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Abstract: Association rule mining (ARM) is one of the core techniques of data mining to discover
potentially valuable association relationships from mixed datasets. In the current research, various
heuristic algorithms have been introduced into ARM to address the high computation time of
traditional ARM. Although a more detailed review of the heuristic algorithms based on ARM is
available, this paper differs from the existing reviews in that we expected it to provide a more
comprehensive and multi-faceted survey of emerging research, which could provide a reference for
researchers in the field to help them understand the state-of-the-art PSO-based ARM algorithms.
In this paper, we review the existing research results. Heuristic algorithms for ARM were divided
into three main groups, including biologically inspired, physically inspired, and other algorithms.
Additionally, different types of ARM and their evaluation metrics are described in this paper, and
the current status of the improvement in PSO algorithms is discussed in stages, including swarm
initialization, algorithm parameter optimization, optimal particle update, and velocity and position
updates. Furthermore, we discuss the applications of PSO-based ARM algorithms and propose
further research directions by exploring the existing problems.

Keywords: association rule mining; particle swarm optimization algorithm; algorithm optimization;
heuristic algorithm

1. Introduction

Association rule mining (ARM), as one of the core techniques of data mining (DM), can
discover potentially valuable association relationships between itemsets from complex and
fuzzy mixed data. The Apriori algorithm is one of the classical algorithms for ARM, which
was first proposed by Agrawal et al. [1] and has gained the attention and research of many
scholars in the past two decades. Akbar et al. [2] reviewed the research on ARM algorithms
based on evolutionary computation published before 2019 and classified the evolutionary
ARM algorithms into four major categories: evolutionary-based, swarm intelligence-based,
physics-inspired, and hybrid approaches. Minakshi et al. [3] systematically assessed numer-
ical association rule mining (NARM) algorithms to help scholars select a suitable algorithm
when performing NARM mining. Djenouri et al. [4] studied the application of various
metaheuristics algorithms in frequent itemset mining (FIM) and high-utility itemset mining
(HUIM), including genetic algorithms (GA), ant colony optimization (ACO) algorithms,
artificial bee colony (ABC), and particle swarm optimization (PSO). Arani et al. [5] also used
a metaheuristic-based clustering mechanism when analyzing cloud workloads. In addition,
Gan et al. [6] combined the design of convolutional neural networks (CNN) to address the
shortcomings of traditional mining models that cannot extract temporal data effectively by
constructing a new temporal association rule mining model. Similar papers include [7,8].
Badhon et al. [9] developed a systematic and structured analysis of ARM algorithms in
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terms of different aspects, including chromosome representation, genetic operators, and
initial swarms. In addition, Kheirollahi et al. [10] combined the clustering algorithm with
the PSO algorithm, which can be applied to recognize effective, good clusters and extract
strong rules among reservoir data. Datta et al. [11] introduced the concept of flexible
dissociation to propose a significant ARM framework with high associativity. In response
to the rapid growth of data, Sanjay et al. [12] proposed a distributed ARM algorithm called
adaptive-miner, which can dynamically change the mining algorithm according to the
characteristics of the dataset. Among them, the PSO algorithm has already received the
attention of many scholars at home and abroad since it was proposed because of its few
adjustable parameters, high efficiency, easy implementation, and fast convergence speed.
The current research shows that ARM using the PSO algorithms has higher operational
efficiency compared with other data mining algorithms and can generate more accurate
and valuable rules [13–21].

However, recent papers reviewed only a small fraction of the PSO-based ARM algo-
rithms; however, there have been many papers published in recent years. Therefore, we
aimed to provide a more comprehensive and multi-faceted survey of emerging research.
We expect this survey can provide a reference for researchers in the field to help them
understand the state-of-the-art PSO-based ARM algorithms. We downloaded all the articles
containing PSO or ARM keywords in recent years, removed the less cited and less relevant
ones, and selected the remaining 117 papers for use in our survey.

To analyze these papers more systematically and comprehensively, we divided the
ARM algorithms according to the different pattern types. They were fuzzy association
rule mining, rare association rule mining, numerical association rule mining, quantitative
association rule mining, binary association rule mining, high-utility association rule mining,
and classification association rule mining, and they are shown in blue in the inner circle of
Figure 1. In addition, we compared them from three perspectives: biologically inspired,
physically inspired, and other algorithms, and listed the key information of each algorithm
under the different perspectives, as shown in the outer circle of Figure 1. The specific
description and summary of the characteristics of each algorithm can be found in Section 3
of the article.

The remaining paper is organized as follows: In Section 2, the concept of ARM is
described in detail, and it is divided into three categories: classification association rule
mining (CARM) [22], fuzzy association rule mining (FARM) [23,24] and numerical associa-
tion rule mining (NARM) [15,25–27]; their algorithm evaluation metrics are described in
three sections. In Section 3, different algorithms in ARM are compared and categorized
into three groups: bio-inspired, physics-inspired, and other algorithms, and in each group,
a paragraph describing the algorithms and a summary of their features are provided. The
process of the PSO-based ARM algorithm is described in detail in Section 4, including the
binary conversion of data and the encoding process. Section 5 discusses the current status of
research on the ARM algorithms based on PSO algorithms from four perspectives: swarm
initialization, algorithm parameter optimization, optimal particle update, and velocity
and position update. The applications of the PSO algorithm in ARM are summarized in
Section 6. Finally, the paper concludes with concluding statements and future aspects in
Section 7.
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2. Association Rule Mining
2.1. Definition of ARM

The definition of association rules was first introduced by Agrawal in 1993:
I = {i1, i2, · · · , in} is called the itemsets, where ij ∈ {0, 1} is called an item,
D = {d1, d2, · · · , dm} is called a database, and dk is called a transaction. A transaction is
an itemset, i.e., a transaction is a subset dk ⊆ I of a transaction, and each transaction has
a unique ID. Each rule consists of two different itemsets, X and Y, where X is called the
premise, and Y is called the conclusion. Rules are represented as X → Y , and X, Y ⊆ I.

2.2. Mode Types for ARM
2.2.1. CARM

CARM is a widely used method in the real world. Compared with traditional ARM,
CARM has the characteristics of high classification accuracy and adaptability, etc. Its



Electronics 2022, 11, 3044 4 of 28

mining is mainly divided into the following processes: in the preprocessing stage, if the
data are continuous values, they need to be discretized; then, class association rules that
satisfy the minimum support and confidence are mined in the database, and the generated
association rules are pruned. Finally, the classifier is used to predict the data objects of
unknown classes. Currently, this model is widely used in several fields, such as medicine
and biology.

2.2.2. FARM

For traditional ARM, its itemsets are often discretized by dividing the intervals into
continuous values [28], but the method suffers from the drawback of dividing the intervals
too hard. Therefore, Chan et al. [23] proposed the concept of fuzzy association rules
to divide the interval into multiple fuzzy sets by softening the division boundary with
fuzzy sets and obtaining the probability of an element on a fuzzy set based on the fuzzy
affiliation function to provide a smooth transition between the members and nonmembers
in the itemset.

Let the itemset set I = {i1, i2, · · · , in}, database D = {t1, t2, · · · , tm}, and each element
ij in the itemset correspond to a fuzzy set Fik =

{
f 1
ik, f 2

ik, · · · , f l
ik

}
. The fuzzy association rule

for mining is that if T is A, then F is B. Where, T =
{

t1, t2, · · · , tp
}

, F =
{

f1, f2, · · · , fp
}

are
the itemsets, A =

{
a1, a2, · · · , ap

}
, B =

{
b1, b2, · · · , bp

}
are the fuzzy sets corresponding

to T and F, respectively. The rule premise X = T is A, and the conclusion Y = F is B. This
is expressed as: when X is satisfied, it can be concluded that Y is also satisfied. For this
purpose, we use the significance factor and the certainty factor to determine whether the
rule is interesting or not.

