
process goes from t to s (namely, P{πt} Mts). It is worth
noting that this is an obvious necessary condition for time
reversibility since a transition from s to t going backward in
time is equivalent to a transition from t to s going forward in
time. Thus, if πm = s and πm−1 = t, then a transition from s

to t is observed if we are looking backward in time, and one
from t to s is observed if we are looking forward in time.

The following theorem adapted from Ross and used univer-
sally [17], [18], [51] gives the necessary/sufficient condition

2206 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

for a finite ergodic Markov chain to be time reversible. Its
proof is found in [51, p. 143].

Theorem 1: A finite ergodic Markov chain for which
Mst = 0 whenever Mts = 0 is time reversible if and only if
starting in state s, any path back to s has the same probability
as the reversed path. That is, if

Ms,s1 Ms1,s2 . . . Msk,s = Ms,sk
Msk,sk−1 . . . Ms1,s

for all states s, s1, . . . , sk.

�

Using the above theorem, we state the result that any tree
structure associated with a finite stationary Markov process is
time reversible. This follows from the avenue that a Markov
chain resulting from the transition operations on any tree
structure is time reversible. In fact, this result is not totally
new. Kelly [18, p. 9] proved the following lemma. Although
the lemma and its proof are fairly deep, one can get an
intuitive sense for why it is true by observing that the shortest
path between the nodes of a tree (say from A to B and
from B to A) pass through a common ancestor, rendering
the process of moving from A to B and from B to A time
reversible.

Lemma 1: (Adapted from Kelly [18].) If the graph G as-
sociated with a stationary Markov process is a tree, then the
process is time reversible. �

Although Kelly reported this result, he did not demonstrate
how to associate a tree with a stationary Markov chain.
In this paper, we shall give a formal definition for one
such tree structure by organizing the points on the line
along a tree, and prove the corresponding theorem regarding
its time reversibility. The application of time reversibility
in the domain of self-organizing lists has been reported
elsewhere [44].

IV. Solution: Merging Field of Binary

Search and SPL

In our proposed solution, the space of the search is arranged
in the form of a binary tree with depth D = log2 (N),
where N is the resolution of the algorithm. The LM searches
for the optimal value λ∗ by orchestrating a controlled RW
on a tree.

A. Definitions

Construction of Hierarchy. Let � = [σ, γ) be the current
search interval containing λ∗ whose left and right (smaller and
greater) boundaries on the real line are σ and γ , respectively.
Without loss of generality we assume that σ = 0 and γ = 1.
The search space is constructed as follows: First of all, the
hierarchy is organized as a complete binary tree with maximal
depth D. To each node in the hierarchy we associate an
interval. For convenience, we will use the same notation as
in [12] and index the nodes using both their depth in the tree
and their relative order with respect to the nodes located at
the same the depth.

Root Node. The hierarchy root (at depth 0), which we call
S{0,1}, is assigned the interval � = �{0,1} = [0, 1). This interval

is partitioned into two disjoint equi-sized8 intervals �{1,1} and
�{1,2}, such that �1,1 = [0, 1/2) and �1,2 = [1/2, 1). Note that
1/2 = mid(�{0,1}), where mid(�{0,1}) denotes the midpoint of
�{0,1}. We shall simultaneously use the notation9 and refer to
the interval �{1,1} as the Left Child of the root and to �{1,2}
as its Right Child.

Nodes at Depth d. Node j ∈ {1, ..., 2d} at depth d,
called S{d,j}, where 0 < d < D, is assigned the interval
�{d,j} = [σ{d,j}, γ{d,j}) which is partitioned into two disjoint
equi-sized intervals �{d+1,2j−1} and �{d+1,2j}. Following the
same previously alluded to nomenclature, �{d+1,2j−1} is the
Left Child of �{d,j} and �{d+1,2j} is its Right Child.

Nodes at Depth D. At depth D, which represents the
maximal depth of the tree, the nodes do not have children.
In fact, when the search interval is at least as small as
the required resolution of estimation, we cannot perform
additional partitioning. Observe that by virtue of the equi-
partitioning property, for a given node j at depth d attached to
the respective interval �{d,j}, we can deduce the values of the
left and right boundaries of the interval: σ{d,j} = (j − 1)(1

2)d

and γd,j = j(1
2)d , for j ∈ {1, ..., 2d} where 0 ≤ d ≤ D.

Convention Regarding the Root’s Notation. Since a level
of value “−1” is nonexistent, we use a boundary notation and
denote the Parent of �{0,1} to be �{0,1} itself. The same applies
to the root node. In other words, Parent(�{0,1})=�{0,1}.

Convention Regarding the Leaves’ Notation. In a same vein,
since level D + 1 is nonexistent, we use the convention that
Right Child of a leaf node is the same as the leaf node in
question itself. Similarly, the Left Child of a leaf node is the
leaf node itself. Formally, we say that

Left Child (S{D,j}) = Right Child(S{D,j}) = S{D,j}
for j ∈ {1, ..., 2D}.

Target Node. We define the target node as the leaf node
whose associated interval contains λ∗.

Nontarget Node. These are the leaf nodes whose correspond-
ing assigned intervals do not contain λ∗.

Resolution. We refer to the scheme’s resolution to denote
the number of leaf nodes that the scheme has, i.e, N = 2D.
Whenever the learner is at a certain node in the tree, we
propose to use the mid-point of the interval itself as an estimate
of the unknown λ∗. By virtue of the equi-partitioning of the
intervals at each level of the tree, whenever the LM is at a node
of a certain depth d in the tree, the estimate of λ∗ will take a
discretized value that is a multiple of (1

2)d+1. More precisely,
whenever the LM is at a leaf node, the estimate of λ∗ will take
a discretized value among the following N discretized values:

{mid(�{D,1}), mid(�{D,2}), . . . , mid(�{D,N}}

=

{(
1

2

)D+1

,3

(
1

2

)D+1

,5

(
1

2

)D+1

, . . ., (2N − 1)

(
1

2

)D+1
}

.

8The equi-partitioning is really not a restriction. This can be easily gener-
alized.

9For the rest of the paper, to prevent confusion, since the intervals and their
values are interchangeable, we refer to Parent, Left Child, and Right Child
of an interval �{i,j} as the interval associated to the respective Parent, Left
Child, and Right Child of the node S{i,j}, respectively.

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2207

Using some simple algebraic manipulations, these dis-
cretized values can be expressed as{

1

N
− δN,

2

N
− δN,

3

N
− δN, . . . ,

N − 1

N
− δN,

N

N
− δN

}
where

δN =
1

2N
.

The reader must note that, at the leaf nodes, the possible
values that the estimate of λ∗ can take are equi-spaced with a
fixed step size 1

N
. He will thus see that such a discretization

is distinct from the discretization used in discretized LA and
in the original SPL solution [36] since the values 0 and 1 are
not included.

The same explanation applies at intermediate nodes at any
level d; in such cases our estimate of λ∗ is also a discretized
value but from a different set of Nd = 2d discretized possible
values. Thus, whenever LM is at a certain node of depth d

where 0 ≤ d ≤ D, the estimate of λ∗ will take a discretized
value from among the Nd following discretized values:{

mid(�{d,1}), mid(�{d,2}), . . . , mid(�{d,Nd }
}

=

{
1

Nd

−δNd
,

2

Nd

−δNd
,

3

Nd

−δNd
, . . . ,

Nd−1

Nd

−δNd
,
Nd

Nd

−δNd

}
where

δNd
=

1

2Nd

.

The reader should note that the term resolution itself is rel-
ative. It becomes finer at deeper levels of the tree’s hierarchy.

B. Structure of Search Space and Responses from �

We intend to organize the search space in the form of
a complete binary tree, where each node corresponds to an
interval range. Initially, and at every step, we guess the
midpoint of the given interval to be our estimate of the
unknown λ∗. The LM searches for the optimal value λ∗ by
operating a random walk on the tree, moving from one tree
node to another.

As shown in Fig. 1, where the unit interval is partitioned into
eight subintervals, each node in the tree is associated with an
interval; e.g., the root is associated with the interval [0, 1). This
interval is partitioned into two disjoint equi-sized intervals.
In this setting, the left child of the root is associated with
[0, 1/2), the right child with [1/2, 1), and so on. As alluded
to previously, we use as an estimate of the unknown λ∗, the
middle point of the interval associated with the node where
the LM resides.

At any given time instance, the LM finds itself at a node
S{d,j} in the tree, where j ∈ {1, . . . , 2d} and 0 ≤ d ≤ D.
It then attempts to infer the next promising search interval
that is likely to contain λ∗ by making a sequence of informed
guesses. Observe though that for each guess, the environment
� (Oracle) essentially informs the LM, possibly erroneously
(i.e., with probability p), which way it should move to reach
the unknown point. Let �{d,j} be the interval that is associated
with the node where the LM resides at the current time
instant. The informed guesses correspond to a sampling at

the boundary points of the interval �{d,j}, and at the midpoint
of the interval: mid(�{d,j}).

