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Numerous buildings fall short of expectations regarding occupant satisfaction, sustainability, or energy
efficiency. In this paper, the performance of buildings in terms of occupant comfort is evaluated using
a probabilistic model based on Bayesian networks (BNs). The BN model is founded on an in-depth anal-
ysis of satisfaction survey responses and a thorough study of building performance parameters. This
study also presents a user-friendly visualization compatible with BIM to simplify data collecting in
two case studies from Norway with data from 2019 to 2022. This paper proposes a novel Digital Twin
approach for incorporating building information modeling (BIM) with real-time sensor data, occupants’
feedback, a probabilistic model of occupants’ comfort, and HVAC faults detection and prediction that
may affect occupants’ comfort. New methods for using BIM as a visualization platform, as well as a pre-
dictive maintenance method to detect and anticipate problems in the HVAC system, are also presented.
These methods will help decision-makers improve the occupants’ comfort conditions in buildings.
However, due to the intricate interaction between numerous equipment and the absence of data integra-
tion among FM systems, CMMS, BMS, and BIM data are integrated in this paper into a framework utilizing
ontology graphs to generalize the Digital Twin framework so it can be applied to many buildings. The
results of this study can aid decision-makers in the facility management sector by offering insight into
the aspects that influence occupant comfort, speeding up the process of identifying equipment malfunc-
tions, and pointing toward possible solutions.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The built environment is created and managed by the architec-
ture, engineering, construction, and operation (AECO) sector to
support human activities over time (i.e., work and accommoda-
tion). The influence of creating this environment on occupants is
significant since they need buildings that are accessible, produc-
tive, healthy, and comfortable [1]. Since individuals spend 90% of
their time inside, the role of occupant comfort within buildings
in terms of environmental, social, and economic elements is crucial
[2]. However, not all buildings successfully satisfy the comfort
needs of their residents [3].
One of the most common causes of complaints from building
residents is poor indoor air quality. Also, the amount of natural
light that enters buildings and the amount of noise pollution have
a psychological burden on the people living there, which reduces
employees’ productivity by up to 20% and increase errors caused
by interruptions [4]. Thus, productivity includes the financial side
of comfortable conditions, eventually impacting the company’s
finances [5]. Moreover, tolerable temperatures are determined by
indoor environmental quality (IEQ) guidelines [6], but there is no
correlation between these parameters stated in standards and
what occupants experience as comfortable [7]. This is because peo-
ple have different sensation levels for experiencing things. There-
fore, gathering input from occupants and evaluating building
performance is vital to enhancing occupants’ comfort and produc-
tivity [8].
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Nomenclature

SVM Support vector machine
FDD Fault detection and diagnostics
ANN Artificial neural network
BN Bayesian network
API Application programming interface
BIM Building information modeling
BMS Building management system
DT Decision tree
LR Linear regression
HVAC Heating, ventilation, and air conditioning
IoT Internet of things
IFC Industry foundation classes
URL Uniform resource locator
VAV Variable air volume
FMM Facility maintenance management

ASHRAE American society of heating, refrigerating and air-
conditioning engineers

RMSE Root mean square error
NN Neural network
RF Random forest
BEM Building energy management
BOT Building ontology topology
SSN Semantic sensor network
ML Machine learning
BACnet Building automation and control networks
COBie Construction operations building information exchange
ANOVA Analysis of variance
FM Facility management
CMMS Computerized maintenance management system
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The rate at which the planet is warming is inextricably linked to
the energy consumed by buildings. In the European Union, the
building sector consumes 40% of all energy and produces 40% of
all greenhouse gas emissions (GHG) [9]. In Norway, for instance,
non-residential buildings (including vacation homes) make up
around 62% of the entire building stock and 40% of the overall
energy consumption in buildings (while residential and non-
residential buildings make up 40% of Norway’s total energy usage)
[9]. Energy consumption in Norway’s commercial and industrial
sectors has risen by around 31% since 1990, while homes have
risen by only 9% [10], underscoring the urgent need for a renova-
tion strategy based on automated fault cause detection and predic-
tion to enhance the efficiency of those buildings [11]. To drastically
reduce our reliance on fossil fuels, we need to decarbonize our
heating and cooling systems [12]. In addition, HVAC systems con-
sume a disproportionate amount of energy in buildings, making it
all the more important to offer techniques and advice to assist
working professionals in developing and implementing high-
quality deep energy rehabilitation centered on HVAC systems for
better health, indoor environment quality, and energy perfor-
mance in all buildings [13].

Predictive, preventive, and corrective maintenance procedures
based on occupant comfort evaluations can contribute to building
sustainability and introduce better operational plans [14]. This
may be seen, for instance, in the trend toward using natural means
of cooling and lighting instead of artificial ones [15].

Analysis of the indoor environment and what constitutes a
comfortable setting has been the focus of research that has led to
the development of methodologies and instruments for evaluating
buildings’ performance [16]. Post-occupancy evaluation (POE) is a
process in which a building is surveyed after it has been occupied
to assess how well it meets the needs of its occupants in terms of
physical aspects like visual comfort, acoustic comfort, thermal
comfort, as well as indoor air quality, and non-physical aspects like
the workplace, and furniture [17].

These evaluation techniques are founded on deterministic mod-
els and hence fail to consider the variation in elements that affect
indoor environmental conditions, including the building environ-
ment, building characteristics, spatial information, and user behav-
ior [18].

Satisfaction with thermal conditions within a building is signif-
icantly influenced by how much control the occupants have over
the indoor climate and howmuch their actions change the comfort
condition [19]. Several factors, including the building envelope
(like insulation and infiltration), the building systems (like HVAC
and lighting), and the behavior of the occupants themselves, all
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contribute to the level of comfort in a given space [20]. Poor ven-
tilation, brought on by HVAC system malfunction, emissions from
building materials or misuse, can cause various health issues,
including sick building syndrome [21]. Building comfort evalua-
tions must consider the inherent uncertainty in the interaction
between individual, societal, and building elements [22].

This gap can be bridged by employing a probabilistic strategy to
evaluate indoor environmental quality [23]. Bayesian networks
(BNs) are a type of probabilistic model that may predict a build-
ing’s performance using a range of possible outcomes rather than
a single value. Researchers have utilized BN to forecast thermal
preferences [24] and to examine occupants’ comfort with certain
services [25]. To measure occupant satisfaction, however, a variety
of data is needed, but this data generally exists in siloed systems
that are neither studied nor integrated [1]. The application of BN
to simulate occupants’ comfort in terms of individual, societal,
and physical building aspects is also rarely investigated.

Furthermore, the FM team may save time and effort using
Digital Twin technologies, including BIM and sensor data,
streaming real-time data from the building, and spatial informa-
tion needed by the BN model. To the best of our knowledge, no
previous research has integrated Digital Twin technology with
risk assessment models to improve data collecting, feedback
visualization from building occupants, and understanding of cau-
sal aspects that make occupants discomfort. The principle of the
Digital Twin technology is shown in Fig. 1. The three main parts
of the Digital Twin framework are the physical twin, the digital
twin, and the decision-making process. The building, sensors
(IoT), and equipment make up the physical twin; the sensors
gather real-time data from buildings and communicate it to
the digital twin, and the equipment puts into action the choices
made by the facility managers.

The main objectives of this research are as follows:

1. Creating a BN model based on a satisfaction survey filled out by
850 users at the University of Agder and Tvedestrand Upper
Secondary School and information gleaned from literature
research and interviews with domain experts for evaluating
buildings’ ability to provide occupants with a comfortable
indoor environment throughout a Digital Twin framework.

2. Build a Digital Twin framework to inform choices on mainte-
nance (including predictive maintenance and automatic fault
detection) and retrofitting conditioning to improve a building’s
serviceability and environmental pleasantness in real time.

3. Improve data visualization by incorporating occupants’ feed-
back and the BN model into BIM.



Fig. 1. Digital Twin concept for building operation to prevent future failures, reduce energy consumption and increase occupants’ comfort.

1 https://www.uib.no/en/rg/ml/119695/bayesian-networks
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4. Aid the FM team in developing strategies for optimal building
operations by gain insight from prior failures to improve exist-
ing buildings’ health, safety, and durability.

5. Maximize choices based on a predictive maintenance frame-
work to predict the future cause that may make occupants
uncomfortable and give a deep understanding of how the next
building should be to avoid the aspects that led to occupants’
discomfort.