Significance Factor: To generate a fuzzy association rule, it is first necessary to obtain
the set of k items with a significance factor above a user-specified threshold, denoted as
S<T,A>, which is calculated as follows:

S<T,A> =
∑dk∈D ∏ti∈T

{
αaj(dk[ti])

}
Total(D)

(1)

αaj

(
dk
[
tj
])

=

{
maj ∈ A

(
dk
[
tj
])

, i f maj > w
0 , otherwise

(2)

where Total(D) indicates the total number of transactions in database D, αaj(dk
[
tj
]
) indi-

cates the membership grade of tj in the kth records.
Certainty Factor: After the first step of calculation to obtain a large set of K terms with

significance factors above a given value < Z, C >, a deterministic factor is introduced to
measure whether the rule is interesting or not, which is calculated as follows:

C<<T,A>,<F,B>> =
∑dk∈D ∏zi∈Z{αci (dk[zi])}

∑dk∈D ∏tj∈T

{
αaj

(
dk
[
tj
])} (3)

αci (dk[zi]) =

{
mci ∈ c(dk[zi]) , i f mci > w
0 , otherwise

(4)

Z = T ∪ F, C = A ∪ B (5)

2.2.3. NARM

In the real world, data are often represented in the form of numerical values, and the
process of finding the association rules in numerical data is called NARM. In solving the
NARM problem, most of the existing studies are divided into three methods: optimization,
discretization, and distribution. Among them, the optimization methods can be divided
into several sub-methods, such as swarm intelligence-based and evolution-based; the
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discretization methods are for discrete-continuous values, which can be further divided
into supervised and unsupervised, static and dynamic, and other sub-methods; and the
distribution methods include the mean, median, and variance. The division methods are
shown in Figure 2.
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2.3. Evaluation Metrics for ARM
2.3.1. Basic Evaluation Indicators

To select the valuable rules from the possible frequent itemsets, some metrics are
needed to filter and sift them. In most studies, the strength of a rule is described by support
and confidence.

Support: Support indicates the frequency of the itemsets in the database. The support
of the association rule X → Y is the ratio of the number of transactions in the database that
also contain the itemsets X and Y to the total number of transactions.

Support(X → Y) = P(X ∩Y) =
X ∩Y

all
(6)

Confidence: The confidence level is used to measure the confidence level of a rule. The
confidence level of the association rule X → Y is the ratio of the number of transactions in
the database that contain both X and Y and the total number of transactions that contain X.

Con f idence(X → Y) = P(X|Y) = P(X ∩Y)
P(X)

(7)

When Support(X → Y) and Con f idence(X → Y) are both greater than the minimum
support threshold and the minimum confidence threshold, if Li f t(X → Y) > 1, then
X → Y is a strong association rule, and vice versa.

2.3.2. Quantitative Evaluation Indicators

Most researchers use support and confidence to evaluate rules. The inherent drawback
of this is that rare data items with less than the minimum support cannot be studied, and
the support–confidence-based evaluation system generates a huge number of invalid rules;
thus, other evaluation metrics need to be introduced to further mine the rules of interest to
users [29].
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Correlativity: Correlation reflects the degree of interdependence between X and Y. If
Correlativity(X → Y) < 1, then it means that X → Y is an invalid strong correlation rule,
and if Correlativity(X → Y) = 1, then X and Y are independent of each other.

Correlativity(X → Y) =
P(X|Y)

P(Y)
=

Con f idence(X → Y)
Support(Y)

(8)

Effect: The degree of influence reflects the degree of correlation between X and Y. It can
filter invalid association rules and generate meaningful positive and negative association
rules. |E f f ect(X → Y)| is larger, indicating a high degree of X → Y correlation.

E f f ect(X → Y) =
Con f idence(X → Y)− Support(Y)

Max{Con f idence(X → Y), Support(Y)} (9)

Time: The timeliness reflects the value of time between X and Y and can help decision
makers remove redundant or already outdated information. The temporal validity of the
rules decreases exponentially with increasing time intervals. The temporal validity of
support and confidence is calculated as shown in Equations (10) and (11), respectively.

Time_Support(X → Y) =
n

∑
i=1

Support(Xi) · e−α·|ti−t0| (10)

Time_Con f idence(X → Y) =
n

∑
i=1

Con f idence(Xi) · e−α·|ti−t0| (11)

where Xi denotes the ith transaction in the X events and ti denotes the time when the ith
transaction in the X events occurred.

2.3.3. Qualitative Evaluation Indicators

Utility: Utility reflects the potential usefulness of some attributes in the rule and their
importance, and Utility ∈ [0, 1]. When Utility = 1, it means the attribute is the most
important, and vice versa.

Concision: Simplicity is used to measure the comprehensibility of the association rule
and is related to the arithmetic average of the number of items and the abstraction level
of the antecedent items of the rule, and the weighted arithmetic average of the precedent
items, whose weights depend on the importance of the antecedent and precedent items.
The higher the number of items in a rule, the lower its comprehensibility, and the higher
the level of abstraction contained in a rule, the lower its comprehensibility. The greater the
simplicity of a rule, the more interesting it is to the user.

3. Comparison of Different ARM Algorithms

Due to the features of association rules in high-dimensional spaces, many scholars
obtain better solutions through iterative heuristic processes. In this paper, we divided
the ARM methods based on the heuristic algorithms into three main groups: bio-inspired,
physics-inspired, and other algorithms, and provided a paragraph describing the algo-
rithms and a summary of their features in each group.

3.1. Bio-Inspiration
3.1.1. Evolution-Based Algorithms

Some evolution-based algorithms are shown in Table 1.
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Table 1. ARM, based on evolutionary algorithm.

Algorithms Authors Technology Advantages Disadvantages

DE

Wang et al. [30] Adaptive adjustment
F and Cr

Enhanced algorithmic global
search capability High memory overhead

Altay et al. [31] DE-SCA, Multi-target,
Performs well on datasets with

few attributes and
many instances

High algorithmic complexity

Guan et al. [32] HGDE Increased swarm diversity and
high stability

Unable to handle
high-dimensional data items

GA

Menaga et al. [33] GAPPARM High practicality Easy to cause data loss

Lin et al. [34] Clustering the data High accuracy and performance Single objective

Neysiani et al. [35]
Identify similarity

between itemsets by
association rules

High-quality rules Long execution time

BBO

Giri et al. [36] LGBBO-RuleMiner High accuracy and a
simple algorithm Only for single target problems

Arani et al. [37] K-means, Bayesian
learning

Reduce the delay, SLA violation
ratio, cost, and energy

consumption
High CPU usage

CSA Mo et al. [38] DMARICA Short execution time, Highly
scalable

Less integrity of
generation rules

AIS
Husain et al. [39] CLONALG High accuracy

Accuracy is positively
correlated with the number

of iterations

Danilo et al. [40] CLONALG-GA Performs better in
sparse datasets Not suitable for dense datasets

Evolutionary algorithms are based on biological evolutionary mechanisms and are
mostly inspired by the biological evolution of nature, including natural selection and
genetics, which have higher robustness and wide adaptability, and efficiently solve complex
problems that are difficult to solve in traditional optimization algorithms.

3.1.2. Swarm Intelligence-Based Algorithm

Some algorithms based on swarm intelligence are shown in Table 2.

