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Abstract: The deflection compensation of a hydraulically actuated loader crane is presented. Measure-
ment data from the laboratory are used to design a neural network deflection estimator. Kinematic
expressions are derived and used with the deflection estimator in a feedforward topology to com-
pensate for the static deflection. A dynamic deflection compensator is implemented, using pressure
feedback and an adaptive bandpass filter. Simulations are conducted to verify the performance
of the control system. Experimental results showcase the effectiveness of both the static and dy-
namic deflection compensator while running closed-loop motion control, with a 90% decrease in
static deflection.
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1. Introduction

Flexible manipulators have received extensive research attention in recent years.
The use of lightweight though flexible manipulators yields many advantages over rigid
structures, including lower mass and inertia, lower energy consumption, higher payload-
to-weight ratio, and smaller actuators. However, there are challenges associated with the
structural flexibility of these manipulators that must be taken into account. The deflection,
oscillations, and potential nonlinearities may lead to issues with steady-state performance,
stability, and controllability.

Different approaches of modeling flexible manipulators have previously been consid-
ered, such as lumped parameter [1–3], assumed modes [4–6], Lagrangian formulation [7,8]
and neural networks [9].

The control of flexible manipulators is typically divided into two groups, model-
based control and model-free control. The primary goal of both control techniques is
to dampen oscillations and reduce the consequences of static deflection in the flexible
manipulator. Model-based control may use the modeling techniques shown earlier, and can
be implemented in a feedforward topology. This includes control with linear models [10],
nonlinear inverse dynamics [11], and input shaping [12]. In model-free control, the system
does not rely on a mathematical model of the system, but rather sensor measurements from
the system. Model-free control includes robust control and sliding mode control [13–15].

Another technique that has received research interest for the control of flexible ma-
nipulators is neural network control. This can include both feedforward and feedback
controllers [16]. Neural networks are often combined with sliding mode control for robust
control and the stabilization of nonlinear systems [17–19]. Kinematic control of redundant
manipulators was investigated in [20,21].

Large manipulators, such as hydraulic cranes, may experience large static deflections
under heavy load. This is especially an issue with weight-optimized structures, such as
loader cranes. As a consequence, the calculated crane tip position based on rigid body
kinematics may yield significant errors and may be a safety concern that, potentially,
can lead to collisions with the surroundings if not compensated for. This is especially
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true when using closed-loop motion control and when forward kinematics are used to
estimate the crane tip position. For manually operated cranes, the operator may visually
identify and compensate for the deflections, effectively closing the loop. This is often called
operator in the loop. To reach the same level of automation as industrial robots, deflection
compensation may play a critical role in increasing the precision and safety when using
closed-loop motion control for large cranes.

In this paper, a new method for closed-loop control of a hydraulic manipulator is
presented. The novelty lies in the combination of compensation for both static and dynamic
deflection while running path control. This combination of path control and static and
dynamic compensation is an answer to the previously mentioned problems for highly
flexible manipulators, and is therefore developed and implemented on a commercial
hydraulically actuated loader crane.

2. Considered System

In this paper, a HMF 2020K4 loader crane made by HMF Group A/S (Højbjerg,
Denmark) is used as a basis for simulations and experiments; see Figure 1. The crane has
three degrees of freedom of interest: the rotation of the main boom, the rotation of the
knuckle boom and the extension of the telescopic booms. They are controlled by means
of the main cylinder, the knuckle cylinder and, working as a single sequential cylinder,
the telescopic cylinders. Each cylinder is driven by a pressure-compensated directional
control valve, which ensures load-independent flow control. Counterbalance valves are
used for load holding, assisting in load lowering, and protection against pressure surges.
An illustration of the hydraulic system for the knuckle cylinder is shown in Figure 2.
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Telescopic booms
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z

Figure 1. Illustration of the HMF 2020K4 loader crane.
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Figure 2. Hydraulic system of the knuckle cylinder.



Robotics 2022, 11, 34 3 of 23

Control Strategy

The novel approach is shown in Figure 3. The crane is running path control in
the actuator space with position feedback and velocity feedforward developed in [22].
The control strategy for the deflection compensation is split into static compensation and
dynamic compensation. The static deflection compensator uses feedforward and adjusts
the position reference based on an estimated deflection for a given actuator position.
The dynamic deflection compensator uses feedback of the load pressure pL to measure and
suppress the oscillations of the crane.

+_+_ +
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x

xref u^xref
Static

Deflection 

Compensator

Dynamic

Deflection 

Compensator

_
Feedback
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Path
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xref
.

