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A B S T R A C T   

Reliable wind power forecasting is essential for profitably trading wind energy in the electricity market and 
efficiently integrating wind-generated electricity into the power grids. In this paper, we propose short- and 
medium-term wind power forecasting systems targeted to the Nordic energy market, which integrate inputs on 
the wind flow conditions from three numerical weather prediction sources. A point forecasting scheme is 
adopted, which forecasts the power at the individual turbine level. Both direct and indirect forecasting ap-
proaches are considered and compared. An automated machine-learning pipeline, built and optimized using 
genetic programming, is implemented for developing the proposed forecasting models. The turbine level power 
forecasts using different approaches are then combined into a single forecast using a weighting method based on 
recent forecast errors. These are then aggregated for the wind farm level power estimates. The proposed fore-
casting schemes are implemented with data from a Norwegian wind farm. We found that in both the direct and 
indirect forecasting approaches, the forecasting errors could be reduced between 8% and 22%, while inputs from 
several NWP sources are used together. The wind downscaling model, which is used in the indirect forecasting 
approach, could significantly contribute to the model’s accuracy. The performance of both the direct and indirect 
forecasting schemes is comparable for the studied wind farm.   

1. Introduction 

Electric power industries and related markets face new challenges 
due to the increased wind power penetration into electric grids. One of 
the significant challenges in this large-scale integration of wind- 
generated electricity is the stochastic nature of wind. The speed and 
direction of the wind at a given site may significantly vary even within 
short intervals of time. As the power contained in the wind stream is 
proportional to the cube of wind velocity, these fluctuations in the ve-
locity will be reflected in the wind power production on a magnified 
scale. This results in uncertainties in the generation expected from wind 
power plants. This is critical for System Operators (SOs) as they have to 
deal with these variabilities and uncertainties when scheduling and 
dispatching decisions. Moreover, these uncertainties pose challenges to 
Generating Companies (GENCOs) in operating their wind farms effi-
ciently by providing stable and dispatchable energy, avoiding possible 
power quality issues and economic losses [1]. 

In many countries, wind power producers must participate in elec-
tricity markets in the same way as conventional power generators [2]. A 
good example is the Nordic power market (Nord Pool), which operates 

in 16 European countries, including the Nordic region. This market has 
three main alternatives: the day-ahead ‘Elspot’, the continuous intraday 
’Elbas’, and the balancing market. 

In ‘Elspot’, the producers and consumers submit bids and offers to 
cover every hour of the following day, which is cleared before noon. 
Whereas in ’Elbas’, the trade is settled individually between two parties 
which closes 1 h before the delivery hour in Norway. The balancing 
market regulates production or consumption up or down depending on 
keeping the grid’s instantaneous balance [3]. 

Therefore, wind power forecasting (WPF) is becoming essential for 
realizing energy balance and scheduling decisions, particularly in re-
gions with a significant share of wind electricity generation. Short- and 
medium-term forecasts are essential for successful participation in the 
electricity markets, particularly the day-ahead market, i.e., 36 h ahead, 
which traditionally has been the leading market mechanism for power 
trading. However, due to the increased penetration of wind electricity 
generation, the trading market moved to shorter horizons than the day- 
ahead market. The participants in the short-term markets use intra-day 
forecasts to adjust their day-ahead bids avoiding the associated imbal-
ance costs, which are also used by system operators who must balance 
supply and demand in real-time, guaranteeing the system’s security [4]. 
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Moreover, The power producers are accountable for the cost of real-time 
balancing of their deviations from their forward-contracted volumes [2]. 
Hence, it is essential to estimate the day-ahead and hour-ahead pro-
ductions from the wind farms with an acceptable level of accuracy to 
avoid financial losses. Hour-ahead predictions are also crucial for 
formulating the dispatch schedules for the grid operation. Therefore, 
reliable short-to medium-term wind power forecasting (WPF) has 
become increasingly important in the efficient management of wind 
farms. 

The WPF can be classified into several categories depending on the 
governing characteristics and the need for the forecast [5]. As shown in 
Fig. 1, in general, the forecast can be classified as either deterministic or 
probabilistic. Deterministic forecasts comprise a single value estimation 
for estimated future wind power generation. In contrast, under the 
probabilistic forecast, wind power is modelled as a stochastic process 
with confidence levels that can quantify the uncertainties in the pre-
dicted wind power generation [6–8]. Nevertheless, with the advances in 
the deterministic forecasting methods evolved over the years [9–11], 

many end-users still prefer the deterministic approach with a single 
forecasted value as interpreting the probabilistic forecasting results 
could be challenging [4,10,12]. 

Both the deterministic and probabilistic forecasts can further have 
several sub-categories, as shown in Fig. 1 and discussed below.  

• Based on the temporal scale, WPF can be classified into five sub- 
categories [13] as seen in Fig. 1. The very short-term and 
short-term forecasts range from a few seconds to 30 min ahead and 
up to 6 h ahead, respectively, while the medium-term forecast can be 
up to 1 day ahead. In comparison, the long-term and very long-term 
forecast can be up to 3 days and more ahead, respectively. However, 
this forecast classification is not universal (see Ref. [14]).  

• Based on the spatial scale, WPF can be divided into 3 categories: 
point forecasting for a single wind turbine [15], wind farm fore-
casting for a cluster of wind turbines as a single entity [16,17], and 
regional forecasting for a specific region with several wind farms 
[18]. 