Table 2. ARM, based on swarm intelligence algorithm.

Algorithms Authors Technology Advantages Disadvantages

PSO

Tyagi et al. [41] Multi-target,
MOPSO-ARM Performs well on sparse data Calculated overload, low

efficiency

Kuo et al. [42] Adaptive Archive Grid,
MOPSO

Automatically finds the best
interval between datasets; no

data preprocessing is required.
Fewer targets to consider

Baro et al. [14] Guided search strategy High-quality rules and short
calculation times Lower average fitness values

Agarwal et al. [43] Multi-objective Balancing global and local
search capabilities

Not applicable to quantitative
association rules

Moslehi et al. [44] GA-PSO
No predefined minimum

support and confidence levels
are required

Generate redundant rules
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Table 2. Cont.

Algorithms Authors Technology Advantages Disadvantages

CSO Devi et al. [45] HGWCSO-ETSVM,
Min-Max High accuracy and precision Reduced overall system

performance

AMO Son et al. [46] ARM-AMO
Reduces the time and memory
required for frequent itemset

generation
Lower quality rules

BAT Kamel et al. [27] MSBARM, loop
strategy

Rule quality is higher than
other ways algorithm

Unable to handle large
databases

FA Pradeep et al. [47] BFFO-TA, Feature
Selection No redundant rules are created Not applicable to

multi-objective problems

GWO

Pazhaniraa et al. [48] BGWO-HUI Low time complexity High memory overhead

Yildirim et al. [49]
Adaptive multi-target

intelligent search,
MOGWO

For discrete, quantitative, and
mixed datasets with high

comprehensibility

Not suitable for
distributed datasets

Chantar et al. [50] SVM, Elite Cross,
BGWO High accuracy High time complexity

ABC Akbar et al. [51] ABC4ARH Highly efficient and stable Less scalability and
higher complexity

HHO Turabieh et al. [52] HHO-KNN Enhanced ability to think
outside the local optimum Less stability

ALO Dong et al. [53] ALO-ARM The optimized search process
has high efficiency Not suitable for large datasets

Inspired by the behavior of insect clusters, herds of animals, flocks of birds, etc., the
swarm intelligence algorithm can change the search direction through collaboration and
information sharing among individuals of the swarm; it has a faster convergence rate
and can obtain a better solution than evolutionary algorithms; the poor performance of
individuals does not affect the solution of the problem by the whole swarm.

3.2. Physics-Inspired

A physics-inspired algorithm is a swarm optimization algorithm that models certain
physical objective laws. Individuals of the swarm collaborate and exchange information
with each other in the search space through rules inspired by some physical principles.
Some physically inspired algorithms are shown in Table 3.

Table 3. ARM, based on the physics-inspired algorithm.

Algorithms Authors Technology Advantages Disadvantages

SA

Nawaz et al. [54] HUIM-SA HUIM-SA varies linearly with
the number of iterations Lack of mutation mechanisms

Holman et al. [55] GA-SA,
Confusion Matrix High accuracy Accuracy depends on

dataset size

TS Chou et al. [56] QTS Obtain more rules
Algorithm performance

degrades when the dataset is
too small

CRO Abir et al. [57] CRO
Low algorithm complexity; no

need to specify
minimum support

Less stability,
calculated overload

GSA Taradeh et al. [58] HGSA, Crossover,
variation

Fast convergence and
high-quality rules

Not applicable to
mixed datasets
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3.3. Other Algorithms

Some of the algorithms are shown in Table 4.

Table 4. ARM, based on other heuristic algorithms.

Algorithms Authors Technology Advantages Disadvantages

FA Eva et al. [59] Combining k-means for
web data clustering

Faster convergence; better
performance at the minimum

distance; shorter
computation time

The placement strategy of the
initial center of mass needs to

be further optimized

MA Ting et al. [24]
Optimizing the

affiliation function
in FARM

Improve the search capability
of the algorithm and obtain

high fuzzy support
Less scalability

SCA Laith et al. [60] SCAGA
Maximum classification

accuracy with
minimal attributes

The imbalance between global
search capability and local

search capability

BSO

Djenouris et al. [61] HBSO-TS Short execution time Poor results in large datasets

Ma et al. [62] PLBSO Parallelized processing with
low computational costs

Less performance when
dealing with quantitative rules

Youcef et al. [63] GBSO-Miner Adaptable to large text and
graphical databases Thread divergence exists

EO Malik et al. [64] DEOA-CRM High-quality rules and highly
interpretable algorithms

Poor performance in
some datasets

Other heuristic algorithms are inspired by natural phenomena, mathematical prin-
ciples, man-made activities, etc. They include the fireworks algorithm, brainstorming
algorithm, backtracking search algorithm, and sine and cosine algorithms, etc.

4. Particle Swarm Optimization Algorithms
4.1. Standard PSO Algorithms

The particle swarm optimization (PSO) algorithm [65] is an intelligent optimization
algorithm studied by Kenney and Eberhart in 1995 for the swarm motion behavior of bird
and fish flocks, and the basic idea is to seek the global optimal solution through mutual
collaboration and information sharing among individuals. In this model, an individual
is regarded as a particle and a flock of birds as a particle swarm. Suppose there are m
particles in a D-dimensional target search space, where the position of the ith particle
(i = 1, 2, 3, . . . , m) is denoted as Xi =

(
x1

i , x2
i , · · · , xD

i
)
, i.e., the position of the ith particle in

the D-dimensional target search space is XD
i . Substituting Xi into the objective function

calculates its fitness value and measures its merit. The best position experienced by each
particle is denoted as Pi =

(
p1

i , p2
i , · · · , pD

i
)
, and the best position experienced by the whole

particle swarm is denoted as Pg =
(

p1
g, p2

g, · · · , pD
g

)
. The velocity of particle i is denoted as

Vi =
(
v1

i , v2
i , · · · , vD

i
)
. Particle i updates itself in each iteration by Equations (12) and (13)

for Pi,Pg.

vd+1
i = wvd

i + c1r1

(
pi − xd

i

)
+ c2r2

(
pg − xd

i

)
(12)

xd+1
i = xd

i + αvd
i (13)

where i = 1, 2, 3, . . . , m, d = 1, 2, 3, . . . D, w is the inertia weight, vd
i is the velocity of the ith

particle at the dth iteration, c1, c2 is a nonnegative constant, r1, r2 is an internally uniformly
distributed random number, and α is a controlling factor that controls the velocity weight.
The pseudocode is shown in Algorithm 1.



Electronics 2022, 11, 3044 10 of 28

Algorithm 1 Procedure of standard PSO algorithm

1: for each particle i = 1, 2, . . . , N do
2: (a) Initialize the particle’s position and velocity.
3: (b) Evaluate the particle’s fitness value;
4: (c) Update the particle’s Pbest;
5: (d) Update the swarm’s Gbest;
6: while termination criteria is not met do
7: for each particle i = 1, 2, . . . , N do
8: (a) Update particle’s velocity using Equation (12);
9: (b) Update particle’s position using Equation (13);
10: (c) Evaluate particle’s fitness value;
11: if (x[i]) < f(Pbest[i]) then
12: Update the best known position of particle i: Pbest[i]=x[i];
13: if (Pbest[i]) < f(Gbest) then
14: Update the swarm’s best known position: Gbest=Pbest[i];
15: (d) t = t + 1;
16: return Gbest

Among them, we illustrate some of the more important parameters.
Maximum velocity Vmax: In each dimension, the velocity of the particle

vi ∈ (−Vmax, Vmax) reduces the possibility of the particle leaving the search space. Where
Vmax = k · xmax(0.1 < k < 1), the purpose is to limit the maximum distance the particle
can move.