In this sense, the set of sampled points is expressed as a
vector −→x = [x1, x2, x3], where

x1=σ{d,j} = (j − 1)

(
1

2

)d

, x2=mid(�{d,j}) = (2j − 1)

(
1

2

)d+1

and x3 = γ{d,j} = j

(
1

2

)d

.

The corresponding response of the environment � can be
formulated as a tuple

−→

 = [
1,
2,
3].

k, for k ∈ {1, 2, 3}, is a random variable that can take either
the value Left or Right. We will use L to imply a region to
the Left of the respective sampled point, and R to imply a
point to the Right of the respective sampled point. Since the
environment � is assumed faulty, we suppose that it suggests
the correct direction with a probability p. Therefore,
k, for
k ∈ {1, 2, 3} can be formally defined based to whether λ∗ is
larger than or smaller than xk .

If λ∗ < xk

k =

{
L with probability p

R with probability (1 − p).

If λ∗ ≥ xk

k =

{
L with probability (1 − p)

R with probability p.

Therefore, considering the three distinct sampling positions,
the environment � responds with one of the 23 possible
results: {[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L,
L], [R, L, R], [R, R, L], [R, R, R]}.

Remark 1: As in [41], the environment’s feedback
−→

 =

[
1,
2,
3] will be reckoned to be inconsistent if
1)
i = Left and
j = Right where i < j. In other

words, the environment contradicts itself by suggesting
that λ∗ is less than xi while being bigger than xj . Since
xi < xj for i < j, by virtue of the construction of
the partitioning, the feedback should, indeed, be deemed
to be inconsistent since there is no real number λ∗

that simultaneously satisfies the pair of contradictory
inequalities, namely, λ∗ ≤ xi < xj and at the same time
xi < xj ≤ λ∗.

Therefore, [L, R, R], [L, L, R], [R, L, R], and [L, R, L] are
considered inconsistent.

C. Mapping Responses to Transitions

The estimated value for λ∗ is the midpoint of the interval
associated with the current node in which the LM resides.
The crucial issue that we address in this section is that of
determining how to change our current guess λ of the unknown
λ∗ based on the faulty nature of the response from the Oracle.
From this perspective, we seek a procedure that decides the
next LMs search interval, which ultimately boils downs to
designing a set of rules that control the LMs moves in such
a way that it advances toward the next promising node in the
tree (i.e., the one associated with an interval that is likely to
contain the unknown λ∗).

2208 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

Fig. 1. Search space is organized as a tree. Each node S{i,j} in the tree is associated with an interval �{i,j} = [σ{i,j}, γ{i,j}). This interval is sampled at σ{i,j},
γ{i,j}, and mid(�{i,j}), producing one of the eight possible responses: {[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L, L], [R, L, R], [R, R, L], [R, R, R]}.

TABLE I

Decision Table to Choose the Next Search Interval Based on

the Response Vector [
1,
2,
3], When the Current Search

Interval Is �{i,j}

Based on these responses, we propose that the LM move
to another (nonneighbor) node, either to the current node’s
parent, or to one of its children (Left Child/Right Child). The
rules for moving in the tree are summarized in Table I.

The reader should observe that we are explicitly making use
of the Oracle’s feedback in Table I—even if it is inconsistent.
The reason why we have opted to include the inconsistent
feedback in the table is to remain consistent with the original
SPL algorithm by allowing movements at each time instant
in the search space and suppressing self loops in intermediate
nodes at the next time instant. In fact, in the original SPL
solution, the LM always makes a step (forward or backward)
and never stays at an intermediate node. The same design
principles were applied for the HSSL where the LM moves
to explore another node in the tree even when the feedback is
inconsistent.10

10At this juncture, we should mention that we foresee a strong analogy
between deciphering the faulty responses of the Oracle and the theory of
error-correcting codes [26], where, in the latter field, the possible transmitted
message is inferred from its noisy version by analyzing/comparing it with
a set of codewords [26]. A transmission error is detected if the received
message does not match any codeword. Such a study, which incorporates
error-correcting Codes into the HSSL, is beyond the scope of this paper. It is
currently being investigated.

We also mention, in passing, that preliminary analytical and
empirical results are available for the case when the LM only
makes use of the Oracle’s consistent feedback and ignores
inconsistent feedback. However, in the interest of brevity, these
results are not included in this paper.

Notice that although the above transition rules catalogued in
Table I are deterministic, because the environment is assumed
faulty, the state transitions of the underlying Markov chain
are stochastic. Further, observe that we propose two types of
random walk transitions in the tree.

1) Reverse transitions: Transitions of this type correspond
to a movement to a lower level in the hierarchy. This
happens when the LM moves to the immediate Parent,
implying a larger search interval, which, in turn, allows
the LM to escape from getting trapped in a wrong
subtree, i.e., one not containing λ∗.

2) Top-down transitions: Transitions of this type corre-
spond to a movement to a deeper level in the hierarchy.
Whenever the LM performs a transition to a deeper level
in the hierarchy by choosing a Child node, the search
space shrinks, and will, hopefully, concentrate on one of
the contiguous intervals at the next level of the tree that
contains λ∗.

The overall scheme is given in Algorithm 1 titled Algorithm
HSSL.

Observe that the algorithm does not have an explicit
terminating condition because being ergodic, it effectively
Repeats ForEver. This is because, while the algorithm aims
at converging to the optimal value of λ∗ if the environment
is stationary, it must also possess the ability to migrate from
the point it has converged to and move toward a new value
of λ∗ if the environment is nonstationary. We also observe
that when one examines the algorithm, one sees that we can

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2209

Algorithm 1 Algorithm HSSL

Input: N = 2D scheme resolution, p .
Output: λ(n): time dependent estimate of λ∗

Begin Algorithm HSSL
1: � = [σ, γ) /*Initial Search Interval*/
2: CurrentSearchInterval = �

3: for Every time instant n do
4: λ(n) = mid(CurrentSearchInterval)
5: Get σ, γ: the boundary points of CurrentSearch

Interval

6:
−→

 = [
1,
2,
3] – Responses to the sampled points
[σ, mid(CurrentSearchInterval), γ].

7: CurrentSearchInterval=NextSearchInterval(CurrentSear
chInterval,

−→

)

/*Apply the Decision Table I to recursively choose the
next search Interval*/

8: end for
End Algorithm HSSL

Procedure NextSearchInterval(SearchInterval,−→
)
Input: SearchInterval,

−→

 : Corresponding vector of re-

sponses from the environment.
Output: The new search interval to be processed.
Begin Procedure NextSearchInterval

1: Implement the Decision Table: Table I.
End Procedure NextSearchInterval

guarantee convergence to the desired resolution whenever we
reach a leaf node. However, the scheme does converge at every
non-leaf node too, albeit to a coarser resolution, namely to the
resolution dictated by the subtree rooted at that particular node.

This concludes the description of our learning algorithm.
We now investigate its convergence properties.

D. Analysis of Solution

In this section, we shall prove that the HSSL solution
is asymptotically optimal. We shall show that, eventually,
based on an informed series of guesses, the LM will be able
to concentrate its moves within nodes in the tree that are
associated with small intervals containing the optimal value
λ∗, and that this will be true if p is larger than the conjugate
of the golden ratio.11

With regard to the proof, we submit the following remarks
regarding the transition probabilities and the condition of
optimality.

1) The Golden Ratio: We denote by � the quantity de-
scribed as the conjugate of the golden ratio, [24], where
� =

√
5−1
2 ≈ 0.61803. We emphasize that the fact

that the optimality condition involves � is not really a
limitation. To clarify this, suppose that the environment
is informative, but its effectiveness p is less than �.
The constraint that p is less than � can be countered
by applying a majority voting algorithm. If p is known
to the LM, this reduces to determining the minimum

11Throughout this section, we shall use that notation that q = 1 − p.

number of queries that one has to ask of the Oracle to
ensure that the probability that the majority of responses
being correct is larger than �. It should be obvious to
the reader that a similar reasoning can be applied if p is
unknown to the LM, and we only know a lower bound
pmin of p such that pmin > 0.5. We will not elaborate
on these ideas here.
It is also worth noting that the golden ratio and its
conjugate are encountered in nature as well, as in many
other mathematical and art-related problems [24].

2) The Transition Probabilities: Before we proceed, it is
necessary for us to obtain the transition probabilities
of the underlying Markov chain. We have to do this
for every single transition, and this is, indeed, a rather
laborious process. But to demonstrate how this is done,
we shall show how they can be derived for a specific
node in the tree. The transitions for the rest of the nodes
will be merely written down and the underlying algebra
will be omitted in the interest of avoiding repetition.

We denote
∗ to be the correct response obtained from
a nonfaulty environment (i.e., an environment for which
p = 1). We now consider the case displayed in in the example
illustrated in Fig. 2, where node S{3,7} is the target node. Thus,
in this particular example, λ∗ ∈ [6/8, 7/8). Consider now the
transitions at node S{1,2}. Its associated interval, [1/2, 1), is
sampled at the points −→x = [1, 3/4, 1]. Taking into account
that λ∗ ∈ [6/8, 7/8), one can easily see that
∗ = [R, R, L].