Nomenclature 

AI Artificial Intelligence 
ANN Artificial Neural Network 
ARIMA Auto-Regressive Integrated Moving Average 
ARMA Auto-Regressive Moving Average 
ECMWF-ifs European Centre for Medium-Range Weather Forecasts 

- integrated forecast system 
GA Genetic Algorithm 
GENCOs Generating Companies 
GP Grey Prediction model 
IoA Index of Agreement 
MAE Mean Absolute Error 

MEPS MetCoOp Ensemble Prediction System 
MET The Norwegian Meteorological Institute 
ML Machine Learning 
NMAE Normalized Mean Absolute Error 
NRMSE Normalized Root Mean Squared Error 
NWP Numerical Weather Predictions 
RMSE Root Mean Squared Error 
SCADA Supervisory Control And Data Acquisition 
SO System Operator 
TSO Transmission System Operator 
WPF Wind Power Forecasting 
R2 Coefficient of Determination  

Fig. 1. Wind power forecasting classification.  
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• Based on the method used [19], WPF can generally be classified as 
physical methods such as Numerical Weather predictions (NWP) and 
mesoscale models use physical conservation laws considering terrain 
obstacles, air pressure, humidity and temperature to forecast the 
weather, thus the wind power [20,21]. Traditional statistical 
methods such as autoregressive integrated moving average models 
(ARIMA) make the forecasts by establishing the relationship of the 
observed wind speed time series - in other words forecasting the 
wind speed based on observed historical data [22], and, more 
recently, the modern statistical or the so-called learning methods like 
artificial neural network (ANN) and support vector machines (SVM), 
which are getting wider attention among the forecasting community 
[10,23–25]. These approaches can also be combined to yield hybrid 
methods [11,26].  

• Based on the input data, WPF can be classified as numerical weather 
predictions (NWP) based [17,27,28] or without utilizing the NWP 
[22,29].  

• Based on the output type, WPF can be classified as either indirect 
forecast (which results from forecasting the wind speed first and then 
using this forecasted wind speed with the turbines’ power curve for 
estimating the power) or direct forecast (which forecasts the wind 
power directly, without forecasting the wind speed [4,22,30,31]. 

WPF has been explored and researched intensively for around 20 
years [13–19,22,23,32–34]. In the present study, we propose a new 
short-medium term point WPF approach, incorporating inputs from 
several NWPs, adopting an optimized machine learning pipeline. The 
proposed forecasting scheme is applied and compared in both direct and 
indirect approaches generating several WPFs. These forecasts are to be 
later weighted to establish a combined single value WPF merging the 
strengths of different NWPs based WPF. 

The features of the proposed forecasting scheme, differentiating it 
from the previous approaches, are highlighted below:  

• The automated learning process: In conventional wind power 
forecasting, the model type, its architecture and hyperparameters are 
selected based either on a trial-and-error basis or by applying the 
domain knowledge and experience as discussed in Refs. [35,36]. In 
contrast, the present study adopts a new approach to automate the 
process of selecting the most optimal model, its architecture and 
configuration in all the development phases. This approach uses a 
tree-based structure (see section 3.2.1) to represent the development 
process while performing genetic programming to achieve a sto-
chastic global optimization of the selected pipeline process [37–39]. 
This could improve the efficiency of the proposed forecasting 
scheme.  

• Integrating inputs from several NWPs: The performance of NWP 
models, which are used to forecast the input flow conditions in the 
WPF, significantly varies depending upon several factors [6,9,12]. 
An extensive literature review [14] concluded that for short- and 
medium-term WPF, NWP data is required to get accurate results. The 
author in Ref. [17] investigated the role of NWP data in WPF for the 
next 36 h using an ensemble model with 10 members known as 
MetCoOp Ensemble Prediction System (MEPS). Several models were 
built using the XGboost method based on different combinations of 
the latest observations and MEPS predictions while considering both 
MEPS generation time and members used. The author concluded that 
the quality of WPF based only on NWP does not vary much with lead 
time, and the latest observation would mainly impact the forecast up 
to 3 h ahead, while beyond 12 h ahead, it would have a negative 
impact. Regardless of the advances NWP models have reached, 
specific NWP models would perform well in some regions and worse 
in others for different reasons [20]. Therefore, to achieve reliable 
WPF, three NWP models are combinedly used in this study which is 
rarely reported in WPFs.  

• The point forecasting approach: Most previous studies follow a 
wind farm level forecasting approach, while the point-wise level is 
rarely researched and has not been evaluated for different terrains 
and wind conditions, mainly due to the size and complexity of the 
modelling part. Here, we adopt a point-wise forecasting method in 
which the power output of each turbine in the farm, under a fore-
casted wind flow condition, is estimated. These are then aggregated 
to estimate the expected wind farm level power generation. This is 
expected to give better forecasting performance, as observed in Refs. 
[4,17]. In Ref. [4], the authors compared different techniques based 
on turbine level and farm level approaches applied on two wind 
farms in the UK. The results show the superiority of the turbine level 
based techniques (point approach) over the farm level approach. The 
authors concluded that simple aggregated individual turbine forecast 
and direction conditioned aggregated individual turbine forecast 
performed both better than the direct wind farm level forecast, 
where the root means squared error (RMSE) is reduced by 6–12% 
considering forecasts up to 48 h ahead. 