Inertia weight w: The larger the w, the greater the global searchability and the easier it
is for the particle to escape the local extremes; however, it also reduces search efficiency
and makes converging more difficult, and vice versa. w usually varies linearly (0 < w < 1),
and the variation equation is shown in Equation (14).

wi = wmax −
wmax − wmin

itermax
· iter (14)

where itermax is the maximum number of iterations and iter is the number of current
iterations.

4.2. Improved PSO Based on Algorithm Design
4.2.1. Swarm Initialization

The main function of swarm initialization is to generate several particles randomly,
which has a significant impact on the diversity and convergence of the algorithm. Wang
et al. [66] used the roulette wheel selection method and non-expectation coding vector
construction strategy to initialize the swarm and select the initial optimized value of the
next-generation swarm by a certain probability. Equation (15) represents the probability of
itemset I being selected, Equation (16) represents the hetero set of the coding vector and
Equations (17)–(19) represent the velocity update in the generated coding vector:

Si =
f itnessi

∑
|SHUI|
k=1 f itnessk

(15)

BitDi f f (Veci, Vecj) =
{

num
∣∣1 ≤ num ≤ len, bnum(Veci)⊕ bnum(Vecj) = 1

}
(16)

vi = vi1 + vi2 + vi3 (17)

vi2 = [|BitDi f f (pi, pbesti)| · r1] (18)

vi3 = [|BitDi f f (pi, pbesti)| · r2] (19)
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where |SHUI| denotes the number of elements in the set SHUI, Fitnessi denotes the
adaptation value of the ith itemset, bnum(Veci) denotes the value of Veci in position num,
and ⊕ denotes the iso-or operation.vi1 defaults to 1.

Kalka et al. [67] introduced the chemical reaction optimization (CRO) algorithm to
quickly generate the optimal set of solutions as the initial solution of the PSO algorithm
and use the selection operator to improve the quality of the optimal solution and enhance
the overall performance of the algorithm. Equation (20) is used to determine whether the
generated latest solution is accepted after colliding through two chemical reactions:

f (Rj) = ϕ1 ·MSR + ϕ2 · ECRj + ϕ3 · ε (20)

where ϕ1 + ϕ2 + ϕ3 = 1.
Hematpour et al. [68] introduced a nonlinear dynamical chaotic system to initialize

the swarm positions. Equation (21) represents the first class of Chebyshev polynomials,
α ∈ (0, 2), and Equation (22) represents the second class of Chebyshev polynomials, which
can be simplified to a logistic mapping, α ∈ ( 1

2 , ∞), and α ∈ ( 1
3 , 3) in Equation (23):

Φ(1)
2 =

α2 · (2x− 1)2

4x(1− x) + α2 · (2x− 1)2 (21)

Φ(2)
2 =

4 · α2 · x · (1− x)
1 + 4 · (α2 − 1) · x · (1− x)

(22)

Φ(1,2)
2 =

α2 · x · (4x− 3)2

α2 · x · (4x− 3)2 + (1− x) · (4x− 1)2 (23)

Li et al. [69] used an S-type transfer function to initialize the swarm position by con-
verting the inertia weights based on feature weighting into probability values. Let z be the
variable, Equation (24) represents the inertia weight normalization process, Equation (25)
represents the conversion of z to z′ by a standard logistic function, Equation (26) rep-
resents the conversion of z′ to reduce the upper limit of z′, and p represents the initial
swarm position:

z =
2 · σ · (w− wmin)

wmax − wmin
− σ (24)

z′ =
1

1 + e−z (25)

p = λ · z′ (26)

where p ∈ (0, λ), λ ∈ (0.5, 1), z ∈ [−σ, σ], σ ∈ R+.
Wang et al. [70] used the principal component analysis (PCA) technique to map high-

dimensional data to low-dimensional data, retaining variance information and ranking
it by priority, and initializing the mixture by selecting significant features. Equation (27)
represents the normalization process of the PCA mean and variance, Equation (28) repre-
sents the PCA mapping the original data into new coordinates to maximize the variance,
and Equation (29) represents the swarm position obtained after eigendecomposition of the
covariance matrix: {

u = 1
m ·∑

m
i=1 x(i)

σ2
j = 1

m ·∑
m
i=1 x(i)j

(27)

1
m
·∑m

i=1 (x(i)
T · u)

2
=

1
m
·∑m

i=1 (u
T · x(i) · x(i)T

)
2
= uT · ( 1

m
·∑m

i=1 x(i) · x(i)T
) · u (28)
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y(i) =


uT

1 · x(i)
uT

2 · x(i)
...

uT
k · x

(i)

 (29)

where x(i) denotes the position of the ith particle in the swarm, j denotes the jth dimension
of x(i), u denotes the mean of the ith particle, σj denotes the standard deviation of the jth
dimension, and y(i) denotes the new position generated by the ith particle.

Bangyal et al. [71] introduced the Well technique with the help of low deviation
sequences to make it applicable to high-dimensional optimization problems. Sobia et al. [72]
reviewed a variety of swarm initialization strategies for the PSO algorithms and analyzed
and compared each strategy in detail by the QRS method, including the performance of
SO-PSO, H-PSO, WE-PSO, etc. in 15 benchmark tests. It was found that KE-PSO performs
better in high-dimensional problems.

4.2.2. Algorithm Parameter Optimization

In the PSO algorithms, algorithm parameters play a great role in balancing the global
search ability and local searchability, which can effectively improve swarm diversity
and speed up algorithm convergence. Common parameter optimization includes inertia
weights w, learning factors c1 and c2, the introduction of other factors, etc. Tian et al. [73]
adaptively controlled the inertia weights through the fitness function, and the interaction
of the two helps to control the swarm diversity. Equation (30) is used to assess swarm
diversity, and Equation (31) is used to calculate inertia weights:

fDiv(t) = log10(
1
m
·∑t

j=t−m+1 ( favg(j)− fAsvg(t))
2) (30)

w(t) =

{
wmin + (wmax − wmin) · fAavg(t) , fDiv(t) < α

wmin + (wmax − wmin) · ( T−t
T )

2
, fDiv(t) ≥ α

(31)

where favg(t) denotes the mean value of adaptation in iteration t.
Li et al. [74] divided the swarm into three subsets by the fitness value and assigned

different inertia weights, and Equation (32) represents the process of dynamically updating
the inertia weights by introducing the cloud variation method when the particle fitness
value is lower than the average fitness value of the swarm:

w = 0.9− 0.7 · e
− ( fi−Ex)2

2(En′ )
2

(32)

Zhang et al. [75] introduced a multi-stage strategy to improve the inertia weights
through the cosine function. Equations (33)–(35) show the improvement process:

wcos(t) =
(wini + w f in)

2
+

(wini − w f in)

2
· cos(

I(t) · π
tmax

) (33)

I(t + 1) = I(t) + a, I(1) = 0 (34)

a =


a1 , I(t)

6 ≤ tmax

a2 , tmax
6 < I(t) ≤ 5 · tmax

6

a3 , 5 · tmax
6 < I(t) ≤ tmax

, where
1

6 · a1
+

1
3 · a2

+
1

6 · a3
= 1 (35)

Ankit et al. [76] introduced a mapping function based on binomial probability and
adaptively updated the inertia weights. Equations (36) and (37) represent the updating
process:

w = wmin + (wmax − wmin) ·∑X
k=0

(
N
k

)
· pk · qN−k (36)
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X = X(i, t) = ∑N
i=1 I(i, t) (37)

where I(i, t) denotes the ith particle at the time t position function, X denotes the total
number of particles passing through the binomial probability improvement position, p
denotes the improvement success probability, q denotes the failure probability, the particle
swarm is independent of each other, and p = q = 0.5.