Figure 3. Control strategy with the novel deflection compensators highlighted in light blue.

3. Static Deflection Compensation

The static deflection compensator is a model-based feedforward controller and is based
on a deflection estimator and kinematic functions. The estimated deflection of the crane is
in Cartesian space, while the motion controller operates in actuator space. The relevant
kinematic relations are derived in this section and are then used to generate a modified
cylinder position reference.

3.1. Measuring Deflection in Laboratory

Experiments are conducted in the laboratory using a laser tracker, namely a Leica
Absolute Tracker AT960. The laser tracker measures the position of a reflector mounted on
the crane tip. A 581 kg payload is connected to the winch on the crane, and by measuring
the crane tip position with and without the payload, the deflection of the crane tip is
effectively measured. The setup in the laboratory is shown in Figure 4. Note that 581 kg
was the heaviest payload that the crane could consistently lift at this boom length and
pressure level available in the laboratory.

Multiple measurements are conducted with different cylinder positions. The resulting
crane tip position in the xz-plane with and without load is shown in Figure 5, with the
black lines illustrating the crane position for one of the samples. Deflection is calculated as
the difference between the load and no-load tip position.

3.2. Forward Kinematics

Forward kinematics are used to go from joint space to Cartesian space. The forward
kinematics are calculated based on Denavit–Hartenberg parameters. Figure 6 shows the
joint angles, telescopic length, lifting radius, and tip position. Figure 7 shows the geometry
which is used with the Denavit–Hartenberg parameters, where both booms are horizontal.
The dimensions between consecutive joints are shown in Table 1. The Denavit–Hartenberg
parameters are shown in Table 2, where R and T are rotational and translational matrices,
respectively. The angles θm and θk denote the rotation about the main joint and knuckle
joint, respectively. The forward kinematics are similar to what was developed earlier in [23],
with the addition of the telescopic actuator length xt used in this paper.
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Telescopic 
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Reflector

Payload

(a) (b)
Figure 4. Experimental setup in the lab. The laser tracker measures the crane tip position using
the attached reflector. (a) Crane tip showing the telescopic boom, reflector, and payload, (b) Leica
Absolute Tracker AT960.
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Figure 5. Crane tip position in xz-plane with and without load from laboratory measurements. Crane
position illustrated in black with its three degrees of freedom.
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Figure 6. Crane geometry showing joint angles, lifting radius R, telescopic length xt, and crane
tip position.
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Figure 7. Crane geometry used with Denavit–Hartenberg parameters.

Table 1. Dimensions shown in Figure 7.

Name Length [m]

l1 0.250
l2 1.569
l3 2.400
l4 0.070
l5 2.429
l6 0.093
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Table 2. Denavit–Hartenberg parameters.

Rz Tz Tx Rx

0 l2 −l1 90◦

θm 0 0 −90◦

0 l4 l3 90◦

θk 0 0 −90◦

0 −l6 l5 0
0 0 xt 0

The transformation matrix ADH is given as

ADH = Tz(l2)·Tx(−l1)·Rx(90◦)·Rz(θm)·Rx(−90◦)·Tz(l4)·Tx(l3)·Rx(90◦)

·Rz(θk)·Rx(−90◦)·Tz(−l6)·Tx(l5)·Tx(xt) (1)

=


cθm+θk 0 −sθm+θk xTip

0 1 0 0
sθm+θk 0 cθm+θk zTip

0 0 0 1

 (2)

The crane tip positions xTip and zTip are given in Equations (3) and (4), using the
notation cos(θ) = cθ and sin(θ) = sθ .

xTip = −l1 + l3 ·cθm − l4 ·sθm + l5 ·cθm+θk + l6 ·sθm+θk + xt ·cθm+θk (3)

zTip = l2 + l3 ·sθm + l4 ·cθm + l5 ·sθm+θk − l6 ·cθm+θk + xt ·sθm+θk (4)

3.3. Inverse Kinematics

Inverse kinematics are used to go from Cartesian space to joint space. Solving the
inverse kinematics of the crane is similar to a typical two-link manipulator, with the
exception that the length of each link is split into an x-component and z-component.
In addition, the three actuators give the crane kinematic redundancy in the case of motion
in the xz-plane. This is solved by keeping the telescopic actuator length xt fixed and
solving for the main joint angle θm and knuckle joint angle θk. This is done because the
main cylinder and knuckle cylinder are easier to control and have less friction than the
telescopic cylinder.