• The temporal resolution matches the Nordic energy market re-
quirements: The present study focuses on short-to medium-term 
forecasts with temporal resolutions corresponding to the Nord Pool’s 
continuous intraday ’Elbas’ and day-ahead ‘Elspot’ trade re-
quirements. Hence, the proposed methods can support the efficient 
integration of wind energy in the Nordic power market  

• Comparison between the direct and indirect approaches for the 
same wind farm: Some previous studies [22] reported that the 
direct WPF approach yields better accuracy. The authors compared 
the direct and indirect short-term WPF performance for a single 2 
MW offshore turbine. The auto-regressive integrating moving 
average (ARIMA) models of both approaches were tested for 1-h 
ahead forecast (achieved at each 10 min), rendering the direct 
approach outperforming the indirect approach. In contrast, some 
other investigations favour the indirect approach [12,31,40]. The 
authors in Ref. [12] proposed a novel approach for an indirect wind 
farm level forecast by decomposing the wind speed into the mean 
trend and the stochastic component using the empirical mode 
decomposition method (EMD). The two components were later 
forecasted separately using two different techniques. In addition to 
that, the speed-power conversion was obtained from the historical 
data using polynomial fitting. This resulted in better performance for 
both direct power and direct speed forecasts for 1–4 h ahead. Simi-
larly, the authors in Ref. [40] proposed an improved EMD to 
decompose wind speed measurements and then integrated it with a 
hybrid forecasting engine using bagging neural networks combined 
with the K-means clustering technique. The proposed approach was 
applied on three different wind farms and compared to several pre-
viously published approaches, where the proposed approach out-
performed all of them for different forecast horizons. In the same 
track, research was carried out in Ref. [31] investigating wind farm 
power forecasts in the scope of energy markets (24–48 h) using both 
direct and indirect approaches while integrating NWP data. The 
authors studied several wind farms and applied several machine 
learning techniques, mainly tree-based ones. The ML techniques 
utilized data from the supervisory control and data acquisition sys-
tem (SCADA) and weather data extracted from several grid points 
around the wind farms from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) model. The results showed that the 
indirect approach performed better than the direct due to improving 
the wind forecast. The authors emphasized that having a good 
speed-power conversion in the indirect approach is essential for a 
better forecast. The previous studies do not clearly identify which 
WPF approach (direct/indirect) to best tackle the short-term 
forecast. 

In this paper, we compare the accuracies of both the direct and in-
direct approaches at the turbine level and an aggregated farm level. The 
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WPF models are formulated in the scope of the main electricity markets 
the day-ahead and the intraday and optimized using an automated 
learning process while integrating data from several NWP models. 

The remainder of the paper is organized as follows. The next section 
describes the data used to develop the forecast models and the pre- 
processing procedure to detect and process the outliers. This is fol-
lowed by the descriptions of the methods used to develop and optimize 
individual turbine power forecast models and the weighing technique 
which is applied to combine the predictions. Thereafter, we discuss the 
performance of different models at both turbine and farm levels, which 
is finally summarized in the last section. 

2. Data description and pre-processing 

2.1. Wind farm and SCADA data 

One of Norway’s first commissioned wind farms, the ‘Smøla’ wind 
farm, was chosen for the proposed research. Smøla wind farm is 
composed of 68 wind turbines distributed in 6 rows. On average, the 
wind farm produces 356 GWh of electricity annually. It is situated in a 
flat and open terrain, which is 10–40 m above sea level. The wind farm 
was constructed in two phases. The first construction phase had 20 wind 
turbines (2 MW each) and became operational in September 2002, while 
the second phase had 48 wind turbines (2.3 MW each) and was 
commissioned in September 2005. As seen in Fig. 2, blue and green dots 
represent the two commissioning phases, respectively. The turbines 
have rotor diameters of 76–82.4 m, and the towers are 70 m high [41]. 

The turbine’s production, operating conditions, and nacelle wind 
speed were retrieved from the wind farm’s (SCADA) system with a fre-
quency of 10-min from January 2017 to December 2020. The retrieved 
data, particularly production and wind speed measurements, are con-
verted to an hourly average to be compatible with the scope of the 
studied electricity markets. 

2.2. NWP’ weather forecasts 

Historical weather forecasts from 3 NWPs’ archives, with different 
spatial resolutions, were used in this study. The NWP source selection 
was based upon the temporal resolution (1-h scale) and the availability 
of the model’s coverage at the wind farm’s terrain. 

Details of the selected NWP sources are summarized below:  

• ECMWF-ifs (IFS): Global high-resolution integrated forecast system. 
This model is operated by (ECMWF). It has a temporal resolution of 1 
h and a spatial resolution of 7.6 km.  

• Ukmo-euro 4 (EURO): European model run by the UK MetOffice. It 
has a temporal resolution of 1 h and a spatial resolution of 3.05 km.  

• MEPS: This model is Norway’s operational weather forecast model. It 
has a temporal resolution of 1 h and a spatial resolution of 2.5 km. 
This model is an ensemble model with 10 members [42]. However, in 
this study, we used data from only one member (the control member) 
as recommended by MET Norway. 

It should be noted that the NWP sources have an update rate of 4 
times per day at 00, 06, 12 and 18 UTC, except for IFS, which is updated 
twice a day since 2018. 

As seen in Fig. 3, the NWP grid coordinates, within and surrounding 
the wind farm, were chosen according to the highest NWP spatial res-
olution (MEPS). Therefore, the data from IFS and EURO sources were 
interpolated to the chosen coordinates. Both IFS and EURO data were 
retrieved from a third-party database, while MEPS data were retrieved 
directly from the MET Norway database. 