Komarudin et al. [77] combined the multi-dimensional direct fuzzy signature, para-
metric feedback success counter, and CBPE methods to transform the fuzzy process into
aggregation equations for the adaptive updating of inertia weights. Equation (38) represents
the structural hierarchy of the inertia weights, Equation (39) represents the best particle to
reach the minimization goal, Equation (40) represents the best particle percentage, Equa-
tion (41) represents the particle distribution in the search space, and Equation (42) represents
the NCBPE normalization process for measuring the best fitness value of the solution:

w =



wmax
wmin
PS[

diversity
divmax

]
NCBPE




 (38)

SCi(t) =

{
1 , f (xid(t)) < f (Pid(t))
0 , else

(39)

PS(t) =
1
N
·∑N

i=1 SCi(t) (40)

diversity =
1
N
·∑N

i=1

√
∑D

d=1 (xid − gd)
2 (41)

NCBPE =
CBPE− CBPEmin

CBPEmax − CBPEmin
(42)

Fan et al. [78] analyzed a variety of improved inertia weights and proposed a time-
varying adaptive inertia weighting strategy, and Equation (43) represents the update
strategy:

w(t) = (wmax − wmin) ·
f (Pnbest)avg

f (Ptbest)avg
+

wmax · t
MaxIter

(43)

where f (Pnbest)avg and f (Ptbest)avg denote the average fitness values of the global best
position and the local best position in iteration t.

Chrouta et al. [79] proposed a factor selection strategy algorithm, FMSPSO, based
on particle swarm number selection to adaptively adjust different parameter selection
strategies during a swarm search to improve the algorithm’s ability to find global search
and avoid premature convergence, which is based on the problem that MSPSO fails to
obtain the optimal solution due to premature convergence during the search process.
Equation (44) represents the adaptive inertia weight updating strategy, and Equation (45)
represents the learning factor updating strategy:

ws = (wini − wend) · artanh(δ · (1− S
Smax

)
m
) + wini (44)

c = (cini − cend) ·

1−
(

k
kmax

) sm

esm

+ cini (45)

where wini = 0.4, wend = 0.9, δ and m are control factors, and s is the number of current it-
erations.
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Jeremiah et al. [80] introduced a shrinkage factor in the search process to ensure a
smooth convergence of the algorithm to the global optimal solution to resolve the prob-
lem of premature convergence of the algorithm. They introduced a gravitational search
algorithm to improve the global search ability of the algorithm and enhanced the stag-
nant particle activity through an adaptive response strategy. Equation (46) represents the
shrinkage factor update strategy based on the cosine function, and Equation (47) represents
the inertia weight update strategy. Equation (48) represents the relationship between the
parameters:

k(t) =
cos( π

Gmax
· T + 2.5)

4
(46){

w = wend + (Wstart − wend) · (1− T
Gmax

) , i f Pgd 6= xid

w = wend , i f Pgd = xid
(47)

w ≥ c1 + c2

2
− 1

k(t)
(48)

4.2.3. Optimal Particle Update

The self-renewal of particles in the PSO algorithm varies with the local optimal position
Pi and the global optimal position Pg, which has a greater ability to guide the swarm
evolution. Li et al. [81] combined the gray wolf optimization (GWO) algorithm with the
worst particle for the evolution strategy and the optimal particle perturbation strategy to
improve the swarm diversity, and the elite swarm guidance strategy to guide the particle
swarm for enveloping the search and enhance the global searchability. The perturbation
strategy is shown in Equations (49) and (50):

Nbest(t) = sign(rand− 0.5) · e(−avg_r)·Gbest(t)+Gbest(t) (49)

Gbest(t) =

{
Nbest(t) , i f ( f it(Nbest(t)) < f it(Gbest(t)))
Gbest(t) , otherwise

(50)

where avg_r denotes the average distance of all particles to the center position. Nbest(t)
denotes the position after perturbation.

Keshavamurthy et al. [82] used a stochastic inertia weight strategy to balance the global
and local search and adjusted the inertia weights by simulating the annealing probability,
and the algorithm gradually approached the optimal solution as the temperature decreased.
Equations (51)–(53) represent the inertia weight update strategy:

Tt =
f t
avg

f t
best
− 1 =

1
m ∑m

i=1 f t
i

f t
best

− 1 (51)

p =


1 , i f min f t−k

i
1≤i≤m

≤ min f t
i

1≤i≤m

e−(
min f t−k

i
1≤i≤m

− min f t
i

1≤i≤m
Tt ) , i f min f t−k

i
1≤i≤m

> min f t
i

1≤i≤m

(52)

w =

{
α1 +

r
2 , p ≥ r

α2 +
r
2 , p < r

(53)

where Tt denotes the cooling temperature, p denotes the simulated annealing probability, k
is an integer multiple of t, r is a random number within [0,1], α1, α2 are constants within
[0,1], and α1 > α2.

Han et al. [83] used the Karush–Kuhn–Tucker proximity measure to determine the
contribution of optimally ranked particles to swarm convergence and introduced a gravita-
tional search algorithm and an adaptive reset velocity strategy to enhance swarm diversity
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and avoid falling into local extremes. Equation (54) calculates the mass of the particle, and
Equation (55) calculates the force of the jth particle on the ith particle to calculate the value
of the particle’s contribution to the swarm convergence in Equation (56) to decide whether
to guide other particles as the optimal particle. Equations (57) and (58) represent the stalled
particle generation process:

mt
i = 1−

0.9 · f itt
i

worstt (54)

f d
ij(t) = G(t) ·

mt
i + mt

j

Rij + ε
· (xd

j (t)− xd
i (t)) (55)

ad
i (t) =

∑j∈kbest,j 6=1 randj · f d
ij(t)

mt
i

(56)

pbesti,d = Φ + sdamp · vmean (57)

vmean =
1
N
·∑N

i=1

√
1
D
·∑D

j=1 (vi,d)
2 (58)

where f itt
i denotes the fitness value of the ith particle in the tth iteration, worstt denotes

the fitness worst value, Rij denotes the Euclidean distance between particles i and j, G(t)
denotes the gravitational coefficient, and randj is a random number uniformly distributed
between [0,1].

Miao et al. [84] sorted each particle in the current swarm by the nonDS function
to obtain the kth iteration of the non-dominated particle set and optimally combined it
with the kth iteration of the particle set to obtain the current non-dominated particle set
Arck, where the particles choose their personal best position, Pbest, in Arck according to
the Euclidean distance. This effectively improves the quality of Pbest and prevents the
algorithm from falling into local extremes. Equation (59) calculates the degree of influence
of the optimal particles, and Equation (60) calculates Att, the size of which is proportional
to the degree of influence:

dist(x, y) =

{
Att , i f x = y
−Att , otherwise

(59)

Att = Attmax − (Attmax − Attmin) · (1−
gen

Gmax
)

5
(60)

where gen denotes the current iteration number and Gmax denotes the maximum iteration
number.