The calculations are based on the lifting radius R, which is the distance from the main
joint to the crane tip. The squared lifting radius R2 is given by

R2 =
(
xTip + l1

)2
+
(
zTip − l2

)2 (5)

Some intermediate equations are used to solve for the knuckle boom angle θk. Inserting
Equations (3) and (4) into (5) yields

R2 = (l3 ·cθm − l4 ·sθm + l5 ·cθm+θk + l6 ·sθm+θk + xt ·cθm+θk )
2

+ (l3 ·sθm + l4 ·cθm + l5 ·sθm+θk − l6 ·cθm+θk + xt ·sθm+θk )
2

= 2·(l3 ·l5 − l4 ·l6 + l3 ·xt)·cθk + 2·(l3 ·l6 + l4 ·l5 + l4 ·xt)·sθk (6)

+ l2
3 + l2

4 + l2
5 + l2

6 + 2·l5 ·xt + x2
t

The equations in a more compact form are given below:

R2 = A·cθk + B·sθk + C (7)

A = 2·(l3 ·l5 − l4 ·l6 + l3 ·xt) (8)

B = 2·(l3 ·l6 + l4 ·l5 + l4 ·xt) (9)

C = l2
3 + l2

4 + l2
5 + l2

6 + 2·l5 ·xt + x2
t (10)
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Solving Equation (7) yields two solutions, and by taking the minimum angle, the crane
will be in the desired elbow-up configuration. The calculation of θk is shown below:

θ∗k = 2·tan−1

(
B±
√

A2 + B2 − C2 + 2·C·R2 − R4

A− C + R2

)
(11)

θk = min(θ∗k ) (12)

To find θm, Equations (3) and (4) are expanded, and the terms containing θm are
factorized out.

xTip = (l5 ·cθk + l6 ·sθk + xt ·cθk + l3)·cθm − (l5 ·sθk − l6 ·cθk + xt ·sθk + l4)·sθm − l1 (13)

zTip = (l5 ·sθk − l6 ·cθk + xt ·sθk + l4)·cθm + (l5 ·cθk + l6 ·sθk + xt ·cθk + l3)·sθm + l2 (14)

Rearranging gives a more compact form, yielding two equations with two unknowns,
namely cos(θm) and sin(θm).

xTip = E·cθm − D·sθm − l1 (15)

zTip = D·cθm + E·sθm + l2 (16)

D = l5 ·sθk − l6 ·cθk + xt ·sθk + l4 (17)

E = l5 ·cθk + l6 ·sθk + xt ·cθk + l3 (18)

These two equations are then solved to find θm.

cθm =
D·zTip − D·l2 + E·xTip + E·l1

D2 + E2 (19)

sθm =
E·zTip − E·l2 − D·xTip − D·l1

D2 + E2 (20)

θm = tan−1
(

sθm

cθm

)
(21)

3.4. Actuator Kinematics

Actuator kinematics are used to go from actuator space to joint space. They were
developed earlier in [23]. An illustration of the main joint linkage is shown in Figure 8.
The associated lengths are given in Table 3.

x

z

la lb

lc

ld

le lf

lg

θd 
θe 

θa 

θb 

θc 

xm

Figure 8. Illustration of the main joint actuator kinematics.
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Table 3. Lengths of the parts in the main linkage.

Name Length [m]

la 1.473
lb 1.514
lc 0.143
ld 0.490
l f 0.170
lg 0.340

For reference, the calculation of the main joint angle θm = θm(xm) is given below:

θa = cos−1

(
l2
a + l2

c − l2
b

2·la ·lc

)
(22)

θb = cos−1

(
l2
a + l2

d − x2
m

2·la ·ld

)
(23)

θc = θa − θb (24)

le =
√

l2
c + l2

d − 2·lc ·ld ·cθc (25)

θd = cos−1

(
l2
e + l2

g − l2
f

2·le ·lg

)
(26)

θe = cos−1

(
l2
b + l2

e − x2
m

2·lb ·le

)
(27)

θm = θd + θe − θ̃m (28)

3.5. Inverse Actuator Kinematics

Inverse actuator kinematics are used to go from joint space to actuator space. As taking
the inverse of Equation (28) is difficult due to it being such a complex expression, curve
fitting is used instead. The 9th order polynomials are used, shown below:

x = p9 ·θ9 + p8 ·θ8 + p7 ·θ7 + p6 ·θ6 + p5 ·θ5 + p4 ·θ4 + p3 ·θ3 + p2 ·θ2 + p1 ·θ + p0 (29)

While the mapping θm = θm(xm) given in Equation (28) describes the actuator kinemat-
ics for the main cylinder, the inverse kinematics is the mapping xm = xm(θm). Iteratively
calculating and plotting θm = θm(xm) and then switching the axis gives a solution on which
the curve is fitted. The coefficients for the main cylinder and knuckle cylinder are given in
Table 4, and plots of the curve fits are shown in Figure 9, showing that the curve fit yields a
close match to the numerical inverse.