We now apply the rules for moving within the tree as
summarized in Table I. Using these we will be able to derive
the transition probabilities for moving to the parent node, right
child node and left child nodes, respectively

p{1,2},{0,1} = Pr(
 = [R, R, R] ∨ [L, R, R] ∨ [L, L, R]

∨[L, L, L]|
∗ = [R, R, L])

= Pr(
 = [R, R, R]|
∗ = [R, R, L]) + Pr(

= [L, R, R]|
∗ = [R, R, L])

+Pr(
 = [L, L, R]|
∗ = [R, R, L]) + Pr(

= [L, L, L]|
∗ = [R, R, L])

= p2q + q2p + q3 + pq2 = pq(p + q)

+q2(p + q) = pq + q2

= q(p + q) = q

p{1,2},{2,4} = Pr(
 = [R, R, L] ∨ [L, R, L]|
∗ = [R, R, L])

= Pr(
 = [R, R, L]|
∗ = [R, R, L])

+Pr(
 = [L, R, L]|
∗ = [R, R, L])

= p3 + qp2

= p2(p + q)

= p2

p{1,2},{2,3} = Pr(
 = [R, L, R] ∨ [R, L, L]|
∗ = [R, R, L])

= Pr(
 = [R, L, R]|
∗ = [R, R, L])

+Pr(
 = [R, L, L]|
∗ = [R, R, L])

= pq2 + p2q

= pq(p + q)

= pq.

2210 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

These are precisely the expressions that we will encounter
later.

Theorem 2: The parameter learning algorithm specified by
Algorithm 1 and the rules summarized in Table I are asymp-
totically optimal if p is larger than the conjugate of the
golden ratio. Thus, we formally affirm that if p > �:
LimN→∞Limn→∞E[λ(n)] → λ∗.

Proof: Our intention is to prove that as N is in-
creased indefinitely (or equivalently D increased indefinitely),
LimN→∞Limn→∞E[λ(n)] → λ∗ whenever p > �. We
shall prove this by analyzing the properties of the underlying
Markov chain which is specified by the rules in Table I.

Let H be the corresponding transition matrix formed by
the rules in Table I. Clearly, H represents a single closed
communicating class whose periodicity is unity. The chain is
ergodic, and the limiting probability vector is given by the
eigenvector of HT corresponding to eigenvalue unity.

Let this vector be � = [π{0,1}, π{1,1}, π{1,2}, . . . , π{D,1},
π{D,2}, . . . , π{D,2D}]. Then, � satisfies

HT � = �. (2)

Since the tree is a complete binary tree, in total, the tree
consists of 2D+1 − 1 nodes (since 2D+1 − 1 = 1 + 2 + ... + 2D).

We shall now specify the elements of the transition matrix,
H . For each node in the tree, we shall derive the expression
for the transition probabilities12 to the next states (nodes). To
achieve this task, we distinguish three cases, namely, whether
the considered node is a root node, intermediate node or a leaf
node.

a) Transitions at the root node: Consider the root node
S{0,1}. For the reflexive transition (from the root node to the
root node itself), we have

p{0,1},{0,1} = 1 − p2 − pq = q.

Concerning the transitions to the children nodes, two cases
emerge based on the relative positions of λ∗ when compared
to mid(�{0,1}).

1) If 0 ≤ λ∗ < 1
2 , then

p{0,1},{1,1} = p2

p{0,1},{1,2} = pq.
2) If 1

2 ≤ λ∗ < 1, then
p{0,1},{1,1} = pq

p{0,1},{1,2} = p2.

b) Transitions at intermediate nodes: Consider an inter-
mediate node S{d,j}, i.e, node j ∈ {1, . . . , 2d} at depth d where
0 < d < D. In order to specify the transitions probabilities at
an intermediate node, we have to consider the following three
cases.

1) If λ∗ /∈ �{d,j}, then
p{d,j},{d−1,�j/2} = p2 + q2

p{d,j},{d+1,2j−1} = pq

p{d,j},{d+1,2j} = pq.
2) If σ{d,j} ≤ λ∗ < mid(�{d,j}), then

p{d,j},{d−1,�j/2} = pq + q2 = q

12As mentioned in the preface to the theorem, we shall not derive each
of the transition probabilities. Rather we shall use the same arguments used
there and merely write out the relevant expressions.

Fig. 2. Transition matrix H of the Markov chain formed by the rules in
Table I, specified as a tree for the partitions described in Fig. 1.

p{d,j},{d+1,2j−1} = p2

p{d,j},{d+1,2j} = pq.
3) If mid(�{d,j}) ≤ λ∗ < γ{d,j}, then

p{d,j},{d−1,�j/2} = pq + q2 = q

p{d,j},{d+1,2j−1} = pq

p{d,j},{d+1,2j} = p2.

c) Transitions at the leaf nodes: The transitions proba-
bilities at a leaf node depend on whether it is a target node or a
nontarget node. We consider each of these cases individually.

1) For a nontarget leaf node
p{D,j},{D,j} = 1 − (p2 + q2)
p{D,j},{D−1,�j/2} = p2 + q2.

2) For the target node
p{D,i},{D,i} = p

p{D,i},{D−1,�i/2} = q.

For the sake of clarity, we present a graphical example for
the case when the depth of the tree is 3. Fig. 2 specifies the
transition matrix of the associated Markov chain when node
S{3,7} is the target leaf node.

The main idea of proof is to demonstrate that the limiting
probability increases geometrically with the state indices along
the shortest path to the target node. As a consequence of this,
the limiting probability can be shown to be concentrated within
an arbitrarily small interval around λ∗, simply by increasing
the size of the tree.

We remind the reader that the target node, is the leaf node
(at depth D), where the value λ∗ is contained in its associated
interval. Let i∗D be the relative index of the target node among
the leaf nodes which are, in turn, located at level D.

Let Q{0,1},{D,i∗D} denote the shortest path in the balanced tree
from the root node S{0,1} to the target node S{D,i∗D}.

Q{0,1},{D,i∗D} is composed of the sequence of the
indexes of the nodes leading to the target node S{D,i∗D}
when starting from the root S{0,1}. Thus Q{0,1},{D,i∗D} =
[{0, 1}, {1, i∗1}, . . . , {l, i∗d}, . . . , {D, i∗D}] where i∗d is the

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2211

relative index of the node at depth d that belongs to the
optimal path Q{0,1},{D,i∗D}. Equivalently, S{l,i∗d } is the node at
depth d (0 ≤ d ≤ D) that is on the path that starts from the
root node and that leads to the target node. Clearly, i∗0 = 1.

Let S{D,j} be a nontarget leaf node. Also, let Q{D,j},{D,i∗D} be
the shortest path in the tree that connects the nontarget node
S{D,j} to the target node S{D,i∗D}.

Following the tree structure of the search space, the path
Q{D,j},{D,i∗D} is clearly composed by the concatenation of the
two following subpaths.

1) A subpath that originates from the nontarget node S{D,j}
and that does not intersect with the path Q{0,1},{D,i∗D}.

2) A second subpath that intersects with Q{0,1},{D,i∗D} (or
more exactly a subpath of Q{0,1},{D,i∗D}). Let S{k,i∗k } be
the node whose index comes first in the ordered list of
node indexes forming this subpath (i.e., the head of the
sequence).

Therefore, Q{D,j},{D,i∗D} can be seen as the concatenation of
Q{D,j},{k,i∗k } and Q{k,i∗k },{D,i∗D}.

Informally speaking, moving along Q{D,j},{D,i∗D} involves
performing a series of reverse transitions from the nontarget
leaf node to the first node whose associated interval contains
λ∗, which has the effect of increasing the length of search
space interval by a factor of two at each step, and then
performing top-down transitions in the direction of the target
leaf node, which, in turn, shrinks the length of the search
interval by a factor two at each step, until the target node is
attained.

Let us first study the transitions along the reverse path
Q{D,j},{k,i∗k }. Examining the balance (equilibrium) equation of
the Markov chain at the nontarget leaf node S{D,j} gives

π{D,i} = (1 − p2 − q2)π{D,i} + pqπ{D−1,�i/2}.

We now observe that the Markov chain is time reversible
[18]. We thus resort to the time reversibility property in order
to deduce the following equation:

π{d−1,�i/2} =
p2 + q2

pq
π{d,i} (3)

where d denotes any given level in the tree such that
k ≤ d ≤ D.

Similarly, we consider the transitions along the path
Q{k,i∗k },{D,i∗D}. Examining the balance (equilibrium) equation of
the Markov chain at the nontarget node S{D,i∗D} gives

π{D,i∗D} = (1 − pq − q2)π{D,i∗D} + p2π{D−1,�i∗D/2}.

Hence, we deduce that

π{D,i∗D} =
p2

q
π{D−1,�i∗D/2}.