2. Literature review

2.1. Fault detection, diagnosis, and prediction

Today’s FM practices have resulted in several challenges, forcing
the sector to undergo a paradigm change in recent years from look-
ing for solutions to issues that have already happened to strategies
to forecast what will happen [26]. As a result of this transforma-
tion, the move from corrective or planned measures to predictive
strategies has occurred. Predictive maintenance, which involves
studying condition data and records of previous maintenance,
allows for the failure of building elements to be predicted. This
improves building components’ efficacy, reliability, and safety
[27]. However, to achieve a good predictive maintenance strategy,
it is necessary first to detect and diagnose the faults that make peo-
ple uncomfortable correctly. The literature divides FDD research
into three subfields: qualitative model-based [28], quantitative
model-based [29], and process history-based [30] approaches.
Under the process history-based approach, there are also qualita-
tive and quantitative subfields. Expert systems fall under the qual-
itative subfield, while machine learning and statistics fall under the
quantitative approach.

Regarding the expert systems, House et al. defined the AHU per-
formance assessment rules (APAR) as a collection of 28 if-then
rules that were evaluated based on an AHU’s operational regime
[31]. The APAR approach attracted much interest and was devel-
oped further by others [32,33]. Other researchers attempted to
broaden the scope of APAR rules and create novel tools for fault
detection; nevertheless, these tools only applied to a particular
type of HVAC and required simulated data [34,35]. However,
according to Trojanová et al., the creation of a universal model of
HVAC is difficult [33].
3

On the other hand, artificial neural networks (ANN), support
vector machines (SVM), random forests, and Markov chains are
just a few machine learning methods that may be used to forecast
the state of a building’s components. Because of their propensity to
forecast nonlinear time series patterns, ANNs have recently been
deployed as decision support tools. For trend prediction of nonlin-
ear time series, ANNs have been proven to perform better than tra-
ditional auto-regressive models [36]. Extensive research and
documentation support ANNs’ capacity to learn and preserve non-
linear patterns for future use [37]. In addition, SVM is a common
statistical learning-based classification method [38]. When esti-
mating the structural state of sewers, Sousa et al. found that ANNs
and SVMs performed similarly well, and each had its advantages
[39]. Ouadah et al. have also recommended using a ”random for-
est” technique in predictive maintenance applications [40]. As
the name indicates, a Random forest is an ensemble of numerous
random decision trees whose predictions are averaged [41]. Both
decision trees and random forests can reduce variance and
improve generalization depending on the situation, as described
in [42,43], respectively.

Carvalho et al. thoroughly evaluated the literature on machine
learning approaches used for predictive maintenance, highlighting
those being investigated in this area and the effectiveness of the
most recent cutting-edgemachine learningmethods [44]. Addition-
ally, Wang and Wang talked about how artificial intelligence (AI)
would affect future predictive maintenance, which is a crucial com-
ponent of sophisticated production systems in the future [45]. They
specifically talked about the appeal of using deep learning technolo-
gies in predictivemaintenance programplans.However, deep learn-
ing is only effective for some issues where large data sets are often
needed for training. According to Hallaji et al. [46], and Carvalho
et al. [44], the effectiveness of predictive maintenance applications
depends on selecting the right machine learning approach.

In the context of risk modeling from uncertain data, the Baye-
sian network (BN) 1 is widely regarded as a powerful technique
[24]. The BN can qualitatively and quantitatively characterize the
interdependencies between building elements and systems, thus
representing complex reasoning processes. Furthermore, unlike
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deterministic models, it may describe a building’s status as a proba-
bilistic process [47]. Bortolini and Forcada [47] created a BN-based
probabilistic model for making decisions about building mainte-
nance and retrofitting to boost building conditions. While the model
can deal with uncertainty and make predictions, the necessary data
is spread across different systems. In addition, the manual data
transmission is time-consuming and ineffective [1]. Dynamic ther-
mal models were calibrated using a novel Bayesian experimental
calibration method by Raillon et al.[48].

Out of the above literature, there are two major roadblocks to
the widespread use of machine learning [49]: firstly, a greater
number of faults must be discovered, and for this reason, huge
datasets are required. Secondly, others can not only rely on
machine learning to create a universal system to detect faults in
any building.

Therefore, this paper will combine machine learning (BN, ANN,
SVM, and Random forest) with expert knowledge (APAR) to find
and predict the faults in building systems that make people
uncomfortable. By that, less data is needed, and a universal system
can be built for several buildings.

2.2. Digital Twin technology for facility management

The Digital Twin technology draws from various domains,
including the Internet of Things (IoT), artificial intelligence, cloud
computing, and building information modeling (BIM) [50]. These
technologies have made it possible to digitalize various building
assets, allowing for the integration of a virtual item with a physical
one over the entire life cycle [51].

The Digital Twin technology is employed in preventative main-
tenance approaches 2, where it is used to anticipate the state of an
asset to reduce the number of operations and permit longer time
intervals between them [52]. One further use for the Digital Twin
is predictive maintenance 3. This directly affects the Digital Twin’s
capability to keep an eye on the functioning of the entire system.
The Digital Twin may see the operational data now being collected
by the system as a virtual representation of the complete system.
This makes it possible to monitor performance in real-time and
ensure that operations are running smoothly.

The Digital Twin can provide notifications on maintenance and
repairs. Consequently, issues may be discovered in advance and,
ideally, fixed before they become serious and affect the occupants’
comfort. As a result of predictive maintenance, maintenance oper-
ations may be planned ahead of time, and unplanned downtimes
can be avoided. Because of this, both technology and human
resources may be employed more effectively.

Out from that, building systems must be properly designed
early on, taking into account both functional requirements and
control strategies employing digital interfaces [53]. However,
cause detection approaches for building systems and components
(HVAC, envelope components, etc.) that combine semantic descrip-
tion with a Digital Twin approach (encompassing BIM, IoT, FMM,
and machine learning) have yet to be discovered in the literature.

Maintaining HVAC systems may be difficult due to issues with
information reliability and interoperability [54]. BIM is developing
as a solution for maintenance tasks because it is a powerful tool for
representing high-quality data and coordinating the use of several
software programs [55]. A method for automatically scheduling
maintenance work orders based on BIM and FM software was pre-
sented by Chen et al. [56]. Nojedehi et al. [57] connected BIM with
maintenance management system logs using BIM as a common
data environment and provided two ways for automatically trans-
2 https://comparesoft.com/cmms-software/preventive-maintenance/
3 https://spacewell.com/resources/blog/using-iot-sensor-data-for-asset-mainte

nance-smart-building-predictive-maintenance/
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ferring and displaying such data. Based on BIM and IoT technolo-
gies, Cheng et al. [58] created an integrated data-driven system
for developing predictive facility maintenance. Although the
deployment of BIM for maintenance operations has considerable
potential advantages, there still needs to be more data integration
for maintenance activities to identify the underlying causes of
HVAC issues [59].

As a result, the article implements a Novel Digital Twin frame-
work to determine the primary reason why occupants are dissatis-
fied with their spaces and devise a plan for predictive maintenance
to stop further system and component failures in buildings and
extend their lifespans.
2.3. Building factors and occupants’ comfort

Both physical (IEQ) and non-physical factors affect the level of
comfort experienced by building occupants, including thermal,
visual, and acoustic environment, air quality, space layout, privacy,
furnishing, and cleanliness [60].

The comfort of building occupants is influenced by location cli-
mate, building layout, building scale, building envelope, and venti-
lation [61]. The building envelope is the most important since its
design determines how a structure will react to environmental fac-
tors [62]. Almost half of the energy used by HVAC systems in non-
residential buildings is due to heat transfer via the building envel-
ope [63]. The envelope shape, form, and construction are the key
elements to consider in the early design stages to have a more sat-
isfactory building. Building’s orientation, shape, room arrange-
ment, and other adjustable aspects are all in the building
envelope form. The factors that make up the envelope shape are
the window-wall design [64], and shading component size [65].
Some characteristics that affect envelope performance are envel-
ope insulation, light transmission, and glazing insulation [66].

For thermal quality, studies have shown that climate, the char-
acteristics of buildings, and the services provided significantly
affect thermal comfort, in addition to the interior air temperature
[67].

The level of thermal comfort is also affected by the HVAC sys-
tem type. Radiant systems, for instance, can improve thermal com-
fort in the building [68]. Moreover, people who can adjust their
thermal settings report feeling very comfortable [69]. According
to research by [70], windows that can be opened and thermostats
that can be adjusted are the two features that are requested the
most. Buildings that rely on passive thermal techniques have a
greater need for thermal features such as envelope insulation than
other types of buildings [20]. A low U-value (thermal transmit-
tance) envelope can thus help increase the times when people
can feel comfortable without artificial air-conditioning [71].

The window to wall ratio (WWR) 4 is one quantitative measure
that may be used to assess the effect of daylighting on the quality of
light in buildings. There is a significant demand for daylight in work-
places, which may be directly attributed to the widespread percep-
tion that exposure to sunshine is more beneficial to people’s
health [4].