Table 4. Curve-fitting coefficients for inverse actuator kinematics.

Coefficient Main Knuckle

p9 −8.324× 10−5 −2.044× 10−5

p8 4.068× 10−4 −2.996× 10−4

p7 −4.087× 10−4 −1.571× 10−3

p6 −1.797× 10−3 −4.609× 10−3

p5 2.914× 10−3 −1.045× 10−2

p4 1.293× 10−2 −1.135× 10−2

p3 −4.794× 10−2 3.451× 10−3

p2 2.438× 10−2 1.153× 10−2

p1 3.471× 10−1 3.042× 10−1

p0 1.291 1.923
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Figure 9. Curve fit for inverse actuator kinematics. (a) Curve fit for main cylinder, (b) Curve fit for
knuckle cylinder.

3.6. Neural Network Deflection Estimator

A neural network is used to estimate the deflection of the crane tip. Measurements
from the laboratory make up the training data for the network. The network predicts
the deflection in the x- and z-directions based on the cylinder positions xm, xk, and xt.
The selected topology is a classical multilayer perceptron with a single hidden layer. Each
node uses the tanh activation function. Input scaling is employed to normalize the data
to the range [−1, 1], in order to stay in the center region of the tanh activation function.
Likewise, the output scaling is used to scale the outputs from [−1, 1] to a desired range, set
by the measured deflection in the output training data. An illustration of a single node with
weights, bias, and activation function is shown in Figure 10. An overview of the neural
network with input scaling, output scaling, and ten hidden neurons is shown in Figure 11.

Σ 

x1

x2

x3

1

z a

tanh

w1

w2

w3

b

Figure 10. Illustration of a single node.

1

x1

x2

x3

sx2

sx1

sx3

y1

y2

sy1

sy2

1

h1

h2

h3

h10

Input layer Hidden layer Output layer

Figure 11. Overview of the neural network.
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3.6.1. Forward Propagation

Forward propagation refers to computing the outputs of the network with a given
input. The computations are done using vectors and matrices to calculate the output of
each layer in a single step. The formula for the input scaling is shown in Equations (30)–(34).
The input is scaled to lie between −1 and 1 based on the maximum and minimum value of
the input training data xtraining.

sx = (x− xmin)·
sx,max − sx,min

xmax − xmin
+ sx,min (30)

xmin = min(xtraining) (31)

xmax = max(xtraining) (32)

sx,min = −1 (33)

sx,max = 1 (34)

Forward propagation for the hidden layer and output layer using tanh as the activation
function is shown in Equations (35)–(38).

zh = Wh ·sx + bh (35)

h = tanh(zh) (36)

zy = Wy ·h + by (37)

y = tanh(zy) (38)

where

Wh = weight matrix of the hidden layer;
bh = bias vector of the hidden layer;
Wy = weight matrix of the output layer;
by = bias vector of the output layer.

The output scaling is similar to the input scaling, and is shown in Equations (39)–(43).

sy = (y− ymin)·
sy,max − sy,min

ymax − ymin
+ sy,min (39)

ymin = −1 (40)

ymax = 1 (41)

sy,min = min(ytraining) (42)

sy,max = max(ytraining) (43)

3.6.2. Backpropagation

Backpropagation refers to the process of calculating the gradient of the cost function
with respect to the weights. This is typically done using the chain rule one layer at the
time. The gradient descent is then used to update the weights. The training data are now
a matrix, where each column is a single measurement. The cost function is made using
the squared Frobenius norm of the scaled output minus the output training data. The cost
function is defined as

C =
1
2
·
∥∥∥sy − ytraining

∥∥∥2

F
(44)

To train the network, the partial derivatives of the cost function must first be calculated.
Note that the derivative of the activation function is d

dx tanh(x) = 1− tanh2(x). The back-
propagation for the output layer and the weight Wh is shown in Equations (45)–(49). Di-
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viding by the number of training examples, N is used to average the calculations across the
training set.