By making use of the time reversibility property of the
Markov chain, we can easily deduce that along the top-down
path Q{k,i∗k },{D,i∗D}, for k ≤ d ≤ D

π{d,i∗d } =
p2

q
π{d−1,�i∗d/2}. (4)

We define z1 as z1 = p2+q2

pq
. Clearly, the latter quantity, z1,

is always greater than 1 for any value of p since we know

that p2 + q2 > pq. In the same manner, we denote by z2 the
quantity p2

q
. The inequality z2 > 1 is equivalent to p2 > q,

which reduces to the constraint that p must be greater than
the golden ratio.

With these balance (equilibrium) equations in place, we are
ready to deduce the relationship that relates the stationary
probability of the target node to the stationary probability of
any nontarget node. Combining (3) and (4), and applying the
reasoning behind the recurrence relationships we see that

π{D,i∗D} = zD−kπ{D,j}

where z = z1z2. Note that since we have z1, z2 > 1, then
z > 1.

To finalize the proof, we consider the equilibrium (asymp-
totic) value of E[λ(n)] for any finite depth D. To do this,
we invoke arguments similar to those used in [36]. Since
z > 1, the limiting probabilities � increases geometrically
with the state indices, along the shortest path to the target node,
until its reaches its maximum at π{D,i∗D}. Since zD increases
exponentially and we are speaking about the mean of an
increasing geometric progression, most of the mass will be
concentrated among an arbitrarily small number of states close
to the target node S{D,i∗D}.

Thus, as N goes to infinity the mean of E[λ(∞)] will
be centered within a small interval �{D,i∗D} and will thus be
arbitrarily close to λ∗. Hence the theorem.

Remark 2: One would have thought that as in the original
solution to the SPL, the condition p > 0.5, that renders the
environment to be informative, would have been sufficient for
the convergence. But it appears as if this is the price that we
have to pay. By making moves to non-neighbor points we
can improve the convergence speed of the algorithm. But this
comes with a small price, i.e., the condition for convergence
becomes p > 0.61803 instead of p > 0.5. It is surely a
conundrum as to why this golden ratio conjugate appears in
the picture mysteriously, but, as we see, that is exactly how
the mathematics ultimately works out. However, as explained
in the opening paragraph of Section IV-D, this is really not a
handicap.

V. Advantages Over State-of-Art Solutions

Based on the above, we can record the drawbacks of the
prior art which we have remedied here.

1) One primary drawback of the state-of-the-art solutions
to the SPL problem reported in [36], [41], and [42], and
that we have remedied, is that the steps are always very
conservative. If the step size is increased, the scheme
converges faster, but the accuracy is correspondingly
decreased, and vice versa. As the next section demon-
strates, this paper has solved the SPL by proposing
a solution that is an order of magnitude faster than
the state-of-the-art, and this is done by incorporating
completely different techniques, namely those similar
to those used by Bentley and Yao [9] (which can be
perceived as an expandable binary search) in solving
deterministic point location. One can easily see that

2212 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

generalizing the results of [9] for a stochastic setting
is, indeed, far from trivial, which is why the reader will
observe that our solution is totally distinct.

2) The first inherent shortcoming of the two algorithms
proposed in [41] and [42] is that both work with the
premise that λ∗ is constant over time. In contrast, as
we will show presently, our proposed HSSL is able
to cope with nonstationary settings, i.e., where λ∗ is
time varying, without invoking an additional layer of
CPL-AdS [16].

3) The second shortcoming of the schemes presented in
[41] and [42] is that they required three (or d) LA
operating, as it were, in parallel. We have not required
such a parallelized mode of operation.

4) Another rather subtle issue that one encounters in the
two algorithms presented in [41] and [42] is that they
are error prone due to the fact that they rely on the
ε-optimal property of the individual LA. In fact, in
theory, at each epoch of the algorithms presented in [41]
and [42], one is required to run each individual LA for
an infinite number of iterations to ensure its convergence
with probability 1 to its optimal action.13 Therefore,
the smaller the number of iterations, the higher is the
probability by which it will converge to a wrong interval
and thus discard the interval of interest that contains λ∗.
Hence, in order to increase the confidence of the search
procedure at each epoch, a considerable number of
iterations per epoch is required, resulting in a diminished
convergence speed. We have successfully eliminated this
feature.

5) As mentioned earlier, our hierarchical strategy, the
HSSL, is distinct from the one used in [3]–[5], [12], [28],
[30], [45], and [55] for LA, as is the modus operandus
of the analysis, i.e., the time reversibility of the Markov
chain.

VI. Simulation Results

The LM described in this paper was experimentally evalu-
ated to verify the validity of our analytic results and to examine
its rate of convergence. To verify the power of the scheme
and to study its effectiveness for a variety of conditions, the
simulations were done for various values for p, the probability
of the Oracle correctly providing the feedback, and for various
values of the resolution parameter, N.

In each case, the value of the parameter λ∗ was assumed to
be unknown to the LM. The experimental results obtained are
truly conclusive. Although numerous experiments have been
conducted, in the interest of brevity we shall first merely report
the results obtained for one set of experiments involving the
unknown parameter λ∗ = 0.9123, which was the benchmark
environment reported in the prior art [36]. However, we shall
augment these with new results in which we are switching
to a diametrically opposite environment, i.e., one in which
λ∗ = 1 − 0.9123. The results clearly demonstrate the power

13In practice, as shown in the papers [41] and [42], this is really not an
issue if we permit the LA parameter to be small enough, and also let the
duration of the epoch to be sufficiently large.

TABLE II

Value of E[λ(∞)] for Different Values of p and Various

Resolutions, When the Value of λ∗
Is 0.9123

of our present strategy. We shall namely also show the results
when λ∗ is 0.22, 0.78, 0.35, and 0.07.

A. Empirical Verification of Optimality of HHSL Solution

In Table II we have recorded an empirical estimate of the
true value of E[λ(∞)] for various values of p and the tree
depth D = log2(N) (i.e, resolution N = 2D) when the value
of λ∗ was 0.9123. The values of p were 0.7, 0.85, and 0.95.
This estimate of the value of E[λ(∞)] was obtained using
simulation by running the learning scheme for 107 iterations.14

The reader should also observe that by invoking a signif-
icant number of iterations (as large as 107), the difference
between the analytical and experimental values of E[λ(∞)] is
unobservable. In the interest of simplicity, in this section, we
therefore kindly request the reader to permit us to marginally
abuse the notation and to refer to the experimental estimate of
E[λ(∞)] as the value of E[λ(∞)] itself.

In every case the convergence of E[λ(∞)] was remarkable.
For example, when p was as low as 0.7 and D was equal to
2, the value of E[λ(∞)] was as high as 0.727. It increased
to 0.867 when D = 4 (N = 16) and came to within 0.5%
of the true value. The results are more spectacular for more
informative Oracles, i.e., for larger values of p. Thus, when p

is 0.95, the value of E[λ(∞)] was as high as 0.866. The final
terminal value when D = 12 represented an error less than
0.0001% . The power of the scheme is obvious!

The optimality property was empirically confirmed through
the simulation, independent of whether the value of p was as
low as 0.7 or as high as 0.95, because E[λ(∞)] indefinitely
approaches the optimal value of λ∗ as we increased the
resolution. Note that for a depth D which equals 12, the final
terminal value represented an error less than 0.0005% for all
the values of p, i.e., p = 0.7, p = 0.85, and p = 0.95.

A similar plot of the asymptotic value of E[λ(∞)] as a
function of p is given in Fig. 3 for various resolutions, N.
The experiment demonstrates how E[λ(∞)] will change as the

14The reader should note that one could alternatively manually compute the
stationary distribution equation by matrix inversion or by solving the system
of linear equations [given by (2)] without even doing the simulations. We have
opted to the latter because of the dimensionality of the transition matrices.

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2213

Fig. 3. Plot of the asymptotic value of E[λ(∞)] with the effectiveness of
the environment, p, for various values of the resolution parameter N, when
λ∗ is 0.9123.

effectiveness,15 p, of the environment varied from p = 0.62 to
p = 1.

B. Comparison Under Dynamic Environments

We now report the results of the second set of experiments
in which we have attempted to catalogue the convergence of
E[λ(n)] with time, n.

In order to obtain an understanding as to how the scheme
converged with time, various simulations were conducted to
evaluate the performance of the algorithm under a variety of
constraints. In each simulation, 1000 parallel experiments were
conducted so that an accurate ensemble average of the results
could be obtained. Although numerous experiments have been
conducted, in the interest of brevity we shall merely report
the results obtained for a single set of experiments involving
the unknown parameter λ∗ switching periodically between the
values 0.9123 and 1 − 0.9123. We also compared our results
to the algorithm presented in [36].