Physical characteristics, such as the external and interior sound
insulation of walls, are connected to acoustic quality. The major
reasons for occupants’ dissatisfaction in this case, as shown by
[72], are the same regardless of the type of office setting and
include being able to overhear colleagues’ private discussions,
other employees’ chats and the sound of people chatting in adja-
cent offices. Research has shown that machinery noise can also
cause acoustic discomfort [73]. Unfortunately, exterior noise can
be a problem in naturally ventilated buildings. Mechanical ventila-
4 https://www.hunker.com/13412499/how-to-calculate-a-wall-to-window-ratio
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tion systems with acoustic attenuators have significantly lower air-
borne noise levels.

Regarding the appropriateness of the space, occupants’ comfort
may be affected by factors such as the room’s dimensions, visual
appeal, furnishings, and level of cleanliness [74]. Functional com-
fort for users may be ensured in the workplace by using ergonomic
furniture, enclosed spaces for meetings, and collaborative work
[75].

In facilities like schools and offices, where the indoor environ-
ment directly impacts the productivity of the building’s occupants,
it is extremely important to ensure their comfort and safety.

From there, the novelty of this study is that it will include phys-
ical (IEQ) and non-physical factors that may contribute to occupant
discomfort in the cause detection process and learn from that for
the next building.
2.4. Novelty of our research

Out of the above-reviewed research work, the gaps in the liter-
ature are as follows;

� Lack of a Digital Twin model for real-time causes detection of
occupants’ discomfort with whole building systems, including
HVAC design, thermal comfort, visual comfort, acoustic comfort,
and space adequacy.

� Lack of Digital Twin model for real-time predictive maintenance
and workflow process for entire building.

� Lack of universally applicable of such Digital Twin system for
facility management.

Based on the research gaps mentioned above, this study proposes
an approach that integrates real-time sensor data, occupants’ com-
fort survey results, BN model and machine learning via our devel-
oped plug-in in Revit and by using Dynamo to enable intelligent
detection and prediction of faults that may make people dissatisfied
in buildings. Thus, the originality of our work comes from the fact
that it investigates the interaction of building envelope elements
with HVAC systems and parameters with other critical design vari-
ables through real-time fault detection and prediction including in
the Digital Twin framework to avoid occupants’ dissatisfaction,
which was previously unexplored in the literature. Hence, this
paper:

� Describes a Digital Twin framework for the fault detection and
prediction of whole building systems.

� Develops a plug-in in Revit that can receive real-time sensor
data (temperature, pressure, etc.) from the equipment in
I4Helse (University of Agder) and Tvedestrand upper secondary
school buildings in Norway.

� Uses a Bayesian network for real-time fault detection in build-
ing systems.

� Uses a practical machine learning algorithm for predictive
maintenance based on real-time data.

� Uses visual programming to create a new technique for fault
detection and predicting in buildings, making feedback on the
results in the BIM model and the building’s management sys-
tem easier.

� Develops a universal model based on ontologies that can effi-
ciently run on a varied set of data from IoT sensors in buldings.

� Develops an integrated condition monitoring framework based
on BIM technology for decision-making in FMM.
5

3. The proposed framework

As can be seen in Fig. 2, the proposed framework makes use of
Digital Twin technology for fault detection and diagnostics, and it
also predicts the condition of the building components, all to aid
facility managers in making more informed decisions at the appro-
priate time. Integrating the latest technologies, such as building
information modeling (BIM), the internet of things (IoT), and
machine learning (ML), formed the basis for our system. Data
input, fault detection and prediction, and information visualization
and monitoring in BIM are the three primary phases of the frame-
work. The BIM model may be used to acquire spatial data. By cre-
ating a plug-in extension for Autodesk Revit using C#, we
connected the BIM model with fault detection and prediction find-
ings to enhance the FM team’s decision-making. The following sec-
tions will explain the three basic tiers that make up this
framework.

3.1. Data input

This stage represents the box number one in Fig. 2.

3.1.1. Data from the BIM model
The proposed framework begins with the preparation of the

BIM model for data extraction and the creation of a plug-in that
streams real-time sensor data from the HVAC system and rooms
in buildings into the BIM model, effectively transforming the BIM
model into a database containing all of the information necessary
to carry out the framework process. As part of the preliminary
work, verifying that the BIM model has all the geometric and ther-
mal properties necessary for the Digital Twin model is vital. A pre-
cise BIM model of the building in concern would help immensely
with the data extraction process. Building envelope components
can be created for structures that lack a BIM model through laser
scanning [76] or 2D drawings.

In this paper, the BIM model serves a dual purpose: first, as
input data for the fault detection and prediction procedure (box
number two in Fig. 2), and second, as a visual representation of
the findings from that procedure. To perform properly, the Digital
Twin framework needs access to a BIM model database, including
all necessary information. For this reason, it has to be precisely
modeled, with each component receiving the precise allocation
of the thermal and geometric characteristics of the building envel-
ope’s parts. Based on the definition of LOD provided by [77], a BIM
model with a LOD of 300 or above is recommended for extracting
the thermal and geometric data connected with the proposed
framework. Autodesk Revitö 2022 [78] will be utilized as a BIM
tool in this study due to its availability to researchers and its inte-
gration with an open-source visual programming environment
(Dynamo) [79].

Data exchange protocols, such as the Industry Foundation
Classes (IFC) and the Construction Operations Building Information
Exchange (COBie), allow for data capture and transformation dur-
ing a building’s lifecycle [80]. The IFC data model includes geomet-
ric data, object classes, relations, and resources. Construction
component costs and schedules are two examples of semantic data
types that might be included in an IFC file [81]. COBie can also pro-
vide real-time data on how projects are run and managed [78].
Therefore, COBie should incorporate more data types and fields
than IFC does, such as location data, asset details, documentation,
and graphical data.

COBie relies on spatial data (space characteristics) for two main
reasons: (1) Space objects are necessary for good space, occupant,
and energy management, and (2) spaces are required for equip-



Fig. 2. The proposed Digital Twin framework for fault detection, prediction and data visualization.
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ment installation. Moreover, the element ID from the BIM model
(part of COBie) will be utilized to distinguish between elements
when extracting fault detection and prediction information and
feeding back the results into the BIM model.

Therefore, this article implemented a COBie plug-in for Revit to
retrieve the required data from BIM models and send it to the BMS.
3.1.2. Integrate sensor data in BIM model
Throughout the building, several sensors have been placed in

rooms and HVAC systems. These sensors monitor various environ-
mental and operational variables, including supply and return air
and water temperatures, flow rates, energy usage, control system
setpoints, humidity, and ambient air temperature. In order to mon-
itor and capture the crucial data from these sensors, we needed
access to the BMS. However, getting data out of the BMS system
quickly was not possible. Therefore, with the help of a develop-
ment team, we created a Restful API (Application Programming
Interface) to serve as an extra analytical layer on top of a tradi-
tional BMS system. It paves the way for several devices in a facility
to be diagnosed by simply entering a URL (Uniform Resource Loca-
tor) to retrieve the necessary information. Using the RESTful API,
the history of alerts and faults and the system for tracking routine
maintenance can also be accessed. The whole system’s principle is
depicted pictorially in Fig. 3.

Next, a Revit plug-in was built using C sharp, and Windows Pre-
sentation Foundation (WPF) programming [82] in Microsoft Visual
Studio Community 2022 to access the live sensor data and store it
in an MSSQL database, all while maintaining an accurate BIM
model. Additionally, the plug-in introduced a threshold to deter-
mine room coloration in response to occupant comfort levels. For
the purpose of receiving and visualizing sensor data, many sensor
blocks were employed in BIM model. The plug-in sensor block is
displayed in Fig. 4.
6

3.1.3. Occupants survey
There are typically three basic stages involved when analyzing

the aspects that contribute to a building’s occupants’ comfort level:

(1) Survey forms were developed and built for a user satisfac-
tion survey that considers convenience factors (e.g., thermal
comfort, acoustic comfort, indoor air quality, visual comfort,
and space adequacy). Occupants were asked to identify their
occupational setting in the POE survey by specifying the
building, floor, and room. Occupants’ feedback was scored
on a 5-point Likert scale, with (5) indicating ”very satisfied,”
and (1) indicating ”very dissatisfied,”. Participants were also
questioned on how they felt about the visual, acoustic, and
thermal comfort of their surroundings, as well as the quality
of the indoor air during the winter and summer months. In
addition, the survey provided a list of possible causes for dis-
comfort and a free-form text box for further comments.
Users were also surveyed on how they felt about the thermal
comfort, indoor air quality, visual comfort, acoustic comfort,
and space adequacy of the most frequently utilized common
areas of the facility (such as corridors, conference rooms,
classrooms, offices, kitchens, and laboratories).