Moreover, the air temperature (Temp) was retrieved at 2 m above the 
ground from the prementioned NWPs’ archives. Wind speed, gust, and 
direction (WS, WG, WD) were extracted at 10 m above the ground from 
the MEPS source due to availability, while they were extracted at the 
hub height (70 m) from the IFS and the EURO sources. 

2.3. Data pre-processing 

Initially, the data were cleaned by removing the outliers. There were 
four types of outliers which are indicated in Fig. 4 and listed below.  

• Type 1 represents a horizontal cluster at the bottom of the power 
curve due to downtime for several reasons, such as maintenance and 
error in the log. 

Fig. 2. Smøla wind farm layout.  

Fig. 3. NWP grid points from the high-resolution model.  
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• Type 2 represents random scatters due to sensor malfunction, noise 
in signal processing or power curtailment.  

• Type 3 represents a dense cluster below the rated power where the 
wind turbine production is limited for reasons like power 
curtailment.  

• Type 4 represents a vertical cluster at zero wind speed due to icing or 
malfunction of the anemometer. 

Missing values and outliers represent a fraction between 5% and 30% 
of the data for each turbine. This data was discarded before developing 
the forecasting models. However, it should be mentioned that not all 
turbines suffered from all types of outliers. 

3. Methods 

3.1. Forecasting models 

Models for direct and indirect WPF are developed under the study. 
Forecasts on wind speed (WS), wind gust (WG), wind direction (WD) 
and temperature (Temp) from the 4 NWP grid cells nearest to the tur-
bines are directly correlated with the turbine’s power output in the 
direct forecasting approach. On the other hand, in the case of indirect 
WPF, these forecasts from NWPs were first correlated with the nacelle’s 
wind speed measurements for developing the downscaling model, which 
estimates the velocity ‘felt’ by the turbines at its hub coordinates. Then, 
the power corresponding to these velocities are estimated using the site- 
specific performance model of the turbine. In both cases, power esti-
mates from individual turbines are accumulated together to arrive at the 

Fig. 4. Filtered data versus discarded data.  

Fig. 5. Direct and indirect wind power forecast models.  
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farm level power estimates. 
Wind forecasts from the three NWP sources considered under the 

study (IFS, EURO and MEPS) were used individually and in combination 
(MIX) to develop each wind turbine’s direct and indirect WPF. The MIX 
models were built upon using the three NWP’s data together as input. 
Thus, as shown in Fig. 5, each wind turbine has 4 direct WPF models, 4 
wind speed downscaling models and 1 turbine’s site-specific perfor-
mance model. In addition to this, the above-discussed WPFs based on 
direct and indirect approaches are individually combined to form single 
WPFs based upon direct and indirect approaches and both together, as 
shown in Fig. 5. More details are described in section (3.3). 

It should be noted that, for forecasting the wind power at the time 
(t+1), we used weather data from the NWP sources at the start and the 
end of the hour, i.e., at time (t) and (t+1). 

The historical data records for each turbine were divided into two 
sets, one for model development and calibration (train and validation) 
and the other for testing (unseen). The data division was done by pre-
serving the first 10 days of each month from the years 2017–2019 for 
testing while using the rest for model calibration. The test set was almost 
1 year out of the 4 years used in this study. 

3.2. Model development process 

The model development process had mainly three phases summa-
rized as follows:  

• The pre-processing phase which consisted of feature selection, 
feature pre-processing (division, scaling), and feature construction. 
The main objective of this phase was to select and prepare the inputs 
for the model in proper form and shape.  

• The model selection phase involved model architecture development 
(selection and calibration) and optimization of hyperparameters. 
This phase aimed at achieving high accuracy associated with high 
generalization ability. 

• The model evaluation phase was focused on the performance eval-
uation of the developed models by applying several error metrics and 
statistical methods. 

3.2.1. Model’s architecture (pre-processing, model selection and 
optimization) 

In the present study, we adopted a new approach to fully automate 
the process of selecting the most optimal techniques and configurations 
for all the development phases. This approach was developed by re-
searchers from the University of Pennsylvania which was initially 
applied in the biomedical field [37–39]. It uses a tree-based structure to 
represent the development process for a predictive modelling problem, 
including data preparation, model selection and hyperparameters tun-
ing while performing genetic programming (GP) to optimize the selected 
pipeline process. In other words, this approach tries a pipeline, evaluates 
its performance, and randomly changes parts of it using a genetic search 
(natural selection) to find a better-performing pipeline. Fig. 6 shows the 
end-to-end pipeline development process, where the pipeline search 
elements include feature selection, feature processing, feature con-
struction, model selection, and hyperparameter optimization. 

Fig. 6. Overview of the adapted pipeline search [38].  

Table 1 
List of models and data techniques used.   