In addition to comparing our new scheme to the original
SPL approach, we also compared our work to the more-
recent technique that involved Window-based estimation for
nonstationary environments. Informally speaking, the estimate
obtained by such a Window-based approach is merely the
average of the time estimates of the SPL over a fixed-lengthed
time window. We have used a simple rule of thumb in all our
experiments, i.e., we have chosen the size of the window to be
1/10 of the length of the cycle that we are tracking, i.e, 1/10
of the the periodicity with which the environment switches.16

In every single experimental setting, we confirmed that our
HSSL solution outperformed both the original SPL solution
and the Window-based estimation solution. It also learned the
value of λ∗ much faster. The experimental results obtained are
again conclusive.

15p = 0.62 is an approximation of the conjugate of the golden ratio.
16The reader must observe that in doing this, we have given the Window-

based approach the advantage of having some knowledge of the periodicity
of the switching environment!

Since there is no a priori information about the value of λ∗,
at time instant 0, we initialized the LM of the original SPL
scheme to the position N

2 (N is assumed to be even), while
the initial position of the LM for the HSSL algorithm was
merely the root node of the tree. In order to understand the
effect of the resolution on the rate of convergence, we report
the number of iterations required for the ensemble average to
reach a value that is 95% close to the optimal value λ∗.

In our simulations, to obtain a 95% confidence level, we
observed that the largest confidence interval was of the order
of 0.06. This implies that the simulation results have also a
very small variance. Since this confidence interval is too small
to be visualized, we have opted to not include in the following
graphs. Instead, we have rather chosen to report the instanta-
neous variances of the ensemble. These variance dynamics are
only submitted for the experiments corresponding to Figs. 4
and 6, and are omitted for the rest of the experiments in the
interest of space.

In the first set of experiments, we fixed p to be 0.8. The
plots of the corresponding results are shown in Figs. 4 and 6.
In Fig. 4, the resolution N was equal to 256 while λ∗ switched
every 400th iteration. In Fig. 6, the resolution N was equal to
be 1, 024 while λ∗ switched every 1, 500th iterations.

From Fig. 4, where we have recorded the results of the first
400 iterations, we experimentally found that it took only 30
time instants for the HSSL solution to reach 95% of λ∗, while
the original SPL solution and the Window-based estimate so-
lution required 180 and 200 iterations, respectively. Therefore,
in the very first window itself, the HSSL approach provided
a superiority of an order of magnitude (6 times faster) than
the original SPL solution. After the first environment switch,
i.e., between time instants 400 and 800, we observed that the
convergence speed of both algorithms decreased slightly. In
fact, 95% of λ∗ was attained within 45 iterations in the case of
the HSSL paradigm, while the original SPL solution took 350
iterations. Comparing the results of the first 400 iterations with
that of the subsequent windows, we conclude that although the
final steady-state probabilities are independent of the starting
state, in reality, the time that the LM takes to converge to λ∗

is dependent on the location of the starting point. From this
perspective, while the starting state of LM in the first window
is N

2 , in the second window, the starting point is the state to
which it has converged in the first window. We believe that this
is the explanation for the latter decrease in the convergence
speeds.

Fig. 5 illustrates the evolution, over time, of the variance
of the ensemble corresponding to the experimental settings
of Fig. 4. The reader should note that the latter quantity
is actually an estimate of Var(λ(n)). It is also pertinent to
mention the following remarks. From the figure, we observe
that during environment switches (or more precisely, at the
time instances immediately subsequent to an environment
switch), the variance of ensemble for the HSSL solution
increased compared to the variance of both the SPL and
Window-based estimate. One should also observe the peaks
of the variances in Fig. 5 around time instances 400, 800, and
1, 200. We believe that this increase merely reflects the large
steps that the LM of the HSSL takes to adapt to the change

2214 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

Fig. 4. Case where λ∗ switches between the values 0.9123 and
1.0–0.9123 every 400th iteration for p = 0.8 and N = 256.

Fig. 5. Estimate of the instantaneous variance when λ∗ switches between the
values 0.9123 and 1.0–0.9123 every 400th iteration for p = 0.8 and N = 256.

in the value of λ∗, which is really, an intuitively appealing
result! For example, at the time instant 410 (following the
switch at 400), the variance of the ensemble for the HSSL
is 0.12572 while the SPL and Window-based estimate have
respective variance 2.3E − 4 and 1.56E − 5. Surprisingly
though, these are the only time instances where the HSSL has
higher variance than the SPL and the Window-based estimate.
In fact, except for the time instances immediately subsequent
to an environment switch, the HSSL was found to have a lower
variance for the ensemble. For example, at the time instant
180, we experimentally recorded that the HSSL possessed a
very low variance, i.e., 5.46E − 06, which is much smaller
than the variance of the SPL 2.96E − 04. To quote another
similar example, we mention that at the time instant 1, 580,
the variance of the ensemble for the HSSL was as low as
9.03E − 07 while the corresponding variance of the SPL was
many orders of magnitude larger, i.e., 2.5E−04. This confirms
that these peaks in the variance reflect the large steps that
the HSSL has to take in order to adapt to an environment
switch, while the low variance reflects the fact that the HSSL
is approaching λ∗ and that the learning mechanism is working
toward exhibiting less fluctuations by performing top-down
transitions in the direction of the target leaf node.

A general remark that we should make regarding comparing
the SPL to the Window-based estimate, is that most of the
time, the Window-based estimate had a lower instantaneous
variance than the SPL in all the experiments that we did.
We believe that this is due to the fact that the Window-based

Fig. 6. Case where λ∗ switches between the values 0.9123 and
1.0–0.9123 every 1500th iterations for p = 0.8 and N = 1024.

Fig. 7. Estimate of the instantaneous variance when λ∗ switches between
the values 0.9123 and 1.0–0.9123 every 1500th iteration for p = 0.8 and
N = 1024.

estimate averages out the fluctuations of the estimates obtained
by the SPL, and that it therefore achieves a more accurate
estimate than the latter. However, on the other hand, we also
observed that the Window-based estimate it is less adaptive to
changes in λ∗ when compared to the SPL.

In Fig. 6, we increased the resolution N to 1, 024. As in
the previous case, from Fig. 6, we observed that, in the first
1500 iterations, it took approximately 50 iterations for our
HSSL solution to reach 95% of the optimal value λ∗, while
the original SPL solution required 680 iterations. After the first
environment switch, i.e, between time instants 1500 and 3000,
we observed that the convergence speed again decreased. In
fact, it took approximately 75 iterations for our HSSL solution
to reach 95% of the optimal value λ∗, while the original SPL
solution required 1380 iterations. Again, in these settings, the
HSSL approach provided an order of magnitude (18 times)
faster convergence than the original SPL solution. This, we
believe, is impressive. We further remark that, as we increased
the resolution N from 256 (see Fig. 4) to 1024 (see Fig. 6) for
the same value of p = 0.8, the convergence speed of the origi-
nal SPL solution was significantly reduced while the speed of
the HSSL was less affected by this increase in the resolution.

In the second set of experiments, we report the results for
the values p = 0.95. The plots of the corresponding results
are shown in Figs. 8 and 9. In Fig. 8, the resolution N was
equal to 256 while λ∗ switched every 300th iteration. In Fig. 9,
the resolution N was equal to 1024 while λ∗ switched every
1200th iteration.

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2215

Fig. 8. Case where λ∗ switches between the values 0.9123 and (1–0.9123)
every 300th iteration for p = 0.95 and N = 256.

Fig. 9. Case where λ∗ switches between the values 0.9123 and (1–0.9123)
every 1200th iteration for p = 0.95 and N = 1024.

From Fig. 8, in the first window of 300 iterations, we
experimentally found that it took only 14 time instants for
the HSSL solution to reach 95% of λ∗, while the original
SPL solution needed 120 iterations. In the second window
between time instants 300 and 600, 95% of λ∗ was reached
within 19 iterations in the case of the HSSL, while the original
SPL solution took 220 iterations. Again, we see the HSSL’s
superiority.

In Fig. 9, we changed the resolution N to 1024. Similar to
the behavior shown in Fig. 8, one can observe from Fig. 9 that
in the first 1200 iterations, it took approximately ten iterations
for our HSSL solution to reach 95% of the optimal value
λ∗, while the original SPL solution required 510 iterations, a
superiority of a factor of about 50. After the first environment
switch, i.e, between time instants 1200 and 2400, we again
observed that the convergence speed decreases. In fact, it took
approximately 14 iterations for our HSSL solution to reach
95% of the optimal value λ∗, while the original SPL solution
took 920 iterations. Hence, in this window, the HSSL approach
is approximately 65 faster than the original SPL solution!

In addition, as we increased the resolution N from 256 (see
Fig. 8) to 1024 (see Fig. 9) for the same value of p = 0.95,
the convergence speed of the original SPL solution was more
drastically affected than that of the HSSL approach.

As can be expected, the results of the HSSL solution are
more spectacular for more informative Oracles, i.e., for larger

Fig. 10. Case where λ∗ switches between the values 0.9123 and (1–0.9123)
every 100th iteration for p = 0.85 and N = 64.