(2) Occupant comfort causative variables were identified using
a probabilistic model trained on a BN. The survey findings
were used to design the BN model, which considers the
most important factors contributing to occupants’ feelings
of discomfort in Norway’s buildings. The BN model for
occupant comfort was developed using the Python box in
Dynamo. For each comfort factor, information about the
building (such as its features or HVAC system) and the sur-
rounding area (such as occupancy density) was gathered.
Moreover, parameters were added to the BIM model to
store the data that could not be acquired from the BIM
model. This was done so the BN model could be used to
its full potential.



Fig. 3. IoT data gathering system including of API established by both the service and development teams.

Fig. 4. Built-in sensor and occupants feedback management in Revit with the help
of the developed plug-in.
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(3) Our built plug-in and a visual programming interface for
Autodesk Revit, Dynamo, and the Python programming lan-
guage were used to connect the BIM model with occupants’
feedback from the POE survey and the probabilistic model to
support occupants’ comfort. The BN is depicted in Fig. 5. The
FM team can interpret the data thanks to the BIM visualiza-
tion of occupant responses and the findings of the causative
analysis.

3.2. Fault detection and prediction

This stage represents the box number two in Fig. 2.
3.2.1. Decision-making framework
Fig. 6 depicts the conceptual model and framework for making

decisions to help facility managers identify the underlying causes
of building issues and satisfy the demands of occupants. After get-
ting the comfort issue, the framework will initially determine
7

whether the HVAC system has an electrical issue. If not, the frame-
work will use the BN network in Fig. 5 to automatically begin look-
ing for HVAC design issues (thermal comfort issues). Whether
there are any HVAC design issues, the framework will check to
see if the HVAC system is inadequate, which indicates it cannot
handle the thermal demands of the occupants. If the architectural
and constructive design is properly established, the thermal load
can be computed automatically, and the indoor unit capacity can
be retrieved from the equipment database. There are two ways
to deal with discomfort brought on by already installed, undersized
HVAC components:

1. If at all feasible, insulate the room’s façade, including the façade,
windows, roof, and floor, to lower the thermal demand of the
room.

2. The only alternative would be to use interior units with larger
cooling or heating capacities if all envelope components fall
under the insulation criteria. If these improvements are not fea-
sible because of a limited budget, they might be suggested as
ways to enhance the future building design.

If the indoor unit capacity is greater than the thermal load of the
room, the framework will determine whether there is a failure in
the indoor HVAC system equipment (fan, sensors, cooling and heat-
ing units, etc.) by applying the APAR rules as mentioned in Sec-
tion (3.2.3), which are dependent on sensor data. Failures may
occur from outside units if APAR cannot identify an issue with the
inside equipment (e.g., frozen evaporator coils, dirty condenser
coils, dirty filters). By determining whether the issue is with indoor
or outdoor units, the framework enables the FM team to offer
proper remedial steps.

The framework will also look for issues with comfort related to
visual, acoustic, or spatial adequacy. The framework will examine
the WWR, room lighting, and shade management for visual com-
fort. In a similar vein, the framework will look for internal and
exterior acoustic insulation materials present in the building and
an acoustic attenuator to determine whether there is an acoustic
issue. The building’s space needs are checked at the last stage of
the framework by examining the rooms’ cleanliness, adaptability,
accessibility, and ergonomic furnishings.
3.2.2. Data selection and pre-processing
Feature selection is crucial when training a model with a

machine learning method since it allows the methods to exclude
irrelevant and noisy information. Several condition indices showed
evidence of data noise; for example, (1) a sensor for chilled and
heater water temperature, (2) the condition of the dampers, (3)



Fig. 5. The BN model for evaluating comfort performance in buildings.
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the state of the heating and cooling valves, (4) the temperature in a
given zone, (5) the status of the ventilation system, etc.

The dataset then undergoes data preparation, which entails
data cleaning and standardization. Data normalization reduces
the scale difference between different data sets, and the data clean-
ing removes the noisy and low variance data. Using the StandardS-
caler method [83], the data is translated into a range between 0 to
1. Data reduction eliminates extraneous information, whereas fea-
ture selection eliminates unnecessary information inside a dataset.
This research will combine the ANOVA and SVM approaches to
improve classification accuracy [84].

The ANOVA-SVM method produces many metrics, such as the
ANOVA score, the accuracy score from each subset test, and the
distance value from each data point to the decision boundary.
While SVM boosts the classifier’s performance, ANOVA analyzes
the variation of each feature in the dataset. The data created by
the ANOVA-SVM process includes the distance value of each fea-
ture to its decision border; the closer a feature is to its boundary,
the more important it is. The closer the data is near the boundary,
the better it fits the label.
8

3.2.3. AHU condition assessment and fault alarming
Fault detection and condition monitoring are two crucial steps

in predictive maintenance. Equipment health and status may be
tracked over time with the help of condition monitoring, which
collects and analyzes key parameters to identify if a component’s
status has altered from its typical state.

Our work established a condition assessment system and
implemented diagnostics in a larger number of devices using the
expert rules by Nehasil et al. [85] based on the APAR approach
by Schein et al. [86]. From 11 data points, Schein et al. [86] list
28 potential detection rules. The majority of the guidelines are con-
ditional on the AHU’s operational mode. The heater must undergo
separate tests when the AHU is in heating or cooling mode. Once
the time stamp’s operating mode has been identified, the appropri-
ate rules may be activated. Most rules are rather basic, requiring
only elementary math to determine the outcome of a single deter-
minable physical or regulatory event. All these rules were applied
through the BN model; Fig. 7 shows a part of it.

Data points must be associated with diagnostic system inputs to
operate properly. To achieve this, we employ a semantic descrip-



Fig. 6. The decision-making approach and framework to help facility managers detect building faults.

Fig. 7. An example of how the BN applies the APAR rules to check if there are any faults in the units inside the buildings. The blue nodes are the BMS data, the yellow nodes
are the state nodes, and the red ones are the faults.
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tion of data using BOT, Brick schema and SSN, as been mentioned
before.

3.2.4. Comfort prediction using probabilistic modeling
Identifying the building and spatial information impacting

occupants’ comfort for each comfort component is necessary to
determine the primary reasons for discomfort. Determining those
reasons was accomplished by first picking which factors had the
9

greatest impact on occupant comfort in a building through a
review of the relevant literature. Second, a statistical analysis
was performed on an 850-participants satisfaction survey in two
buildings in Norway to determine the cause-and-effect relation-
ships between various factors. Finally, the model structure was
tested and improved by applying the Delphi technique [87]. In
total, twenty-four specialists took part in the Delphi survey.
According to the information type, each building and spatial infor-
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mation variable was designated as discrete (labeled, Boolean, dis-
crete real, or ranked) or continuous in the BN model, represented
by a node [88]. Certain nodes were designed to have only two pos-
sible values, called Boolean values, such as ”Yes” and ”No.” Others
were ranked in one of many states, including ’High,’ ’Medium,’ or
’Low.’ To describe numerical statistical distributions as expres-
sions, the truncated Normal distribution, also known as TNormal,
was utilized [88]. Dynamo’s Python box was chosen as the primary
building block for the BNmodel for occupant comfort because of its
robustness, adaptability, and user-friendliness.

The likelihood that a node will be in a given state is described by
conditional probability tables (CPTs) [89]. The CPTs for each node
and the significance of the parent nodes for occupants’ comfort
in several ways inside the BN model were selected based on [23].
When an observation is made for a given node, the BN performs
the essential function of backward propagation by retracing the
influence of the observation through the network to determine
the marginal probabilities of unseen nodes [89]. Finally, a sensitiv-
ity analysis may be performed on a BN model to determine the
most influential model inputs in light of observed data.

The ventilation system is a key factor in determining the air
quality within a building, affecting how comfortable people feel
inside. Those living in the building can adjust the temperature
and humidity levels by simply opening windows. However, natural
ventilation is weather-dependent [90] and may not be sufficient in
extremely hot situations while it would lead to high heat losses in
cold climate. An outside weather station’s readings help under-
stand how pleasant the air quality is outside.

The HVAC condition, which describes the status of the compo-
nent, might be either high, medium, or low. For example, equip-
ment in ”high condition” is in pristine shape and may be put to
its full intended use. However, the quality of the HVAC system is
crucial for buildings with mechanical ventilation, as its inappropri-
ate functioning can lead to inadequate ventilation and, in turn,
health problems and discomfort [23]. Problems with indoor air
quality and thermal comfort might result from improper HVAC
design [91]. An effective HVAC system, for instance, must consider
the building’s layout. While centralized systems are ideal for single
thermal zones, decentralized systems perform better in multi-zone
structures.