∂C
∂y

= sy − ytraining (45)

∂y
∂zy

= 1− tanh2(zy) (46)

∂C
∂zy

=
∂C
∂y
· ∂y
∂zy

(47)

∂zy

∂Wy
= hT (48)

∂C
∂Wy

=
1
N
· ∂C
∂zy
·

∂zy

∂Wy
(49)

The partial derivatives are then used to update the weights. L2 regularization is used
to avoid overfitting. This limits the value of the weights in the network to achieve better
generalization. Updating the weights with L2 regularization only requires one additional
parameter λ, in addition to the learning rate η. The adjusted cost function and the updates
to the weight Wh are shown in Equations (50)–(51).

C∗ = C +
λ

2·N ·‖Wh‖2
F (50)

Wh ←Wh − η·
(

∂C
∂Wh

+ λ·Wh

)
(51)

3.6.3. Training Results

The measured deflection from the laboratory is used to train the network. The network
is trained using η = 1 and λ = 10−4 and converged after 3× 105 iterations. Surface plots of
the estimated deflection for some cylinder lengths are shown in Figures 12 and 13. It can be
seen that the telescope length xt does not significantly impact the deflection in x-direction,
but it has a major contribution to the deflection in the z-direction.
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(a)
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0.550.8

(b)

Figure 12. Predicted deflection in x-direction δx. Black dots show measured data from the laboratory.
(a) Predicted δx with xt = 2.973 m. (b) Predicted δx with xt = 4.567 m.
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0

0.8

0.05

0.1

0.7

0.15

0.2

0.550.6

0.25

0.5
0.45

0.4
0.5 0.35

0.3
0.25

(b)

Figure 13. Predicted deflection in z-direction δz. Black dots show measured data from the laboratory.
(a) Predicted δz with xt = 2.973 m. (b) Predicted δz with xt = 4.567 m.

3.7. Control System

The block diagram for the static deflection compensator is shown in Figure 14. The sys-
tem uses actuator kinematics (Act. Kin.) and forward kinematics (For. Kin.) to transform
the cylinder position references into Cartesian space. The output of the deflection estimator
(Def. Est.) is added to the Cartesian position reference. Inverse kinematics (Inv. Kin.) and
inverse actuator kinematics (Inv. Act.) are then used to generate the modified cylinder
position references x̂re f . It should be noted that while the telescopic position reference
is used in the calculations, it is not modified since only the main cylinder and knuckle
cylinder compensate for the deflection.

xmxm
xkxk

Act. Kin.
θmθm
θkθk

xm,ref
xk,ref
xt,ref

For. Kin.
θmθm
θkθk
xtxt

Inv. Kin.
xmxm
xkxk

Inv. Act.
θmθm
θkθkzTip

xTip

Def. Est.
xmxm
xkxk
xtxt

δx
δz

xTip
zTip

xt

θmθm
θkθk

xm,ref

xk,ref

xt,ref

^

^

^

Figure 14. Block diagram of the static deflection compensator.

4. Dynamic Deflection Compensation

The dynamic deflection compensator is based on the feedback of the load pressure on
the main cylinder. Pressure feedback has previously shown its effectiveness in [24], where
it was used to suppress oscillations for the slewing motion of the HMF 2020K4 loader
crane. The load pressure is defined as the effective pressure acting on a cylinder—see
Equation (52)—and is derived from the a-side and b-side pressures, respectively. By mea-
suring these pressures, the load pressure can be calculated. Further, by measuring the
position and velocity of the cylinder, the gravitational term G(x) and the friction term Ff ric
can be estimated. Using proper filtering, the acceleration ẍ can be estimated based on
Equation (53). The inertia term M(x) represents the effective mass of the cylinder.

pL = pa −
Ab
Aa
·pb (52)

M(x)·ẍ = pL ·Aa − G(x)− Ff ric(ẋ) (53)
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4.1. Crane Natural Frequency

In the laboratory, the oscillations of the crane tip are measured using the Leica Absolute
Tracker AT960. The hanging load is rapidly lifted for a short distance to induce oscillations
in the crane, similar to an impulse response. Figure 15 shows the crane tip z-position in the
laboratory with two load impulses for xt = 3.288 m at t = 2 s and xt = 2.906 m at t = 32 s.

0 5 10 15 20 25 30 35 40 45

1.5

1.55

1.6

1.65

1.7

1.75

Figure 15. Crane tip oscillations from laboratory.