Fig. 11. Case where λ∗ switches between the values 0.9123 and (1–0.9123)
every 50th iteration for p = 0.85 and N = 64.

values of p. In fact, as we increased the effectiveness of the
environment p from p = 0.85 to p = 0.95 the convergence
rate of the HSSL increased even more.

In this third set of experience, we fixed the resolution
N = 64 and the effectiveness p = 0.85 while we varied
the periodicity with which λ∗ switched. Fig. 10 depicts the
case where the switch occurred every 100th iteration, while
Fig. 11 illustrates the case where the switch occurred every
50th iteration.

From Fig. 11, we observe that the original SPL solution
was able to converge to E[λ(∞)] in the first window, but it
was thereafter quite handicapped with regard to adapting to
the rapid switches in the nonstationary environment. Since the
changes in the value of λ∗ happened at a faster time scale
than the time required by the LM to converge to E[λ(∞)],
this scenario demonstrates the weakness of the original SPL.
Such observations are typical. The reader should note that in
the first set and second set of experiments (Figs. 4, 6, 8, and
9), we deliberately changed λ∗ at a slower time scale so that
we could observe the convergence of the original SPL in the
different windows, and we could thus quantify the required
number of iterations needed for it to converge.

C. Effect of Choice of λ∗ on Convergence Speed

The intent of this section is to demonstrate the power of the
HSSL when λ∗ is changed. Based on the theoretical results,
we do not expect any change of behavior for other values of

2216 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

Fig. 12. Effect of changing the value of λ∗ on the convergence speed of the HSSL and the original SPL in the cases where (a) λ∗ = 0.35. (b) λ∗ = 0.07.

λ∗, and this section empirically shows that the performance
of the HSSL is in line with our expectations. Indeed, the
convergence of the scheme is not effected by the value of
λ∗; it can efficiently locate λ∗ whatever its value is.

In this experiment, our aim was to investigate the effect
of choosing a value of λ∗ different from the value that is
commonly used in the literature, i.e., 0.9123. Thus, in this
experiment, we chose four different values for λ∗, namely
0.22, 0.78, 0.35, and 0.07. For both these experiments, we
fixed the resolution to be 512 and p to 0.85. In all brevity,
we observed that the convergence speed for the HSSL did not
depend on λ∗ but rather only on the number of levels in the
tree.

These findings bear similarity with the classical results
dealing with the access time complexity of ordered records
using a sequential access policy and a tree-based indexing
policy [23]. The only difference between these and our current
scenario is that we are dealing with stochastic responses from
the environment. When it concerns the SPL, we observe from
Fig. 12(a) and (b) that the more distant λ∗ is from the starting
point of the search 0.5, the more time it takes for the scheme
to converge. In fact, it take more time instances for the SPL to
converge to the optimal estimate when λ∗ = 0.07 than when
λ∗ = 0.35 since the distance between 0.5 and 0.07 is larger
than the distance between 0.5 and 0.35. However, when it
comes to the HSSL, we empirically verify from Fig. 12(a)
and (b) that the convergence speed is the same for both values
of λ∗. This is also intuitively appealing.

Fig. 13 illustrates an intuitive property of both the HSSL
and SPL. In effect, the convergence speed is identical for any
two values λ∗ and 1−λ∗ because of the fact that the two points
are diametrically symmetric around the initial point 0.5. We,
therefore, conducted the experiments only for the case when
the values were smaller than 0.5. The experimental results for
values of λ∗ larger than 0.5 can simply be deduced by invoking
the property of symmetry, as we did in the case of Fig. 13.

D. Comparison With Tertiary Search

In this final experiment, our aim was to compare the HSSL
with results of the tertiary search strategy reported in [41]. In
order to make the comparison meaningful (since the HSSL is
not working with a parallelized scheme), we fixed the number

Fig. 13. Effect of changing the value of λ∗ on the convergence speed of
the HSSL and the original SPL in the case of two symmetrical values of λ∗
around 0.5, namely, (a) λ∗ = 0.22. (b) λ∗ = 0.78.

of epochs of the tertiary search [41] to be equal to the number
of levels in the tree structure of the HSSL.

Each epoch consisted of 50 iterations and the internal
parameter θ of the linear reward inaction (LRI) automata for
the tertiary search was fixed to be 0.8, a value that is known
to yield a good accuracy for the search. We fixed λ∗ = 0.9123
and we varied the efficiency of the environment as in the
experiments reported in [41] using the values of p = 0.7,
p = 0.85 and p = 0.95. The results obtained are depicted
in Fig. 14. Based on our rather extensive testing from which
Fig. 14(a)–(c) display representative results, we remark that
the HSSL is always faster than the tertiary search. The main
disadvantage of the tertiary search is that it runs in epochs,
implying that we can only obtain an estimate of λ∗ at the end
of the epoch. Thus, a more appropriate way to have plotted the
the results of the tertiary search for different time instances
would have been to use a staircase function with constant
values during the entirety of every single epoch (i.e, for an
epoch of length 50 time instants, the estimate of λ∗ is constant
between time instant 0 and 49 and so on). Such a display
would have demonstrated the even greater superiority of the
HSSL.

E. Measuring Rate of Convergence Using Hit Times

An alternative metric to quantify the rate of convergence
for the HSSL is to measure the hit time of the first visit to

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2217

Fig. 14. Comparing the HSSL approach with the tertiary searching method for different experimental settings. (a) p = 0.7. (b) p = 0.85. (c) p = 0.95.

the target node.17 We now report the average hit time for an
ensemble of experiments as a measure of the scheme’s rate of
convergence. Since the SPL-based approach is also founded
on a Markov chain, it is also possible to quantify the hit time
for this approach. The hit time of the original SPL solution is
defined as the first visit to the node whose index s is such as
s/N ≤ λ < (s + 1)/N.

Note that the hit time is a random variable whose distri-
bution is unknown. Hence, we can calculate the confidence
interval using Chebyshev’s inequality, which states that at least
100(1 − 1/k2)% of the probability mass lies around the mean
μ and in the interval μ ± kσ where σ is standard deviation,
and k is a user-defined parameter that controls the size of
the confidence interval. For the 95% confidence interval, k

is approximately equal to 4.47. Using this formulation, the
confidence interval is given by: [μ− 4.47σ, μ + 4.47σ]. In our
experiments, as in the previous cases, we fixed the resolution
N to be 256, and λ∗ to 0.9123 and examined the evolution of
the average hit time as a function of the parameter, p. Again,
the number of experiments in the ensemble was set to be 1000,
and the initial state of the LM corresponded to an estimate
equal to 0.5 (i.e., the initial state for the LM modeling the
HSSL was the root node, while initial state for LM modeling
the original SPL was N/2).

As expected, when p = 1, the search was deterministic and
the hit time for the HSSL corresponded to the depth of the
tree, namely 8, while the hit time for the SPL was 105 since
0.5 + 105/256 ≤ λ∗ < 0.5 + 106/256. The reader should note
that, given any value of p, these two values, 8 and 105, present

17We are grateful to the anonymous referee who suggested this comparison
metric as well as that of deriving the confidence intervals in this section using
Chebyshev’s inequality.

Fig. 15. Average hit time of the HSSL as a function of p with a correspond-
ing 95% confidence interval for λ∗ = 0.9123 and N = 256.

a lower bound on the respective hit times of the HSSL and
SPL approaches. The knowledge of these lower bounds for
the hit times permitted us to reduce the size of the confidence
interval. In fact, the confidence interval can be rewritten as
[max(μ − 4.47σ, 8), μ + 4.47σ] for the HSSL and [max(μ −
4.47σ, 105), μ+4.47σ] for the original SPL. Fig. 15 reports the
average hit time of the HSSL approach, while Fig. 16 reports
the results for the SPL solution.

From both these figures, we see that the HSSL had a
significantly superior rate of convergence. For example, when
p = 0.8, the average hit time of the HSSL was 20.4 while the
corresponding quantity for the original SPL was 174.16. For
p = 0.65, the average hit time for the HSSL was 83 while
the hit time for the original SPL was 348.5. We also remark
that for both schemes, the confidence interval increases as p

decreases. In addition, one can observe that the confidence
interval of the SPL is much larger than the confidence interval

2218 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

Fig. 16. Average hit time of the SPL as a function of p with a corresponding
95% confidence interval for λ∗ = 0.9123 and N = 256.

of the HSSL for different values of p which, in turn, reflects
a lower variance for the hit time of the HSSL. For example,
when p = 0.62, the confidence interval of the HSSL was
approximately [8, 360], while the confidence interval for the
original SPL was approximately [105, 797].

VII. Conclusion

The HSSL problem involves a Learning Machine (LM) that
attempts to learn a parameter λ∗ within a closed interval. For
each guess, the environment essentially informs the mecha-
nism with three possible responses, each possibly erroneous
(i.e., with probability p), which way it should move to reach
the unknown point. Thus, unlike the deterministic expandable
binary search strategy of [9], we consider the fascinating case
where the response of the environment is assumed to be faulty.
We have presented a solution that involves discretizing the
space into a complete binary tree and performing a controlled
random walk on this space. The solution we have presented
has been both analytically analyzed and simulated, with ex-
tremely interesting results. Apart from formally analyzing the
HSSL algorithm, we have also experimentally demonstrated
its superiority over the state-of-the-art. From this perspective,
our approach is shown to provide orders of magnitude faster
convergence than the traditional SPL solution [36] when tested
in nonstationary environments where λ∗ changes over time.