Air quality comfort is also affected by the building’s occupant
density (m2/person). In this paper, an external state is character-
ized by an externally labeled node (e.g., extreme cold, cold, mild
for winters, and extremely hot, hot, and mild for summers). The
BN model has two types of nodes: ranked nodes, such as ventila-
tion control and filter, and Boolean nodes, like HVAC design errors,
HVAC condition, and occupancy density.

The thermal sensation is the state that conveys satisfaction with
one’s current thermal surroundings. The external environment has
a significant impact on heat perception. The kind and features of
HVAC systems (for example, the type of cooling and heating) and
the options for thermal adaptation have been highlighted as
important determinants in thermal comfort [92]. A building’s ther-
mal comfort may be affected by HVAC systems (boiler, chiller, etc.)
age. Those with access to thermally adaptable opportunities, like
opening windows and adjusting thermostats, report feeling quite
comfortable [69]. The material and insulation that make up a
building’s facade, roof, and windows make up its envelope, which
is one of the building’s attributes that affect occupants’ comfort
[20].

Despite the importance of HVAC conditions, the availability of
temperature control, and the efficiency of the envelope, faults in
HVAC design and environmental variables have a greater impact
on thermal comfort. Consequently, a low thermal transmittance
envelope (U-value) can assist increase the periods during which
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occupants can feel comfortable without resorting to artificial cool-
ing or heating [23]. Adjacent rooms also affect each other regarding
thermal comfort in terms of the quality of their materials and insu-
lation. The ability to regulate the temperature and the presence of
opening windows are both examples of Boolean nodes.

Quantifying the effect of daylighting on visual comfort may
be done by calculating the window-wall ratio (WWR) [93]. Peo-
ple strongly favor letting natural light into their workplaces,
which correlates with the widespread consensus that natural
light is healthier [94]. Given that the g-value of windows (glass)
is low to avoid overheating or increasing cooling loads due to
direct solar radiation, it is necessary to model the façade and
window sizes in BIM and determine the WWR per area. Regard-
ing occupant comfort, the availability of inside curtains and out-
side window shade is crucial for reducing glare and overheating
[95]. Errors in design can affect occupants’ visual comfort if, for
instance, proper daylight controls are not implemented. The BN
model defines the light and shade control options as Boolean
nodes. WWR is a ranking node (i.e., low (10%), medium (10–
40%), and high (>40%)) defined as the glazed area as a percent-
age of the envelope’s total area.

Regarding space adequacy, space attributes, including flexibil-
ity, cleanliness, and accessibility, affect occupants’ comfort [74].
The most important aspects of enough space are ergonomic fur-
nishings, cleanness, and accessibility. Other aspects that impact
occupant comfort include using ergonomic furniture and the avail-
ability of enclosed areas for meetings and collaborative work [96].
The BN model defines space adequacy data as a list of rated nodes.

Supply duct statistic pressure, differential pressure of the sup-
ply air filter, return air temperature, outdoor air temperature,
mix air temperature, power consumption of the supply fans, power
consumption of the returns fans, and supply air flow rate are all
examples of sensors used in BN for the APAR method. Supply fan
speed control signal, return fan speed control signal, supply duct
statistic pressure setpoint, and supply air temperature setpoint
are only some control signals and setpoints used by BN that may
be easily retrieved from BMS. Fig. 8 depicts the primary building
systems that were investigated for this study.

3.2.5. Maintenance strategy with multi-class classifier
Many reasons can cause failures in a building’s systems, such as

unskilled staff, a malfunctioning control system, improperly spec-
ified needs in the building management system (BMS), and so on.
Faults in complex systems (like the AHU) that are not detectable
by standard BMS tools (such as employing heating or cooling to
balance the non-optimal heat recovery [97]) are unusual. It would
be ideal to assign a failure severity to each problem depending on
how much it affects the comfort of the building’s occupants, how
much energy is wasted, and how much danger there is to the
machinery being used. From BMS, it is not feasible to obtain such
information. If critical information is lacking, a severity index for
each issue will become worthless. Instead, this study introduces
a predictive maintenance framework to improve maintenance
decisions through problem detection and system and component
health forecasting.

Data from BN fault detection real-time system, the FM system,
and the BIM will all be utilized in the forecasting procedure. Fol-
lowing Section 2.7., this investigation will employ the artificial
neural network, support vector machine, and decision tree meth-
ods. Fig. 9 shows how the predictive maintenance method func-
tions. This forecasting system considers several variables,
including the findings from the Bayesian network’s fault detection
over three years of data collected at 5-min intervals. This forecast-
ing method produces (1) building faults and (2) maintenance
requests.



Fig. 8. Main buildings systems that have been included in this study.

Fig. 9. The procedure of the prediction algorithm.
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The proposed predictive maintenance system supports adaptive
models training and prediction. Prediction models are trained with
data from continually updated sensors and service logs. Parame-
ters of the prediction models are adjusted to account for new infor-
mation, as shown in Fig. 10.

The predictive method is shown in Fig. 10. Training, cross-
validation, testing, and prediction are the four stages of the predic-
tion process.
Fig. 10. The data-flow and implement
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The ANN, SVM, and decision tree techniques are trained using
data sets for the desired variables (input datasets), and the result-
ing prediction models are then utilized to make predictions. Input
datasets are randomly divided into three categories: (1) 80% for
model training, (2) 10% for validation, and (3) 10% for testing. A
training set is used to train a machine learning model, while a test-
ing set is used to evaluate and fine-tune the learned model over
time by adjusting the weights of the algorithm’s interconnected
nodes. The remaining 10% of the data set must be used to verify
the accuracy of the trained model. Adjusting the trained models
based on dynamic updating data, such as the obtained dynamic
sensor data and the updated maintenance records, leads to creat-
ing these models, which are then retrained. After the model has
been run and a projected condition has been generated, the main-
tenance plan must be rescheduled to align with the condition. Last
but not least, the well-trained models predict the long-term state
of the various components (2 months ahead).

3.3. Data visualization

This stage represents the box number three in Fig. 2. Two types
of visualization were examined when thinking about how to best
present occupant feedback and causative factor findings. The for-
mer visually displays the findings of a user satisfaction survey,
while the latter displays the results of a probabilistic model used
to identify the root causes of occupants’ dissatisfaction. (1) The
originally proposed representation used a color scale ranging from
”Very happy” to ”Very dissatisfied” to represent occupants’ opin-
ions on various comfort levels. The BIM model featured a 3D repre-
sentation of the tabular data gathered from Revit’s schedule. The
plug-in depicted in Fig. 4 was created to individually display the
residents’ feedback on each room’s level of comfort. It is feasible
for the FM team to observe the average comfort level of occupants
by room by filtering comfort elements, and it is also possible to
compare the comfort levels of occupants in other rooms using
the same filtering criteria. The second suggested visualization
ation process for fault prediction.
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would use Python scripts in Dynamo to present the probabilistic
model’s causal analysis of each room’s data.
4. Case study

4.1. Background

I4Helse and Tvedestrand upper secondary school are the build-
ings used in this study to verify the proposed Digital Twin frame-
work. Both buildings follow Norwegian TEK10 [98] and NS3701
standards [99]. I4Helse [100] was built in Grimstad, Norway, in
2017 with 1600 m2 floor area, while Tvedestrand school [101]
was built in Tvedestrand, Norway, in 2020 with 14500 m2 floor
area. Tables 1 and 2 show the main features of both buildings.

Numerous types of sensors, including but not limited to tem-
perature, pressure, and flow rate sensors, have been installed to
monitor the buildings. In order to process the information further,
the signals were collected from the sensors and sent to the BIM
models. Fig. 11 shows the BIM model for the I4Helse and Tvedes-
trand school buildings, wihle Fig. 12 illustrates the systems
involved in this study.

In addition, the building users’ satisfaction was assessed in var-
ious locations, including classrooms, offices, hallways, labs, confer-
ence rooms, and study rooms. This data was imported to the
probabilistic model in Dynamo along with the spatial information
of each room, such as occupancy density (m2/person) and operable
windows (yes/no), among other things. Fig. 13 shows the occu-
pants’ comfort level for indoor air quality in summer in part of
the Tvedestrand school, where red color refers to people who feel
discomfort, and green refers to a pleasant environment.
Table 1
Real values of the buildings envelopes following TEK10 and NS 3701.

Parameter Initial value

External wall U-value (W/(m2ůK)) 0.15

Roof U-value (W/(m2ůK)) 0.11

External window, doors and glass U-value (W/(m2ůK)) 0.8

Ground floor U-value, W/(m2.K) 0.06

Normalized thermal bridge (W/(m2ůK)) 0.03
Airtightness n50 (1/h) 0.35

gt , Solar Heat Gain Coefficient (SHGC) (glass) 0.34 (3 layers glass)

Table 2
The HVAC systems in our case studies.