Model/Ensemble method Processing techniques 

1 Elastic Net model with Cross- 
Validation 

Independent Component Analysis 
(ICA)a 

2 Cross-validated Lasso, using LARS 
algorithm 

Principal Component Analysis (PCA)a 

3 Ridge Regression with built-in 
cross-validation 

Feature Agglomeration Clusteringa 

4 Extremely Randomized Trees RBF Kernel approximationa 

5 Gradient Tree Boosted Feature Normalizerb 

6 AdaBoost Maximum Minimum Scalerb 

7 Decision Tree Standard Scalerb 

8 Random Forrest Regressor Robust Scalerb 

9 K-Nearest Neighbors Polynomial Feature Generationb 

10 Support Vector Machines Feature Selection based on Variance 
Thresholdc 

11 Extreme Gradient Boosting 
XGBoost 

Feature Selection based on Extreme 
Tree Regressorc 

12 Stochastic Gradient Descent 
Regressor 

Feature Selection based Family wise 
errorc  

a Constructor. 
b Preprocessor. 
c Selector. 
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The GP used in this study searches over several well-known regres-
sion models, data processing techniques (pre-processing, construction 
and selection) to generate the search space, and optimizing each pipe-
line. So, the population consists of a list of randomly generated pipe-
lines. For each generation, copies of the best-performing pipelines are 
created and imposed with random changes (e.g., the addition or removal 
of an operation or the parameter tuning of an operation), enabling the 
development of new pipelines that were never explored before. The 
worst-performing pipelines are removed from the population at the end 
of each generation before starting the next generation. Table 1 presents 
the models and the data processing techniques utilized in the genetic 
search. However, each of these models/techniques has several hyper-
parameters which were tuned during the search. A full description of the 
models/techniques used can be seen in Refs. [43,44]. 

Although GP is faster and more efficient than traditional optimiza-
tion methods, the utilized GP had to be configured to maintain a good 
diversity to achieve an optimal or near-optimal solution in a reasonable 
time. The adopted GP had to iterate for 10 generations having a popu-
lation size of 70, off-spring size of 10, mutation and crossover rates were 
set to 90% and 10%, respectively. Moreover, the cross-validation 
method was implemented, dividing the calibration set into 3 folds, 2 
for training and 1 for validating. In other words, each pipeline in the 
genetic search had to be trained and evaluated 3 times using different 
combinations of folds. Nevertheless, an automatic termination mecha-
nism was implemented to terminate the search if no improvements were 
detected during the last 3 generations. Furthermore, a scoring function 
was implemented to rank the established pipelines depending on the 
mean absolute error (MAE) as it is robust to outliers. 

3.2.2. Model’s performance evaluation (post-processing) 
The accuracy of the developed forecasts was quantified through 

different metrics, including (RMSE), normalized RMSE (NRMSE), MAE, 
normalized MAE (NMAE), coefficient of determination (R2) and the 
index of agreement (IoA), which are expressed in the equations given 
below. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1[Pk − P̂k]
2

n

√

(1)  

NRMSE =
RMSE

Rated power
(2)  

MAE =
1
n
∑n

k=1
|Pk − P̂k| (3)  

NMAE =
MAE

Rated power
(4)  

Where, Pk and P̂k represent the observed and the predicted values of the 
studied parameter at the time instant k, whereas n represents the num-
ber of data used in the test stage. Note that the rated power is either 2 or 
2.3 MW depending on the turbine (see section 2.1). 

RMSE and MAE are most commonly used for measuring the varia-
tions between predicted and measured values [28,45–47]. However, 
normalized versions of both metrics are used generally for comparisons 
with other study cases. Both RMSE and MAE express average model 
prediction error in units of the variable of interest. However, the errors 
are squared before being averaged in RMSE. Therefore, it gives high 
weights to significant errors, which is useful in case large errors are 
undesirable. In comparison, MAE is more robust to large errors due to 
the way it is calculated. 

R2 indicates how well the recorded data can be forecasted by the 
proposed model (goodness of fit) [48]. 

R2 = 1 −

∑n

k=1
[Pk − P̂k]

2

∑n

k=1

[

Pk −
1
n

∑n

k=1
(Pk)

]2 (5) 

The highest possible score can be 1, but it can also display negative 
scores, indicating an arbitrarily worse predicting model than a linear 
one. 

The metric IoA is a ratio between the mean squared error and the 
potential error [49]. It is a standardized measure of the degree of model 
prediction error which varies between 0 and 1. This metric evaluates the 
agreement between the prediction and the observed values by detecting 
additive and proportional differences in the observed and predicted 
means and variances. However, it is overly sensitive to extreme values 
due to the squared differences. 

IoA= 1 −

∑n

k=1
[Pk − P̂k]

2

∑n

k=1
[|P̂k − P| + |Pk − P|]2

(6)  

Where, P is the mean of the observed values over the test set for the 
studied parameter. 

3.3. Multiple forecast weighing (combined forecast) 

As mentioned previously, each wind turbine has 6 wind power pre-
dictions depending on both the forecast approaches (direct and indirect) 
and the NWP model used (IFS, EURO and MEPS). In addition to those, 2 
WPFs are created based on merging all the NWPs parameters together, 
denoted as the MIX models as seen in Fig. 5. In general, The NWPs’ 
performance varies depending on the period of the year, location and 
other model’s configurations. Therefore, it is essential to have a single 
combined wind power prediction to represent the wind power pre-
dictions from the developed models. This is achieved by using a 
weighting multiplier for the developed models’ predictions according to 
each forecast’s short-term historical performance. The predicted value 
of multiple forecasting models for the single turbine is determined by: 

P̂t+Δt =
∑

(

WNWPi
Appj

∗ P̂
NWPi

Appj

)

t+Δt
(7)  

where NWPi ∈ [IFS,EURO,MEPS], Appj ∈ [Direct, Indirect] and WNWP are 
the weighting multipliers of different forecasting models, which were 
determined using RMSE as the performance index. The performance 
index for each forecasting model was calculated using the last 6 h’ ob-
servations of the NWPs updates. Thus, 

WNWPi
Appj

(t + Δt)=

(
RMSENWPi

Appj
(t − 6)

)− 2

∑(
RMSENWPi

Appj
(t − 6)

)− 2 (8) 

So, the less the magnitude of RMSE for a particular model, the more 
would be the weightage multiplier W in Eq. (7), and vice versa. It should 
be noted that the Δt is chosen to be 2 h as this study focuses on the 
intraday market (in Norway) to reduce the balancing costs. 