To summarize, this paper presents a set of novel contribu-
tions18 listed below.

1) With regard to the design of discretized parameter
schemes, we submit that a fundamental contribution of
this paper is the manner in which we have designed
the discretized search space, by structuring it as a
binary tree. Our SPL solution invokes a merging of two
completely disjoint fields in computer science, those of
stochastic optimization and data structures.

2) We have also proposed a new scheme for operating
on this discretized space. Traditional approaches for
discretization work by restricting the corresponding pa-
rameter to be one of finite number of values in the
interval [0, 1], and by then performing a uni-dimensional

18We are grateful to one of the referees of the paper who recommended
cataloging the list of contributions in this concluding section.

controlled random walk on the discretized space, where
the transitions only occur between neighbor nodes, i.e,
to the left or to the right. We propose that the scheme
be permitted to migrate (i.e., resort to an enhanced
exploration domain) to nonneighbor values in the search
space, where the latter are governed by the underlying
data structure.

3) With regard to discretization, we have also proposed
a new concept of resolution. In traditional discrete
schemes, the convergence speed is decreased as the
resolution N increases, while the accuracy increases, and
vice versa. Instead, as per our new philosophy in which
the parameter space is structured as a binary tree, briefly,
we associate a resolution to each level of the tree, and
this resolution becomes finer at deeper levels of the tree.
Empirical results show that there is a significant merit in
our proposed tree-based discretization philosophy when
it is compared to the traditional discretization model.

4) It goes without saying that the paper presents a sig-
nificant contribution to the set of solutions to the SPL
problem. Extensive simulations results confirm that our
scheme outperforms the state-of-the art schemes by
orders of magnitude. In addition, simulations results
show that our scheme possesses an excellent ability to
cope with nonstationary environments.

5) A rather fundamental contribution of this paper is the
analytical solution of the Markov chain for this novel
hierarchical learning paradigm. The earlier solutions to
traditional discretized learning paradigms involve the
closed-form analysis of uni-dimensional random walks,
where the transitions are primarily only to neighbor
states. In this paper, the random walk is performed,
instead, on a balanced tree, which renders the problem
more complex. We report the first analytical results for
the HSSL and prove that the HSSL is asymptotically
optimal. We believe that the analysis of the scheme we
report here is a contribution in its own right, to the field
of LA and to the theory of Markov chains.

6) Finally, and most importantly, the results obtained are
extremely fascinating, as this is the first reported use of
time reversibility in the analysis of stochastic learning.
The LA extensions of the scheme are currently being
investigated, and we believe, that they hold vast poten-
tial. It would truly be very intriguing if we could design
large-step (as opposed to small-step) ε-optimal LA based
on these principles.

As a future work, we propose to investigate the use of
the HSSL solution to solve practical stochastic optimization
problems. The generalization of the HSSL procedure proposed
in this paper to a search space structured as a general tree (i.e,
not necessarily binary) is an open research question. Moreover,
we are currently investigating the potential of making use of
the discretization philosophy introduced here to improve the
convergence speed of LA algorithms, and in analyzing the
HSSL scheme when operating in the meta-level nonstationarity
environment studied in [39]. We would also like to compare
the HSSL with autoregressive parameter identification filters
as described in [25].

YAZIDI et al.: NOVEL STRATEGY FOR SOLVING THE STOCHASTIC POINT LOCATION PROBLEM 2219

Acknowledgment

The authors would like to thank the anonymous referees
whose suggestions greatly improved the quality of this paper.

References

[1] S. Afshar, M. Mosleh, and M. Kheyrandish, “Presenting a new multiclass
classifier based on learning automata,” Neurocomputing, vol. 104, no. 0,
pp. 97–104, 2013.

[2] M. Agache and B. J. Oommen, “Generalized pursuit learning schemes:
New families of continuous and discretized learning automata,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 6, pp. 738–749,
Dec. 2002.

[3] N. Baba and Y. Mogami, “A new learning algorithm for the hierarchical
structure learning automata operating in the nonstationary s-model
random environment,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 32, no. 6, pp. 750–758, Dec. 2002.

[4] N. Baba and Y. Mogami, “A consideration on the learning behaviors
of the hierarchical structure learning automata operating in the non-
stationary multiteacher environment: A basic research to realize an
effective utilization of artificial neural networks in the nonstationary
environment,” in Proc. 34th Annu. Conf. ISAGA, 2003, pp. 1021–1030.

[5] N. Baba and Y. Mogami, “Learning behaviors of the hierarchical
structure stochastic automata operating in the nonstationary multiteacher
environment,” in Proc. KES, Sep. 2005, pp. 624–634.

[6] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, “Searching
with uncertainty,” in Proc. SWAT, 1998, pp. 176–189.

[7] R. Baeza-Yates and R. Schott, “Parallel searching in the plane,” Comput.
Geom. Theory Appl., vol. 5, pp. 143–154, Oct. 1995.

[8] T. Ben-Zvi and J. V. Nickerson, “Decision analysis: Environmental
learning automata for sensor placement,” IEEE Sens. J., vol. 11, no. 5,
pp. 1206–1207, May 2011.

[9] J. L. Bentley and A. C.-C. Yao, “An almost optimal algorithm for
unbounded searching,” Inf. Process. Lett., vol. 5, no. 3, pp. 82–87, 1976.

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Belmont, MA, USA: Athena Scientific, 2000.

[11] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag, 2006.

[12] O.-C. Granmo and B. J. Oommen, “Solving stochastic nonlinear resource
allocation problems using a hierarchy of twofold resource allocation
automata,” IEEE Trans. Comput., vol. 59, no. 4, pp. 545–560, Apr. 2010.

[13] O.-C. Granmo and B. J. Oommen, “Learning automata-based solutions
to the optimal web polling problem modelled as a nonlinear fractional
knapsack problem,” Eng. Appl. AI, vol. 24, no. 7, pp. 1238–1251, 2011.

[14] D. Graupe, Principles of Artificial Neural Networks, 2nd ed. River Edge,
NJ, USA: World Scientific Publishing, 2007.

[15] M. A. Hossain, J. Parra, P. K. Atrey, and A. E. Saddik, “A framework for
human-centered provisioning of ambient media services,” Multimedia
Tools Applicat., vol. 44, pp. 407–431, 2009.

[16] D.-S. Huang and W. Jiang, “A general CPL-ADS methodology for fixing
dynamic parameters in dual environments,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 5, pp. 1489–1500, Oct. 2012.

[17] S. Karlin and H. M. Taylot, A First Course in Stochastic Processes. San
Diego, CA, USA: Academic Press, 1975.

[18] F. P. Kelly, Reversibility and Stochastic Networks (Wiley Series in Prob-
ability and Mathematical Statistics Tracts on Probability and Statistics).
New York, NY, USA: Wiley, 1987.

[19] E. E. Kpamegan and N. Flournoy, “Up-and-down designs for selecting
the dose with maximum success probability,” Seq. Anal., vol. 27, no. 1,
pp. 78–96, 2008.

[20] S. Lakshmivarahan, Learning Algorithms Theory and Applications. New
York, NY, USA: Springer-Verlag, 1981.

[21] J. K. Lanctôt and B. J. Oommen, “Discretized estimator learn-
ing automata,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6,
pp. 1473–1483, Nov./Dec. 1992.

[22] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[23] A. Levitin, Introduction to the Design & Analysis of Algorithms.
Reading, MA, USA: Addison Wesley, 2011.

[24] M. Livio, The Golden Ratio: The Story of Phi, the World’s Most
Astonishing Number. Portland, OR, USA: Broadway Books, 2003.

[25] L. Ljung, System Identification: Theory for the User. Upper Saddle
River, NJ, USA: Prentice-Hall, 1986.

[26] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[27] S. Misra, P. V. Krishna, V. Saritha, and M. S. Obaidat, “Learning
automata as a utility for power management in smart grids,” IEEE
Commun. Mag., vol. 51, no. 1, pp. 98–104, Jan. 2013.

[28] B. T. Mitchell and D. I. Kountanis, “Reorganization scheme for a
hierarchical system of learning automata,” IEEE Trans. Syst., Man,
Cybern., vol. SMNC-14, no. 2, pp. 328–334, Mar./Apr. 1984.

[29] K. Najim and A. S. Poznyak, Learning Automata: Theory and Applica-
tions. New York, NY, USA: Pergamon Press, 1994.

[30] K. S. Narendra and K. Parthasarathy, “Learning automata approach to
hierarchical multiobjective analysis,” Dept. Electr. Eng., Yale University,
New Haven, CT, USA, Tech. Rep. 8811, 1988.