Operation Features

Ventilation system Mechanical balanced
ventilation system

Schedules of ventilation
system operation

Monday-Friday: 12 h/day (07.00–19.00)

Average supply airflow rates
of the ventilation system

2.48 l/(m2.s) for the occupied zones
and 0.81 l/(m2.s) for the unoccupied zones

(no equipment)
Heating system Centralized heating system,

with efficiency of 90%
Cooling system Centralized water cooling

for AHU supply air
Room temperature

set point for
heating and cooling [�C]

21 for heating and 24 for cooling

Supply air temperature
during operating time
winter/summer [�C]

21/19

Night ventilation 0.36 l/((m2.s)
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The BIM model was used to gather the ’evidence’ of possible
HVAC controls, HVAC design errors, occupancy densities, and envi-
ronmental settings. The occupants’ comfort probabilistic model in
the BN model was then run using these parameters in Dynamo to
determine the likely sources of comfort or discomfort. The user sat-
isfaction survey that was incorporated into the BIM process (using
the developed plug-in) and is considered ”evidence” in the BN
model was also used to determine the quality comfort level of each
room.

For fault detection and prediction, the Digital Twin framework
implemented in this paper has to have the right design, which
includes the BIM model of HVAC, building spaces, envelope mate-
rials, maintenance records, and historical failure data. An algorithm
for identifying faults is then trained using all this data. The trained
algorithm utilizes inputs from the cyber-physical system to (1)
determine if a failure will occur or (2) determine when there is suf-
ficient data to forecast when the failure will occur. One of the skills
offered by the Digital Twin is the ability to predict the reaction of
the physical system to an unanticipated event before it occurs. By
studying both the event itself and the present reaction to forecasts
of behavior made in the past, it is possible to arrive at this forecast.
Based on the data collected and the integration of the BIM and
machine learning algorithms, a full instance of a Digital Twin
may be built. Predictive maintenance using digital twins can be
profitable because it can significantly cut the number of mainte-
nance operations and the number of downtime machines experi-
ences while also extending equipment lifetime.
4.2. HVAC system

The HVAC units were equipped with rotary heat exchangers,
bypass, heaters, and chillers. These units were responsible for con-
ference rooms, classrooms, offices, and other spaces. Fig. 14 illus-
trates the HVAC layout in the buildings considered in this paper.
4.3. Data collection

As shown in Fig. 15, the BIM model may provide the FM man-
ager with geometric and semantic data about the buildings. The
FM system may also be used to access inspection reports and his-
torical records of maintenance. The BNmodel uses this data in con-
dition inspections and quality assessments. The damper position,
the chiller valve position, the heater valve position, the water tem-
perature from the heater, the water temperature of the return
heating coil, and the flow rate of water are all examples of the
real-time data collected by the IoT sensor. We gathered sensor data
from the I4Helse building from August 2019 to July 2022 and from
the Tvedestrand school building from October 2020 to July 2022 to
show how long-term trends in sensor data may be used to predict
future events. Some resample measurements made in Python in
2022’s first two months are displayed in Fig. 16.
4.4. Feature selection for APAR and prediction process

The original dataset collected from buildings has many features,
from which we have chosen 18 of the most important features for
developing the APAR rules based on the ANOVA-SVM method.
ANOVA is used for feature selection, reducing the feature space’s
high data dimensionality, and SVM is used to reduce the computa-
tional complexity and increase the classification’s efficacy. The
blue circles in Fig. 18 illustrates those features.



Fig. 11. I4Helse and Tvedestrand school as case studies in this paper.

Fig. 12. The systems that are included in the Digital Twin framework through fault detection and prediction process to find occupants’ discomfort reasons in buildings.
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4.5. Faults detection

4.5.1. HVAC faults
As previously mentioned, various sensors are employed to track

how well the buildings are functioning. Real-time sensor data and
trends from the BIM model may be visually depicted, as seen in
Fig. 15. The facility manager may use the sensors’ data to assess
each building system’s current state. The FM system’s recorded
abnormal events and warnings serve as references for condition
evaluation based on the outcomes of condition monitoring. In
addition, after reviewing the findings of the field inspection, the
FM team finished the building systems configuration list. At last,
the facilities manager did a comprehensive check of the building’s
infrastructure to assess its state of repair.

Several severe faults were found through testing using our
framework and the BN model, confirmed by facility management
employees and by looking at the data gathered. While some errors
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are less severe than others, some need to be fixed immediately (si-
multaneous heating and cooling). The relevant control system
algorithms need to be revised to fix these problems. An overview
of operational faults is shown in Fig. 17.

One of the failures that were discovered using the APAR tech-
nique is seen in Fig. 18. The temperature deviates from the setpoint
positively and negatively. The problem was that heat recovery was
not at its maximum level during the colder months, whichmeans it
was not saturated (a saturated heating or cooling coil valve control
signal for long duration points to issues like insufficient heating or
cooling capacity or faulty valve actuators). In this rule, the supply
fan signal is on, there is a significantly positive difference between
the return and outdoor temperatures, and the heat recovery signal
is not saturated.

When the supply air temperature drops to a little margin of the
set point, heat recovery is raised to bring it back up to the desired
level. The value of the fault can about make it over the 0.5 thresh-



Fig. 13. Occupants’ feedback of summertime indoor air quality in a part of
Tvedestrand school.

H.H. Hosamo, H.K. Nielsen, D. Kraniotis et al. Energy & Buildings 281 (2023) 112732
old, which indicates that the temperature differential between the
return air and the outside air is barely sufficient to cause the rule to
be triggered. The control procedures might be modified if desired
to allow this sort of conduct.
4.5.2. Acoustic quality
Several complaints have been received from occupants that the

two buildings discussed here are too noisy to be comfortable.
Table 3 provides a representation of the impact of the contributing
components on the acoustics. When acoustic quality is quite good,
the sensitivity analysis reveals the significance of the causative
components. The likelihood of a building providing a high degree
of acoustic comfort is shown to be most responsive to modifica-
tions to the envelope and internal acoustic insulation and least sus-
ceptible to modifications to the ventilation system.
Fig. 14. Schematic illustration of
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Building and spatial information nodes were retrieved from BIM
to evaluate acoustic comfort for each room based on the informa-
tion about that space (such as the type of ventilation, acoustic
attenuator, and occupants’ acoustic comfort). No evidence could
be established for the node in the probabilistic model of the acous-
tic insulation because no information about it was available. The
backward propagation analysis in the BN model was utilized to
acquire the findings of causal analysis and link to the associated
rooms in BIM using Python scripts in Dynamo for unknown nodes
(such as the envelope acoustic insulation). Using information from
user satisfaction surveys for a given space, the probabilistic model
determines the most likely values for the abovementioned vari-
ables. Then, BIM color-coded occupant satisfaction with acoustic
comfort and displayed cause analysis findings in normalized
stacked bar charts, as seen in Fig. 19.

The occupants of the Tvedestrand school classrooms reported
high levels of acoustic comfort. Nonetheless, office occupants com-
plained about the noise level. The bar charts for the offices reveal
that the acoustic insulation of internal walls is the most likely
source of acoustic discomfort (58%) rather than the ventilation sys-
tem or the lack of attenuators.

The facility manager can generate hypothetical scenarios from
the BIM visualization by changing the state of the causative ele-
ments and evaluating the likelihood that the occupants would be
satisfied. Therefore, the causative analysis suggests that isolating
an office’s internal walls can increase its occupants’ acoustic com-
fort. Nevertheless, if there is not enough money to accomplish that,
putting acoustic attenuators in the ventilation systems of the office
can be the most convenient choice.
4.5.3. Indoor air quality
A hypothetical situation about the pleasantness of the indoor air

quality on the third floor of I4Helse is provided. To run the proba-
bilistic model of occupant comfort in the BNmodel and identify the
most likely causes of comfort or discomfort, the BIM model’s defi-
nition of ’evidence’ was used to retrieve the options of ventilation
control, ventilation filter, occupancy density, and exterior condi-
tions. Evidence in the BN model is derived from a user satisfaction
survey embedded into BIM. This study revealed the quality comfort
level of each room.
HVAC from our case studies.



Fig. 15. The information about the building obtained via sensor data and the BIM model.