To illustrate more, the 3 WPFs (IFS, EURO and MEPS) developed 
using the direct approach are combined, producing a forecast denoted as 
‘Direct Combined’, whose performance is compared to the direct MIX 
forecast. The same is applied to the WPFs using the indirect approach 
scheme producing a forecast denoted as ‘Indirect Combined’. Moreover, 
both approaches’ forecasts (in total 6) are combined in a single forecast 
denoted as the ‘Combined’, as illustrated in Fig. 5, whose performance is 
compared with both the MIX and the combined ones resulting from both 
approaches. 
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4. Results and discussion 

The turbine as well as farm-level performances of the proposed wind 
power forecasting models, under both the direct and indirect forecasting 
approaches, are discussed in this section. As 8 forecasting models were 
developed for each studied turbine, for concisely presenting the results, 
the average performances of the models across all the turbines and the 
corresponding standard deviation are presented. 

4.1. Turbine level wind downscaling models for indirect WPF 

As mentioned previously, the indirect forecast scheme comprises two 
models, the wind downscaling and the turbine’s performance model. In 
this subsection, the wind downscaling results will be presented and 
discussed. 

Table 2 shows the performance of the wind downscaling models, 

which enhances the spatial resolution of the wind predictions from the 
NWPs to the hub coordinates of the wind turbines. Compared with the 
models based on a single NWP, the downscaling accuracy (reduced 
error) is improved using the three NWPs together (MIX model). These 
improvements varied between 8%, 14% and 22%, on average across all 
the turbines, compared to individual IFS, EURO and MEPS downscaling 
models, respectively. Moreover, in comparison with the raw wind 
forecast from the NWP models used, it is observed that the downscaling 
models improve the NWP raw wind forecasts from IFS, EURO and MEPS 
by around 15%, 11% and 22%, respectively. The increased improve-
ment performance found for the MEPS model indicates that the down-
scaling enhances the wind forecast in vertical coordinates as well, as the 
MEPS data were extracted at 10 m above the ground. It should be noted 
that the rated wind speed of 16 m/s is used to normalize both MAE and 
RMSE. 

4.2. Turbine level site-specific performance models for the indirect WPF 

Performance of the site-specific wind speed-power characteristics, 
computed for all the turbines and then averaged, are shown in Table 3. 
The relatively low values of the error indices and the high values of IoA 
and R2 imply the proposed algorithms’ capability to model the turbine’s 
performances. This is further illustrated in Fig. 7, where the power 
production of a representative turbine predicted using the developed 
model is compared with the actual observations. 

Table 2 
Individual turbines’ wind speed downscaling and NWP’s raw wind speed forecasts evaluation results (averaged across the turbines).  

Metric Wind Speed Downscaling Raw Wind Speed Forecast 

MIX IFS EURO MEPS MIX IFS EURO MEPS 

RMSE [m/s] 1.30 1.41 1.51 1.66 – 1.67 1.71 2.13 
NRMSE [%] 8.2 8.8 9.4 10.4 – 10.4 11.0 13.3 
MAE [m/s] 0.98 1.07 1.13 1.27 – 1.28 1.31 1.66 
NMAE [%] 6.1 6.7 7.1 8.0 – 8.0 8.2 10.4 
IoA [%] 96.9 96.3 95.9 94.7 – 94.6 94.2 91.2 
R2 [%] 88.9 87.0 85.3 82.1 – 80.5 79.6 68.1  

Table 3 
Site-specific turbine’s performance models evaluation (averaged across the 
turbines).  

Metric RMSE 
[kW] 

NRMSE 
[%] 

MAE 
[kW] 

NMAE 
[%] 

IoA 
[%] 

R2 

[%] 

Avg 54.76 2.5 33.27 1.5 99.8 99.4 
Std 11.45 0.4 7.77 0.3 0.05 0.2  

Fig. 7. Site-specific performance model versus observations for turbine number 1.  
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4.3. Turbine level wind power forecasts (indirect versus direct) 

Performances of both the direct and indirect forecasting models, 
implemented at the turbine level, are presented in Tables 4 and 5, 
respectively. It is evident that the models’ performances are significantly 
improved by using several NWP sources together (MIX). For example, 
RMSE and MAE of direct forecasting models could be enhanced, 
depending on the NWP used, by (8%–22%) and (9%–25%), respectively, 
by using the MIX. Corresponding improvements in the indirect forecasts 
were (8%–21%) and (8% 10%) respectively. Similar improvements (but 
in lesser magnitude) could be seen in the case of IoA and R2 as well. 
Additionally, the combined forecast in each approach resulted in 
improved performance compared to the 3 individual WPFs (IFS, EURO 
and MEPS) to the same degree as for the MIX forecast. However, the 

latter performs slightly better with an improved RMSE and MAE below 
4%. This confirms that the use of several NWPs yields better overall 
forecasts. 

Despite its lowest spatial resolution among NWP sources used, WPF 
using IFS data achieved better performances than EURO and MEPS 
sources. The improvements achieved are in the range of 4%–18% in both 
approaches. In contrast, the highest spatial resolution of MEPS is not 
reflected in the performances of the forecasting models in which it is 
integrated. One possible reason for this could be that the data from 
MEPS were only available at 10 m, whereas the turbines’ hub height was 
at 70 m. It should be noted that the performances of WPF using different 
NWP sources could be site-dependent, and further research with varying 
site conditions is required for arriving to a more generalized conclusion. 