The natural frequency is extracted from the time series data, and by taking multiple
measurements with varying telescopic lengths, the natural frequency of the crane tip is
estimated using curve fitting. The measured and estimated crane tip natural frequency is
shown in Figure 16. The formula for the estimate is given as

ω̂Tip = 0.11 rad/s
m2 ·x2

t − 1.716 rad/s
m ·xt + 11.63 rad/s (54)
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9

Figure 16. Estimated crane natural frequency.
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4.2. Adaptive Bandpass Filter

An adaptive bandpass filter is used to extract the crane tip oscillations from the main
cylinder load pressure. A critically damped bandpass filter is selected, which has the
following transfer function:

GBP(s) =
2·s·ω f

s2 + 2·s·ω f + ω2
f

(55)

= 2·
ω f

s + ω f
· s
s + ω f

(56)

The bandpass filter is used in a feedback loop to suppress the oscillations. The control
signal from the dynamic compensator with feedback gain kpL is then given as

ucomp = kpL ·pL ·GBP(s) (57)

A digital implementation with variable bandpass frequency is made by separating
the bandpass filter into a lowpass filter and a highpass filter, shown in Equations (58)–(62).
The estimated eigenfrequency of the crane is used as the center frequency of the filter. yHP,
yLP, and yBP denote the output of the highpass, lowpass, and bandpass filters, respectively.

ω f = ω̂Tip(xt) (58)

α =
1

1 + ω f ·Ts
(59)

yHP,i = α·yHP,i−1 + α·(xi − xi−1) (60)

yLP,i = α·yLP,i−1 + (1− α)·yHP,i (61)

yBP,i = 2·yLP,i (62)

where

i = sample number;
x = filter input;
y = filter output(s);
Ts = sample time, 0.01 s;
ω̂Tip = estimated tip eigenfrequency.

5. Modeling of Telescopic Actuation System

A model of the crane containing the hydraulic system, main boom, and knuckle
boom was previously created using Simscape™ components; see [23–25]. For this paper,
the telescopic actuation system is modeled and added to the Simscape model. A section
view from the CAD model is given in Figure 17, showing how the telescopic booms are
packed inside each other, as well as showing the unique telescopic cylinders. An illustration
of a telescopic cylinder is given in Figure 18, showing how the three tubes are used to
transport the fluid through the telescopic system. The associated diameters D and stroke
length h are given in Table 5. Note that Di,m refers to the inner diameter of the middle
tube, etc.

Table 5. Telescopic cylinder data, in [mm].

Do,o Di,o Do,m Di,m Do,i Di,i h

Cylinder 1 80 70 55 35 20 15 1885
Cylinder 2 80 70 55 35 20 15 1950
Cylinder 3 80 70 50 34 20 15 2000
Cylinder 4 80 70 50 34 20 15 2100
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Hydraulic pipe

Outer cylinder tube

Middle cylinder tube

Inner cylinder tube

Knuckle boom

Telescopic boom 1

Telescopic boom 2

Telescopic boom 3

Telescopic boom 4

Figure 17. Section view of the telescopic system, from CAD model.

Port a1
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Port b2

Port a2

a-side 

pass through

b-side 

pass through

Do,o

Di,o

Do,m

Di,m

Do,i

Di,i

Figure 18. Illustration of a telescopic cylinder.

The inner tube allows for the a-side of all cylinders to be connected together, effectively
making the cylinders connected in parallel, hydraulically. Mechanically, the booms are
connected in series. The effective area and area ratio φ of the cylinders are given by

Aa =
π

4
·D2

i,o (63)

Ab =
π

4
·D2

i,o −
π

4
·D2

o,m (64)

φ =
Ab
Aa

(65)

The hydraulic system for the telescopic cylinders is shown in Figure 19. The coun-
terbalance valve is a special recirculating type, which effectively connects the a-side and
b-side to the same pressure during the out-stroke motion. The workings of the telescopic
circuit are shown in detail in Figure 20. Since the outer diameter of the middle tube is larger
for cylinders 1 and 2, they have a smaller b-side area and will start moving first. The coun-
terbalance valve has a rated flow of 70 L/min, and a pilot area ratio of 4. The directional
control valve has a rated flow of 40 L/min.
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M a1

b1

b2

a2

Figure 19. Hydraulic system for the telescopic cylinders.

Qin
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Qin
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Qb= 1-φ 

φ Qin.

(a)

Qin

Qa = 

Qin

φ 

Qb=Qin

QaQa

(b)

Figure 20. Flows in the telescopic circuit. (a) Flows in the telescopic circuit during out-stroke motion.
(b) Flows in the telescopic circuit during in-stroke motion.