Fig. 16. A sample of the supply air temperature and supply water temperature for AHU at the Tvedestrand school during the months of December 2021 and January 2022.
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The FM team can determine the likely causes of each room’s air
quality through BIM visualization. Probabilities of HVAC design
faults or HVAC systems in high condition are displayed in Fig. 20.
Indicating a high degree of comfort for residents in this room
regarding indoor air quality, the findings show a 62% likelihood
of the HVAC system operating without faults and being in a high
condition in room No3039. However, occupants in rooms
No3051, No3017, and No3016 reported being unhappy with the
quality of the indoor quality. The model findings show a 74%
chance that No3017, and No3016 contain significant HVAC design
problems. These findings need to be compared to the requirements
for the HVAC system to establish whether the ventilation system
was operated appropriately. Occupancy density was also one of
the primary reasons why people were unhappy with the air quality
in these rooms.
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In order to determine which parameters (previous nodes) were
most important in improving the indoor air quality of uncomfort-
able rooms, a sensitivity analysis was conducted. Visually, the
length of a bar reflects the weight that node has on the whole per-
formance of the building’s conditions (target node).

Fig. 21 depicts the effect of different nodes on indoor air quality
in winter. It can be deduced that occupancy density and HVAC
design faults have a greater impact on the likelihood of extremely
high comfort levels in rooms No3016, No3051, and No3017,
whereas ventilation control has the least impact. Those rooms have
an HVAC system based on an AHU that services many rooms,
which may be undersized. Even if the AHU has to be replaced,
the high occupancy in these spaces suggests that lowering the
number of occupants may improve the comfort level of the indoor
environment.



Fig. 17. The detected faults in our case studies.

Fig. 18. Heat recover not saturated during one day in February. The fault is detected based on temperature setpoint, heat recovery signal and temperature difference between
outside and returned air.
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Table 3
Sensitivity analysis of acoustic quality.

Component Probability

Acoustic quality (high) 0.042
Envelope acoustic insulation (low) 0
Envelope acoustic insulation (high) 0.121
Interior acoustic insulation (low) 0
Interior acoustic insulation (high) 0.108
Acoustic attenuator = not exist 0.016
Acoustic attenuator = exist 0.061
Ventilation type 0.036
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4.5.4. Light quality
Fig. 22 illustrates the light quality of the buildings. In both

buildings, the end user controls the artificial light; however, only
occupants in Tvedestrand can control the glare from the sun
through the blinds. Compared to building I4Helse, the possibility
of attaining acceptable light quality at Tvedestrand school is signif-
icantly higher. According to this study, respondents were dissatis-
fied with the amount of daylight and artificial light in building
I4Helse. The occupants’ dissatisfaction with building I4Helse is
likely because it has a low WWR. According to the satisfaction sur-
vey findings, occupants in the Tvedestrand school are more pleased
with the light quality than those in the I4Helse.

Fig. 23 displays the results of the sensitivity study conducted on
light quality. According to the formal interpretation, the chance of
light quality being Very High given the outcomes of the parent
nodes rises from 1.6% (when design faults are High) to 36.9% when
there is a significant reduction in the number of design faults
(when design errors are Low). The light quality is affected in a
manner comparable to the various light control and shade manage-
ment capabilities. The ratio of windows to walls has the biggest
Fig. 19. acoustic comfort analysis of an offic
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influence on the quality of light, which suggests that a window-
to-wall ratio somewhere in the middle, between 10 and 40 per-
cent, is the most pleasant choice.
4.6. Predictive maintenance

The four-step procedure used in the forecast was based on the
BN faults shown in Fig. 17 utilizing real-world samples from the
case studies mentioned in this paper:

� Training randomly 80% of entire data sets containing all types of
faults detected based on APAR from around 200 000 data points.

� Holdout validation using 10% of entire data sets.
� Testing and prediction using 10% of entire data sets.
� Prediction of faults for the next 2 months.

Artificial neural networks (ANN), support vector machines (SVM),
and decision trees (DT) are the methods of choice for predicting
and ranking the severity of faults. Class-specific indicators and a
performance Trade-off Evaluation are used for comparative pur-
poses in this study [102].

Conditions predicted by ANN, SVM, and decision trees are com-
pared. Data sets are utilized for testing (10% of the overall data
sets). ANN’s 97% prediction accuracy was higher than that of
SVM (96.5%) and Fine tree (94.7%). The comparative performance
analysis and the condition prediction were carried out on the same
datasets to ensure that the findings of the comparative perfor-
mance analysis of these methods were applied to a diverse range
of situations. However, accuracy is insufficient to determine which
algorithm is best. In order to make a direct comparison between
two variables, we will use the confusion matrix and the receiver
operating characteristic curve (ROC). Accordingly, the AUC value
e and classroom in Tvedestrand school.



Fig. 20. The probability that each room has poor HVAC design or unsatisfactory HVAC conditions.

Fig. 21. The sensitive analysis of indoor air quality for rooms No3016, No3017, and No3051 in winter.

Fig. 22. Light quality probability percentage of I4Helse and Tvedestrand school.
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Fig. 23. Light quality sensitive analysis.
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from the ROC was equal to 0.52, and the Fine tree incorrectly iden-
tified 3 faults (damper is closed during heating regime, heating
pump is off during heating regime, and valve is opened during ven-
tilation regime). Four faults (heat exchanger closed, heating pump
off during heating regime, heating valve closed, and heating valve
stuck in an intermediate position during heating regime) have
been incorrectly identified as Class 1 using the SVM technique,
yielding an AUC of 1. All faults, however, were accurately classified
by ANN, and the area under the curve (AUC) was set to 1. The ROC
curves confirm that ANN is superior to SVM and Fine trees; the
area under the curve for Fine trees is just half of that for ANN. Con-
sequently, the prediction accuracy and error indices of decision
trees, ANN, and SVM all suggest that ANN beats the other two
approaches, although it needs a longer time (287.05 s) than SVM
(73.74 s) and Fine Tree (6.32 s).
Fig. 24. Comparison between the actual and predicted faults for August and 2022 using
Tvedestrand school) where x refers to the actual fault and y to the predicted fault.
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After evaluating ANN, SVM, and decision tree methods, we set-
tled on using the trained ANNmodel to make HVAC system predic-
tions. The proposed framework can foresee situations at a later
date. We utilize a time horizon of two months from now to demon-
strate the dynamic nature of maintenance schedules in the future.
The faults that were accurately recognized are shown in blue cir-
cles in Fig. 24, whereas the faults that were incorrectly predicted
are shown in red circles.

Accordingly, based on the predicted condition, the facility man-
ager should prepare maintenance equipment, supplies, and tools in
advance as an alternative to restoring them after failure. Generally
speaking, a predictive maintenance strategy enables the facility
manager to monitor the state of the equipment and allocate
resources and time accordingly. Changes in maintenance strategies
are required for each new action plan.
ANN model (2 months ahead from the data that used for training and validation in
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5. Discussion

The classification of comfort aspects into thermal comfort,
indoor air quality, visual comfort, acoustic comfort, and space ade-
quacy is accomplished by integrating occupants’ feedback and the
occupants’ comfort probabilistic model into the BIM model.

While some research has built a platform for merging building
information modeling (BIM) with BN, a standardized technique
must be used to evaluate the comfort performance of existing facil-
ities. As a result, the probabilistic and predictive models can more
easily acquire the necessary data thanks to the novel Digital Twin
model proposed in this paper. It also helps the FM team deal with
issues like data integrity, system compatibility, and labor efficiency.

The novel in our method presented in this paper focuses on real
problems in uncomfortable spaces. It demonstrates occupants’
feedback and detects and predicts the faults that contribute to
occupants’ discomfort in the form of a bar chart. This helps reduce
the time spent looking for relevant information about the building,
makes it easier to deal with the problem, and optimizes building
operation strategies to increase occupants’ comfort. Moreover, sev-
eral studies have been on various techniques for identifying HVAC
problems since the 1980s. Despite this, Fault detection is still not a
standard part of HVAC operations. The reason is the restricted flex-
ibility of fault detection methods and the high cost of fault detec-
tion systems. As a result, one purpose of this study is to present an
automatic fault detection system to solve this problem. This sys-
tem may be used with a wide variety of HVACs. On the other hand,
the authors note that drawing comparisons and understanding the
status of technology is challenging because each research effort has
its unique dataset, test conditions, and measurement criteria. The
purpose of this study is not to attain the maximum possible suc-
cess rate in fault detection for a single HVAC system but rather
to achieve a reasonable detection rate for many HVAC systems.

The wintertime indoor air quality issue was addressed, and it
was shown that various people’s judgments of the air quality might
exist in the same room with the same heating, ventilation, and air
conditioning (HVAC) system. More than 200000 data points were
utilized to verify the suggested method from I4Helse and Tvedes-
trand school. Occupancy density (m2/person) was found to have
a major effect on how people perceive the air quality within a
building, suggesting that rearranging furniture or decreasing the
number of people there might increase indoor air quality comfort.