The standard deviation of the error metrics is also found to be 

Table 4 
Individual turbines WPF evaluation results using the direct approach (averaged across the turbines).  

Direct Wind Power Forecast 

Metric MIX IFS EURO MEPS Direct Combined 

Avg Std Avg Std Avg Std Avg Std Avg Std 

RMSE [kW] 248.03 20.36 270.76 24.10 283.52 23.80 320.49 36.94 255.82 20.44 
NRMSE [%] 11.21 0.50 12.23 0.55 12.80 0.54 14.45 1.31 11.56 0.53 
MAE [kW] 158.39 13.27 174.37 15.24 181.13 16.45 214.68 34.31 165.06 14.88 
NMAE [%] 7.16 0.40 7.88 0.42 8.18 0.45 9.69 1.34 7.46 0.45 
IoA [%] 96.34 0.33 95.59 0.34 95.18 0.37 93.35 1.48 95.98 0.43 
R2 [%] 87.04 1.06 84.59 1.10 83.08 1.22 78.16 4.79 86.19 1.31  

Table 5 
Individual turbines WPF evaluation results using the indirect approach (averaged across the turbines).  

Indirect Wind Power Forecasts 

Metric MIX IFS EURO MEPS Indirect Combined 

Avg Std Avg Std Avg Std Avg Std Avg Std 

RMSE [kW] 250.11 21.85 272.68 24.71 287.76 25.17 318.59 30.87 255.22 21.09 
NRMSE [%] 11.28 0.55 12.29 0.64 12.97 0.64 14.37 0.92 11.54 0.55 
MAE [kW] 153.14 13.14 167.70 15.01 175.21 15.83 196.26 20.38 156.26 13.30 
NMAE [%] 6.91 0.39 7.56 0.45 7.902 0.46 8.85 0.67 7.06 0.40 
IoA [%] 96.41 0.33 95.71 0.33 95.23 0.36 93.96 0.84 96.18 0.38 
R2 [%] 86.83 1.11 84.38 1.11 82.59 1.20 78.60 2.52 86.27 1.23  

Fig. 8. Average RMSE and MAE across all the turbines associated with the best and poorest turbines.  
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reduced while using several NWPs together, indicating the consistency 
of the models while predicting the performances of different turbines. 
These are further evident in Fig. 8, where the medians, ranges and the 
percentiles of these matrices are illustrated. 

Tables 4 and 5 and Fig. 8 show that the WPF models based on direct 
and indirect methods performed somewhat equally well for the wind 
turbines under the study. Interestingly, this is in contrast to the findings 
of some of the previous studies. For example, the conclusions of [22] 

indicate that the forecasting based on the direct approach is more reli-
able than the indirect one, whereas the findings of [31] are contrary. The 
performance differences for all the models across both approaches are 
almost identical, where the differences are around 2% for different error 
metrics. This is evident in the comparison between Figs. 9 and 10. 

The ‘Combined’ forecast resulted from combining the six developed 
WPFs for each turbine through Eqs. (7) and (8), which are evaluated in 
Table 6. Combined forecast performances are comparable with the 

Fig. 9. Direct WPFs versus true power for turbine number 1 between the 2nd and January 4, 2019.  

Fig. 10. Indirect WPFs versus true power for turbine number 1 between the 2nd and January 4, 2019.  
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mixed NWP forecasting scheme (MIX) and the combined forecasts based 
on each approach. However, in some hours, the combined forecast 
yielded better predictions, especially in comparison with the direct 
predictions approach, as seen in Fig. 11. 

It should be mentioned that the results had been tested and validated 
for several hours ahead. In particular, they are valid for up to 12 h ahead 
for the IFS WPFs and 6 h ahead for the remaining WPFs. This is mainly 
because WPFs models are trained with historical NWPs, which were 
updated according to the earlier mentioned update rate. 

4.4. Wind farm-level power forecasts 

The performance of the models in estimating the power generated 
from the whole wind farm by aggregating the individual power esti-
mates from all the turbines is shown in Table 7. This is further shown in 
Fig. 12, in which the percentile variations from the predictions are also 
illustrated. It should be mentioned that the prediction interval is a 
quantitative representation of several developed forecasts. It does not 

reflect the confidence interval or the probability of a specific value 
associated with certain conditions. As in the case of turbine level fore-
casts, the mixed and combined modelling approaches outperformed all 
other options with individual NWP inputted models. The aggregated 
forecasts have shown lower overall errors than those for the single tur-
bines. This is because the over and under predictions of the turbine’s 
power output could have been cancelled out to some extent while 
aggregated. Similar improvements can also be observed in the case of 
accuracy measures like R2 and IoA. 

More in-depth error quantification for the wind farm aggregated 
forecasts is presented in Table 8 and visualized in Fig. 13. The forecasts’ 
errors have, generally, slightly negative medians and positive means, 
which means having slightly more than 50% of the predictions being 
overestimated (negative median). In contrast, the rest of the predictions 
were underestimated with a higher magnitude (positive average). It 
should be noted that the error is calculated based on the observed minus 
the prediction. In addition, all the developed forecasts are right-skewed, 
i.e., medians are closer to the first quartile (Q1) than to the third quartile 
(Q3). However, by comparing the interquartile range (IQR), which 
contains 50% of the predictions, the MEPS forecasts show the highest 
IQR ranges, 9.1 and 10.4 MW, indicating that the predictions are more 
dispersed than other forecasts, which is also valid by comparing the 
standard deviations (SD). This strongly reflects having a wide fence 
range. Nevertheless, approximately 85% of the error falls into the fence 
ranges across all the developed forecasts, as shown in Fig. 13. 