To obtain the proper motion sequence of the telescopic cylinders as observed on the
physical crane, the friction in each is adjusted such that the outer cylinders have slightly
more friction. The inner cylinder has an estimated Coulomb friction of 10 kN and viscous
friction of 2 kN· s/m. The outer cylinders have an adjusted viscous friction of 2.1, 2.2,
and 2.3 kN· s/m, respectively. Figure 21 shows that the inner cylinder moves first, as is
desired. It can also be seen that the velocities of cylinders 3 and 4 are slightly higher since
they have a larger area ratio φ, which results in a higher Qa during the out-stroke motion.
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(a)
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0.25

0.3
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(b)
Figure 21. Motion sequence and velocity of the telescopic cylinders. (a) Position of each tele-
scopic cylinder. (b) Velocity of the full telescopic system.
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6. Simulation Results

To verify the performance and feasibility of the static and dynamic deflection compen-
sator, simulations are performed in the MATLAB Simulink® environment. A simplification
of the flexibility is made by placing a rotational spring between the knuckle boom and first
telescopic boom, illustrated in Figure 22. A similar approach was used in [26]. The deflec-
tion on the physical crane is due to many factors, such as structural flexibility, deformation
of the sliding blocks between the booms, slack between the booms, and compression of the
liquid in the cylinders. As such, an accurate model corresponding to the measured data is
difficult to create, which is why a neural network is used to estimate the deflection in the
first place. The purpose of the simplified model is to give the crane model an approximate
static and dynamic deflection on which the developed compensator will be tested. Note
that the neural network is simply re-trained to fit the measurements from the Simscape
model in this section.

Rotational spring

z

x

Figure 22. Illustration of the simplified flexible model.

In the simulations, the crane is running path control, developed earlier in [22]. Three
simulations are performed, one without load, one with load, and one with load and
deflection compensation. A load impulse is done at t = 20 s. The crane is moving from
[xm, xk, xt]T = [1.38 m, 1.8 m, 4 m]T to [1.43 m, 1.85 m, 2 m]T . Figure 23 shows the vertical
position zTip during simulations, as the deflection is largest in the z-direction. It can be seen
that the static deflection is compensated for after 6 s. The dynamic deflection compensator
quickly dampens the oscillations induced by the load impulse.

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

Load impulse

Figure 23. The vertical coordinate of the crane tip, zTip, is plotted as a function of time for three
different conditions.

To investigate the effects of the deflection compensator, the change in cylinder position
reference ∆xre f = x̂re f − xre f from the static compensator and the control signal ucomp from
the dynamic compensator is shown in Figure 24. The static deflection compensator modifies
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the cylinder position reference by a few centimeters, varying smoothly with the cylinder
positions. The effect of the dynamic deflection compensator is most prominent at the load
impulse at t = 20 s, giving a rapid correction to dampen the oscillations.
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0.015
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0.025

(a)

0 10 20 30 40 50 60

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)
Figure 24. Effects of the static and dynamic deflection compensator. (a) Change in cylinder position
reference from the static deflection compensator, (b) control signal from the dynamic deflection
compensator ucomp, and motion controller uFF + uFB.

7. Experimental Verification

Experiments are conducted on the HMF 2020K4 loader crane in the laboratory. The de-
flection compensator is implemented on a CompactRIO connected to the crane. A picture
of the test setup is shown in Figure 25.

Payload

Reflector

Telescopic 

system

Figure 25. Experimental setup in the laboratory, showing the crane with a hanging load.

There is some deadband in the valves on the loader crane. Deadband compensation
is implemented for the laboratory experiments. The deadbands are identified from the
test and are shown in Table 6. The equation for the deadband compensator is shown
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in Equation (66). A small transition region ũ is introduced to keep the control signal
continuous, which reduces unnecessary oscillations, and ensures that the valve will be
able to stay closed when no movement is needed. Parameters used in the experiments are
shown in Table 7.

Table 6. Identified deadband for the actuators.

Actuator Out, u+ In, u−

Main 0.24 −0.22
Knuckle 0.20 −0.31

Telescope 0.33 −0.33

û =


min

(
u++(1−u+)u,

u+

ũ
u
)

if u>0

max
(

u−+(1+u−)u,−u−

ũ
u
)

else
(66)

where

û = compensated control signal
u = control signal
u+ = out-stroke deadband
u− = in-stroke deadband
ũ = transition region, 0.01.

Table 7. Parameters used in laboratory.