A plug-in, BOT, SSN, and Brick schema are used to facilitate the
integration and flow of data in this investigation. On the other
hand, Dynamo incorporates automation into the mapping informa-
tion process, applies BN and a machine learning model, and is
adaptable to and interoperable with the vast majority of current
systems (e.g., Power BI). Incorporating a wide variety of sensors,
equipment, and structural elements of a building into a single
ontology is another approach to the data integration issue. Further-
more, the growing value of semantic data in BMSs will play a cru-
cial role in advancing fault detection strategies.

The Digital Twin architecture utilized in this article can secure
and verify the integrity of a system model by first gathering data
from the operational environment, executing tests using that data,
and finally realizing assessments, improvements, and forecasts.
This might be helpful for decision-makers in supporting their deci-
sions based on the information produced by the digital system
regarding the project that is to be implemented in the actual world.
In addition, the Digital Twin can forecast upcoming changes in the
physical system since the digital system gives users the capacity to
evaluate and simulate different scenarios to devise effective strate-
gies. The framework has the potential to unearth new practical
opportunities that can be incorporated into the physical system
and its simulated variants. Just as the twin may show far-
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reaching plans and major benefits for the real-world system’s out-
put, so can the framework.

Using computer-aided design and artificial intelligence, the
framework referred to as ”Digital Twin” in this study can improve
the performance of buildings, cut costs, lessen possible hazards,
and optimize supply chains for building materials. When develop-
ing this Digital Twin, the dimensions of the conceptual space uti-
lized for the workflow and the appropriate utilization of data and
information interaction may make the incorporation of AI strate-
gies much simpler.

On the other hand, an improved option can be addressed both
now and in the not-too-distant future. Therefore, to bridge digital
gaps and obtain a coherent and comprehensive process framework
for designing and operating buildings and other facilities, digital
twins need to be integrated within the architecture of existing con-
struction companies. Such businesses are distinguished by their
adaptable matrix organizational structure, revamped for each
new venture, and heavy reliance on regional providers of resources
and labor. The framework may also be utilized to determine where
energy is wasted in the building and reduce environmental
impacts.

The Digital Twin structure that has been adopted offers numer-
ous benefits; nevertheless, certain issues need to be addressed.
Because the Digital Twin works with artificial intelligence (AI)
and the Internet of Things (IoT), these technologies face similar
issues. The initial area of weakness is the IT infrastructure. Rapid
AI development means we must provide a stable platform that
can run cutting-edge software and hardware algorithms. It is vital
for businesses to have a functioning and well-connected informa-
tion technology infrastructure in order for this technology to be
successful and for businesses to profit from it. The expense of put-
ting these technologies in place and maintaining them is one of the
most significant obstacles inside the infrastructure. For instance,
the price of a Digital Twin for an office building around 60,000
square meters in size might be anywhere from 1.2 million to 1.7
million US dollars.

The following weakness in the modeling is that our Digital Twin
model depends on the Internet of Things (IoT) technologies to
receive data from smart devices. These technologies still have a
long way to go before fully developed, impacting the standardiza-
tion, resolution of sensor data, and large data capacity. In addition,
the Building Information Modeling (BIM) models in companies
used during the design phase are not appropriate for usage during
maintenance. The issue arises because the employee who puts the
order needs to be more informed about the correct usage of the
BIM models and the extent to which they should require modeling.
Further investigation is required to determine who will bring the
BIM model up to date when significant alterations or additions
have been made to the building. There needs to be someone avail-
able who can keep the model and all its data up to date. In addition,
the maintenance of the model would require the competence of
the staff members in charge of maintenance, which is generally
not accessible. Another thing that stands in the way of using BIM
is that the FM software utilized during the maintenance phase of
the process cannot read the information directly from the BIM
models at this time.

Another problem is that building owners need more incentives
to invest in preventative maintenance, even though buildings lose
energy due to poor maintenance and operation. Monitoring and
prognostics must be performed without incurring additional costs
or explaining the return on investment. In conclusion, most users
would need to put in a significant amount of effort to successfully
adopt the model that incorporates all of the information necessary
for controlling potentially harmful circumstances, fire safety, and
electrotechnical maintenance.
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This study has some limitations: (1) the fault detection analysis
was done in Dynamo, and the findings were mapped into BIM. The
method does not consider any additional software in the market (r.
g., Bayes Server). To fix this, it is important to write a new Python
code in the block in Dynamo. (2) The occupants’ age and physical
condition significantly impact their degree of comfort. Other infor-
mation requirements must be investigated to address these con-
cerns, such as improving the probabilistic model by adding more
elements impacting occupants’ satisfaction. (3) Other types of
problems, including firefighting, are not considered by the frame-
work in this paper. (4) Since this framework was designed for
usage in HVAC systems over their useful lifetimes, it is well suited
to creating a building-wide deterioration scheme. (5) The choice of
algorithm is based on the authors’ prior knowledge, which affects
the accuracy of the predictions. Alternative prediction methods
will need to be looked into in further studies.
6. Conclusions

Analyzing several ambiguous factors is required to assess build-
ings’ comfort performance. Using conventional methodologies to
quantify and evaluate occupant comfort in buildings might be
challenging based on such indeterminate factors. With such in
mind, this research demonstrates creating a BN model for control-
ling the thermal comfort of existing buildings. The suggested BN
may describe comfort in a building as a probabilistic process rather
than a deterministic one and hence provide comfort performance
levels in the form of probability distributions. The key benefit of
BN is its adaptability, which allows it to include many types of data
and evidence, including expert judgment.

Although the BNmodel may identify the causes of occupant dis-
comfort, it is incompatible with BIM software, making the resulting
data inaccessible and difficult to interpret. Moreover, the visualiza-
tion and automated changes to component attributes and data
management are only two ways BIM, as an integration tool, stands
apart from other models. Hence, this paper introduces a novel Dig-
ital Twin approach that incorporates occupants’ feedback (thermal
comfort, indoor air quality, visual comfort, acoustic comfort, and
space adequacy), real-time sensor data, the occupants’ comfort
probabilistic model, and predictive maintenance into BIM, catego-
rized by comfort aspects. This visualization approach helps the FM
team design the appropriate measures for increasing occupant
comfort based on input from occupants and the findings of fault
detection analysis.

This research also investigates the potential contributions of the
Digital Twin to FMM-related predictive maintenance strategy. Pre-
dictive maintenance relies on the integration of three distinct but
interdependent components: (1) operational fault detection, (2)
condition prediction, and (3) maintenance planning. In addition,
the status of the HVAC components is predicted using several
machine learning approaches (artificial neural networks, support
vector machines, and decision trees) to perform predictive mainte-
nance and repairs promptly. The data integration and data flow
mechanisms between BIM models, IoT sensor networks, and the
FM system are built into the architecture of the proposed
framework.

The proposed method aids FM operations and places tenants at
the center of maintenance choices. With the help of the Digital
Twin framework, the FM team can quickly and easily make deci-
sions about occupant comfort-related building operational issues,
removing a major obstacle to the collection of the necessary infor-
mation during the operation and maintenance phase and thus pav-
ing the way for the much more widespread use of BN, BIM, and
their associated benefits. Also, the visualization makes it easy to
link various FM data (including architectural and geographical
21
information) to these models. This means that buildings with con-
siderably less effort may pursue the suggested technique, which is
good news for research and can help drive commercial interest.

In order to improve the comfort of buildings and, by extension,
the pleasure of their occupants, the suggested framework aids
facility managers in making well-informed decisions. The results
of two case studies of two buildings in Norway demonstrated that
the suggested method could deepen our knowledge of the ele-
ments that influence occupants’ levels of discomfort and the con-
nection between those factors, the interior environment, and the
physical properties of buildings. The Digital Twin framework in
this paper could detect and diagnose more than 17 faults that
the traditional BMS could not detect. Moreover, with very high
accuracy, the framework could predict the faults that will happen
in the next 2 months. In addition, the sensitive analysis of indoor
air quality showed that occupancy density and HVAC design faults
have the highest impact on comfort levels. Similarly, the windows
to walls ratio has the biggest influence on the quality of light, sug-
gesting that a window-to-wall ratio somewhere in the middle,
between 10 and 40 percent, is the most pleasant choice.

Writing new Python code in the Dynamo block to compete with
other market applications that use the Bayesian network is crucial
for future research to increase the framework’s popularity. In order
to enhance the probabilistic model, further research into envelope
materials, window control, windows to floor ratio instead of WWR,
and the plumbing system are necessary. This paper’s paradigm
does not account for the complexity of other situations, such as
firefighting. Since the authors’ prior knowledge influences the
accuracy of the predictions, other prediction approaches will need
to be explored in future research. Finally, our methodology has yet
to include the cost of all the solutions.
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