Table 6 
Combined forecast performance (averaged across the turbines).  

Metric RMSE 
[kW] 

NRMSE 
[%] 

MAE 
[kW] 

NMAE 
[%] 

IoA 
[%] 

R2 

[%] 

Avg 252.42 11.41 157.58 7.12 96.19 86.56 
Std 20.29 0.53 13.45 0.40 0.39 1.23  

Fig. 11. Combined WPFs and MIX forecasts versus true power for turbine number 1 between the 2nd and January 4, 2019.  

Table 7 
Performance evaluation of the aggregated turbines’ forecasts.  

Wind Farm Aggregated Power Forecasts 

Metric MIX IFS EURO MEPS Combined 

Dir Indir Dir Indir Dir Indir Dir Indir Dir Indir Both 

RMSE [MW] 11.76 11.90 13.12 13.24 13.89 14.12 15.04 15.11 12.08 12.05 11.98 
NRMSE [%] 7.82 7.91 8.73 8.80 9.23 9.39 10.0 10.05 8.03 8.01 7.97 
MAE [MW] 6.99 6.81 7.84 7.58 8.23 8.02 9.48 8.82 7.34 6.98 7.06 
NMAE [%] 4.65 4.53 5.21 5.04 5.48 5.33 6.31 5.86 4.88 4.64 4.69 
IoA [%] 97.5 97.5 96.9 96.9 96.5 96.5 95.6 95.8 97.3 97.4 97.4 
R2 [%] 91.0 90.8 88.8 88.6 87.4 87.0 85.3 85.1 90.5 90.6 90.1  
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5. Conclusions 

In this study, we have explored the relevance of using several NWP 
sources in power forecasting from the perspective of individual wind 
turbine and aggregated wind farm level forecasts. The direct and indi-
rect forecast approaches were also compared. The forecast models were 
built by implementing a genetic optimization search to find the most 
optimum machine learning pipeline utilizing various possible algo-
rithms and configurations. The conclusions can be summarized as 
follows: 

• Using several NWPs could improve the accuracies in WPF irre-
spective of the direct or indirect approaches used. By this, normal-
ized RMSE and MAE of various forecasts were reduced by (8%–22%), 
depending on the NWP and approach used.  

• In the present study, there is no clear evidence proving that the direct 
WPF outperforms the indirect WPF, nor on the contrary.  

• The wind downscaling model, which extrapolates the wind flow 
conditions to the hub coordinates of the turbine, could improve the 
WPF accuracies.  

• The combined WPF, which resulted from either direct or indirect 
approaches, performed as accurately as the MIX WPF. This further 
confirms that using several NWP models yields a better forecast, 
irrespective of whether they are integrated into one “MIX” model or 
the forecasts based on individual NWPs are combined together as in 
the case of the discussed “combined” models.  

• The point forecasts aggregated to the wind farm level yielded a 
lower-normalized error, which could be mainly due to the 

cancellation of positive and negative errors in the forecasts of indi-
vidual turbines. 

One specific advantage of the proposed point forecasting approach, 
in contrast with the farm level forecasts, is that it could be successfully 
implemented even if some of the turbines in the farm are down or are 
curtailed due to various reasons and operational settings. 

The point (turbine level) forecasting approach proposed under this 
study is currently being compared with the farm level approach and the 
results of this comparison would be shared with the wind power fore-
casting community through a later publication. Further, the present 
study, which was on a land based wind farm over a relatively flat terrain, 
has to be extended to other operating environments like complex ter-
rains and offshore conditions. 
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Fig. 12. Wind farm power forecast versus true power with a prediction interval.  

Table 8 
Error quantification of the aggregated WPFs.  

Wind Farm-level error quantification 

Error [MW] MIX IFS EURO MEPS Combined 

Dir Indir Dir Indir Dir Indir Dir Indir Dir Indir Both 

Mean 0.9 1.9 0.7 1.8 0.8 2.0 0.8 2.4 1.0 2.0 1.6 
Median − 0.4 0.02 − 0.5 0 − 0.6 0 − 1.4 − 0.1 − 0.7 0 − 0.2 
SD 11.7 11.8 13.1 13.1 13.9 14.0 15.0 14.9 12.0 11.9 11.9 
Q1 − 3.2 − 2.0 − 3.7 − 2.4 − 3.8 − 2.4 − 6.0 − 3.4 − 3.6 − 2.2 − 2.7 
Q3 3.6 4.5 4.0 4.8 4.2 5.1 4.4 5.7 4.1 4.8 4.4 
IQR 6.8 6.5 7.7 7.2 8.0 7.5 10.4 9.1 7.7 7.0 7.1 
Upper fence 13.8 14.3 15.5 15.5 16.1 16.2 20.0 19.3 15.6 15.3 15.0 
Lower fence − 13.4 − 11.8 − 15.2 − 13.1 − 15.7 − 13.5 − 21.5 − 16.9 − 15.0 − 12.7 − 13.4  
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Fig. 13. Aggregated wind farm WPF’s error quantification.  
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