Description Name Value

Main feedback kp,m 15 m−1

Main out-stroke feedforward k+f f ,m 30.16 s/m
Main in-stroke feedforward k−f f ,m 18.37 s/m

Knuckle feedback kp,k 20 m−1

Knuckle out-stroke feedforward k+f f ,k 26.51 s/m
Knuckle in-stroke feedforward k−f f ,k 14.72 s/m

Telescope feedback kp,t 2 m−1

Telescope out-stroke feedforward k+f f ,t 3.33 s/m
Telescope in-stroke feedforward k−f f ,t 3.7 s/m

Pressure feedback gain kpL 0.02 bar−1

The crane moves from [xm, xk, xt]T = [0.395 m, 0.6151 m, 4.168 m]T to [0.4869 m,
0.6161 m, 2.015 m]T while using the path controller. The path is run three times, one
without load, one with load, and one with load and deflection compensation. A plot of
the tip position in the xz-plane is shown in Figure 26, while the z-position versus time is
shown in Figure 27. It can be seen that the compensator is able to compensate for the static
deflection almost completely, in addition to removing the oscillations at the start and end
of the motion. At the end of the path, the static deflection of the vertical coordinate of the
crane tip, zTip, is reduced from 56.8 mm to 5.7 mm, a 90% decrease.

To showcase the effects of the deflection compensator, the change in cylinder position
reference ∆xre f = x̂re f − xre f from the static compensator and the control signal ucomp from
the dynamic compensator is shown in Figure 28. The static deflection compensator modifies
the cylinder position reference smoothly. The effect of the dynamic deflection compensator
can be seen throughout the whole motion, actively suppressing oscillations.
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Figure 26. Crane tip position in the xz-plane during motion in laboratory.

0 10 20 30 40 50 60 70

1.5

2

2.5

3

3.5

4

Figure 27. The vertical coordinate of the crane tip, zTip, plotted as a function of time during motion
in laboratory.
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Figure 28. Effects of the static and dynamic deflection compensator in laboratory. (a) Change in
cylinder position reference from the static deflection compensator. (b) Control signal from the
dynamic deflection compensator.
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To demonstrate the capabilities of the dynamic deflection compensator more clearly,
a load impulse test is performed similar to the simulations. In this case, the position
controller is disabled and only the dynamic compensator is activated. It can be seen
in Figure 29 that the dynamic deflection compensator quickly dampens the oscillations.
The slight drift at the end occurs simply because the position controller is deactivated
during this test.

0 5 10 15 20 25

2.65

2.7

2.75

2.8

2.85

Figure 29. Load impulse test with only dynamic compensator activated.

8. Conclusions

In this paper, a novel method for stable deflection compensation is introduced and
implemented on a commercially available loader crane. The new method is verified both
numerically via simulations and experimentally by conducting several path-following tasks
that all clearly demonstrate the simultaneous effect of compensating for crane tip deflections
while suppressing oscillations in the system. The deflection of the crane tip is first measured
in the laboratory using a laser tracker. A neural network deflection estimator is designed
and trained using backpropagation with training data from laboratory measurements.
The relevant kinematic functions are derived for the static compensator and are used to
transform the cylinder position reference from the actuator space to Cartesian coordinates.
The estimated tip deflection is added to the reference, and inverse kinematics are then used
to transform the modified reference from Cartesian space into actuator space. The dynamic
compensator uses pressure feedback with an adaptive bandpass filter to extract the crane
tip oscillations while allowing for steady-state variations. This signal is then used in a
feedback loop to compensate for these oscillations.

Simulation results show that the static compensator is able to minimize the effects of
the deflection and move the crane tip to a similar position as in the no-load case. The dy-
namic compensator is able to suppress the oscillations in both general path traveling as
well as load impulse situations.

Laboratory experiments are conducted to evaluate the control system on the hydraulic
loader crane in practice. Experimental results are similar to the simulations in that both
the static and dynamic compensators are able to minimize the effects of the deflection and
oscillations. The crane tip is able to follow the same position as in the no-load case with
a 90% decrease in static deflection. In the laboratory, the control signal from the dynamic
compensator successfully suppresses the oscillations during the entire motion.

Further work may include stability analysis of the neural network deflection estimator
and adaptive bandpass filter. Since the system was tested with a heavy payload, the ef-
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fects of lighter loads may also be investigated, for example, by adding another input to
the deflection estimator representing the measured or estimated weight of the payload.
Different types of neural networks may also be investigated, for example, dynamic neural
networks. In addition, the novel method requires a mapping of the deflection and an
estimate of the natural frequency of the crane. While the best results are obtained by
physical measurements as presented in this paper, it is expected that simpler and less time
consuming estimates can still yield significant improvement in accuracy and stability when
implemented using the presented method.
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