[31] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

[32] P. Nicopolitidis, V. Kakali, G. Papadimitriou, and A. Pomportsis, “On
performance improvement of wireless push systems via smart antennas,”
IEEE Trans. Commun., vol. 60, no. 2, pp. 312–316, Feb. 2012.

[33] P. Nicopolitidis, G. I. Papadimitriou, A. S. Pomportsis, P. Sarigianni-
dis, and M. S. Obaidat, “Adaptive wireless networks using learning
automata,” IEEE Wireless Commun., vol. 18, no. 2, pp. 75–81, Apr. 2011.

[34] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, “Guest
editorial—Learning automata: Theory, paradigms, and applications,”
IEEE Trans. Systems, Man, Cybern. B, Cybern., vol. 32, no. 6,
pp. 706–709, Dec. 2002.

[35] B. J. Oommen, “Absorbing and ergodic discretized two-action learning
automata,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, no. 2,
pp. 282–293, Mar./Apr. 1986.

[36] B. J. Oommen, “Stochastic searching on the line and its applications to
parameter learning in nonlinear optimization,” IEEE Trans. Syst., Man
Cybern., vol. SMC-27B, no. 4, pp. 733–739, Aug. 1997.

[37] B. J. Oommen, O-C. Granmo, and Z. Liang, “A novel stochas-
tic learning-enhanced multidimensional scaling technique applica-
ble for word-of-mouth discussions,” in Proc. IEA/AIE, Jun. 2009,
pp. 317–322.

[38] B. J. Oommen and E. Hansen, “The asymptotic optimality of discretized
linear reward-inaction learning automata,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-14, no. 3, pp. 542–545, May/Jun. 1986.

[39] B. J. Oommen, S.-W. Kim, M. T. Samuel, and O.-C. Granmo, “A solu-
tion to the stochastic point location problem in metalevel nonstationary
environments,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38,
no. 2, pp. 466–476, Apr. 2008.

[40] B. J. Oommen and J. K. Lanctôt, “Discretized pursuit learning au-
tomata,” IEEE Trans. Syst., Man, Cybern., vol. SMC-20, no. 4,
pp. 931–938, Jul./Aug. 1990.

[41] B. J. Oommen and G. Raghunath, “Automata learning and intelligent
tertiary searching for stochastic point location,” IEEE Trans. Syst., Man,
Cybern., vol. 28, no. 6, pp. 947–954, Dec. 1998.

[42] B. J. Oommen, G. Raghunath, and B. Kuipers, “Parameter learning from
stochastic teachers and stochastic compulsive liars,” IEEE Trans. Syst.,
Man, Cybern., vol. SMC-36, no. 4, pp. 820–836, Aug. 2006.

[43] B. J. Oommen and M. Agache, “Continuous and discretized pursuit
learning schemes: Various algorithms and their comparison,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 3, pp. 277–287,
Jun. 2001.

[44] B. J. Oommen and J. Dong, “Generalized swap-with-parent schemes
for self-organizing sequential linear lists,” in Proc. ISAAC, Dec. 1997,
pp. 414–423.

[45] G. I. Papadimitriou, “Hierarchical discretized pursuit nonlinear learning
automata with rapid convergence and high accuracy,” IEEE Trans.
Knowl. Data Eng., vol. 6, no. 4, pp. 654–659, Aug. 1994.

[46] J. R. Parker, Algorithms for Image Processing and Computer Vision.
New York, NY, USA: Wiley, 2010.

[47] T. Pavlidis, Structural Pattern Recognition. New York, NY, USA:
Springer-Verlag, 1977.

[48] R. Phillips, Pricing and Revenue Optimization (Stanford Business
Books). Stanford, CA, USA: Stanford Univ. Press, 2005.

[49] A. S. Poznyak and K. Najim, Learning Automata and Stochastic
Optimization. Berlin, Germany: Springer-Verlag, 1997.

[50] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling, Numerical Recipes: The Art of Scientific Computing. Cambridge,
U.K.: Cambridge Univ. Press, 1986.

[51] S. M. Ross, Introduction to Probability Models. San Diego, CA,
USA: Academic Press, 1980.

[52] G. Santharam, P. S. Sastry, and M. A. L. Thathachar, “Continuous action
set learning automata for stochastic optimization,” J. Franklin Inst.,
vol. 331, no. 5, pp. 607–628, Sep. 1994.

[53] B. Siciliano and O. Khatib, Eds. The Handbook of Robotics.
Berlin/Heidelberg, Germany: Springer, 2008.

2220 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 11, NOVEMBER 2014

[54] M. A. L. Thathachar and B. J. Oommen, “Discretized reward-inaction
learning automata,” J. Cybern. Inf. Sci., vol. 2, no. 1, pp. 24–29, 1979.

[55] M. A. L. Thathachar and K. R. Ramakrishnan, “A hierarchical system
of learning automata,” IEEE Trans. Syst., Man, Cybern., vol. SMC-11,
no. 3, pp. 236–241, Mar. 1981.

[56] M. A. L. Thathachar and P. S. Sastry, Networks of Learning Au-
tomata: Techniques for Online Stochastic Optimization. Boston, MA,
USA: Kluwer Acadmic Publishers, 2004.

[57] O. Tilak, R. Martin, and S. Mukhopadhyay, “Decentralized indirect
methods for learning automata games,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 41, no. 5, pp. 1213–1223, Oct. 2011.

[58] J. A. Torkestani and M. R. Meybodi, “Finding minimum weight con-
nected dominating set in stochastic graph based on learning automata,”
Inf. Sci., vol. 200, no. 0, pp. 57–77, 2012.

[59] P. D. Wasserman, Neural Computing: Theory and Practice. New York,
NY, USA: Van Nostrand Reinhold, 1989.

[60] Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y.-D. Yao, “Opportunistic
spectrum access in unknown dynamic environment: A game-theoretic
stochastic learning solution,” IEEE Trans. Wireless Commun., vol. 11,
no. 4, pp. 1380–1391, Apr. 2012.

[61] A. Yazidi, O.-C. Granmo, and B. J. Oommen, “Service selection in
stochastic environments: A learning-automaton based solution,” Appl.
Intell., vol. 36, no. 3, pp. 617–637, 2012.

[62] P. Zhou, Y. Chang, and J. A. Copeland, “Reinforcement learning for
repeated power control game in cognitive radio networks,” IEEE J. Sel.
Areas Commun., vol. 30, no. 1, pp. 54–69, Jan. 2012.

Anis Yazidi received the M.Sc. and Ph.D. degrees
from the University of Agder, Grimstad, Norway, in
2008 and 2012, respectively.

He is currently an Associate Professor with the De-
partment of Computer Science, Oslo and Akershus
University College of Applied Sciences, Oslo, Nor-
way. He was a Researcher with Teknova AS, Grim-
stad. His current research interests include machine
learning, learning automata, stochastic optimiza-
tion, recommendation systems, pervasive computing,
and the applications of these areas in industrial

settings.

Ole-Christoffer Granmo was born in Porsgrunn,
Norway. He received the M.Sc. and the Ph.D. de-
grees from the University of Oslo, Oslo, Norway, in
1999 and 2004, respectively.

He is currently a Professor with the Department of
ICT, University of Agder, Grimstad, Norway. He is
the author of over 70 refereed journal and conference
publications. His current research interests include
intelligent systems, stochastic modeling and infer-
ence, machine learning, pattern recognition, learning
automata, distributed computing, and surveillance

and monitoring.

B. John Oommen (F’03) was born in Coonoor, In-
dia, on September 9, 1953. He received the B.Tech.
degree from the Indian Institute of Technology
Madras, Chennai, India, in 1975, the M.E. degree
from the Indian Institute of Science, Bangalore,
India, in 1977, and the M.S. and Ph.D. degrees
from Purdue University, West Lafayettte, IN, USA,
in 1979 and 1982, respectively.

He joined the School of Computer Science, Car-
leton University, Ottawa, ON, Canada, in the 1981–
82 academic year, where he is currently a Full

Professor. He is the author of over 395 refereed journal and conference publi-
cations. His current research interests include automata learning, adaptive data
structures, statistical and syntactic pattern recognition, stochastic algorithms
and partitioning algorithms.

Dr. Oommen has been awarded the honorary rank of Chancellor’s Professor
in July 2006, which is a lifetime award from Carleton University. He has also
served on the Editorial Board of the IEEE Transactions on Systems, Man

and Cybernetics, and Pattern Recognition. He is a fellow of the IAPR.

Morten Goodwin was born in Nøtterøy, Norway. He
received the B.Sc. and M.Sc. degrees from Agder
University College, Grimstad, Norway, 2005 and
2003, respectively, and the Ph.D. degree with the
thesis “Towards Automated eGovernment Monitor-
ing” from Aalborg University, Aalborg, Denmark, in
2011.

He is currently an Associate Professor with the
Department of ICT, University of Agder, Grimstad.
He has published in several high ranked scientific
publications. His current research interests include

data-mining, optimization, machine learning, and software development.