Zhu et al. [85] show that, based on the elastic collision principle and the law of
momentum conservation, the worst particle of the swarm fitness value collides with the
best particle of the fitness, and the worst particle obtains the best particle velocity. Equations
(61) and (62) represent the calculation of the worst particle velocity, Equation (63) represents
the particle velocity update strategy, and Equation (64) represents the particle position
update strategy:

v1 = Z · e−(xworst−xrand)
2

(61)

Z =
1
2
· ((1− 2 · t

T
)

3
+ 1) (62){

m1v1 = m1v′1 + m2v′2
1
2 ·m1v2

1 = 1
2 ·m1v′21 + 1

2 ·m2v′22
⇒
{

v′1 = m1 − m2
m1 + m2

· v1

v′2 = 2 · m1
m1 + m2

· v2
(63)

{
X′worst = Xworst + v′1
X′best = Xbest + v′2

(64)
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where Xworst denotes the particle with the worst adaptation value, Xrand denotes the
random particle position, T denotes the nonlinear factor, m1 denotes the adaptation value
of the worst particle, and m2 denotes the adaptation value of the best particle.

Fu et al. [86] introduced the RBF model to generate the global optimum and individual
optimum through MATLAB’s fmincon toolbox. While the existence of a large number of
uncertain particles in the search space easily leads to local convergence of the algorithm,
the authors also introduced the MaxEI method for pre-screening to measure the particle
potential and uncertainty; thus, the global optimum has both maximum potential and
maximum uncertainty.

4.2.4. Speed and Position Update

In the particle swarm optimization algorithms, velocity and position are properties
specific to particles. Song et al. [87] combined successive higher Bessel curves and adaptive
fractional-order velocities with particle evolution states to apply perturbations to the
swarm to enhance its ability to jump out of local constraints. Equation (65) denotes the
average distance of the ith particle from gbest in the k iterations, Equation (66) denotes the
kth iteration and the swarm evolution state, Equation (67) denotes the swarm evolution
adaptive adjustment factor, and Equations (68) and (69) denote the particle velocity and
position update formulas:

dk
i =

1
S− 1∑S

j=1,j 6=i

√
∑D

k=1 (xk
i − xk

j )
2

(65)

Ek
f =

dk
gb − dk

min

dk
max − dk

min
(66)

α = 0.9− 1

1 + e−Ek
f
· k

kmax
(67)

vk+1
i = α · vk

i +
1
2 · α · (1− α) · vk−1

i + 1
6 · α · (1− α) · (2− α) · vk−2

i
+ 1

24 · α · (1− α) · (2− α) · (3− α) · vk−3
i

+c1 · r1 · (xk
ib − xk

i ) + c2 · r2 · (xk
gb − xk

i )
(68)

xk+1
i = xk

i + vk+1
i (69)

where dk
max, dk

min denotes the maximum and minimum values of the distance from a particle
to other particles in the swarm, and dk

gb denotes the average distance of the gbest.
Tian et al. [73] introduced the particle with the best comprehensive evaluation of the

swarm fitness value and diversity in the current iteration as the latest guiding particle to
guide the swarm evolution, together with the local and global optimum. Equation (70)
represents the comprehensive evaluation of the ith particle, and Equation (71) represents
the velocity update under the latest guiding particle:

fCom(i) = d1 · fFit(i) + d2 · fDis(i) (70)

vd
i (t + 1) = w · vd

i (t + 1) + c1 · r1 · (pd
i − xd

i (t)) + c2 · r2 · (gd − xd
i (t)) + c3 · r3 · ( f d

Com(i)− xd
i (t)) (71)

where d1 = d2 = 0.5 and d1 + d2 = 1, fFit(i) denotes the ith particle fitness value, and
fDis(i) denotes the ith particle diversity evaluation, i.e., the distance to the central particle
c1 = c2 = c3 = 1.49445.

Mohamed et al. [88] and Suman et al. [89] introduced the GWO algorithm to improve
the global search ability of the algorithm. Equation (72) represents α, β, δ the distance
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between the three wolves and other individuals, Equation (73) represents the current
position of the three wolves, and Equation (74) represents the current gray wolf position:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣


(72)



→
X1 =

∣∣∣∣→Xα −
→
A1 ·

( →
Dα

)∣∣∣∣
→
X2 =

∣∣∣∣ →Xβ −
→
A2 ·

( →
Dβ

)∣∣∣∣
→
X3 =

∣∣∣∣→Xδ −
→
A3 ·

(→
Dδ

)∣∣∣∣


(73)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(74)

where
→
A = 2 · a · r1 − a,

→
C = 2 · r2, and a is a convergence factor that decreases from 2 to 0

with iteration and r1, r2 are random numbers within [0,1].
Zhao et al. [84] used Euclidean distance to quantify the leading effect of the current

optimal particle on evolution and to update the particle velocity and position. Equations (75)
and (76) represent the velocity update process, and Equation (77) represents the particle
position update probability:

Vk+1
i(p,q) = W ·Vk

i(p,q) + C1 · r1 · dist(Pbestk
i (p), q) + C2 · r2 · dist(Gbestk(p), q) (75)

Vk+1
i(p,q) =

Vmax ·
Vk+1

i(p,q)∣∣∣Vk+1
i(p,q)

∣∣∣ , i f
∣∣∣Vk+1

i(p,q)

∣∣∣ ≥ Vmax

Vk+1
i(p,q) , otherwise

(76)

Pk+1(xk+1
i,p = q) =

sigmoid(Vk+1
i(p,q))

∑M
l=1 sigmoid(Vk+1

i(p,l))
(77)

where dist() denotes the distance between the global optimum and the individual optimum
for evaluating the particle’s importance.

Xu et al. [90] introduced variation, crossover, and selection operations of differential
evolution to enhance the information exchange among swarms: Equation (78) for the
variation factor, Equation (79) for the crossover operation, Equation (80) for the variation
operation, and Equation (81) for the particle velocity update:

xson
i = xra + 0.5 · 2e1− itmax

itmax+1−n · (xrb − xrc)(i = 1, 2, · · · , N) (78)

uson
i,d =

{
xson

i,d , i f (rand < CR) or (d = drand)

xi,d , otherwise
(79)

xson
i =

{
uson

i , i f ( f (uson
i ) < f (xi))

xi , otherwise
(80)

vn+1
id = w · vn

id + c1 · r1 · (Pn
id − xn

id) + c2 · r2 · (Pn
gd − xn

id) + c3 · r3 · (Pn
cd − xn

id) (81)

where ra, rb, rc, and drand denote the random numbers within [0, N], CR denotes the
crossover rate and Pn

cd denotes the best communication location obtained after the variation,
crossover, and selection.
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Su et al. [91] introduced a time factor to overcome the problem that causes the tradi-
tional FOPSO algorithm to easily fall into local extremes, which reduces the overdependence
of the algorithm on the fractional-order α. The time factor, T, can change adaptively with
the swarm parameters, and when T is large, the algorithm has a strong global search
capability and helps to obtain the global optimum, and vice versa. Equation (82) represents
the time factor change process, and Equation (83) represents the position update process of
the improved algorithm:

T =
1
2
· 2e

− at
1−at , where at =

min( fgd, ft)

max( fgd, ft)
(82)

xid(t + 1) = xid(t) + vid(t) · T (83)

where at denotes the swarm diversity, fgd denotes the global optimum, and ft denotes the
average fitness value in iteration t.

5. Association Rule Mining Based on PSO
5.1. Algorithm Principle
5.1.1. ARM Process

The particle swarm optimization (PSO) algorithm for ARM mainly consists of two
stages: preprocessing and rule mining. Its basic flow is shown in Figure 3.
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The preprocessing stage mainly completes the binary data conversion. The rule
mining stage is the process of an iterative search and the continuous updating of particle
positions and velocities in the search space by the PSO algorithm after data encoding and
initialization of the swarm to finally obtain the best rules.

5.1.2. Binary Conversion

The standard PSO algorithm is mainly used for continuous real-valued optimization
problems, while in real life, it is mostly used for discrete or combinatorial optimization
problems. To address this issue, Kennedy and Eberhart proposed the discrete binary
particle swarm optimization algorithms (BPSO) in 1997, which use the sigmoid() function
to limit the position and velocity to the {0,1} interval, and where the particle position is
calculated iteratively, as shown in Equation (84).

xd+1
i =

{
1 , r < sigmoid(vd+1

i );
0 , r ≥ sigmoid(vd+1

i );
(84)

where r is a random number between (0,1) and sigmoid
(

vd+1
i

)
= 1

1+e−vd+1
i

.

The process of binary conversion of transaction data by the above means is shown in
Figure 4.
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Among them, the original database has five transaction records, which are T1, T2, · · · , T5,
and these five transaction records are converted into binary form and stored. Take T5 as an
example, where the transaction record contains I1, I3, I4, so its corresponding units are all 1,
and the other units are 0. The converted transaction record is 10110.

5.1.3. Encoding

There are two main ways to encode data: the Michigan approach and the Pitts-
burgh approach. Among them, the Pittsburgh approach corresponds to a set of rules per
chromosome and is suitable for solving classification problems. The Michigan approach
corresponds to a single rule per chromosome and is more straightforward than the former,
with a shorter rule syntax. Let us take the Michigan method as an example: Let there be N
data items in the dataset, and each data item has two parts, and each part has two possible
values that take the value of 1 or 0, as shown in Figure 5.
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The dimension of each particle is 2N, and the data item X refers to whether the item is
included in the rule. Y refers to whether the item is included in the result of the rule. For
example, if the value Ii is 11, then the ith item appears in the rule and is included in the
result of the rule. The position representation of the rule is shown in Figure 6.
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5.1.4. Search for the Best Particle

First, we need to define a fitness function for evaluating the importance of each particle.
By using Equation (84) as the objective function:

Fitness(i) = Con f idence(i) + Support(i) (85)

where Con f idence(i) and Support(i) denote the confidence and support of the ith particle,
respectively. The objective of this function is to maximize the confidence and support of
the particle; the stronger this support, the stronger the strength of the association, implying
that this is an important association rule.
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Second, we also need to generate an initial population, and the particles in the popula-
tion are called initial particles. Finally, we need to set boundary conditions to constrain the
range of motion of the particles and obtain the global best particle when Gbest and Pbest
are iterated until the termination condition is reached. The boundary conditions include
calculating the Euclidean distance of the particles, etc. The termination conditions can be
set by setting a fixed number of iterations.

5.2. Application

In dealing with complex, realistic optimization problems, heuristic algorithms are
inspired by nature and modeled by simulating the behavior of individuals or swarms,
which have the advantage of not relying on specific problems, while such algorithms are
not constrained by the form of optimization functions in the search process and are highly
adaptable, efficient, and easy to implement. Compared with other algorithms, heuristic
algorithms show obvious advantages in solving ARM problems. Among the heuristic
algorithms, the genetic algorithm (GA) has a long convergence time due to the lack of
individual memory and blind search without direction, and it shows inefficiency and
difficulty in convergence in high-dimensional data. The ant colony optimization (ACO)
algorithm uses pheromone to decide the search direction, which consumes a lot of time
for a solution construction and also has the problem of a long convergence time and is
prone to stagnation in high-dimensional data. The particle swarm optimization (PSO)
algorithm is efficient and simple to implement, converges quickly, and can adjust the
search direction by iteration, which is significantly better than other heuristics in ARM
problems [92]. PSO algorithms are widely used in ARM, mainly in the fields of privacy
protection, recommender systems, risk assessment, and medicine. The correlation is shown
in Figure 7.
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5.2.1. Privacy Protection

The rapid growth of the Web is accompanied by a dramatic increase in data, and
more and more companies or organizations are sharing information by sharing data to
gain more profits. To protect the sensitive information implicit in the data from leakage,
users need to modify the individual numerical information of the database while sharing
the data without compromising the validity of the data. Kalyani et al. [93] proposed
an IFHARM algorithm based on PPARM, which includes identifying SAR, clustering
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SAR by similarity metric, identifying sensitive transactions, removing and rescanning the
converted database, and performing error rule verification. Among them, the authors use
the result of each item deletion on non-sensitive data as its impact factor to identify SAR
to minimize the loss of non-sensitive association rules and ensure the high utility of the
data. Jangra et al. [94] proposed the VIDPSO algorithm to solve the rapid performance
degradation of evolutionary algorithms in dense datasets, which prioritizes the presence of
more sensitive patterns in data and identifies SAR based on its sensitive patterns to avoid
the failure of sensitive information hiding due to the transformation of sensitive frequent
itemsets into infrequent itemsets by removing too much data. Suma et al. [95] developed a
new method by integrating fractional calculus (FC) and the salp swarm algorithm (SSA) for
data sanitization using privacy-preserved data. Krisgnamoorthy et al. [96] used different
methods to perturb the dataset to generate a large number of solutions without affecting
the validity of the data, which were then sequentially optimized by the PSO algorithm
until the support was lower than the minimum support, at which point, the loop was
closed, effectively reducing the number of modifications and avoiding the generation of
spurious rules.

5.2.2. Recommender Systems

Analyzing consumers’ previous behaviors can provide users with personalized prod-
ucts or valuable information, and recommendation systems attempt to recommend goods
to potential customers by applying data mining techniques. Among them, the shopping
basket problem is a typical example of ARM, and Guo et al. [97] proposed an improved
PSO algorithm based on the gray model for dynamic ARM of supermarket shopping data.
Furthermore, since the introduction of the background values of the gray model tends to
lead to a decrease in prediction accuracy, the authors introduced a secondary search mech-
anism based on the PSO algorithm to optimally solve the background values of the gray
model at different moments, which significantly improves the local search ability of the al-
gorithm and avoids premature particle convergence. To obtain rich product manufacturing
knowledge from enterprise historical data to reflect the mapping relationship between a
product’s design and manufacturing, Kou [98] proposed an ARM method based on a binary
PSO algorithm, which encodes association rules and generates a certain number of particle
swarms, obtains N rules through multiple iterations, integrates multiple indicators, such as
reliability, relevance, and comprehension, and adds a similarity function to compare rules
two by two, while eliminating the poor rules to achieve efficient rule mining.

Web data often implies a large amount of web search information. Kaur et al. [99] pro-
posed a hybrid algorithm, HPSO-TS-ARM, to obtain the potential user information among
them, which obtains web data through the PSO algorithm, arranges data information by
the TAO algorithm, and then performs ARM. Its computation time and efficiency are better
than other algorithms, and it has been validated in several datasets. Gangurde et al. [100]
used the Weblog features related to Web mining to construct a Web recommendation model,
introduced a PSO algorithm, and used a feedforward counter model to obtain association
rules using a single data iteration technique, which was used as an adaptation value to
execute the recommendation model, and the execution time was significantly reduced.
Tyagi et al. [41] solved the low accuracy and data sparsity problems, considering support
and confidence as the objectives for proposing the MOPSO algorithm. The algorithm can
effectively filter out rules with significant association relationships, and its accuracy and
precision are also better than other algorithms when the data is sparse. Jiang et al. [101]
proposed an association rule method for generating sentiment designs based on online
customer reviews for a large number of online user reviews on major websites by mining
the sentiment dimension opinion of user reviews. This method can mine more reliable and
interesting rules than the traditional PSO algorithm by performing sentiment analysis on
customer reviews to achieve accurate user sentiment recommendations.
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5.2.3. Risk Assessment

Credit risk management is one of the most important concerns of financial companies,
including the collection of relevant information about borrowers, which is used to decide
whether to approve their credit applications. Lanzarini et al. [102] proposed the LVQ-PSO
algorithm by combining competitive neural networks with the PSO algorithm, which mines
association rules by preprocessing the original data with the LVQ method and binary PSO
algorithm. The simplified rules can assist the decision-maker in deciding whether to grant
a loan or not. Priya et al. [103] proposed a novel PSO-based fuzzy associative classifier
(PaSOFuAC) to detect phishing websites and avoid financial losses caused by users not
recognizing phishing websites.

As the most convenient means of transportation, the flight process of aircraft is highly
susceptible to environmental, equipment, and other complex factors, and the number of
hazards increases. Li et al. [104] designed a weighted multiple swarm PSO algorithm for
hazard source analyses based on the background of civil aviation safety risk assessments.
The preprocessing stage assigns weights to items in the hazard source database and defines
the candidate association rules for hazard sources; the analysis stage introduces the swarm
interaction mechanism and uses a parallel search mode to generate the association rules for
hazard sources and their generation causes, which provides important theoretical support
for hazard source identification and prediction. The multiple swarms’ parallel search mode
provides an interaction mechanism between the swarms to avoid swarms falling into local
extremes due to the lack of information exchanged. Inspired by an online sequence learning
machine, She et al. [105] used a single hidden layer feedforward neural network to train
hazard source data and update the output weights of the learning machine in real-time
to realize the online identification of hazard sources. The paper discards the traditional
ARM algorithm and uses the ACO-ARM algorithm to mine the most frequent term and
the PSO algorithm to initialize the pheromone concentration, which effectively avoids the
algorithm’s initialization error and improves the system’s response speed.

5.2.4. Medical Field

In the medical field, a pathological diagnosis is mostly derived from physicians’
treatment experience due to the lack of quantitative criteria. ARM can extract features from
multiple factors, classify and identify them, and extract the hidden information behind
them from medical records to provide physicians with accurate scientific opinions. To
improve the applicability and classification accuracy of the algorithm in processing medical
data, Ripon et al. [106] combined the PSO algorithm with an artificial neural network to
automatically analyze the dataset to achieve an accurate classification of tuberous sclerosis
by ARM. To overcome the problem of excessive data dimensionality, Choubey et al. [107]
introduced the PCA-PSO algorithm for a feature reduction of raw data to significantly
reduce the computation time while ensuring prediction classification accuracy.

In terms of disease prediction, Karsidani et al. [108] proposed ANFIS-PSO to predict
whether a patient has coronary artery disease effectively. To deal with the continuous
and rapid growth of data volume problems, Mangat et al. [109] proposed a dynamic
particle swarm-based rule mining classifier to achieve adaptive prediction of the expected
life expectancy of patients with thoracic diseases by dynamically creating swarms and
updating the algorithm parameters. Raja et al. [110] proposed a data mining strategy-based
prediction model for type II diabetes mellitus by combining the PSO algorithm and fuzzy
clustering mean with medical metrics, such as sensitivity, specificity, and accuracy, which
are widely used in medicine to assess the performance of the system, and found that the
prototype was 8.26% more accurate than traditional methods.

To address the existing problems of inefficient and time-consuming diagnoses of heart
diseases, Alkeshuosh et al. [111] used a standard PSO algorithm to obtain heart disease
rules from the original dataset and optimized them to generate the best rules. Mao Jie
et al. [112] proposed the PSO-SVM algorithm based on support vector machines (SVM)
for heart disease predisposing factor detection, which uses ARM to extract the disease



Electronics 2022, 11, 3044 23 of 28

features and train the feature dataset. Each PSO-SVM classifier performs the corresponding
fitness function, formulated by a classified/total, to iteratively update the velocity and
position of each particle until it obtains the global best value. The algorithm is tested on the
UCI Cleveland dataset using confidence levels as an indicator and has better classification
performance compared to traditional PSO algorithms.

6. Conclusions and Challenges

As an emerging field in ARM, PSO algorithms are becoming more mature through
continuous exploration and research by many scholars and are widely used in privacy
protection, recommender systems, risk assessment, and medicine. This section shows a
comparative analysis of the different PSO algorithms, and the objective analysis of existing
methods is shown in Table 5.

Table 5. An objective analysis of the PSO algorithm.

Objective Thesis

Convergence [66,67,73,75,79,80,82,83,86,87,91,113]
Versatility [66,68,73,81,83,84,87,90,113–117]

High-dimensional data [70–72,115–117]
Result accuracy [46,73,81,84,116,117]

Balance exploration and utilization [67,69,74,77,78,80,82,85,86,114]

The advantages of the particle swarm optimization (PSO) algorithm over other al-
gorithms are: (1) It has uncertainty, which is significantly better than the deterministic
algorithms in solving certain aspects of a problem and is more advantageous in finding
the global optimal solution; (2) it has better adaptability—the PSO algorithm is a bionic
optimization algorithm based on multiple intelligences and is highly robust; (3) it is evolu-
tionary and can preserve the optimal solution information in each iteration round.

The above research shows that the PSO algorithm still has great development space
and application value in ARM, but with the expansion of data scale, the difficulty of
mining effective association rules from large-scale data using the PSO algorithm gradually
increases, and this field will still face great challenges in future research.

7. PSO Future Prospects

The future research directions of particle swarm optimization algorithms may be as
follows:

(1) PSO algorithms converge prematurely and are prone to falling into local extremes,
which mainly lie in the imbalance between global search and local search capabilities.
Nevertheless, many improvement algorithms have been proposed, such as the QPSO
algorithm based on the cloud model, the adaptive multi-objective PSO algorithm
based on Gaussian mixed variance and elite learning, etc. However, the two are
relatively contradictory, and how to dynamically maintain the balance between them
in the search process to obtain the optimal solution based on the actual search results
or how to measure that the two have reached the best balance needs further study.

(2) Due to the exponential growth of high-dimensional data search space and low data
relevance, search efficiency decreases rapidly. In addition to the existing “divide and
conquer” method and the introduction of other algorithms, the use of feature extrac-
tion methods to remove redundant data and natural computational methods, such
as nonlinear dimensionality reduction, can also be introduced to reduce redundancy
using the maximum linear irrelevance group. Although significant progress has been
made in handling large amounts of data, there is still much room for exploration in
the ARM models for handling high-speed data.

(3) Inertia weights and learning factors are important parameters in PSO algorithms.
Improvements to inertia weights include linearly decreasing inertia weights, fuzzy
inertia weights, random inertia weights, etc. Improvements in learning factors include
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shrinkage factors, synchronous learning factors, asynchronous learning factors, etc. In
the future, we can continue to optimize these two parameters and consider whether
the two affect each other and their mutual influence weights.

(4) Many scholars focus more on the swarm initialization problem, including the M-class
random method, fixed-value setting method, two-step method, hybrid method, etc.
However, the method is too simple in how to divide the swarm size and lacks a
scientific and reasonable effective division, which will limit the speed of particle
movement when the swarm is too small and, thus, lead to early convergence. When
the swarm is too large, it leads to a too large search space and reduces the performance
and efficiency of the algorithm.

(5) When there are missing or wrong datasets, there is difficulty in guaranteeing the PSO
algorithm’s accuracy and performance without artificial preprocessing, i.e., having
certain fault tolerance.
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